
Automating Cutting Planes Is NP-Hard
Mika Göös∗

goos@stanford.edu
Stanford University

USA

Sajin Koroth
skoroth@sfu.ca

Simon Fraser University
Canada

Ian Mertz
mertz@cs.toronto.edu
University of Toronto

Canada

Toniann Pitassi
toni@cs.toronto.edu

University of Toronto / IAS
Canada / USA

ABSTRACT
We show that Cutting Planes (CP) proofs are hard to find: Given
an unsatisfiable formula F , it is NP-hard to find a CP refutation of
F in time polynomial in the length of the shortest such refutation;
and unless Gap-Hitting-Set admits a nontrivial algorithm, one
cannot find a tree-like CP refutation of F in time polynomial in the
length of the shortest such refutation.

The first result extends the recent breakthrough of Atserias and
Müller (FOCS 2019) that established an analogous result for Reso-
lution. Our proofs rely on two new lifting theorems: (1) Dag-like
lifting for gadgets with many output bits. (2) Tree-like lifting that
simulates an r -round protocol with gadgets of query complexity
O(r).

CCS CONCEPTS
•Theory of computation→Proof complexity;Computational
complexity and cryptography.

KEYWORDS
Proof Complexity, Cutting Planes, Automatability, Lifting theorems
ACM Reference Format:
Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. 2020. Automating
Cutting Planes Is NP-Hard. In Proceedings of the 52nd Annual ACM SIGACT

Symposium on Theory of Computing (STOC ’20), June 22–26, 2020, Chicago, IL,

USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3357713.
3384248

1 INTRODUCTION
Propositional proof systems are by nature non-deterministic: a short
refutation of a formula F in a particular proof system constitutes
an easy-to-check certificate (an NP-witness) of F ’s unsatisfiability
(which is a coNP-property). The question of efficiently finding such

∗Part of the work done while at Institute for Advanced Study.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC ’20, June 22–26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00
https://doi.org/10.1145/3357713.3384248

refutations is the foundational problem of automated theorem prov-

ing with applications to algorithm design, e.g., for combinatorial
optimization [FKP19]. The following definition is due to Bonet et
al. [BPR00].

Automatability. A proof system P is automatable

if there is an algorithm that on input an unsatisfiable
CNF formula F outputs some P-refutation of F in
time polynomial in the length (or size) of the shortest
P-refutation of F .

Algorithms. Several basic propositional proof systems are au-
tomatable when restricted to proofs of bounded width or degree.
For example, Resolution refutations of width w can be found in
time nO (w) for n-variate formulas [BW01]. Efficient algorithms also
exist for finding bounded-degree refutations in algebraic proof sys-
tems such as Nullstellensatz, Polynomial Calculus [CEI96], Sherali–
Adams, and Sum-of-Squares (under technical assumptions) [O’D17,
RW17].

Hardness.Without restrictions on width or degree, many of these
systems are known not to be automatable. For themost basic system,
Resolution, a long line of work [Iwa97, ABMP01, AR08, MPW19]
recently culminated in an optimal non-automatability result by
Atserias and Müller [AM19]. They showed that Resolution is not
automatable unless P = NP. Under stronger hardness assump-
tions non-automatability results are known for Nullstellensatz and
Polynomial Calculus [GL10, MPW19] as well as for various Frege
systems [KP98, BPR97b, BDG+04].

This work. The above list conspicuously omits to mention any
hardness results for the Cutting Planes (CP) proof system (defined
in Section 1.1 below). Indeed, we show the first such results:

(§1.2) It is NP-hard to automate CP. This is an Atserias–Müller
style result for CP.

(§1.3) Under a stronger assumption, it is hard to automate tree-like
CP.

One reason Cutting Planes has been lacking non-automatability
results is because of the shortage of techniques to prove lower
bounds on CP refutation length. Virtually the only known method
has been to find reductions to monotone circuit lower bounds (for
example, via monotone feasible interpolation). Our proofs rely on
two new lifting theorems, one of which bypasses the need for mono-
tone circuit lower bounds. See Section 2 for an overview of our
techniques.

68

https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1145/3357713.3384248
https://doi.org/10.1145/3357713.3384248

STOC ’20, June 22–26, 2020, Chicago, IL, USA Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi

1.1 Cutting Planes
Cook, Coullard, and Turán [CCT87] introduced Cutting Planes as
a propositional proof system inspired by a like-named method to
solve integer linear programs. The method uses rounding of linear
inequalities (Chvátal–Gomory cuts) to reason about the integral
solutions to a linear program.

The proof system version of CP is defined as follows. Suppose
we are given a CNF formula F over variables x1, . . . ,xn . A (dag-
like) Cutting Planes refutation of F is a sequence of lines ℓ1, . . . , ℓm
(wherem is the length), each line being a linear inequality,

∑
i aixi ≥

b, with integer coefficients, ai ,b ∈ Z. We require that the sequence
ends with the contradictory inequality ℓm B [0 ≥ 1] and that
each ℓi satisfies one of the following:
− Axiom. Line ℓi is either a boolean axiom (xi ≥ 0 or−xi ≥ −1)

or an encoding of a clause of F (for example, clause (x1 ∨ x̄2)
gets encoded as x1 + (1 − x2) ≥ 1).

− Derivation. Line ℓi is deduced from two premises ℓj , ℓj′ where
j, j ′ < i (perhaps j = j ′) by an application of a sound rule. (A
refutation is tree-like if each line appears at most once as a
premise.)

In the original paper [CCT87] the rules were: (1) deriving from
ℓj , ℓj′ any nonnegative integer linear combination of them, and (2)
deriving from

∑
aixi ≥ b the line

∑
(ai/c)xi ≥ ⌈b/c⌉ where c B

gcd(a1, . . . ,an). Stronger rules have also been studied, e.g., [CKS90,
BCC93], the most general being the semantic rule, which allows
any sound inference: ℓi can be derived from ℓj , ℓj′ provided every
boolean vector x ∈ {0, 1}n that satisfies both ℓj and ℓj′ also satisfies
ℓi . In this paper, we adopt the best of all possible worlds: our lower
bounds on CP refutation length will hold even against the semantic
system and our upper bounds use the weakest possible rules (in
fact, our upper bounds hold for Resolution, which is simulated by
every variety of CP).

1.2 Dag-like Result
Our first main result is a CP analogue of the Atserias–Müller theo-
rem [AM19].

Theorem 1 (Dag-like). There is a polynomial-time algorithm A

that on input an n-variate 3-CNF formula F outputs an unsatisfiable

CNF formula A(F) such that:

− If F is satisfiable, then A(F) admits a CP refutation of length

at most nO (1)
.

− If F is unsatisfiable, thenA(F) requires CP refutations of length
at least 2n

Ω(1)
.

Consequently, it is NP-hard to approximate the minimum CP
proof length up to a factor of 2n

ε
for some ε > 0. In particular, CP

is not automatable unless P = NP.

1.3 Tree-like Result
Our second result is a similar theorem for tree-like Cutting Planes.
However, we need a stronger hardness assumption (which ismorally
necessary; see Section 2.2) that we now formulate.

An n-set system is a collection S = {S1, . . . , Sn } where Si ⊆ [n]
for each i ∈ [n]. A subset H ⊆ [n] is a hitting set for S if H ∩ Si , ∅

for all i ∈ [n]. The hitting set number of S, denoted γ (S), is the min-
imum size of a hitting set for S. The k-Gap-Hitting-Set promise
problem is to distinguish between the cases γ (S) ≤ k versus
γ (S) ≥ k2. A trivial algorithm can solve this problem in time nO (k).
It is conjectured that there are no nontrivial algorithms for k as
large as (1−ϵ) logn. Under the Exponential-Time Hypothesis [IP01],
the problem is known to be hard up to k ≤ (log logn)1−o(1) [Lin19].
We need an assumption that is stronger by a hair’s breadth.

Conjecture 1. The k-Gap-Hitting-Set problem requires time
nΩ(k) for some k = k(n) with

ω(log logn) ≤ k(n) ≤ log1/3 n. (†)

Our second main result says that tree-like CP is not automatable
under Conjecture 1.

Theorem 2 (Tree-like). Let k = k(n) satisfy (†). There is an
no(k)-time algorithm A that on input an n-set system S, outputs a
CNF formula A(S) such that:

− If γ (S) ≤ k , then A(S) admits a tree-like CP refutation of

length at most no(k).
− If γ (S) ≥ k2, then A(S) requires tree-like CP refutations of

length at least nω(k)
.

2 OVERVIEW OF PROOFS
In this section, we explain why both of our main results (dag-like
and tree-like) follow from appropriate kinds of lifting theorems.
Abstractly speaking, a lifting theorem is a tool that translates a
lower-bound result for a weak model of computation (for us, Res-
olution) into an analogous lower-bound result for a strong model
of computation (for us, Cutting Planes). Starting with Raz and
McKenzie [RM99] such theorems now exist for an enormous variety
of computational models. In proof complexity alone, prior exam-
ples of lifting applications include [BEGJ00, HN12, GP18, dRNV16,
GGKS18, GKRS19, dRMN+19]. We provide two more.

2.1 Dag-like Case
Our proof of Theorem 1 builds directly on top of the breakthrough
of Atserias andMüller [AM19]. Given ann-variate 3-CNF formula F ,
they construct a formula Ref(F), which is an intricate CNF encoding
of the claim “F admits a short Resolution refutation.” Luckily, the
exact details of Ref(F) are not important for us. We only need a few
high-level properties of their construction.

Block-width. The variables of Ref(F) come partitioned into some
number of blocks. Given a clause D over the variables of Ref(F),
we define its block-width as the number of blocks that D touches,
that is, contains a variable (or its negation) from that block. The
block-width of a Resolution refutation is the maximum block-width
of any of its clauses.

Lemma 3 (Atserias–Müller [AM19]). There is a polynomial-time

algorithm that on input an n-variate 3-CNF formula F outputs an

unsatisfiable
1
CNF formula Ref(F) such that

1Strictly speaking, Ref(F), as defined in [AM19], may sometimes be satisfiable,
in which case its Resolution width/length complexity is understood as∞. However
this case is equivalent to our reformulation, as we can guarantee that Ref(F) is al-
ways unsatisfiable by consider instead the CNF formula Ref(F) ∧T where T is some

69

Automating Cutting Planes Is NP-Hard STOC ’20, June 22–26, 2020, Chicago, IL, USA

− If F is satisfiable, then Ref(F) admits a nO (1)
-length O(1)-

block-width Resolution refutation.

− If F is unsatisfiable, then Ref(F) requires Resolution refutations
of block-width at least nΩ(1).

Atserias andMüller finish their proof bymodifyingRef(F) slightly
via relativization, an operation due to Danchev and Riis [DR03] (see
also [Gar19]). What this operation achieves is to turn a formula
requiring block-width b into a formula requiring Resolution length
2Ω(b). If F is unsatisfiable, relativized-Ref(F) will have exponential
length complexity. On the other hand, if F is satisfiable, relativized-
Ref(F) continues to have a short Resolution refutation, inherited
from Ref(F).

In this paper, in order to make Ref(F) hard for Cutting Planes
(when F is unsatisfiable), we will modify the formula by block-wise
composing (aka lifting) it with a small gadget, an operation similar
to relativization.

Lifting width. Recently, Garg et al. [GGKS18] introduced a new
lifting-based lower-bound technique for Cutting Planes: they showed
how to lift Resolution width to Cutting Planes length. Namely, if
F is an n-variate formula requiring Resolution width w , then for
a careful choice of a gadget д : {0, 1}m → {0, 1}, m = nO (1), the
composed formula F ◦ дn—obtained from F by substituting each of
its variables with a copy of д—has Cutting Planes length complex-
ity nΘ(w).

What happens if we try to apply the lifting result of [GGKS18]
to the formula Ref(F)? When F is unsatisfiable, we indeed do get
(using width ≥ block-width) that Ref(F) ◦ дn requires exponential-
length CP refutations. However, when F is satisfiable, even though
Ref(F) is promised to have block-width O(1), its usual width still
turns out to be nΩ(1). Therefore the composition with д would blow
up the length complexity, not creating the desired gap in CP proof
length.

Lifting block-width. Our idea, in short, is to build on [GGKS18]
and prove a lifting theorem for block-width (instead of width). Sup-
pose F is a formula whose nℓ variables are partitioned into n many
blocks of ℓ variables each (typically ℓ = nΘ(1)). We will consider
compositions F ◦ дn

ℓ
with a multi-output gadget дℓ : {0, 1}m →

{0, 1}ℓ , one gadget for each block; see Section 3.4 for the formal def-
inition. Below, res(·) denotes Resolution length complexity, cut(·)
denotes Cutting Planes length complexity, and bw(·) denotes Res-
olution block-width complexity.

Theorem 4 (Block lifting). Fix an unsatisfiable CNF formula F
havingnmany blocks of ℓ variables each. There is a gadgetдℓ : {0, 1}m →
{0, 1}ℓ wherem B (nℓ)Θ(1) such that

mΩ(bw(F)) ≤ cut(F ◦ дnℓ) ≤ res(F ◦ дnℓ) ≤ mO (bw(Π)) · |Π |,

where Π is any Resolution refutation of F of length |Π | and block-

width bw(Π).

Our main dag-like theorem (Theorem 1) now follows immedi-
ately by combining Lemma 3 and Theorem 4. Namely, consider the
algorithm A that on input an n-variate 3-CNF formula F outputs
the CNF formula A(F) B Ref(F) ◦ дk

ℓ
where Ref(F) has k ≤ nO (1)

formula over disjoint variables known to require large width (e.g., Tseitin contradic-
tions [Urq87]).

many blocks with ℓ ≤ nO (1) variables each. We only need to note
that this composed formula is constructible in polynomial time,
which will be evident from the formal definition; see Fact 7 in
Section 3.5. Therefore, to prove Theorem 1 it remains to prove
Theorem 4, which we do in Section 4.

Relation to monotone circuits. To conclude this subsection, we
offer some philosophical musings on the techniques used to prove
Theorem 4. Non-automatability results for Cutting Planes have been
elusive in part because of the limitations of existing techniques
to prove lower bounds on refutation length (as required by the
second item in Theorem 1). The only technique available for some
twenty years has been monotone feasible interpolation [BPR97a,
Kra97, HP18], which translates lower bounds for (real) monotone
circuits to lower bounds on Cutting Planes length. Historically,
the downside with the technique was that it only seemed to apply
to highly specialized formulas (e.g., clique-vs-coloring). However,
the technique was recently extended to handle a more general
class of formulas, random Θ(logn)-CNFs [HP17, FPPR17]. The only
other available lower-bound technique is the aforementioned lifting
theorem [GGKS18]. That technique is also powerful enough to
prove lower bounds not only on CP length, but also on monotone
circuit size. (Whether lifting should be classified under monotone
interpolation is up for debate, since this depends on how broadly
one defines monotone interpolation.)

In contrast, our Theorem 4 is not proved through monotone cir-
cuit lower bounds, but through a newweaker model of computation,
dubbed simplex-dags in Section 3.2. At the heart of monotone inter-
polation is a characterization of monotone circuits by a two-party
communication game [Raz95, Pud10, Sok17]. In this language, our
Theorem 4 is obtained not by studying a two-party communication
model, but rather a multi-party model. Considering a large number
of communicating parties is what allows us to analyze multi-output
gadgets; we do not know how to do this with only two parties.

2.2 Tree-like Case
Proof of Theorem 2 builds on the important paper by Alekhnovich
and Razborov [AR08] (followed up by [GL10, MPW19]). They show
that tree-like Resolution is not automatable assuming the fixed
parameter hierarchy does not collapse (which is implied by the
Exponential-Time Hypothesis). Since tree-like Resolution proofs
can be found in quasipolynomial-time (we say tree-like Resolution
is quasipolynomially automatable), they need to assume more than
NP-hardness. Our results will inherit this need for a stronger as-
sumption (namely, Conjecture 1), even though tree-like CP is not
known to be quasipolynomially automatable.

The reduction of Alekhnovich and Razborov is somewhat com-
plicated, but luckily we will only need as our starting point the
following lemma from the follow-up work [MPW19].

Lemma 5 (Mertz et al. [MPW19]). Let k ≤ log1/3 n. There is a
polynomial-time algorithm B that on input a n-set system S outputs

an unsatisfiable O(logn)-CNF formula B(S) such that

− If γ (S) ≤ k , then B(S) admits a Resolution refutation of depth

O(logn).
− If γ (S) ≥ k2, then B(S) requires Resolution refutations of

depth Ω(k logn).

70

STOC ’20, June 22–26, 2020, Chicago, IL, USA Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi

To prove Theorem 2, our plan is once again to compose the
formula B(S) with a (single-output-bit) gadget in order to lift the
Resolution depth gap in Lemma 5 into tree-like CP length gap. To
this end, we develop a new lifting theorem for “small” gadgets.

Limitations of existingmethods. Let F be an unsatisfiablen-variate
formula with Resolution depth complexity d(F). Existing lifting
theorems [BEGJ00, dRNV16] when applied to F would require a
gadget д of size poly(n) that can be computed by a decision tree
of depth Θ(logn) and hence of size poly(n). Writing res-tree(·) for
tree-like Resolution length complexity, and cut-tree(·) for tree-like
CP length complexity, the lifting theorems [BEGJ00, dRNV16] show

cut-tree(F ◦ дn) = res-tree(F ◦ дn)Θ(1) = nΘ(d(F)). (1)

The base of the exponent above (namely, poly(n)) is the decision
tree size of д. If we applied (1) to Lemma 5, we would only end up
with a length gap of nO (logn) versus nω(logn). But these lengths—
and hence running times for the automating algorithm—are enough
to solve the k-Gap-Hitting-Set problem, which prevents us from
getting a hardness result.

Small gadget lifting. What we need is a lifting theorem for small
gadgets, that is, gadgets computed by small decision trees. It is an
important open problem whether tree-like lifting is possible with a
constant-size gadget. In this paper, we are able to use a gadget of
decision-tree size depending only on the quantity we want to lift,
namely d(F), and not depending on the number of variables n of
F . Our lifting theorem can be seen as a generalization of previous
ones, which handled the case d(F) = nΩ(1), and can also be viewed
as a step towards proving a lifting theorem for significantly smaller
gadgets (eventually, constant-size).

Theorem 6 (Small gadget lifting). For everym there exists a

gadget д : {0, 1}poly(m) → {0, 1} of query complexity O(logm) such
that for every unsatisfiable n-variate CNF formula F ,

mΘ(min(d(F),m)) ≤ cut-tree(F ◦ дn) ≤ res-tree(F ◦ дn) ≤ mO (d(F)).

Our main tree-like theorem (Theorem 2) now follows by com-
bining Lemma 5 and Theorem 6. Indeed, choosem B log2 n and
consider the algorithm A that on input an n-set system S out-
puts the formula A(S) B B(S) ◦ дn

′

where B(S) has n′ = nO (1)

variables. We have
γ (S) ≤ k =⇒ cut-tree(A(S)) ≤ mO (logn)

= nO (log logn) ≤ no(k),
γ (S) ≥ k2 =⇒ cut-tree(A(S)) ≥ mΩ(k logn)

= nΩ(k log logn) ≥ nω(k).

Finally, we note that the composed formula B(S) ◦ дn
′

can be
constructed in time no(k). This will be evident from the formal
definition (see the full version [GKMP20, Fact 11]), but the intuition
is as follows. Each O(logn)-width clause of B(S) will turn into a
whole familyO(logm logn)-width clauses forB(S)◦дn

′

. The family
for a particular clause D is obtained by replacing each literal of D in
all possible ways by an O(logm)-length root-to-leaf path (of which
there are 2O (logm) many) in the decision tree for д. Altogether
this will yield |B(S)| · (2O (logm))O (logn) = nO (1) · no(k) = no(k)

many clauses. Therefore, to prove Theorem 2 it remains to prove
Theorem 6; see the full version [GKMP20, Section 6] for the proof.

Relation to real protocols. The lower bound in Theorem 6 holds
not only for tree-like Cutting Planes but also for a stronger model
of computation, real communication protocols [Kra98]. This is not
surprising: all existing lower bounds on tree-like CP length have
been proved through real protocols (or the even more powerful
model of randomized protocols). In a nutshell, our proof of Theo-
rem 6 extends the techniques in a long line of work on tree-like
lifting [RM99, BEGJ00, GPW15, dRNV16, GPW17, CFK+19], opti-
mizing the argument in order to get rid of the dependence on the
input size n. See the full version [GKMP20] for a detailed overview.

3 DAG-LIKE DEFINITIONS
In this paper, we adopt the standard top-down view of proofs [Pud00,
AD08]. Namely, we interpret a refutation of an n-variate CNF for-
mula F B ∧i ∈[m]Di as a way of solving the associated falsified-

clause search problem SF ⊆ {0, 1}n×[m]. The problem SF is, on input
a truth assignment x ∈ {0, 1}n , to find a clause D j , j ∈ [m], falsified
by x , that is, D j (x) = 0. For example, tree-like Resolution refuta-
tions of F are equivalent to decision trees solving SF [LNNW95].
We proceed to formalize this for dag-like models. The material
in Section 3.1 is standard. Section 3.2 introduces a novel model,
simplex-dags, for which we develop a lifting theorem in Section 4.

3.1 Standard Models
Abstract dags. Fix an abstract search problem S ⊆ I × O, that is,

on input x ∈ I the goal is to find some o ∈ S(x) B {o ∈ O : (x ,o) ∈
S}. We always work with total search problems where S(x) , ∅
for all x ∈ I. Fix also a family F of functions I → {0, 1}. An
F -dag solving S is a directed acyclic graph of out-degree ≤ 2where
each vertex v is associated with a function fv ∈ F (here f −1(1) is
sometimes called the feasible set for v) satisfying the following.
− Root. There is a designated root vertex v (in-degree 0) that

satisfies fv ≡ 1.
− Non-leaf. Every non-leaf v with children u,u ′ (perhaps u =

u ′) has f −1v (1) ⊆ f −1u (1) ∪ f −1u′ (1).
− Leaves. For every leafv there is some output o ∈ O such that

f −1v (1) ⊆ S−1(o).
The size of an F -dag is its number of vertices.

Decision-dags and Resolution. Consider instantiating the above
template with the n-bit input domain I B {0, 1}n and taking F
to be the set of all conjunctions over the literals x1, x̄1, . . . ,xn , x̄n .
We call such F -dags simply decision-dags. Apart from the size of a
decision-dag another important measure is its width: the maximum
width of a conjunction used. We define

dec-dag(S) B least size of a decision-dag solving S,
w(S) B least width of a decision-dag solving S .

When specialized to unsatisfiable CNF search problems S = SF ,
we recover the usual Resolution proof system. Indeed, dec-dag(SF)
equals res(F), the length required to refute F in Resolution, and
w(SF) equals the Resolution width complexity of F (famously stud-
ied in [BW01]).

LTF-dags and Cutting Planes. Consider instantiatingI B {0, 1}n
and taking F to be the set of all n-bit linear threshold functions

(LTFs). Recall that an f ∈ F is defined by a vector a ∈ Rn+1 such

71

Automating Cutting Planes Is NP-Hard STOC ’20, June 22–26, 2020, Chicago, IL, USA

that f (x) = 1 iff
∑
i ∈[n] aixi ≥ an+1. We call such F -dags simply

LTF-dags, and define

ltf-dag(S) B least size of an LTF-dag solving S .

When specialized to S = SF , we recover the semantic Cutting Planes
proof system. Indeed, ltf-dag(SF) equals cut(F), the length required
to refute F in semantic Cutting Planes.

3.2 Simplex-dags
We now introduce a new type of dag, for which our dag-like lifting
theorem is formulated (Section 4). Let k ≥ 1 and consider a fixed
k-partite input domain I B I1 × · · · × Ik . We say that a function
f : I1 × · · · × Ik → {0, 1} is monotone (up to an ordering of the
parts Ii ; aka unate) iff each set Ii admits a total order ⪯i such
that f (x) ≤ f (y) for every pair x ⪯ y (meaning xi ⪯i yi for
all i ∈ [k]). For example, every n-bit LTF is monotone as an n-
partite function: the orderings are determined by the signs of the
coefficients appearing in the linear form defining f . We also say
that a subset A ⊆ I1 × · · · × Ik is a (combinatorial) k-simplex if
its indicator function is monotone. Let F be the set of monotone
functions over I1 × · · · × Ik ; we emphasize that any two f , f ′ ∈ F
may not agree on the ordering of any part Ii . We call such F -dags
simply simplex-dags, and define

sim-dag(S) B least size of a simplex-dag solving S .

Relation to other models. Simplex-dags are a natural k-party gen-
eralization of the bipartite casek = 2, whichwas called triangle-dags
in [GGKS18]. Triangle-dags in turn are equivalent to real circuits
and real dag-like protocols [HC99, Pud97, HP18]. Our motivation
to consider multi-party models is that they can be vastly weaker
than two-party models. Hence one expects it to be easier to prove
lower bounds for k-simplex-dags when k is large. For a toy example,
consider the n-bit Xorn function. It is easy to compute for tradi-
tional two-party communication protocols regardless of how the
n bits are split between the two players. By contrast, for n parties,
each holding one input bit, Xorn is hard to compute.

3.3 Relationships
The complexity measures introduced so far are related as follows:

sim-dag(Sk) ≤ ltf-dag(Sn) ≤ dec-dag(Sn) ≤ nO (w(Sn)).

Here Sn ⊆ {0, 1}n × O is any n-bit search problem, and Sk ⊆
{0, 1}I1 × · · · × {0, 1}Ik × O is a k-partite version of Sn obtained
from an arbitrary partition I1 ⊔ · · · ⊔ Ik = [n]. The first inequality
follows by noting that each LTF f , defined by

∑
i aixi ≥ an+1, is a

monotone k-partite function when the i-th part {0, 1}Ii is ordered
according to the partial sum

∑
i ∈Ii aixi (breaking ties arbitrarily).

The second inequality follows since every conjunction is an LTF.
The last inequality is standard: the length of anywidth-w Resolution
refutation can be made nO (w) by eliminating repeated clauses (and
the same construction works for arbitrary search problems).

3.4 Blocks
Block width. Let S ⊆ ({0, 1}ℓ)n×O be any search problem whose

nℓ input bits are partitioned into n blocks of ℓ bits each. For every
conjunction C over the variables of S , we define the block-width of
C as the maximum number of blocks thatC touches, that is, contains

a variable (or its negation) from a block. We define the block-width
of a decision-dag solving S as the maximum block-width over all
conjunctions in the dag. Finally, we define

bw(S) B least block-width of a decision-dag solving S .

Block composition. The column-index gadget Indℓ×m is defined
as Indℓ×m (x ,y) is the “x-th column of y” where x ∈ [m] and y ∈
{0, 1}ℓ×m . We cally ∈ {0, 1}ℓ×m thematrix and x ∈ [m] the pointer
(for decision-dags, we tacitly encode the elements of [m] in binary
as logm-bit strings.). Letting S ⊆ ({0, 1}ℓ)n × O be as above, we
define a composed search problem

S ◦ Indnℓ×m ⊆ [m]
n × ({0, 1}ℓ×m)n × O. (2)

Namely, on input (x ,y) ∈ [m]n × ({0, 1}ℓ×m)n the goal is to find
an output o ∈ S(z) for z obtained by applying the gadget on input
(x ,y) as follows:

z B (Indℓ×m (x1,y1), . . . , Indℓ×m (xn ,yn)) ∈ ({0, 1}ℓ)n

. We shall view the composition (2) as an (1 + nℓ)-partite search
problem by repartitioning the input domain as

[m]n × ({0, 1}ℓ×m)n = X ×
∏

(i, j)∈[n]×[ℓ]
Yi j

where X B [m]n and Yi j B {0, 1}m . Here we think of player
Alice as holding x ∈ X, and for (i, j) ∈ [n] × [ℓ], player Bobi j as
holding (yi)j ∈ Yi j , that is, the j-th row of the i-th matrix yi .

3.5 CNF Encoding
We just defined block-composed search problems S ◦ Indn

ℓ×m , but
how can we translate such objects back to CNF formulas? The stan-
dard recipe is as follows. Fix any search problem S ⊆ {0, 1}n × O
(not necessarily of a composed form). A certificate for (x ,o) ∈ S
is a partial assignment ρ ∈ {0, 1, ∗}n consistent with x such that
for any y consistent with ρ we have (y,o) ∈ S . The size of ρ is the
number of its fixed (non-∗) coordinates. The certificate complexity

of S is the maximum over all inputs x ∈ {0, 1}n of the minimum
over all o ∈ S(x) of the least size of a certificate for (x ,o). For exam-
ple, if F is an unsatisfiable k-CNF formula, then SF has certificate
complexity at most k . Conversely, any total search problem S of
certificate complexity k contains the search problem SF associated
with some unsatisfiable k-CNF formula F as a subproblem (S is at
least as hard as SF). Namely, consider F B

∧
x ¬Cx where Cx is

the conjunction that checks if the input is consistent with some
fixed size-k certificate for x . Note that F is unsatisfiable because S
is total.

For unbounded-width CNF formulas (such as Atserias–Müller’s
Ref(F)), we need to interpret the above recipe with care. Indeed,
fix any unsatisfiable (unbounded-width) CNF formula F with |F |
many clauses and such that its nℓ variables are partitioned into n
blocks of ℓ variables each. Denote by b the maximum block-width
of a clause of F . Then every clause D of F gives rise to a family of
certificates for SF ◦ Indnℓ×m . Namely, a certificate in the family for
D consists of at most b logm bits (reading b many pointer values
associated with the blocks of D) together with |D | many bits read
from the pointed-to columns. Thus, altogether, we get at most
|F |mb many certificates, at least one for each input to SF ◦ Indnℓ×m .
We define F ◦ Indn

ℓ×m as the formula obtained by listing all these

72

STOC ’20, June 22–26, 2020, Chicago, IL, USA Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi

xi

(Alice)

i-th gadget: ℓ

m

= (yi)1 ∈ Yi1 (Bobi1)

= (yi)2 ∈ Yi2 (Bobi2)

= (yi)3 ∈ Yi3 (Bobi3)0

1

1

1

0

0

1

0

1

0

1

1

0

0

1

Figure 1: Illustration of the column-index gadget

certificates (more precisely, the disjunctions that are the negations
of the certificates).

The formula Ref(F) of Atserias and Müller is such that its clauses
have block-width 3 [AM19, Appendix A]. Hence Ref(F) ◦ Indn

ℓ×m
has size nO (1) and moreover it is polynomial-time constructible.

Fact 7. Given an n-variate 3-CNF F , we can construct Ref(F) ◦
Ind

n
ℓ×m in polynomial time.

4 DAG-LIKE LIFTING
The purpose of this section is to prove our block-lifting theorem
(Theorem 4), which would complete the proof of our main dag-like
result (Theorem 1). We restate the block-lifting theorem using the
search-problem-centric language of Section 3. Then Theorem 4 is
the special case S B SF .

Theorem 8 (Block lifting). Let S ⊆ ({0, 1}ℓ)n × O be any

search problem. Form B (nℓ)5 we have

mΩ(bw(S)) ≤ sim-dag(S ◦ Indnℓ×m) ≤ dec-dag(S ◦ Indnℓ×m)

≤ mO (bw(Π)) · |Π |,

where Π is any decision-dag solving S of size |Π | and block-width

bw(Π).

Upper bound. The last inequality is the trivial part of Theorem 8.
We only sketch it here. Given a decision-dag Π for S , we construct
a decision-dag Π′ for S ◦ Indn

ℓ×m . For every block-width-b con-
junction C in Π, there corresponds a family of exactlymb many
conjunctions in Π′. Namely, the family is constructed by replacing
each positive literal xi j (resp. negative literal x̄i j) of C with a se-
quence of logm + 1 many literals that witness the j-th output bit of
the i-th gadget being 1 (resp. 0). If C has children C ′, C ′′ that only
touch blocks touched byC , then every conjunction in the family for
C can be directly connected to the families ofC ′,C ′′. However, ifC ′,
C ′′ touch some block i (there can be at most one) that is untouched
by C , then the family for C is connected to the families of C ′, C ′′
via decision trees that query the pointer value of the i-th gadget.
We have |Π′ | ≤ mO (bw(Π)) · |Π |, as desired.

Lower bound. The first inequality is the nontrivial part of Theo-
rem 8. Our proof follows closely the plan from [GGKS18]. However,
the proof here is in many ways simpler than the original one. The
reason is that we work with multi-party objects (high-dimensional
boxes and simplices) rather than two-party objects (rectangles and
triangles). For example, one of the key technical lemmas, Lemma 9

(“ρ-structured boxes are ρ-like”), admits a short proof in our multi-
party setting, whereas the original lemma for two parties required
a long proof involving Fourier analysis. The rest of this section is
concerned with proving the simplex-dag lower bound.

4.1 Subcubes from Simplices
Let ρ ∈ ({0, 1}ℓ ∪ {∗})n be a partial assignment that assigns each
of the n blocks either an ℓ-bit string or the star symbol. We denote
by free(ρ) ⊆ [n] the subset of blocks assigned a star, and define
fix(ρ) B [n] ∖ free(ρ). The subcube of strings consistent with ρ

is Cube(ρ) B {z ∈ ({0, 1}ℓ)n : zi = ρi ,∀i ∈ fix(ρ)}. For any set
R ⊆ X ×

∏
Yi j we say that

“R is ρ-like” iff Indnℓ×m (R) = Cube(ρ).

We formulate a sufficient condition for R to be ρ-like in case R
is a box, that is a product set.

Definition 1 (Random variables). For a random variable x ∈ X we
define itsmin-entropy as follows:H∞(x) B minx log(1/Pr[x = x]).
When x is chosen from a setXk that is partitioned into k blocks, we
define its blockwise min-entropy by min∅,S ⊆[k] 1

|S |H∞(xS) where
xS is the marginal distribution of x over blocks S . We also define
the deficiency of x ∈ X by D∞(x) B log |X| − H∞(x) ≥ 0. For
convenience, if X is a set, we denote by X ∈ X the random variable
that is uniform over X . In particular, for X ⊆ Xn the notation XI
for I ⊆ [n] means “the marginal distribution over coordinates I of
the uniform distribution over X ”. We use XI B {xI : x ∈ X } to
mean the set that is the projection of X onto coordinates I ; thus XI
is the support of XI .

Definition 2 (Structured boxes). Let R B X ×
∏

i j Y
i j ⊆ X ×∏

i j Y
i j be a box and ρ ∈ ({0, 1}ℓ ∪ {∗})n a partial assignment. We

say R is ρ-structured if

(1) Gadgets are fixed according to ρ: Indfix(ρ)
ℓ×m (Rfix(ρ)) = {ρfix(ρ)}.

(2) X has entropy on the free blocks: Xfree(ρ) has blockwise
min-entropy ≥ 0.9 · logm.

(3) Y i j are large: D∞(Y i j) ≤ m1/2 for i ∈ free(ρ), j ∈ [ℓ].

The following key lemma is the reason our dag-lifting result is
formulated for k-simplex-dags for large k—we do not know how to
prove a multi-output gadget lemma like this for k = 2. (The paper
[GGKS18] did it for k = 2 and single-output gadgets.)

Lemma 9. Let R B X ×
∏

i j Y
i j
be ρ-structured. There is an x ∈ X

so that {x} ×
∏

i j Y
i j
is ρ-like.

73

Automating Cutting Planes Is NP-Hard STOC ’20, June 22–26, 2020, Chicago, IL, USA

Proof. Assume for simplicity that ρ = ∗n . Thus our goal is
to find an x ∈ X such that Indn

ℓ×m ({x} ×
∏

i j Y
i j) = ({0, 1}ℓ)n .

The key observation is that since each of the nℓ output bits is
determined by a different Bobi j , the output bits are independent:
Indn

ℓ×m ({x} ×
∏

i j Y
i j) =

∏
i j Ind1×m ({xi } × Y i j). Therefore it

suffices to find an x ∈ X such that for all i ∈ [n], j ∈ [ℓ],

x is “good” for Y i j : Ind1×m ({xi } × Y i j) = {0, 1}. (3)

We claim that a uniform random choicex ∈ X satisfies all conditions
(3) with positive probability. Indeed, for a fixed ij , how many “bad”
values xi ∈ [m] are there that fail to satisfy (3)? Each bad value xi
implies that the xi -th bit is fixed in Y i j . But there can be at most
D∞(Y i j) ≤ m1/2 fixed such bits. Using H∞(xi) ≥ 0.9 · logm for
i ∈ [n] and recalling thatm = (nℓ)5 we have

Pr[xi is “bad” for Y i j] ≤ m1/2 · 2−0.9 logm < 1/(nℓ).

A union bound over all the nℓ many conditions (3) completes the
proof. □

The following lemma is the culmination of this subsection: Every
simplex can be partitioned into ρ-like pieces (and some error sets);
see Figure 2. The lemma is a high-dimensional analogue of the
Triangle Lemma from [GGKS18]. We defer the proof to Appendix A.

Simplex Lemma. Let T ⊆ X ×
∏

i j Y
i j
be a simplex and k ≥ 0

an error parameter. There exists a disjoint box covering

⊔
r R

r ⊇ T

and error sets X err ⊆ X, Y err,i j ⊆ Yi j
, each of density ≤ 2−k , such

that for each r one of the following holds:

• Structured case: Rr is ρr-structured for some ρr that fixes

O(k/logm) blocks. Moreover there exists an “inner” boxR◦,r ⊆
T ∩ Rr , which is also ρr-structured.

• Error case: Rr is covered by error boxes:Rr ⊆ X err×
∏

i j Y
i j∪⋃

i j X × Y
err,i j ×

∏
i′j′,i j Y

i′j′
.

Finally, a query alignment property holds: for every x ∈ X∖Xerr,
there exists a subset Ix ⊆ [n] with |Ix | ≤ O(k/logm) such that every
“structured” Rr intersecting {x} ×

∏
i j Y

i j
has fix(ρr) ⊆ Ix .

4.2 Simplified Proof
To prove (the first inequality of) Theorem 8, fix a simplex-dag Π

solving S◦Indn
ℓ×m of sizemd . Our goal is to construct a decision-dag

Π′ solving S that has block-width O(d). We first present the proof
under a simplifying assumption and then remove that assumption
in Section 4.3.

(∗) Assumption: If we apply Simplex Lemma for k B 2d logm to
any simplexT in Π, then each part in the produced partition
T =

⊔
r T ∩ R

r satisfies the “structured case”.
Using (∗), apply Simplex Lemma (for the above choice of k)

to partition all simplicies T in Π. Each resulting structured part
T ∩ Rr will correspond to a vertex in Π′ associated with the partial
assignment (or conjunction) ρr , that is, with feasible set Cube(ρr).
Moreover, we will let the type (root/internal/leaf) of a vertex T in
Π dictate the type of the resulting vertices T ∩ Rr in Π′. We will
add more vertices to Π′ shortly in order to connect all the internal
vertices, but so far Π′ already meets the root and leaf conditions
of a decision-dag solving S , as we note next.

Step 1: Root and leaves. We may assume that for the root of Π,
which is associated with the simplex T B X ×

∏
i j ×Y

i j , the
Simplex Lemma produces the trivial partition consisting of just
one ∗n -structured part, T itself. Hence, the designated root of Π′ is
defined as the sole partT with an associated feasible set Cube(∗n) =
({0, 1}ℓ)n . This meets the root condition of a decision-dag.

Consider any part R◦,r ⊆ T ∩ Rr ⊆ Rr with an associated
assignment ρr , arising from a leaf T of Π. Suppose o ∈ O is a valid
solution for T in Π, that is, T ⊆ (S ◦ Indn

ℓ×m)−1(o), or equivalently,
Indn

ℓ×m (T) ⊆ S−1(o). We claim that o is also a valid solution for the
leaf T ∩ Rr in Π′:

Cube(ρr) = Indnℓ×m (T ∩ Rr) ⊆ Indnℓ×m (T) ⊆ S−1(o).

Here the equality uses the fact that T ∩ Rr is ρr-like (it is sand-
wiched between two sets that are ρr-structured, and hence ρr-like
by Lemma 9). This meets the leaf condition of a decision-dag.

Step 2: Internal. To complete the definition of Π′, consider a
vertex associated with some part R◦ ⊆ T ∩ R ⊆ R, where R◦ and
R are ρ-structured, that arises from a non-leaf simplex T of Π. We
connect this vertex to the vertices arising from T ’s two children, L
and L′. The connections are made via a decision tree T , which we
include in Π′. At a high level, the tree will satisfy the following.

(1) Root: The root of the tree T is identified with the vertex
T ∩ R associated with ρ. That is, T starts out with the bits
in blocks fix(ρ) ⊆ [n] already queried.

(2) Non-leaf: The non-leaf vertices of T query more bits, one
block at a time.

(3) Leaf: Every leaf ρ∗ of T extends some assignment τ that
arises from the partitions of the children L, L′. Therefore,
in Π′, we define ρ∗ to have τ as its unique child. (This way,
the feasible sets satisfy Cube(ρ∗) ⊆ Cube(τ) as required in a
decision-dag.)

The tree T is defined precisely as follows. Since R◦ C X ×∏
i j Y

i j is ρ-structured, Lemma 9 produces an x∗ ∈ X such that
{x∗} ×

∏
i j Y

i j is ρ-like. Using the query alignment property for L
and L′, there are subsets I , I ′ ⊆ [n], |I ∪ I ′ | ≤ O(k/logm) ≤ O(d),
such that any structured part in the partitions of L and L′ that
intersects the slice {x∗} ×

∏
i j Y

i j has their fixed blocks contained
in I ∪ I ′. We let T query all bits in the blocks (I ∪ I ′) ∖ fix(ρ) in
some order, and make the resulting vertices (having queried all bits
in blocks I ∪ I ′ ∪ fix(ρ)) the leaves of T .

Claim 10. Every leaf ρ∗ of T satisfies item (3).

Proof. Since ρ∗ extends ρ, and {x∗} ×
∏

i j Y
i j is ρ-like, there

is some y∗ ∈
∏

i j Y
i j such that Indn

ℓ×m (x∗,y∗) ∈ Cube(ρ∗). Since
(x∗,y∗) ∈ R◦ ⊆ L∪L′, we have (x∗,y∗) ∈ L or (x∗,y∗) ∈ L′. Suppose
wlog that (x∗,y∗) ∈ L. Let L ∩ R′, where R′ is τ -structured, be the
unique part of L containing (x∗,y∗). But since fix(τ) ⊆ I ⊆ fix(ρ∗)
and both τ and ρ∗ agree with Indn

ℓ×m (x∗,y∗), we conclude that ρ∗
extends τ , as required. □

Efficiency. We remark that all the assignments appearing in Π′

have block-widthO(d). This holds for the vertices coming from par-
titioning of the simplicies in Π due to our choice of k ≤ O(d logm),
and it holds for the vertices in the decision trees as they query at

74

STOC ’20, June 22–26, 2020, Chicago, IL, USA Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi

R◦,r

T ∩ Rr

Rr

Figure 2: Structured case of Simplex Lemma. The simplex T is partitioned as T =
⊔
r T ∩ Rr where each structured part is

sandwiched between two ρr-structured boxes, R◦,r ⊆ T ∩ Rr ⊆ Rr .

❀
T

T

L L′

Simplex-dag Π decision-dag Π′

⊔
r T ∩ Rr :

ρ

ρ∗

τ

Figure 3: Illustration of turning the Simplex-dag into a decision-dag via a decision tree

most |I ∪ I ′ | ≤ O(d) additional blocks. This concludes the (simpli-
fied) proof of Theorem 8.

4.3 Accounting for Error
Removing the assumption (∗) is done virtually in the same way as
in [GGKS18]. We briefly recall the outline (and refer to [GGKS18,
§5.3] for more details if necessary). Instead of partitioning each
simplex independently from one another, we instead process them
in reverse topological order, T1, . . . ,Tmd (i.e., if Ti is a descendant
ofTj then i < j), and before partitioningTi we first remove all error
sets resulting from partitioning of its descendants. More precisely,
we initialize an “errorless” box B B X ×

∏
i j Y

i j and then process
the simplicies as follows.

Iterate for i = 1, . . . ,md
:

(1) Update Ti by removing all the errors accumulated so far:
Ti ← Ti ∩ B. Note that Ti continues to be a simplex.

(2) Apply Simplex Lemma to obtain a box covering ⊔
r R

r ⊇ Ti
with error sets X err ⊆ X, Y err,i j ⊆ Yi j . Output all the
structured parts Rr ∩Ti and discard the error parts.

(3) Update B by removing all the error sets: B ← B ∖ (X err ×∏
i j Y

i j ∪
⋃
i j X ×Y

err,i j ×
∏

i′j′,i j Y
i′j′). Note that B con-

tinues to be a box.

We can now repeat the simplified proof of Section 4.2 nearly
verbatim using only the structured simplices output by the above

process. When processing Π’s root Tmd ∩ B = B, where B C X ×

∏
i j Y

i j is the errorless box at the end of the process, we have that
each of X , Y i j has density at least 1 −md · 2−k = 1 −m−d ≥ 99%
by our choice of k . Hence B is ∗n-structured and we may assume
that Simplex Lemma produces the trivial partition for B. This yields
the unique root for Π′ as before. Another key observation is that
the associated errorless box B grows when we step from a simplex
Ti in Π to either one of its children. Thus every structured part
Rr ∩Ti that is output by the above process is wholly covered by the
structured parts of Ti ’s children. This means that our discarding of
error sets does not interfere with the construction of the internal
trees in Step 2.

A PROOF OF SIMPLEX LEMMA
The proof of Simplex Lemma is a small modification of the proof
of the Triangle Lemma in [GGKS18] (the case of 2-dimensional
simplices). Since the proof for the latter is somewhat long, we
describe here only the required modifications. Our discussion natu-
rally assumes familiarity with the original proof [GGKS18], which
analyzed a partitioning procedure called Triangle Scheme (with
subroutines Rectangle Scheme and Column Cleanup). The basic
difference between the two settings is that instead of partitioning
a 2-dimensional simplex over X × Y, Bob’s input in Y is further
shared over nℓ many Bobs, that is, Y is replaced with

∏
i j Y

i j . In
this appendix, we explain how to replace all parts involving Bob

75

Automating Cutting Planes Is NP-Hard STOC ’20, June 22–26, 2020, Chicago, IL, USA

with multi-party analogs. There are two: (1) Rectangle Scheme, and
(2) Column Cleanup.

(1) Rectangle Scheme. Our first observation is that the Rectangle
Scheme, which partitions rectangles R ⊆ X × Y, works equally
well to partition boxes B ⊆ X ×

∏
i j Y. Indeed, each part output

by Rectangle Scheme is obtained from R B X × Y by restricting
the set X arbitrarily and, crucially, restricting Y only via bit-wise
restrictions (Round 2 of Rectangle Scheme fixes pointed-to bits in
all possible ways). But such bit-wise restrictions when applied to a
box B B X ×

∏
i j Y

i j still result in a box. With this understanding,
we may apply Rectangle Scheme to a box.

(2) Column Cleanup. Our biggest modification is to replace the
Column Cleanup procedure with a natural multi-party analog. We
start with a lemma saying that either a simplex over Bobs’ do-
mains contains a box that satisfies the largeness condition of ρ-
structuredness (Definition 2), or the simplex can be covered with a
small error set.

Claim 11. LetT ⊆
∏

i j Y
i j
be a simplex. Then one of the following

holds.

(i) T contains a box B B
∏

i j Y
i j

where each Y i j has density

≥ 2−m
1/2

(i.e., D∞(Y i j) ≤ m1/2
).

(ii) T is covered by

⋃
i j Y

i j,err ×
∏

i′j′,i j Y
i′j′

where each Y i j,err

has density ≤ 2−m
1/2
.

Proof. Consider the largest cube B B
∏

i j Y
i j contained in T ,

that is, where all the sets Y i j ⊆ Yi j have the same size. The largest
cube can be obtained by the following process: Identify each Yi j =

{0, 1}m with [N] according to the reverse of the ordering given to
Yi j by T . (Thus if x ∈ T ⊆ [N]nℓ and x ′ ≤ x coordinate-wise then
x ′ ∈ T .) Then B equals [M]nℓ whereM is the largest number such
that (M, . . . ,M) ∈ T . If some (and hence every) Y i j has density
≥ 2−m

1/2
we are in case (i). Otherwise we claim we are in case (ii)

with Y i j,err B Y i j . Indeed, consider any x B (M11, . . . ,Mnℓ) ∈ T .
Wemust haveMi∗ j∗ ≤ M for some (i∗, j∗) ∈ [n]×[ℓ] since otherwise
by monotonicity (M + 1, . . . ,M + 1) ∈ T contradicting our choice
ofM . But then x ∈ Y i

∗, j∗ ×
∏

i′j′,i∗ j∗ Y
i′j′ , as required. □

We say that a simplex T ⊆
∏

i j Y
i j is empty-or-heavy iff T = ∅

or T satisfies case (i) above.

Bob Cleanup

Input: Simplex T ⊆ X ×
∏

i j Y
i j

Output: Error sets Y i j,err ⊆ Yi j and their combination Y err

1: initialize Y i j,err ← ∅ and write Y err B
⋃
i j Y

i j,err ×∏
i′j′,i j Y

i′j′ as a function of the Y i j,err

2: For I ⊆ [n], α ∈ [m]I , γ ∈ ({0, 1}ℓ)I , define YI,α,γ B
{
y ∈∏

i j Y
i j : дI (α ,yI) = γ

}
3: while there are I ,α ,γ ,x ∈ X s.t.T ′ B T∩({x}×(YI,α,γ ∖Yerr))

is not empty-or-heavy do Add to the Y i j,err all error sets from
case (ii) for T ′

4: Output Y i j,err and Y err

The following claim is the multi party analog of [GGKS18, Claim
10].

Claim 12. For a simplex T ⊆ X ×
∏

i j Y
i j
, let Y i j,err, Y err

be the

outputs of Bob Cleanup. Then:

− Empty-or-heavy: For every triple (I ⊆ [n],α ∈ [m]I ,γ ∈
({0, 1}ℓ)I), and every x ∈ X, it holds thatT ∩ ({x}× (YI,α,γ ∖
Yerr)) is empty-or-heavy.

− Size bound: |Y i j,err | ≤ 2m−Ω(m
1/2)

for every i, j.

Proof. The first property is immediate by definition of Bob
Cleanup. For the second property, in each while-iteration, at most
2m−m

1/2
elements get added to each Y i j,err. Moreover, there are no

more than 2n ·mn · 2nℓ ·mn = (2m)2nℓ choices of I , α , γ , x , and
the loop executes at most once for each choice. Thus, |Y i j,err | ≤
(2m)2nℓ · 2m−m

1/2
≤ 2m−Ω(m

1/2). □

This completes the modifications needed to the proof of the
Triangle Lemma to handle multiple Bobs.

ACKNOWLEDGEMENTS
We thank Robert Robere for discussions and anonymous STOC
reviewers for comments. The first author was supported in part
by the NSF grant No. CCF-1412958. The second, third and fourth
authors were supported by NSERC, and the fourth author was
supported in part by NSF grant No. CCF-1900460.

REFERENCES
[ABMP01] Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi.

Minimum propositional proof length is NP-hard to linearly approximate.
Journal of Symbolic Logic, 66(1):171–191, 2001. doi:10.2307/2694916.

[AD08] Albert Atserias and Víctor Dalmau. A combinatorial characterization of
resolution width. Journal of Computer and System Sciences, 74(3):323–334,
2008. doi:10.1016/j.jcss.2007.06.025.

[AM19] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. In
Proceedings of the 60th Symposium on Foundations of Computer Science

(FOCS), pages 498–509, 2019. doi:10.1109/FOCS.2019.00038.
[AR08] Michael Alekhnovich and Alexander Razborov. Resolution is not automa-

tizable unless W[P] is tractable. SIAM Journal on Computing, 38(4):1347–
1363, 2008. doi:10.1137/06066850X.

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project
cutting plane algorithm for mixed 0–1 programs. Mathematical Program-

ming, 58(1):295–324, 1993. doi:10.1007/BF01581273.
[BDG+04] Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and

Toniann Pitassi. Non-automatizability of bounded-depth Frege proofs.
Computational Complexity, 13(1-2):47–68, 2004. doi:10.1007/s00037-
004-0183-5.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen.
On the relative complexity of resolution refinements and cutting planes
proof systems. SIAM Journal on Computing, 30(5):1462–1484, 2000. doi:
10.1137/S0097539799352474.

[BPR97a] Maria Bonet, Toniann Pitassi, and Ran Raz. Lower bounds for cutting
planes proofs with small coefficients. The Journal of Symbolic Logic,
62(3):708–728, 1997. doi:10.2307/2275569.

[BPR97b] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. No feasible interpolation
for TC0-frege proofs. In Proceedings of the 38th Symposium on Foundations

of Computer Science (FOCS), pages 254–263, 1997. doi:10.1109/SFCS.
1997.646114.

[BPR00] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation
and automatization for Frege systems. SIAM Journal on Computing,
29(6):1939–1967, 2000. doi:10.1137/S0097539798353230.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution
made simple. Journal of the ACM, 48(2):149–169, 2001. doi:10.1145/
375827.375835.

[CCT87] William Cook, Collette Coullard, and György Turán. On the complexity
of cutting-plane proofs. Discrete Applied Mathematics, 18(1):25–38, 1987.
doi:10.1016/0166-218X(87)90039-4.

76

http://dx.doi.org/10.2307/2694916
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1109/FOCS.2019.00038
http://dx.doi.org/10.1137/06066850X
http://dx.doi.org/10.1007/BF01581273
http://dx.doi.org/10.1007/s00037-004-0183-5
http://dx.doi.org/10.1007/s00037-004-0183-5
http://dx.doi.org/10.1137/S0097539799352474
http://dx.doi.org/10.1137/S0097539799352474
http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.1109/SFCS.1997.646114
http://dx.doi.org/10.1109/SFCS.1997.646114
http://dx.doi.org/10.1137/S0097539798353230
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1016/0166-218X(87)90039-4

STOC ’20, June 22–26, 2020, Chicago, IL, USA Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi

[CEI96] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the groeb-
ner basis algorithm to find proofs of unsatisfiability. In Proceedings of the

28th Symposium on Theory of Computing (STOC), pages 174–183, 1996.
doi:10.1145/237814.237860.

[CFK+19] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and To-
niann Pitassi. Query-to-communication lifting using low-discrepancy
gadgets. Technical Report TR19-103, Electronic Colloquium on Compu-
tational Complexity (ECCC), 2019. URL: https://eccc.weizmann.ac.il/
report/2019/103/.

[CKS90] William Cook, Ravi Kannan, and Alexander Schrijver. Chvátal closures
for mixed integer programming problems. Mathematical Programming,
47(1):155–174, May 1990. doi:10.1007/BF01580858.

[DR03] Stefan Dantchev and Søren Riis. On relativisation and complexity gap for
resolution-based proof systems. In Proceedings of the 17th International

Workshop on Computer Science Logic (CSL), pages 142–154. Springer, 2003.
doi:10.1007/978-3-540-45220-1_14.

[dRMN+19] Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert
Robere, and Marc Vinyals. Lifting with simple gadgets and applications
to circuit and proof complexity. Technical Report TR19-186, Electronic
Colloquium on Computational Complexity (ECCC), 2019. URL: https:
//eccc.weizmann.ac.il/report/2019/186/.

[dRNV16] Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited
interaction hinders real communication (and what it means for proof and
circuit complexity). In Proceedings of the 57th Symposium on Foundations

of Computer Science (FOCS), pages 295–304. IEEE, 2016. doi:10.1109/
FOCS.2016.40.

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic
proofs and efficient algorithm design. Foundations and Trends in Theoret-

ical Computer Science, 14(1-2):1–221, 2019. doi:10.1561/0400000086.
[FPPR17] Noah Fleming, Denis Pankratov, Toniann Pitassi, and Robert Robere.

Random CNFs are hard for cutting planes. In Proceedings of the 58th

Symposium on Foundations of Computer Science (FOCS), 2017. doi:10.
2307/2275569.

[Gar19] Michal Garlík. Resolution lower bounds for refutation statements. In
Proceedings of the 44th Mathematical Foundations of Computer Science

(MFCS), volume 138, pages 37:1–37:13, 2019. doi:10.4230/LIPIcs.MFCS.
2019.37.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Mono-
tone circuit lower bounds from resolution. In Proceedings of the 50th

Symposium on Theory of Computing (STOC), pages 902–911. ACM, 2018.
doi:10.1145/3188745.3188838.

[GKMP20] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating
Cutting Planes is NP-Hard. Electronic Colloquium on Computational

Complexity (ECCC), 2020. URL: https://eccc.weizmann.ac.il/report/
2020/049/.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Ad-
ventures in monotone complexity and TFNP. In Proceedings of the 10th

Innovations in Theoretical Computer Science Conference (ITCS), pages
38:1–38:19, 2019. doi:10.4230/LIPIcs.ITCS.2019.38.

[GL10] Nicola Galesi and Massimo Lauria. On the automatizability of polynomial
calculus. Theory of Computing Systems, 47(2):491–506, 2010. doi:10.1007/
s00224-009-9195-5.

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical
block sensitivity. SIAM Journal on Computing, 47(5):1778–1806, 2018.
doi:doi.org/10.1137/16M1082007.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic commu-
nication vs. partition number. In Proceedings of the 56th Symposium on

Foundations of Computer Science (FOCS), pages 1077–1088. IEEE, 2015.
doi:10.1109/FOCS.2015.70.

[GPW17] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-
communication lifting for BPP. In Proceedings of the 58th Sympo-

sium on Foundations of Computer Science (FOCS), pages 132–143, 2017.
doi:10.1109/FOCS.2017.21.

[HC99] Armin Haken and Stephen Cook. An exponential lower bound for the
size of monotone real circuits. Journal of Computer and System Sciences,

58(2):326–335, 1999. doi:10.1006/jcss.1998.1617.
[HN12] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs:

Amplifying communication complexity hardness to time–space trade-
offs in proof complexity. In Proceedings of the 44th Symposium on Theory

of Computing (STOC), pages 233–248. ACM, 2012. doi:10.1145/2213977.
2214000.

[HP17] Pavel Hrubes and Pavel Pudlák. Random formulas, monotone circuits,
and interpolation. In Proceedings of the 58th Symposium on Foundations

of Computer Science (FOCS), pages 121–131, 2017. doi:10.1109/FOCS.
2017.20.

[HP18] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Infor-
mation Processing Letters, 131:15–19, 2018. doi:10.1016/j.ipl.2017.11.
002.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k -
SAT. Journal of Computer and System Sciences, 62(2):367–375, 2001. doi:
10.1006/jcss.2000.1727.

[Iwa97] Kazuo Iwama. Complexity of finding short resolution proofs. In Mathe-

matical Foundations of Computer Science (MFCS), pages 309–318. Springer,
1997. doi:10.1007/BFb0029974.

[KP98] Jan Krajícek and Pavel Pudlák. Some consequences of cryptographical
conjectures for s12 and EF. Information and Computation, 140(1):82–94,
1998. doi:10.1006/inco.1997.2674.

[Kra97] Jan Krajíček. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. Journal of Symbolic

Logic, 62(2):457–486, 1997. doi:10.2307/2275541.
[Kra98] Jan Krajíček. Interpolation by a game. Mathematical Logic Quarterly,

44:450–458, 1998. doi:10.1002/malq.19980440403.
[Lin19] Bingkai Lin. A simple gap-producing reduction for the parameterized

set cover problem. In Proceedings of the 46th International Colloquium

on Automata, Languages, and Programming (ICALP), volume 132, pages
81:1–81:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.81.

[LNNW95] László Lovász, Moni Naor, Ilan Newman, and AviWigderson. Search prob-
lems in the decision tree model. SIAM Journal on Discrete Mathematics,
8(1):119–132, 1995. doi:10.1137/S0895480192233867.

[MPW19] Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short proofs are hard to
find. In Proceedings of the 46th International Colloquium on Automata,

Languages, and Programming (ICALP), volume 132, pages 84:1–84:16.
Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.ICALP.2019.84.

[O’D17] Ryan O’Donnell. SOS is not obviously automatizable, even approximately.
In Proceedings of the 8th Innovations in Theoretical Computer Science

Conference (ITCS), volume 67, pages 59:1–59:10. Schloss Dagstuhl, 2017.
doi:10.4230/LIPIcs.ITCS.2017.59.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. The Journal of Symbolic Logic, 62(3):981–998,
1997. doi:10.2307/2275583.

[Pud00] Pavel Pudlák. Proofs as games. The American Mathematical Monthly,
107(6):541–550, 2000. doi:10.2307/2589349.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs (a
survey). In Proceedings of the 30th Foundations of Software Technology and

Theoretical Computer Science (FSTTCS), volume 8, pages 30–41. Schloss
Dagstuhl, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.30.

[Raz95] Alexander Razborov. Unprovability of lower bounds on circuit size
in certain fragments of bounded arithmetic. Izvestiya: Mathematics,
59(1):205–227, 1995. doi:10.1070/IM1995v059n01ABEH000009.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy.
Combinatorica, 19(3):403–435, 1999. doi:10.1007/s004930050062.

[RW17] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-
of-squares proofs. In Proceedings of the 44th International Colloquium

on Automata, Languages, and Programming (ICALP), volume 80, pages
80:1–80:13, 2017. doi:10.4230/LIPIcs.ICALP.2017.80.

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Pro-

ceedings of the 12th Computer Science Symposium in Russia (CSR), pages
294–307. Springer, 2017. doi:10.1007/978-3-319-58747-9_26.

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM,
34(1):209–219, 1987. doi:10.1145/7531.8928.

77

http://dx.doi.org/10.1145/237814.237860
https://eccc.weizmann.ac.il/report/2019/103/
https://eccc.weizmann.ac.il/report/2019/103/
http://dx.doi.org/10.1007/BF01580858
http://dx.doi.org/10.1007/978-3-540-45220-1_14
https://eccc.weizmann.ac.il/report/2019/186/
https://eccc.weizmann.ac.il/report/2019/186/
http://dx.doi.org/10.1109/FOCS.2016.40
http://dx.doi.org/10.1109/FOCS.2016.40
http://dx.doi.org/10.1561/0400000086
http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.2307/2275569
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.37
http://dx.doi.org/10.4230/LIPIcs.MFCS.2019.37
http://dx.doi.org/10.1145/3188745.3188838
https://eccc.weizmann.ac.il/report/2020/049/
https://eccc.weizmann.ac.il/report/2020/049/
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.38
http://dx.doi.org/10.1007/s00224-009-9195-5
http://dx.doi.org/10.1007/s00224-009-9195-5
http://dx.doi.org/doi.org/10.1137/16M1082007
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1109/FOCS.2017.21
http://dx.doi.org/10.1006/jcss.1998.1617
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1109/FOCS.2017.20
http://dx.doi.org/10.1109/FOCS.2017.20
http://dx.doi.org/10.1016/j.ipl.2017.11.002
http://dx.doi.org/10.1016/j.ipl.2017.11.002
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1007/BFb0029974
http://dx.doi.org/10.1006/inco.1997.2674
http://dx.doi.org/10.2307/2275541
http://dx.doi.org/10.1002/malq.19980440403
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.81
http://dx.doi.org/10.1137/S0895480192233867
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.84
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.59
http://dx.doi.org/10.2307/2275583
http://dx.doi.org/10.2307/2589349
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1070/IM1995v059n01ABEH000009
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.80
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1145/7531.8928

	Abstract
	1 Introduction
	1.1 Cutting Planes
	1.2 Dag-like Result
	1.3 Tree-like Result

	2 Overview of proofs
	2.1 Dag-like Case
	2.2 Tree-like Case

	3 Dag-like definitions
	3.1 Standard Models
	3.2 Simplex-dags
	3.3 Relationships
	3.4 Blocks
	3.5 CNF Encoding

	4 Dag-like lifting
	4.1 Subcubes from Simplices
	4.2 Simplified Proof
	4.3 Accounting for Error

	A Proof of Simplex Lemma
	References

