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A B S T R A C T

Here we present a new flexible modeling tool for simulating the distribution of tracers in the modern ocean. A
Working Environment for Simulating Ocean Movement and Elemental cycling within an Ocean Circulation
Inverse Model, the AWESOME OCIM, is a transport matrix model (TMM) which is specifically designed to be
easy, accessible, and intuitive, even for scientists without prior modeling experience. The AWESOME OCIM
comes with a variety of selectable biogeochemical functions, including sources (atmospheric dust, hydrothermal
vents, and seafloor nepheloid layers), internal cycling processes (biological uptake, remineralization, and
scavenging), and sinks (radioactive decay and burial of particles in the sediments). A wide variety of elements
can be simulated through different combinations of this suite of processes. We anticipate that the AWESOME
OCIM will be a valuable tool for interpreting transect data from ocean surveys, particularly the trace-elements
and isotopes distributions mapped by the ongoing GEOTRACES program. This manuscript provides an in-
troduction to the philosophical, mathematical, and functional basis of the AWESOME OCIM.

1. Introduction

1.1. Models of varying complexity

The use of simple box models has a long and important history in
chemical oceanography (Broecker and Peng, 1982; Sigman and Boyle,
2000; Toggweiler et al., 2003b; Toggweiler et al., 2003a; Sarmiento and
Gruber, 2006). The simplest versions of such models might contain just
one box for the surface ocean and another for the deep ocean (Tyrrell,
1999), whereas other applications require additional boxes to distin-
guish between ocean basins and watermasses (e.g. Toggweiler, 1999),
or geochemically distinct regions like anoxic zones (e.g. Deutsch et al.,
2004). These simple models are typically used to explore the biogeo-
chemical cycling of just a few tracers at a time, such as carbon or major

nutrients. Their simplicity means that they can be easily built and
manipulated by an individual researcher, and such models have often
appeared in the oceanographic literature as a small component of
manuscripts which also present new data or new theories (e.g. Van
Geen et al., 1991; Parekh et al., 2004; Hunter and Boyd, 2007; Yang
et al., 2014; Takano et al., 2014, among many others).

At the other end of the ‘complexity spectrum’ lie global Earth
System Models (ESMs) which include realistic representations of cou-
pled ocean-atmosphere circulation over ~105–106 boxes, complex
ecosystem interactions, and the cycling of carbon, physical tracers, and
multiple nutrients. The physical ocean circulation component of such
models is a general circulation model, or GCM, which solves a dis-
cretized approximation of the primitive equations for fluid transport.
The relative complexity of these models tends to lead to different modes
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of scientific interaction and use. Specifically, ESMs are typically run and
maintained by large groups of scientists, each of whom is responsible
for just a small part of the overall modeling effort.

Regardless of their complexity, all numerical models have ad-
vantages compared to conceptual or qualitative models including: 1)
The ability to quantitatively test hypotheses, for example the ability to
validate or reject hypotheses by showing whether they can produce a
good match to observations given realistic constraints, and 2) to make
quantitative predictions, for example to quantify fluxes of carbon or
nutrients in the modern ocean or to predict how fluxes might have been
different in the past or future ocean.

1.2. Transport matrix models (TMMs) and the ocean circulation inverse
model (OCIM)

Over the past decade, transport matrix models (TMMs) have
emerged as a new class of models which share characteristics both of
simple box models and more complex GCMs. TMMs can simulate the
biogeochemistry of tracers on a global scale, with realistic ocean cir-
culation and relatively high spatial resolution (~105 grid cells) (Fig. 1).
Yet their use of linear algebra techniques means that they achieve an
extraordinary increase in computational speed. A wide variety of fac-
tors influence the computational time necessary to solve a GCM, in-
cluding spatial and temporal resolution, the number of variables being
transported in the model, whether the physical and biogeochemical
processes are coupled in a single model run, and the “spin-up” time
necessary for a model to reach equilibrium, but it is common for GCMs
to require weeks to months of computation time to converge on steady-
state tracer distributions. In contrast, using a TMM one can solve for
steady-state tracer distributions in several seconds to minutes, de-
pending on the number of tracers and the resolution of the TMM.

TMMs describe the circulation of the ocean in the form of a matrix
which specifies the transfer of water between grid cells of the model.
Given that each grid cell only exchanges directly with a few neigh-
boring cells, the transport matrix is very sparse (most elements are
zero), making it easier to store and manipulate. Biogeochemical pro-
cesses can similarly be described in matrix-vector notation, using
equations that prescribe transfer of the tracer from one model grid cell
to another, or a source or sink of the tracer within each grid cell. A
TMM-formulated biogeochemical model thus consists of a single matrix
equation, which can be solved at steady-state using linear algebra
techniques, which are much more computationally efficient than the
numerical integration methods employed for GCMs.

Early applications of TMMs converted the circulation of GCMs into a
matrix form to exploit the computational efficiency of matrix vector
products and matrix inverses of sparse matrices (Primeau, 2003;
Khatiwala et al., 2005; Primeau, 2005). Similar techniques have now
been applied to extract transport matrices from a wide array of ocean

GCMs including the Parallel Ocean Program version 2 (POP2) model
that has been used in the NCAR Community Earth System Model
(Bardin et al., 2014), the ECCO version 2 ocean state estimate model
(Zanna et al., 2019), the ocean component of the University of Victoria
Earth System Model (Kvale et al., 2017) and the ACCESS ocean model
(Chamberlain et al., 2019). Enabled by TMM techniques, scientists have
addressed a wide array of scientific problems such as constraining the
global cycling of carbon and nutrients (e.g. Kwon and Primeau, 2006;
Khatiwala et al., 2009; Weber and Deutsch, 2010; Wang et al., 2019).

Compared to using circulations from GCMs, a better representation
of the influence of oceans circulation on tracer distributions can be
achieved by incorporating information about the distribution of phy-
sical and biogeochemical tracers in the ocean (e.g. Schlitzer, 1993;
Schlitzer, 2007). The Ocean Circulation Inverse Model (OCIM) is one
such technique, which starts with a circulation based on a steady-state
near-geostrophic approximation, and then optimizes for additional non-
geostrophic terms to best match the distribution of tracers such as po-
tential temperature, salinity, radiocarbon (14C), and CFCs (DeVries and
Primeau, 2011; DeVries, 2014). This optimization requires many
thousands (~103–104) of iterations in order to determine a circulation
which best matches tracer distributions to corresponding observations.
This large number of simulations is accomplished by casting the cir-
culation in TMM form, enabling the use of fast matrix algebra solvers.
Because it is constrained by data, the OCIM provides a more realistic
representation of the influence of ocean circulation on tracer distribu-
tions than free-running GCMs.

The OCIM is a circulation model, not a biogeochemistry model. But
it can be easily implemented as the circulation component of an ocean
biogeochemistry model, and has been used for numerous applications
in chemical oceanography including being used to quantify ocean CO2

uptake (DeVries, 2014; DeVries et al., 2017), reveal spatial variability
in phytoplankton carbon to nutrient uptake ratios (DeVries and
Deutsch, 2014; Teng et al., 2014), and constrain the export and fate of
organic carbon (Weber et al., 2016; Roshan and DeVries, 2017; DeVries
and Weber, 2017). The OCIM has also been used to constrain the global
cycling and distribution of a wide range of elements including phos-
phorous (Primeau et al., 2013; DeVries et al., 2014), silicon (Holzer
et al., 2014; DeVries et al., 2017), nitrogen (DeVries et al., 2012; Weber
and Deutsch, 2012; DeVries et al., 2013; Weber and Deutsch, 2014;
Wang et al., 2019), and zinc (Roshan et al., 2018; Weber et al., 2018).

1.3. Practical considerations for using OCIM

Besides its computational efficiency, OCIM has several other fea-
tures that facilitate its use by non-experts. A few of these features are:

1. OCIM is lightweight and memory-efficient. The OCIM takes up only
several MB of disk space and RAM. This contrasts with typical GCMs

Fig. 1. The AWESOME OCIM uses a model grid with 2° latitude by 2° longitude boxes, and 24 vertical levels which are more closely spaced towards the surface ocean.
The horizontal section is shown at 201° longitude, as indicated by the red line. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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which require GB of storage and memory space.
2. The native language of OCIM is MATLAB, which is commonly used

throughout the scientific community, and easily learned by those
without prior programming experience (though it is a proprietary
language and thus the AO is not fully open-source). This contrasts
with typical GCMs that are written in Fortran or other expert-level
programming languages.

3. OCIM can be run on a laptop computer. This contrasts with typical
GCMs that must be run on supercomputers or large computer clus-
ters, requiring significant IT infrastructure.

All of these features lower the barrier of entry for scientists without
previous modeling experience or the support of a large modeling group
or computational facility.

The computational efficiency of the OCIM also lends it to different
modeling approaches compared to GCMs. Simulations of biogeochem-
ical tracers in a GCM may take weeks to reach steady-state, so there is a
limit to the number of different model formulations which can be
tested. This results in the tendency to equip a model with every process
that might affect the tracer distribution before it is run. While this
approach has the advantage of including a wide variety of potentially
important mechanisms, it can make it difficult to derive mechanistic
insight into which processes are most important in explaining observed
phenomena.

The efficiency of the OCIM allows multiple model formulations to
be tested, making it more suitable for hypothesis testing and model
optimization than a traditional GCM. A typical approach with the OCIM
is to begin with a bare-minimum representation of biogeochemical
processes, adding additional processes only when they are necessary to
correct for systematic model-data discrepancies. This process allows
one to distinguish the processes which are fundamental to the global
distribution of a tracer, from other processes which may occur in the
ocean, but are not first-order controls on global distributions. Because
the OCIM circulation is data-constrained, one can with reasonable as-
surance ascribe model-data discrepancies to missing biogeochemical
processes, rather than inaccurate physical transport. Similarly, because
of OCIM's computational efficiency, one can set a range of possible
values for several different model parameters, and then search through
thousands of different models in order to determine the combination of
parameters that best matches observations. A recent example of this
approach used the OCIM to search for surface ocean nitrogen uptake
and N2-fixation rates that provide the best match to observed nutrient
distributions (e.g. Wang et al., 2019).

The OCIM also has limitations compared to GCMs. Perhaps most
importantly, the OCIM does not include any temporal variability in
circulation, including seasonal variability. Instead, it simulates an an-
nual mean circulation constrained by the observational data. Another
limitation is that the spatial resolution of the OCIM is relatively coarse:
at 2o horizontal resolution with 24 vertical levels it is roughly half the
resolution of typical global ocean biogeochemistry models that are
based on GCMs. Finally, OCIM has been developed to match the
modern climatological mean ocean circulation. In contrast to GCMs,
OCIM cannot be used to predict the response of ocean circulation to
changes in climate forcing. All of these considerations therefore limit
the OCIM to use for exploring and predicting the steady-state dis-
tribution of tracers in the modern ocean at large spatial scales.

No model is perfect, a sentiment nicely summarized by Gerard Roe
as “People don't understand the Earth, but they want to, so they build a
model, and then they have two things they don't understand”
(Wohlforth, 2004). Like any model, the OCIM has both strengths and
weaknesses. Still, we believe that the relative simplicity of the OCIM
makes it ideal for use by non-expert modelers, and that adding OCIM
modeling to the ‘toolkit’ used by observational scientists can lead to
scientific advances.

1.4. The AWESOME OCIM

Here we describe a new model, A Working Environment for
Simulating Ocean Movement and Elemental cycling within the Ocean
Circulation Inverse Model; the AWESOME OCIM, or the AO for short.
This model is intended to put the tools of the OCIM into the hands of
observationalists and others with little or no prior experience in ocean
modeling. Ultimately, we hope that this can provide an alternative to
the simplified box models or 1-d models often now used for inter-
pretation in observation-focused papers. In order to achieve this goal,
we focus on three specific criteria:

1) Code is written as transparently as possible, so that users can
more easily understand the code they are running and more
easily modify that code for new purposes. Variable names are
meant to be easily understood and interpreted, extensive com-
menting is used to describe the purpose of each line of code, and all
mathematical operations are performed as intuitively as possible,
even at the expense of less succinct code and sometimes slightly
longer computational times.

2) The model is written in a modular format, so that users can
easily add new biogeochemical processes. Each biogeochemical
process is handled in a separate Matlab function. This way, users can
model an element which is affected by several biogeochemical
processes by running several functions in series. New biogeochem-
ical processes can be incorporated into the model in a similar
fashion, and shared between users as self-contained functions.

3) The model comes pre-loaded with observational datasets and
model output. In order to streamline work with the AO, the model
comes pre-loaded with a variety of observational datasets (e.g. 2017
GEOTRACES Intermediate Data Product and 2009 World Ocean
Atlas) stored in the AO model grid, as well as important output from
other models (e.g. predictions of global ocean productivity and dust
input).

In this manuscript we describe the mathematical basis of the AO and
work through a few examples of how the model might be used in re-
search. An appendix provides additional detail, briefly discussing each
of the biogeochemical processes and datasets which come with the pre-
packaged model. An explicit goal of the AO is to make global ocean
modeling tools available to scientists with little prior modeling ex-
perience. This manuscript is therefore written with that audience in
mind, prioritizing detailed and simple explanations which will be useful
for scientists without much prior experience in linear algebra mathe-
matics, ocean modeling, or coding. The code is available at https://
github.com/hengdiliang/AWESOME-OCIM-v1.1 and http://www.mtel.
rocks/mtel/awesomeOCIM.html, and in the Supplementary materials.

2. Mathematical basis of the AO

The AO represents biogeochemical processes as a set of linear
equations, and solves for the steady-state distribution of a tracer im-
pacted by those processes. The AO uses simple matrix division in order
to solve the model, as opposed to an iterative linear algebra technique
used by some other OCIM-biogeochemical models, and thus every
process which affects the tracer of interest within each model grid cell
must either be zero-order (an input or removal of the tracer which is not
dependent on the concentration of the tracer) or first-order (an input or
removal which is directly proportional to the concentration of the
tracer). First-order processes may depend either on the concentration of
an element within that grid cell, such as loss by radioactive decay, or on
the concentration the element within another grid cell, such as the
circulation input of an element from a neighboring cell or the input of
an element due to remineralization of biogenic particles formed in the
surface ocean.

The linear algebra techniques used to construct such a model can be
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easily appreciated by considering a 4-box model of the ocean (Fig. 2).
One of these boxes does not contain ocean, reflecting topography of the
seafloor, so that the model is described by three coupled equations to
represent the three ocean boxes. When considering only water trans-
port, the change in the concentration of a hypothetical element E within
any given box is equal to the mass transfer rate of water coming in from
neighboring boxes (T) multiplied by the concentration of element E
within that water (E), minus the amount of water leaving the box
multiplied by the concentration of element E within that box (assuming
that all boxes have the same volume). For the 3-box model, where box 3
is neglected because it does not contain ocean, the three water transport
equations are therefore:

= − + +dE
dt

T E T E E· · 0·1
12 1 12 2 4 (1)

= − + +dE
dt

T E T T E T E· ( )· ·2
12 1 12 24 2 24 4 (2)

= + −dE
dt

E T E T E0· · ·4
1 24 2 24 4 (3)

The assumption of steady-state is that dE
dt

is equal to zero, and by
convention the zero-order terms (those not multiplied by a concentra-
tion E) are moved to the right-hand side of the equations to yield:

− + + =T E T E E· · 0· 012 1 12 2 4 (4)

− + + =T E T T E T E· ( )· · 012 1 12 24 2 24 4 (5)

+ − =E T E T E0· · · 01 24 2 24 4 (6)

This set of three linear equations can then be represented in matrix-
vector form, by defining matrix A as the set of nine constants from the
left-hand-sides of the equations, and vector b as the three right-hand-
side constants:
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= ⎡
⎣

⎤
⎦

b 0
0

0

(8)

As written above, there would be no single solution to these equa-
tions which contain three unknowns (E1, E2, and E3) but only two in-
dependent equations (because any of them can be determined from the
other two). However, as shown in Fig. 2, the model becomes con-
strained as additional first-order terms are incorporated into A and
zero-order terms (i.e. fixed sources and sinks) are incorporated into b to
represent biogeochemical processes. Having incorporated all additional
processes into A and b, the full physical-biogeochemical system can
then be solved by matrix inversion:

= −e A b1 (9)

where e is a vector containing all the values of E in each box:

= ⎡
⎣⎢

⎤
⎦⎥

e E
E

E
2

4

1

(10)

The AO code follows a similar approach, with the main program
calling individual functions which each add a representation of an in-
dividual process to A and b, then solving for the distribution of the
hypothetical element E using matrix division. In this fashion the AO
includes functions to represent a wide variety of biogeochemical pro-
cesses, including sources such as dust and hydrothermal vents, internal
cycling processes such as scavenging and biological uptake and re-
mineralization, and sinks such as radioactive decay and sedimentary
burial. For a more detailed description of the biogeochemical functions
and datasets which are included with the AO, some of which are used in
the examples below, see the Appendix.

3. Examples

Three examples discussed below illustrate different ways in which
the AO can be used in scientific research, with a focus on functions that
are easy to implement with minimal modifications of the AO code as it
is originally released. These examples demonstrate ways that “off-the-
shelf” AO simulations might be incorporated for simple hypothesis

Fig. 2. Various processes are described for a simple 4-box model of the ocean. For each process we show both an illustration of how this process moves tracers within
the ocean, along with the corresponding A and b matrices which would be used to build a linear-algebra version of the model.
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testing into data-oriented papers, highlighting ways in which certain
processes either can or cannot explain the observations (e.g. John et al.,
2018 using a preliminary version of the AO). Alternatively, more ex-
tensive work with the AO might form the basis of a modeling-focused
manuscript aimed at synthesizing a global view of an element cycle, in
which the user might develop new functions to address specific aspects
of that element's biogeochemical cycle.

3.1. Using the AO to model simple processes

Even without modifying the AO to create a realistic global model of
an element, there can still be value in comparing data to a simple model
of one or two processes. For example, a plume of Fe-rich waters has
been observed emanating from the Peru margin on the US GEOTRACES
GP15 transect (Fig. 3). The most obvious source of Fe on the margin
would be reducing sediments, yet the depth of the plume is much
deeper than the oxygen minimum (John et al., 2018). Alternatively, it
could be that the Fe plume is created by non-reductive dissolution of Fe
from oxic sediments underneath the oxygen minimum, for example in
nepheloid layers. To quickly test this second idea, a model can be run
with a source of Fe in nepheloid layers and a sink through first-order
removal (modeled using the code for radioactive decay) with a re-
sidence time of 50 years (consistent with the timescale at which dis-
solved Fe is lost by particle scavenging in the oceans) (Tagliabue et al.,
2016). Using the AO's graphical user interface (GUI), a model like this
can be set up with just a few clicks and run in under a minute. The
choice of the absolute rate at which tracer is added from nepheloid
layers does not matter here, since the model is only seeking to re-
produce the spatial distribution of nepheloid layer input, not the ab-
solute magnitude.

The GUI can then be used to look at model output and compare it to
data. First, the GUI can be used to plot Fe concentrations from the 2017
GEOTRACES Intermediate Data Product along the GP15 transect,
showing the plume of Fe near the continental margin. Then model
output can be plotted similarly, showing that nepheloid layer input
does not produce a similar plume (Fig. 3). The failure of the model to
reproduce data suggests that nepheloid layer input, at least as para-
meterized in the AO (see Supplemental section for description of ne-
pheloid layer input), cannot be responsible for the observed Fe plume
on the GP15 transect. A similar approach was recently used by John
et al. (2018) to argue that some additional process was necessary to
explain the Fe plume, such as release of isotopically light Fe from re-
ducing sediments and subsequent reversible scavenging onto sinking

POC. The input of Fe from reducing sediments cannot be modeled with
the AO in its off-the-shelf form, but could be easily incorporated into
the AO by writing a new function to describe this input in a new b
matrix.

3.2. Using boundary conditions to model regional processes

Boundary conditions can be used to build regional models of ele-
ment cycling, or to identify regionally important processes which are
missing from existing models. Global models have an important place in
research, as they encourage study of the processes which dominate the
global-scale cycling of elements, and yield globally-consistent tracer
distributions. In theory, if one were interested in local-scale processes,
the local distribution could be compared to output from a good global
model. However, because no model is perfect, the local data will in-
evitably be compared to an imperfect global model, making it more
difficult to disentangle the effect of local processes from inaccuracies
propagated from outside the region of interest. Boundary conditions
provide a means to better isolate a particular region of study.

Boundary conditions work by setting the concentration of an ele-
ment equal to observations along the edges of the region to be studied.
By setting up a model with only boundary conditions, and no other
biogeochemical processes, one would be able to determine the ‘circu-
lation-only’ distribution of an element within the region, which is
transported in from the specified boundaries of that region. For ex-
ample, the GA03 and GA10 GEOTRACES cruises transected east-west in
the North Atlantic and South Atlantic, respectively, enclosing the tro-
pical Atlantic between these two boundaries. By imposing the boundary
conditions of the observed Fe concentrations along both transects, we
can infer what would be the distribution of Fe in the tropical Atlantic if
there were no sources or sinks of Fe in the tropics (Fig. 4). This model
output can then be compared to data from the GA02 transect which
crossed north-south through the tropical Atlantic. By doing so, we see
that the boundary condition model predicts much higher Fe con-
centrations in the deep ocean than were observed, and lower con-
centrations at equatorial mid-depths (500–1500 m). We can therefore
ascribe the differences to loss by scavenging in the deep ocean, and
input to the mid-depths of the tropical ocean due to dust deposition
and/or shelf sources, with redistribution over depth by biological up-
take and regeneration.

Fig. 3. Observations of Fe concentrations from the GEOTRACES GP15 transect in the Eastern Tropical South Pacific (a) can be compared to a simple model with input
of a tracer from nepheloid layers and loss with a half-life of 50 years (b). The large differences between Fe distribution and tracer distribution quickly demonstrate
that non-reductive dissolution from nepheloid is unlikely to explain the plume of Fe observed in the Eastern basin near Peru. Both the model run and plotting were
performed using the GUI.
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3.3. Modeling isotopes with the AO

By keeping a few simple rules in mind, it is possible to use the AO to
predict the distribution of stable isotopes. Because all processes in the
AO are linear, it is not necessary to account for the relative abundance
of the various isotopes (e.g. the fact that N is 99.6% 14N and 0.4% 15N).
Instead, one can first run a version of the model which simulates the
average behavior of all isotopes in order to obtain the tracer con-
centration distribution throughout the ocean, and then run a separate
model just to represent the behavior of a heavier isotope. The stable
isotope ratio for each grid cell can then be calculated as:

= ⎛
⎝

− ⎞
⎠

δ e
e

1 ·1000heavy light iso/
(11)

where e is the concentration of your element determined from the base
model and eiso is the concentration determined from the isotope model.

Using this approach, the effect of different isotope ratios between
tracer sources and kinetic isotope effects during tracer sinks and cycling
processes can be tested and visualized using the AO. The isotopic
composition of source processes can be represented by changing the
supply rate of heavy isotope tracer to the model, relative to the stan-
dard supply rate. For example, to represent a hydrothermal input with a
δheavy/light of −1‰, you would supply the bulk tracer at a rate specified
by Rhydrothermal (see Appendix for details of how the AO represents these
processes), and the heavy isotope tracer at a rate of Rhydrothermal · 0.999.
Kinetic isotope effects during first-order processes are similarly mod-
eled by changing the rate constant in the isotope model. For example, a
−5‰ isotope effect during biological uptake could be represented by
specifying a value of α for biological uptake in the function bioalpha,
and then running a version of the model for a heavy isotope with α ·
0.995. We have demonstrated this approach by simulating the dis-
tribution of a hypothetical nutrient-like tracer that has a 5‰ isotopic
fractionation during assimilation (Fig. 5).

4. Conclusions

Directly “off-the-shelf”, the AWESOME OCIM provides a simple in-
terface for users to test how various biogeochemical processes influence
large-scale tracer distributions in a model with realistic global circu-
lation. We hope that such tools provide users with a way to develop
better intuition for oceanographic processes, aiding data interpretation.
We further hope that the simplicity of the model will make it appro-
priate for use in classes, both as an introduction to oceanographic

processes and as an introduction to ocean modeling.
We anticipate that most research applications of the AO will require

further modification by the user. Specifically, we imagine that the
biogeochemical functions included here will be a good starting point for
modeling most elements in the ocean, but that every element will be
affected by a few processes which are not considered here, and thus
new code will have to be written to reflect that biogeochemistry. The
modular way in which the A and b matrices are constructed from a
series of functions representing individual process means that new
processes can be easily be included. Similarly, this modularity means
that functions describing new biogeochemical processes can be shared
between users, and combined with existing biogeochemical functions.
Indeed, the range of studies which could be undertaken with the AO
ranges far beyond just the “elements” discussed here, and could include
biological molecules such as proteins and DNA, dissolved gasses, in-
organic quantities such as alkalinity, or other constituents which occur
in seawater.

It should be noted that the AO is a specific application of the OCIM,
and as such is separate and distinct from the OCIM. The OCIM is a data-
constrained ocean circulation model, which can be implemented in any
ocean biogeochemical model of unlimited complexity. The OCIM is
actively maintained, developed, and improved, and new versions are
released periodically at https://tdevries.eri.ucsb.edu/models-and-data-
products/. The AO is a library of MATLAB codes that run linear bio-
geochemical models, using a transport matrix derived from a particular
version of the OCIM (DeVries, 2014) to ensure high-fidelity tracer
transport. The AO could easily be run with transport matrices derived
from other models, and a major goal of future versions of the AO is the
incorporation of new circulations, particularly those reflecting the past
and future ocean states. By doing this, we hope that the AO can become
a tool for paleoceanographic and geological research, and for climate
science. In this way we hope that the AO can become a tool not only for
modern oceanographic research but also for exploration of past and
future Earth conditions.
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Fig. 4. Boundary conditions of Fe concentration were imposed along the GA03 transect in the North Atlantic Ocean and the GA10 transect in the South Atlantic
(black arrows), enclosing a region in the tropical and equatorial Atlantic which was transected by the GA02 cruise (red line) (a). A model which includes these
boundary conditions, but no other biogeochemical processes shows the concentrations of Fe which would be circulated to the GA02 transect in the absence of any
other sources or sinks (b). This model output can be compared to observed Fe concentrations along the GA02 transect in order to identify regions of input and loss (c).
Figures were produced using the GUI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. User guide for the Awesome OCIM

A.1. Biogeochemical processes available with the AO

To facilitate ease of use, the AO comes with a number of biogeochemical processes already incorporated. These are all stored in the srcsnk
folder, and they include sources of elements to the ocean such as dust fluxes and hydrothermal input, sinks from the ocean such as radioactive decay,
and internal cycling processes such as biological uptake, regeneration, and scavenging. Each process is reviewed briefly here, while a more complete
description of how they operate can be found in the comments embedded within the MATLAB code for each function.

bioredfield represents the biological uptake and remineralization of an element with a fixed stoichiometry compared to P, sometimes referred
to as a ‘Redfield ratio’. The uptake rate of P in the surface ocean (Pup) is taken from a separate model of the global P cycle (Weber et al., 2018). The
uptake of element E (Eup; μmole m−3 y−1) is then given by:

=E P R·up up (12)

where R is the stoichiometric ratio of element E compared to P in biological particles. It should be noted that this formulation doesn't have any cap on
the uptake of element E, and thus it is possible to create regions where E is less than zero in the surface ocean.

The bioredfield function also allows the user to specify the remineralization length scale based on the Martin curve by specifying the b value
for remineralization where the flux (F) at any depth (z) is determined by the flux at the compensation depth (Fc) and depth of the compensation depth
(zc) by:

⎜ ⎟= ⎛
⎝

⎞
⎠

−

F F z
zc

c

b

(13)

In the AO, zc is the top of the third layer (around 73 m), because AO assumes productivity without remineralization in the top two layers.
Even for the deepest ocean, some portion of the tracer will not be remineralized in the water column and will therefore be left over to sink out of

the bottom grid cell. There is then a choice about whether to return that E back into the dissolved phase, a process analogous to sedimentary
remineralization of remaining organic material, enabled by setting sedremin.on to 1, or if that E should be removed to from the model in a process
akin to burial in the sediments by setting sedremin.on to 0.

bioalpha represents the biological uptake and remineralization of an element. It is based on the concept of alpha (α), a relative uptake rate
constant for an element compared to phosphate (Huested et al., 1981). The uptake rate of phosphate (Pup) is used to calculate a first-order rate
constant for P uptake (kP) in each surface-ocean grid cell (the top two layers of the model) based on:

=P k P·up P (14)

where P is the phosphate concentration in that grid cell. The uptake rate for element E (Eup; μmole m−3 y−1) is then determined using the
relationship:

=k α k·E P (15)

and

=E k E·up E (16)

Thus, for example, if 20% of the phosphate in a given grid-cell was taken up annually, and αfor element E was 2, then ~40% of element E would
be taken up from that grid cell annually. Water column and sedimentary remineralization are performed in a similar fashion as with bioredfield.

Fig. 5. A section through the Pacific Ocean at 179° for a tracer with a −5 ‰ isotope effect for biological uptake. This is similar to a nitrate isotope model, showing
enrichment in the heavy isotopes in the upper ocean and oligotrophic gyres, except that it does not include isotopic fractionation with other important processes such
as nitrogen fixation and denitrification.
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One advantage of bioalpha is that it reflects an experimental observation about the uptake of many trace-metals by phytoplankton including
Zn, Cd, Mn, and Co, that metal:P ratios increase roughly in proportion to the concentration of the element in media (Sunda, 2012, and references
therein). A second advantage is that absolute uptake rates decrease as the concentration of E decreases, so that concentrations of E do not go below
zero.

boundcon sets a boundary condition based on one or more GEOTRACES transects from the 2017 Intermediate Data Product (Schlitzer et al.,
2018). With these boundary conditions, regardless of the concentration of tracer which enters a grid cell, the model will output water with the
concentration specified by the boundary condition. The mechanism by which this is achieved is to specify an extraordinarily large source of your
tracer into each boundary condition grid cell, paired with an extraordinarily large first-order loss of tracer from that grid cell. The concentration
within that grid cell is then set by the balance between the large source and the large sink, and is nearly unaffected by any additional gain or loss of
tracer due to circulation and other biogeochemical processes. By default, the first order rate constant for loss is 106 y−1, and the source of tracer is
c·106 y−1, where c is the specified concentration of the tracer within the boundary condition grid cell.

conc sets the mean ocean concentration of an element. It works by creating an extraordinarily small source of E into every box, and then
establishing an extraordinarily small first-order loss of E. By default, the first-order rate constant for loss is 10−6 y−1, so the mean ocean con-
centration of the element will be set by imposing a source of c·10−6 y−1 where c is additional concentration flux added to each box each year. This
approach works because the timescale at which E is added and removed is much longer than the mixing timescale of the ocean (106 years, versus a
mixing timescale of ~103 years), so that the impact on the concentration of E in any single box is overwhelmed by other processes and is therefore
unnoticeable.

conc should only be used in the case that there are no other external sources or sinks of E to the ocean (i.e. a closed system). For example, a
model which includes only transport and reversible scavenging, and in which all scavenged E which reaches the bottom box is released back into the
dissolved phase (sedremin turned on) is a closed system. In an open-system model the mean concentration is determined by the magnitude of the
external sources and sinks, and conc should not be used. For example, a model which included hydrothermal input and burial of scavenged E, the
global ocean concentration would be set by the balance of the magnitudes of the hydrothermal source and the burial sink, and conc should not be
used.

decay removes element E from the ocean according a first-order loss such as radioactive decay, where the first-order rate constant for loss is
calculated by setting the half-life of the element.

dust adds an element according to the predicted input of seven different kinds of aerosol deposition (mineral, fire, fossil fuel, biofuel, seasalt,
plants, and volcanic; Fig. 6). These maps are stored in the structure AEROSOLDEP as seven 91 × 180 × 24 matrices which describe aerosol inputs in
units of mg m−2 y−1. For the mineral dust, seasalt, and plant sources, the mass of the aerosols is the total mass. For the fire, fossil fuel and biofuel
aerosols, the mass represents the black carbon contribution from these sources. For volcanic aerosols it is the sulfur contribution. The input of your

Fig. 6. The deposition of various different types of aerosols to the surface ocean. For the mineral dust, seasalt, and primary biogenic sources of aerosols, the mass of
the aerosols is the total mass. For the fire, fossil fuel and biofuel aerosols, this represents the black carbon contribution from these sources, and for volcanic aerosols
the mass is the sulfur contribution.
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element of interest is then specified by dust.R (μmole m−3 y−1 E/mg m−3 y−1 aerosol), the ratio of your element to the aerosol input, by:

=source dust R aerosol. · (17)

where aerosol is the deposition of aerosol to the surface layer ocean. The maps of aerosol input are 3-dimensional model output from a variety of
types of aerosol, contributed by the lab of Natalie Mahowald, as described in Brahney et al. (2015) and Chien et al. (2016).

hydrothermal adds E to the ocean according to predictions of submarine hydrothermal 3He input stored in HEFLUX.mat (Fig. 7). Helium fluxes
are based on seafloor spreading rates, as originally outlined by Farley et al. (1995) and further modified in an OCIM framework by allowing for
regionally variable differences in the relationship between spreading rate and 3He (Holzer et al., 2017). The HEFLUX data already accounts for the
volume of the grid cell into which hydrothermal fluids are injected, so that the input of element E is given by:

=source hydrothermal K HEFLUX. · (18)

where hydrothermal.K (μmole m−3 y−1 E/μmole m−3 y−1 He) is the globally constant molar ratio of E to 3He.

Fig. 7. Hydrothermal vent helium flux (a) is determined from rates of seafloor spreading, modified regionally based on observations of ocean dissolved helium
concentrations (Holzer et al., 2017). The input of a tracer with 3He will be proportional to the 3He flux, divided by the volume of the grid cell into which the
hydrothermal venting occurs, to account for the fact that a similar input will be more dilute when injected into larger grid cells (b).

Fig. 8. The intensity of nepheloid layers can be modeled in two ways. Input of tracers can be scaled to a global compilation of particle maximum concentration
observations interpolated onto the AO grid (a). Alternatively, input can be scaled to satellite observations of surface eddy kinetic energy (EKE; b). These datasets are
converted to input fluxes by dividing the total particle quantity or EKE energy by the volume of the bottom box where input occurs (c, d).

S.G. John, et al. Chemical Geology 533 (2020) 119403

9



nepheloid adds element E in proportion to predicted nepheloid layer particle concentrations (Fig. 8). Nepheloid layers are found at the bottom
of the oceans where particles are resuspended from the sediments into the water column and/or advected laterally. Several factors contribute to the
formation of nepheloid layers including bottom currents, sediment type, regional topography accelerating flows locally, and the dissipation of ocean
energy in the form of decaying eddies, internal waves and tides. We provide two different ways to parameterize nepheloid layer input.

One estimate of the global distribution of nepheloid layers is based on over 8800 observations of particle concentrations made either with the
Lamont Thorndike Nephelometer or with transmissometers attached to CTDs (Gardner et al., 2018a, 2018b). We use the integrated concentration of
particles over the entire nepheloid layer (μg cm−2) to determine the total particle concentration in each column of the model grid, and then
apportion that particle concentration by depth based on the calculated fraction of bottom sediments occurring in each grid cell (ao.SEAFLOOR).
Finally, the areal concentration of particles (μg m−2), is converted to a volume concentration (μg m−3) by dividing by the height of each grid cell.
Particle concentration data mapped in Gardner et al. (2018b) were interpolated with an 8°search radius, but for this model we interpolated the data
globally with a 25° search radius and second-degree smoothing using an inverse distance method. Data coverage in some parts of the ocean such as
the Western North Atlantic is quite good, while other parts of the ocean such as the Arctic, Southern Ocean, and mid-ocean basins is less complete.
Even this wide search radius did not allow for interpolation in many parts of the Arctic, and thus we assume no nepheloid layers in those regions.

An alternative estimate of global nepheloid layers depends on a relationship between surface eddy kinetic energy (EKE) and particle density in
near-bottom nepheloid layers. Surface EKE is based on a 25-year record of sea-surface height ending in 2018, in units of cm2 s−2 (Taburet et al.,
2019). Eddy kinetic energy (cm−2 s−1) is converted into the total areal delivery of eddy energy to each column (m2 cm−2 s−1) in the model grid by
multiplying by the column area, and then converted to the volume concentration of eddy energy ((m2 cm−2 s−1) m−3) by dividing by the volume of
each grid cell. This volume concentration of energy is converted to a nepheloid particle concentration by taking into account the fractional amount of
bottom sediments in each grid cell (ao.SEAFLOOR). Please note that any models using satellite EKE are requested to include the acknowledgement
‘This study has been conducted using E.U. Copernicus Marine Service Information’. The relationship between surface and deep EKE and nepheloid
layer intensity has been explored in depth by Gardner et al. (2017, 2018a, 2018b). Briefly, there is a relationship in much of the ocean, with clear
exceptions beneath the Kuroshio current and near the equator where EKE is elevated, yet there are no observations of high nepheloid layer particle
concentrations (Fig. 8).

Nepheloid layer intensities are given in units of μg m−3 for the observations and (m2 cm−2 s−1) m−3 for EKE stored in the AO as NEPH.OBS and
NEPH.EKE, respectively. The input of element E is then given by:

=input K NEPH TYPE· . (19)

where TYPE is either OBS or EKE, and K is the ratio of E concentration input per nepheloid intensity.
nonrevscavPOC removes E from the ocean in direct proportion to the POC concentration in each grid cell. POC concentrations were determined

in a separate model of global nutrient cycling (Weber et al., 2018), so they are higher under upwelling regions and they decrease with depth
according to the Martin curve. The loss of E is determined as:

=loss nonrevscavPOC K POC. · (20)

where nonrevscavPOC.K is the fraction of E lost per year per mmole m−3 of POC, and POC is the concentration of POC.
revscav assumes reversible scavenging onto particles with a uniform distribution throughout the world ocean. The AO does not include an

explicit representation of particles, which is to say that scavenging does not actually remove E from the dissolved phase. Instead, scavenging is built
into the model by specifying that a certain portion of the dissolved pool can sink downwards into the underlying grid cells, in proportion to the
inferred adsorbed concentration. This can be expressed with a distribution coefficient (K) where:

=revscav K sinking total. / . (21)

The amount of that element which sinks out of each box is determined by:

=sinkout revscav K revscav w h. · . / (22)

where revscav.w (m y−1) is the sinking rate of particles and h (m) is the height of that box. Similarly, the amount sinking into any box is given by the
amount leaving the box above, adjusted to a concentration flux based on the box volumes.

While the model describes reversible scavenging using a fairly straightforward mathematical description, there are some quirks to be considered.
First, because particle representation is implicit, there will be errors in the calculated dissolved and particulate concentrations. Crucially, these errors
are insignificant when the fraction adsorbed is small and they grow larger as more E is adsorbed. For example, K = 0.9 means that 90% of E within
each box is available for scavenging and transfer to underlying boxes, but the model solution for E will report the concentration of the entire
dissolved+particulate pool in the box, not just the 10% of E which one would expect to find remaining in the dissolved pool. For full accuracy, first-
order processes which affect only the dissolved phase should be multiplied by (1-revscav.K), though for most elements the amount of adsorbed E is
insignificant and the errors introduced by this formulation are similarly insignificant. Second, K values of greater than 1 are not disallowed in this
model, meaning it is mathematically possible to transfer> 100% of element E out of any box per year. The model will usually tolerate K>1, and
will simply make up the difference in lost E by mixing, however such a parameter choice would violate common sense. Finally, it should be noted
that the amount of E which sinks from a box depends on K·w so that, for example, a K of 0.1 with a sinking speed of 1000 m y−1 will produce the
same model behavior as a K of 0.2 and a sinking speed of 500 m y−1.

This formulation is a slightly simplified version of the full reversible scavenging equations that were implemented in a model of hydrothermal
iron dispersion using the OCIM (Roshan et al., “Hydrothermal iron is trapped in the deep ocean”, in review).

revscavPOC is similar to revscav, except that scavenging is proportional to POC concentration, rather than being uniform throughout the
ocean so that:

=sinkout revscavPOC K revscavPOC w h POC. · . / · (23)

where revscavPOC.K is the ratio of sinking E to total E, as described in revscav. The caveats regarding K and w discussed for revscav also apply
here.
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A.2. Datasets included in the AO

In order to make the model more easily usable, it comes pre-loaded with several datasets which have been fit to the AO grid by averaging all
datapoints which occur within an AO grid cell. These include datasets based on model output, as well as some based on observations. These various
datasets and model output are generally compatible. For example, the phosphate uptake rates for the AO (P_UP_WJ18) were determined using the
same water transport as used by the AO (water_transport), while minimizing the misfit between AO model output phosphate (PO4_WJ18) and
AO observed phosphate (WOAPO4). The files AEROSOLDEP, NEPHLOID, and HEFLUX contain the information needed to run the functions dust,
hydrothermal, and nepheloid, respectively. Other files and folders are described below:

GEOTRACES_2017_IDP is a folder containing many individual files with data from the GEOTRACES 2017 Intermediate Data Product (Schlitzer
et al., 2018). The data has been re-gridded onto the AO grid, where all data points within a grid cell were averaged together to produce the final
concentration. This folder contains data for 79 parameters (of the total 470 parameters included in the 2017 IDP) including many of the most
commonly studied dissolved trace metals.

GLODAP is a folder containing data on global ocean alkalinity and DIC from the GLODAP data product (Lauvset et al., 2016; Olsen et al., 2016).
GLODAP data is not currently used by any functions in the AO, but it is never the less included here so that it may be used in future work.

WJ18 is a folder containing model output from a global nutrient cycling model. The particular model used for the AO is described in Weber and
John et al. (2018), though similar models of nutrient cycling have been constructed for previous work. The model minimizes misfit between observed
phosphate from the 2009 World Ocean Atlas and the model output phosphate (PO4_WJ18) (Fig. 9). Other concentrations reported from the model
include dissolved organic phosphorous (DOP_WJ18) and particulate organic carbon (POC_WJ18), which is derived from particulate organic phos-
phorous assuming a 106:1 C:P ratio in sinking organic matter. Rates derived from the nutrient cycling model and included with the AO include the
phosphorous uptake rate in the surface ocean (P_UP_WJ18) and the phosphorous remineralization rate in the deep ocean (P_REM_WJ18).

WOA09 is a folder containing information about the properties of seawater worldwide based on a compilation of numerous datasets, often referred
to as a ‘climatology’. Data is taken from the 2009 World Ocean Atlas (Levitus et al., 2010), averaged to produce an annual mean, and re-gridded for
the AO. Datasets include nitrate (WOANO3), oxygen (WOAO2), phosphate (WOAPO4), salinity (WOASAL), silicate (WOASI), and temperature (WOATEMP).

ao is a structure containing information about the AO grid, including information such as which grid cells contain ocean, the latitude and
longitude of the grid cells, and masks for different ocean basins and GEOTRACES sections (Fig. 10). A full list of the ao parameters and a complete
description of them is included as Appendix B.

water_transport contains the ocean circulation transport matrix. The standard transport matrix is derived from the CTL version of the OCIM
as described in DeVries et al. (2014). While OCIM is built on a square grid, the circulation is not as simple as having each box exchange water with
only the six neighbors sharing a face. The OCIM uses a hybrid upwind-centered scheme in the horizontal and a 3rd-order semi-upwind scheme in the
vertical, as well as diffusion which is rotated along and across isopycnals, so that many more distant grid cells are connected to each other in the
transport operator than just the nearest neighbors (see DeVries et al., 2014 for details). The AO transport matrix is the same as was used to generate
other model-derived parameters such as phosphate uptake rate in the surface ocean.

A.2.1. Using the AO
A.2.1.1. Running the AO. The AO can set up and run using the script setup_single. This script creates first creates a structure do, which tells the
model what you would like it to do (a structure is a variable which can contain sub-variables). The do structure enables one or more biogeochemical
processes in your model in the form do.function.var, where function is the name of a function which changes the A or b matrix to reflect a
biogeochemical process stored in the srcsnk folder (e.g. bioredfield), and var is the variables needed to run that function (e.g. R, the Redfield
ratio to apply). If you wish to run a function to enable biogeochemistry within your model, you must set do.function.on to a value of 1, in order
to turn that functionality on. If you don't wish to enable a function, you can either set do.function.on to 0, or simply don't include any reference
to that function in your do structure. If the user wishes write their own new biogeochemical functions, the function must be saved to the srcsnk
folder, and the function can then be called from do in setup_single.

A graphical user interface (GUI) provides a simple way to begin exploring the AO without modifying any code at all. The GUI can be launched by
running the script launchGUI, after which the user can select various processes to model, or can plot the output from earlier models in a variety of
different ways.

Fig. 9. The model concentration of phosphate in the surface ocean, from a model which seeks to match global phosphate distributions with an OCIM circulation (a;
PO4_WJ18). This model also calculates the phosphate uptake rate for each grid cell in the surface ocean, with highest uptake rates generally occurring at temperate
latitudes (roughly 35° to 65°), where nutrient concentrations are high and there is enough light to sustain significant biological production (b; P_UP_WJ18).
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A.3. Open-system and closed-system models

The AO can be used to create both ‘open system’ models, which include external sources and sinks of E to the ocean, and ‘closed system’ models
which include only internal biogeochemical cycling and movement of your tracer. Before setting up a model, it is important to consider whether you
are constructing an open or closed system model, and ensure that you have chosen an appropriate combination of processes to achieve mass balance.
In many cases, it is possible to combine open-system and closed-system together in the model in a way which is mathematically solvable, but
biogeochemically unrealistic.

Open-system models must include both a source and a sink of your tracer. Sources to the ocean are typically zero-order with respect to your
tracer, which is to say that the magnitude of the source does not depend on the concentration of your tracer. For example, dust, hydrothermal, and
nepheloid layer inputs are all parameterized to deliver a certain amount of your tracer to the ocean each year based on an input ratio compared to
predetermined input fields. Of course, such a model must also include a sink by which the tracer is lost from the ocean. Zero-order sinks for removal
of your tracer cannot be used, as they would result in an underdetermined model because there is no mechanism to set the global concentration of E
in the ocean. Instead, removal of E from the ocean is typically accomplished by a sink which depends directly on the concentration of E, such as
radioactive decay or biological uptake followed by burial of particulate material which reaches the ocean floor. In this way, both the global
distribution of the tracer is determined, as well as the global mean ocean concentration.

Closed-system models represent only internal cycling of the tracer within the ocean. The first thing to know about closed-system models in the AO
is that they cannot be solved as a true closed-system. This is because a true closed-system model would contain an equal number of equations (one for
each grid cell) and unknowns (the concentration in each grid cell) and would therefore be underdetermined. Another way to state this same problem
is that there is a truly closed-system model can represent the redistribution of E throughout the ocean by processes such as biological uptake and
remineralization and circulation, but this same redistribution could be achieved for any different total amount of E. Thus, closed-system models must
be run with the conc function which sets the global mean ocean concentration by including very small sources and sinks of E. This approach has a
direct analogy in the real ocean, which is that the ocean is not a truly closed system with respect to any element on geological timescales, instead its
concentration is set by the balance of sources and sinks. However, the distribution of elements with a residence time in the oceans longer than the
circulation timescale of the oceans (~1000 years) can be accurately modeled using closed-system processes, while the global mean concentration of
an element in the oceans is set by the slow input and removal of elements on long timescales. For example, the distribution of a nutrient-type element
in the ocean might be modeled using bioalpha to reflect the redistribution of E in the oceans by biological uptake and remineralization, while conc
would have to be used to set the global mean ocean concentration.

Fig. 10. A simplified 4-box model illustrates various parameters stored in the Matlab structure ‘ao’, each of which provides different information about the AO grid.
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Appendix B. Description of parameters stored in the grid-describing structure ao

(Note that in all of the descriptions below, a ‘shoebox’ refers to a 3-dimensional rectangular array which is the size of the model grid
(91 × 180 × 24)).

nocn: 200160 The number of grid cells in the model with contain ocean.
iocn: [200160×1 double] Indices of grid cells which contain ocean within the shoebox.
OCN: [91×180×24 double] A shoebox with 1 where there is ocean and 0 where there is not.
nanOCN: [91×180×24 double] A shoebox with 1 where there is ocean and NaN where there is not.
EQNPOS: [91×180×24 double] A shoebox which contains the ‘equation position’ for each ocean cell. For example, ao.EQNPOS(50,100,2) is

15833, which is to say that when the linear algebra equations are written to describe the water flow and biogeochemical cycling with the model, the
processes affecting the grid cell at position 50,100,2 in the shoebox are described in the 15833rd row and column of the A matrix, and the 15833rd

row of the b matrix.
nbtm: [10441 1] The number of grid cells which are at the bottom of the ocean.
ibtm: [10441×1 double] Indices of the grid cells at the bottom of the ocean within the shoebox.
BTM: [91×180×24 double] A shoebox with 1 for grid cells at the bottom of the ocean and 0 elsewhere.
nanBTM: [91×180×24 double] A shoebox with 1 for grid cells at the bottom of the ocean and NaN elsewhere.
SEAFLOOR: [91×180×24 double] A shoebox containing the fractional portion of the bottom face of the grid cell which contains seafloor based

on ETOPO2 global bathymetry.. BTM describes the geometry of the model grid, and therefore has only one ‘bottom’ grid cell, in each column.
However, in reality a continental slope might have bottom sediments which occur at many depths within any 2° × 2° column, which is accounted
floor by the high-resolution bathymetry described in SEAFLOOR.

Seafloor: [200160×1 double] A list of the fractional portion of seafloor in every grid cell which contains ocean.
nsurf: [10441 1]The number of grid cells which are at the surface of the ocean.
isurf: [10441×1 double] Indices of the grid cells at the surface of the ocean within the shoebox.
SURF: [91×180×24 double] A shoebox with 1 for grid cells at the surface of the ocean and 0 elsewhere.
nanSURF: [91×180×24 double] A shoebox with 1 for grid cells at the surface of the ocean and NaN elsewhere.
lat: [1×91 double] The latitudes of grid cells within the shoebox, from −89.011 to +89.011.
Lat: [200160×1 double] A list of the latitudes of all 200160 grid cells which contain ocean.
LAT: [91×180×24 double] A shoebox with the latitudes in each grid cell.
lon: [1×180 double] The latitudes of grid cells within the shoebox, from 1 to 359.
Lon: [200160×1 double] A list of the longitudes of all 200160 grid cells which contain ocean.
LON: [91×180×24 double] A shoebox with the longitudes in each grid cell.
depth: [1×24 double] The depths of grid cells within the shoebox, for all 24 depth levels.
Depth: [200160×1 double] A list of the depths of all 200160 grid cells which contain ocean.
DEPTH: [91×180×24 double] A shoebox with the depths in each grid cell.
height: [1×24 double] The heights of grid cells within the shoebox, for all 24 depth levels.
Height: [200160×1 double] A list of the heights of all 200160 grid cells which contain ocean.
HEIGHT: [91×180×24 double] A shoebox with the heights in each grid cell.
Vol: [200160×1 double] A list of the volumes of all 200160 grid cells which contain ocean.
VOL: [91×180×24 double] A shoebox with the volumes in each grid cell.
ATL: [91×180×24 double] A shoebox with the ‘Atlantic mask’, containing 1 for every grid cell which contains Atlantic ocean.
PAC: [91×180×24 double] A shoebox with the ‘Pacific mask’, containing 1 for every grid cell which contains Pacific ocean.
IND: [91×180×24 double] A shoebox with the ‘Indian mask’, containing 1 for every grid cell which contains Indian ocean.
ARC: [91×180×24 double] A shoebox with the ‘Arctic mask’, containing 1 for every grid cell which contains Arctic ocean.
MED: [91×180×24 double] A shoebox with the ‘Mediterranean mask’, containing 1 for every grid cell which contains Mediterranean ocean.
GTmasks: [1×1 struct] A structure containing masks for many GEOTRACES sections. In most cases, GEOTRACES stations are spaced further

apart than the distance between grid cells, and typically GEOTRACES profiles do not have enough vertical resolution to fill in values for each grid cell
vertically. In order to create continuous sections, the masks are therefore filled in vertically to include all depths at which there is ocean, and grid
cells are filled in horizontally to create complete unbroken sections.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemgeo.2019.119403.
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