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ABSTRACT
In this article, we consider the nonparametric regression problem with multivariate predictors. We provide
a characterization of the degrees of freedom and divergence for estimators of the unknown regression
function, which are obtained as outputs of linearly constrained quadratic optimization procedures; namely,
minimizers of the least-squares criterion with linear constraints and/or quadratic penalties. As special
cases of our results, we derive explicit expressions for the degrees of freedom in many nonparametric
regression problems, for example, bounded isotonic regression, multivariate (penalized) convex regression,
and additive total variation regularization. Our theory also yields, as special cases, known results on the
degrees of freedom of many well-studied estimators in the statistics literature, such as ridge regression,
Lasso and generalized Lasso. Our results can be readily used to choose the tuning parameter(s) involved in
the estimation procedure by minimizing the Stein’s unbiased risk estimate. As a by-product of our analysis
we derive an interesting connection between bounded isotonic regression and isotonic regression on a
general partially ordered set, which is of independent interest. Supplementary materials for this article are
available online.
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1. Introduction

Consider the problem of nonparametric regression with obser-
vations {(xi, yi) : i = 1, . . . , n} satisfying

yi = f (xi) + εi, for i = 1, . . . , n, (1)

where ε1, . . . , εn are iid N(0, σ 2) (unobserved) errors, x1, . . . , xn
are design points in R

d (d ≥ 1) and the regression function f is
unknown. In this article, we study the degrees of freedom and
divergence of nonparametric estimators of f that are obtained
as outputs of linearly constrained quadratic optimization pro-
cedures, namely, minimizers of the least-squares criterion with
linear constraints and/or quadratic penalties. Letting θ∗ :=
(f (x1), . . . , f (xn)), these problems are characterized by con-
straints on θ∗ whereby θ∗ ∈ C for some suitable closed convex
set C ⊂ R

n. We briefly introduce the three main examples we
will study in detail in this paper, namely isotonic regression,
convex regression, and additive total variation regularization.

Example 1.1 (Isotonic regression). If f is assumed to be nonde-
creasing and the xi’s are univariate and ordered (i.e., x1 < x2 <

· · · < xn), then θ∗ ∈ M, where

M := {θ ∈ R
n : θ1 ≤ θ2 ≤ . . . ≤ θn}. (2)

Isotonic regression has a long history in statistics; see, for exam-
ple, Brunk (1955), Ayer et al. (1955), and van Eeden (1958).
Isotonic regression can be easily extended to the setup where
the predictors take values in any space with a partial order; see
Section 5 for the details.
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The isotonic least-squares estimator (LSE) θ̂(y), which is
defined as the Euclidean projection of y := (y1, . . . , yn) onto
M, that is,

θ̂(y) := arg min
θ∈M

‖y − θ‖2
2 (3)

(here ‖ · ‖2 denotes the usual Euclidean norm) is a natural
estimator in this problem and has many desirable properties
(see, e.g., Groeneboom and Jongbloed 2014). However, it suf-
fers from the “spiking” effect (Woodroofe and Sun 1993; Pal
2008), that is, it is inconsistent at the boundary of the covariate
domain. For multivariate predictors, this over-fitting of the LSE
can be even more pronounced and some recent research has
focused on studying the regularized isotonic LSE (see, e.g., Luss,
Rosset, and Shahar 2012; Luss and Rosset 2014; Wu, Meyer,
and Opsomer 2015). A natural way to regularize the model
complexity would be to consider bounded isotonic regression:
θ∗ is assumed to be nondecreasing and the range of θ∗ is
assumed to be bounded by λ, for λ > 0. In Section 5, we show
that for bounded isotonic regression, θ∗ = (f (x1), . . . , f (xn))
belongs to a closed polyhedral set C (i.e., an intersection of
finitely many hyperplanes) that can be expressed in the general
form as

C = {θ ∈ R
n : Bθ ≤ c} (4)

for some suitable matrix B ∈ R
m×n and a vector c ∈ R

m×1; here
the inequality between vectors is understood in a component-
wise sense.
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Example 1.2 (Convex regression). In convex regression (see,
e.g., Hildreth 1954; Kuosmanen 2008; Seijo and Sen 2011; Lim
and Glynn 2012; Xu, Chen, and Lafferty 2016; Han and Well-
ner 2016) f : R

d → R is known to be a convex function
(see Equation (1)) and x1, . . . , xn are the design points in R

d,
d ≥ 1. Letting θ∗ := (f (x1), . . . , f (xn)), it can be shown that
the convexity of f is equivalent to θ∗ belonging to a convex
polyhedral set C. For example, when d = 1 and the xi’s are
ordered, C has the following simple characterization:

C =
{
θ ∈ R

n :
θ2 − θ1
x2 − x1

≤ · · · ≤ θn − θn−1
xn − xn−1

}
. (5)

However, for d ≥ 2, the characterization of the underlying
convex set C is more complex. In this case, there must exist a
auxiliary vector ξ := [ξ	

1 , . . . , ξ	
n ]	 ∈ R

dn representing the
subgradient of f (xj), for j = 1, . . . , n, such that

〈
ξ j, xi − xj

〉
≤

θi − θj, for i, j = 1, . . . , n. Thus, C can be expressed as the
projection of the higher-dimensional polyhedron{

(ξ , θ) ∈ R
dn+n : ξ = [ξ	

1 , . . . , ξ	
n ]	,〈

ξ j, xi − xj
〉
≤ θi − θj, ∀ i, j = 1, . . . , n

}
, (6)

onto the space of θ . Although the projection of a polyhedron is
still a polyhedron, it is difficult to express C in the form of (4)
explicitly.

As before, a natural estimator of θ∗ in this problem is the LSE
defined as in (3) withM replaced by C. For multivariate designs,
the classical convex LSE tends to overfit the data, especially
near the boundary of the convex hull of the design points. To
avoid this over-fitting, Sen and Meyer (2013) and Lim (2014)
proposed a regularization technique using the norm of the
subgradients, which leads to penalized convex regression (see
Section 4 for the details).

Example 1.3 (Additive total variation regression). Suppose that
d = 1 and f (as defined in Equation (1)) is a function of bounded
variation. In this case, a popular estimator of f is to consider the
total variation (TV) regularized regression (Rudin, Osher, and
Fatemi 1992; also see Mammen and van de Geer 1997), which
can be expressed as

θ̂(y) = arg min
θ∈Rn

n∑
i=1

(yi − θi)
2 + λ

n∑
i=2

|θi − θi−1|, (7)

where λ > 0 is a tuning parameter. The presence of the �1-
norm in the penalty term in (7) ensures sparsity of the vector
(θ̂2 − θ̂1, . . . , θ̂n − θ̂n−1); thus θ̂(y) is piecewise constant with
adaptively chosen break-points. The motivation for using (7) to
estimate θ∗ := (f (x1), . . . , f (xn)) comes from the belief that θ∗
lies in the closed convex set C = {

θ ∈ R
n :

∑n
i=2 |θi − θi−1| ≤

V
}

for some V > 0; indeed (7) expresses the above constraint
in the penalized form. TV regularization has many important
applications, especially in image processing; also see the closely
related method of fused Lasso (Tibshirani et al. 2005).

When we have multidimensional predictors, that is, d > 1,
to alleviate the curse of dimensionality, it is useful to consider
an additive model of the form f (x1, . . . , xd) := ∑d

j=1 fj(xj),
where each fj(·) is assumed to be of bounded variation. A natural

estimator in this scenario, which is an extension of (7), is the
additive TV regression (Petersen, Witten, and Simon 2016),
where we minimize the sum of squared errors constraining the
sum of the variations for each fj(·). We study this estimator in
Section 6.1. In fact, we consider a more general setup where each
fj(·) can have different degrees of “smoothness.”

All the above three examples can be succinctly expressed in
the Gaussian sequence model:

y = θ∗ + ε, (8)

where we observe y = (y1, . . . , yn) ∈ R
n, θ∗ = (θ∗

1 , . . . , θ∗
n ) ∈

R
n is the unknown parameter of interest known to belong to a

given closed convex set C ⊆ R
n (recall that θ∗ corresponds to

(f (x1), . . . , f (xn))), and ε ∼ N(0, σ 2In) (In is the n × n identity
matrix) is the unobserved error. Let θ̂(y) := (θ̂1, . . . , θ̂n) be an
estimator of θ∗. The “degrees of freedom” of θ̂(y) (see Efron
2004) is defined as

df(̂θ(y)) := 1
σ 2

n∑
i=1

cov(θ̂i, yi). (9)

Degrees of freedom (DF) is an important concept in statistical
modeling and is often used to quantify the model complexity of
a statistical procedure; see, for example, Meyer and Woodroofe
(2000), Zou, Hastie, and Tibshirani (2007), Tibshirani and Tay-
lor (2012), and the references therein. Intuitively, the quantity
df(̂θ(y)) reflects the effective number of parameters used by θ̂(y)

in producing the fitted output, for example, in linear regression,
if θ̂(y) is the LSE of y onto a subspace of dimension d < n,
the DF of θ̂(y) is simply d. Using Stein’s lemma it follows that
(see Meyer and Woodroofe 2000; Tibshirani and Taylor 2012)

df(̂θ(y)) = E[D(y)],
where

D(y) = div(̂θ(y)) :=
n∑

i=1

∂

∂yi
θ̂i(y) = ∇yθ̂(y) (10)

is called the divergence of θ̂(y). Thus, D(y) is an unbiased
estimator of df(̂θ(y)). This has many important implications, for
example, Stein’s unbiased risk estimate (SURE); see Stein (1981).
Aside from plainly estimating the risk of an estimator, one could
also use SURE for model selection purposes: if the estimator
depends on a tuning parameter, then one could choose this
parameter by minimizing SURE. This has been successfully used
in many statistical problems; see, for example, Donoho and
Johnstone (1995), Xie, Kou, and Brown (2012), Candès, Sing-
Long, and Trzasko (2013), and Yi and Zou (2013) for applica-
tions in wavelet denoising, heteroscedastic hierarchical models,
singular value thresholding, and bandable covariance matrices,
respectively. We elaborate on this connection in Section 7.

In this article, we develop a theoretical framework to evaluate
the divergence (as defined in Equation (10)) for a broad class
of (nonparametric) regression estimators that are minimizers
of the least-squares criterion with linear constraints and/or
quadratic penalties. Our theory also recovers many existing
results (see Section D in the supplementary material), which
include the exact expressions for divergence for ridge regression
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(see Li 1986) and the active set representation of the divergence
for Lasso and generalized Lasso (see Zou, Hastie, and Tibshirani
2007; Tibshirani and Taylor 2012).

In the following, we motivate the general form of the esti-
mators we study in this article. In many regression problems,
θ∗ ∈ C ⊂ R

n where C is a polyhedron. Moreover, in many of
these problem (e.g., convex regression) C is not easily expressible
in the form (4), but can be described as the projection of a
higher-dimensional polyhedron of (ξ , θ) onto the space of θ

(see, e.g., Equation (6)). In particular, this higher-dimensional
polyhedron can, in general, be represented as

Q := {(ξ , θ) ∈ R
p+n : Aξ + Bθ ≤ c}, (11)

where ξ ∈ R
p is the auxiliary variable and A ∈ R

m×p, B ∈ R
m×n

and c ∈ R
m are suitable matrices. The true parameter θ∗ thus

belongs to the set C := Projθ (Q) defined as

Projθ (Q) := {θ ∈ R
n : ∃ ξ ∈ R

p such that (ξ , θ) ∈ Q}. (12)

A natural estimator of θ∗ in this situation is the LSE θ̂(y) :=
arg minθ∈Projθ (Q)

1
2‖θ−y‖2

2, which is equivalent to (̂θ(y), ξ̂(y))∈
arg min(θ ,ξ)∈Q 1

2‖θ − y‖2
2. Instead of considering this partially

projected LSE, we study a more general formulation by adding
linear and quadratic perturbations in the objective function to
accommodate more applications:

(̂θ(y), ξ̂(y)) ∈ arg min
θ ,ξ

1
2
‖θ − y‖2

2 + d	ξ + λ

2
‖ξ‖2

2 (13)

s.t. Aξ + Bθ ≤ c,

where A = [a1, . . . , am]	 ∈ R
m×p, B = [b1, . . . , bm]	 ∈ R

m×n,
c ∈ R

m, d ∈ R
p and λ ≥ 0 is a regularization parameter. As we

will show below (13) finds many statistical applications beyond
the examples described above. Note that the objective function
in (13) is strongly convex in θ and convex in ξ ; moreover, if λ >

0, it is strongly convex in both θ and ξ .
Formulation (13) covers a wide range of useful estimators in

shape-restricted nonparametric regression, additive total varia-
tion regression, and Lasso-related problems. For example, when
d = 0, λ = 0 but A is not a zero matrix, (13) becomes

(̂θ(y), ξ̂(y)) = arg min
(θ ,ξ)∈Q

1
2
‖θ − y‖2

2, (14)

where Q is defined in (11). This formulation can also be viewed
as the projection of y onto a polyhedron Projθ (Q) defined in
(12). This class of problems include the LSE in multivariate
convex regression for which DF has not been studied before (see
Section 4 for the details). Based on (14), if we further have d �= 0,
then (13) reduces to

(̂θ(y), ξ̂(y)) = arg min
(θ ,ξ)∈Q

1
2
‖θ − y‖2

2 + d	ξ . (15)

This formulation includes many examples in statistics, such as
additive TV regression (see Example 1.3) and �∞-regularized
group Lasso (see Section 6). Moreover, when d = 0 and λ > 0
in (13), the corresponding optimization problem becomes

(̂θ(y), ξ̂(y)) = arg min
(θ ,ξ)∈Q

1
2
‖θ − y‖2

2 + λ

2
‖ξ‖2

2, (16)

which includes the example of penalized multivariate con-
vex regression, where the norm of the subgradient ξ is
penalized.

In the following we briefly describe some of the main contri-
butions of this article.

1. We characterize the divergence and DF of θ̂(y), as defined
in (13), by providing easy-to-compute formulas. Our main
result, Theorem 3.2, can be used to compute the divergence
and DF in any statistical regression problem where the esti-
mator can be expressed in the form (13). A special case
of (13)—projection onto a convex polyhedron—has been
studied in the literature (Kato 2009; Tibshirani and Taylor
2012) where

θ̂(y) = PC(y) := arg min
θ∈C

1
2
‖θ − y‖2

2, (17)

and C = {θ ∈ R
n : Bθ ≤ c} is as defined in (4). Our

main theorem generalizes these previous results. In partic-
ular, when d �= 0 and λ = 0 in (13), the problem is
challenging as now θ̂(y) cannot be written as a projection
estimator. When λ > 0, although (13) can be viewed as a
projection problem in a higher dimensional space, the pre-
vious results on the projection estimator cannot be directly
applied to obtain the divergence of θ̂(y) (see Remark 3.1 for
details).

2. Using our main result we derive the DF for many estimators,
including multivariate convex regression, penalized convex
regression, (bounded) isotonic regression, additive TV
regression, �∞-regularized group Lasso, etc. Note that
although the divergences and DF for Lasso and generalized
Lasso have been characterized in Zou, Hastie, and Tibshirani
(2007) and Tibshirani and Taylor (2012) we demonstrate that
we recover their results (in the active set representation) as
straightforward consequences of Theorem 3.2; see Section D
in the supplemental material for the details.

3. For bounded isotonic regression where the design points are
allowed to belong to any partially ordered set, we establish the
equivalence between the divergence of the isotonic LSE and
the number of connected components of the graph induced
by the LSE (see Proposition 5.2). This result is not only
theoretically interesting but also provides a fast algorithm
for computing the divergence in this problem. Moreover,
we establish a connection between the LSE for bounded
isotonic regression and that for unbounded isotonic regres-
sion, a result which is of independent interest. In particu-
lar, we show that the bounded isotonic LSE can be easily
obtained by appropriately thresholding the unbounded iso-
tonic LSE (see Proposition 5.3). Further, using this prop-
erty, we show the monotonicity of divergence (and DF) as a
function of the model complexity parameter—this shows that
DF indeed characterizes model complexity—for bounded
isotonic regression.

In the following we compare and contrast our results with
some of the recent work on divergence and DF for projec-
tion estimators. Kato (2009) characterizes the DF in shrinkage
regression where the coefficients belong to a closed convex set.
The estimation problem considered by Kato (2009) contains
(14) as a special case but his result cannot be directly applied
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to (15) when d �= 0. As a consequence, Kato (2009) can
characterize DF for generalized Lasso expressed in a constrained
form while we can characterize the DF in the penalized form (as
described in Section D of the supplementary material). Hansen
and Sokol (2014) consider the closed constraint set C = ζ(B)

where B ⊆ R
p is a closed set and ζ : R

p → R
n is a

(possibly nonlinear) map satisfying some regularity conditions.
Their main result (Theorem 3) requires the optimal solution β̂

to be in the interior of B (which is almost never the case in the
examples of interest to us) and a variant of the Hessian matrix of
ζ(β̂) to be full rank (e.g., when ζ(β) = Xβ , it requires that X	X
is full rank). The results in Hansen and Sokol (2014) can only
deal with a constraint set that can be explicitly written as a set
of inequalities (e.g., the general projected polyhedron Projθ (Q)

in (12) is not allowed) and cannot be applied to regularized
estimators (e.g., generalized Lasso as described in Section D of
the supplementary material and penalized multivariate convex
regression as described in Section 4). Vaiter et al. (2014) studied
DF for a class of regularized regression problems that include
Lasso and group Lasso as special cases. However, their paper
does not consider constrained formulations and thus cannot be
applied to shape restricted regression problems. Mikkelsen and
Hansen (2018) provide a characterization of DF for a class of
estimators, which are locally Lipschitz continuous on each of a
finite number of open sets that cover R

n. Rueda (2013) used
the results of Meyer and Woodroofe (2000) to study the DF
for the specific problem of semiparametric additive (univariate)
monotone regression.

In the recent papers Kaufman and Rosset (2014) and
Janson, Fithian, and Hastie (2015) the authors argued that
in many problems DF might not be an appropriate notion
for characterizing model complexity. They provide counter
examples of situations where DF is not monotone in the model
complexity parameter (or DF is unbounded). However, most
of these counter examples either involve nonconvex constraints
or non-Gaussian or heteroscedastic noise—in Janson, Fithian,
and Hastie (2015) it is argued that such irregular behavior
happens “whenever we project onto a nonconvex model.”
Nevertheless, some of the main applications in our article,
namely, bounded isotonic regression and additive total variation
regression, correspond to projections onto polyhedral convex
sets with iid Gaussian noise so the irregular behavior of DF,
observed in some of the counter examples, may not occur here.
In fact, in Theorem 5.4 we prove that for bounded isotonic
regression, DF is indeed monotone in the model complexity
parameter.

The article is organized as follows. In Section 2, we pro-
vide some basic results on the divergence of projection esti-
mators. In Section 3, we state our main result. In Sections 4,
5, and 6, we discuss many applications of our main result to
different regression problems. In Section 7, we discuss how
the characterization of divergence of estimators (computed in
the article) can be useful in model selection (choice of tuning
parameter) based on SURE, and illustrate this for bounded iso-
tonic regression and penalized multivariate convex regression.
We relegate all the technical proofs, graphical illustrations, as
well as the derivation of some existing results (such as gen-
eralized Lasso) using our main theorem to the supplementary
material.

2. An Existing Result on DF

Degrees of Freedom is an important concept in statistical mod-
eling as it provides a quantitative description of the amount of
fitting performed by a given procedure. Despite its fundamental
role in statistics, its behavior is not completely well-understood,
even for widely used estimators.

In this section, we review an important known result on DF
and the divergence of the projection estimator θ̂(y) when C is a
convex polyhedron as defined in (4); see (17). We will assume
that the reader is familiar with basic concepts from convex
analysis (see Section A in the supplementary material where
we provide a review of some basic concepts: polyhedron, cone,
normal cone, affine hull, interior, boundary, relative interior,
relative boundary, etc).

The following result, due to Kato (2009, Lemma 3.2) and
Tibshirani and Taylor (2012, Lemma 2), shows that the diver-
gence of the projection estimator θ̂(y) onto a convex polyhedron
as described in (4) can be calculated as the dimension of the
affine space that θ̂(y) lies on. In fact, Lemma 3.2 in Kato (2009)
provides a more general result about the divergence of the
projection estimator θ̂(y), when C is a closed convex set with
piecewise smooth boundary.

Proposition 2.1. Suppose that the projection estimator θ̂(y) is
defined in (17) where C is a convex polyhedron as defined in (4).
Then the components of θ̂(y) are almost differentiable, and ∇ θ̂i
(ith entry of ∇ θ̂(y)) is an essentially bounded function, for i =
1, . . . , n. Let Jy be the set of indices for all the binding constraints
of θ̂(y), that is,

Jy := {1 ≤ i ≤ m : 〈bi, θ̂(y)〉 = ci}. (18)
Then, for a.e. y ∈ R

n, there is a neighborhood U of y, such that
for every z ∈ U,

θ̂(z) = arg min
θ∈H

1
2
‖θ − z‖2

2, (19)

where H = {θ : BJyθ = cJy } is an affine space, Jy is defined in
(18) and BJy is the submatrix of B with rows indexed by Jy. As a
consequence,

D(y) = n − rank(BJy), for a.e. y ∈ R
n. (20)

Thus, df (̂θ(y)) = n − E
[
rank(BJy)

]
.

Note that a.e. in (20) stands for “almost everywhere,” which
means that (20) holds for all y except on a measure-zero set. Note
that, by an almost differentiable function f : Rn → R we mean
that f is differentiable everywhere except on a measure-zero
set (see Meyer and Woodroofe 2000 for a precise definition);
f is essentially bounded if there exists an constant c such that
f −1((c, +∞)) is a measure-zero set.

3. Main Result

In this section, we consider the estimator θ̂(y) obtained from the
optimization problem (13) with the auxiliary variable ξ ∈ R

p.
When λ = 0 and d �= 0, the optimization problem (13)
may have an unbounded optimal value depending on d. The
following result gives the necessary and sufficient condition for
(13) to be bounded.
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Lemma 3.1. When λ = 0, the optimization problem in (13) has
a bounded optimal value if and only if −d = A	u for some
u ≥ 0.

The proof of Lemma 3.1 is based on Farkas’s lemma (see,
e.g., Rockafellar 1970, Corollary 22.3.1) and is provided in Sec-
tion B.1 of the supplementary material. Based on the above
lemma, for the rest of the article, we will assume that −d = A	u
for some u ≥ 0 so that (13) is bounded. When d = 0 such
an assumption trivially holds for u = 0. For applications with
d �= 0, for example, additive model, generalized Lasso, and
�∞-regularized group Lasso, we will show that this assumption
always holds.

The divergence of θ̂(y), as the solution (13), is characterized
by the following theorem, which is the main result of the article.

Theorem 3.2. Suppose that −d = A	u for some u ≥ 0
whenever λ = 0 in (13). For any y ∈ R

n, let (̂θ(y), ξ̂(y)) be
any solution for (13) and let

Jy := {1 ≤ i ≤ m : 〈ai, ξ̂(y)〉 + 〈bi, θ̂(y)〉 = ci}, (21)

and AJy and BJy be the submatrices of A and B with rows in the
set Jy. Let Iy ⊆ Jy be the index set of maximal independent rows
of the matrix [AJy , BJy ], that is, the set of vectors {[a	

i , b	
i ], i ∈

Iy} are linearly independent. Then, the following statements
hold:

(i) The optimal solution (̂θ(y), ξ̂(y)) of (13) has unique com-
ponents θ̂(y). The components of θ̂(y) are almost differ-
entiable in y and ∇ θ̂i(y) is an essentially bounded function
for each i = 1, . . . , n.

(ii) For a.e. y,

D(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n − trace

(
B	

Iy

(
BIy B	

Iy
+ 1

λ
AIy A	

Iy

)−1
BIy

)
,

if λ > 0,
n − |Iy| + rank(AIy),

if λ = 0,
(22)

and df (̂θ(y)) = E[D(y)] (note that the index set Iy is
random).

First note that any solution (̂θ(y), ξ̂(y)) of (13) depends on
d and so do Jy and Iy. Hence, D(y) given in (22) depends on d
implicitly. To simplify notation, we suppress the dependence of
Jy, Iy and D(y) on d. The divergence in (22) holds for any given
d ∈ R

p and for every y ∈ R
n expect for a measure-zero set in

R
n. The explicit form of this measure zero set is provided in our

proof (see Equation (60) in the supplementary material for the
case λ = 0 and (65) when λ > 0).

We also note that when λ > 0, BIy B	
Iy

+ 1
λ

AIy A	
Iy

is invertible.
To see this observe that, from the definition of Iy, the rows
of V := [ 1√

λ
AIy , BIy ] are linearly independent. Therefore,

BIy B	
Iy

+ 1
λ

AIy A	
Iy

= VV	 is invertible. Further, as a simple
sanity check of Theorem 3.2, we show in Lemma B.3 (see
Section B.4 of the supplementary material that D(y), as defined
in (22), is always nonnegative. A few important remarks are in
order now.

Remark 3.1. When λ > 0, we can define dλ := −d√
λ

and can
reformulate (13) as a projection problem

(̂θ(y, dλ), γ̂ (y, dλ)) = arg min
θ ,γ

1
2
∥∥(θ , γ ) − (y, dλ)

∥∥2
2 (23)

s.t.
1√
λ

Aγ + Bθ ≤ c.

It is easy to verify that γ̂ = √
λ ξ̂ and that (23) is just an

instance of (17) in R
p+n by viewing (̂θ , γ̂ ), (y, dλ) and the

feasible domain {(θ , γ ) ∈ R
p+n : 1√

λ
Aγ + Bθ ≤ c} in (23) as θ̂ ,

y and C in (17), respectively. Hence, by applying Proposition 2.1
to (23), we can show that, for a.e. (y, dλ) ∈ R

p+n, there is a
neighborhood U of (y, dλ), such that for every (z, b) ∈ U, the
solution (̂θ(z, b), γ̂ (z, b)) defined in (23) is the projection of
(z, b) to the affine space {(θ , γ ) : 1√

λ
AIyγ + BIyθ = cIy} with

Iy defined the same as in Theorem 3.2. In other words, for every
(z, b) ∈ U,[

θ̂(z, b)

γ̂ (z, b)

]
= (I − P)

[
z
b

]
,

where P =
[

B	
Iy

1√
λ

A	
Iy

](
BIy B	

Iy + 1
λ

AIy A	
Iy

)−1 [
BIy ,

1√
λ

AIy

]
.

Therefore, for a.e. (y, dλ) ∈ R
p+n, the matrix I−P is the Jacobian

matrix of (̂θ(y, dλ), γ̂ (y, dλ)) and we obtain (22) for λ > 0 by
taking the trace of the n × n top-left block of I − P.

Unfortunately, this argument cannot serve as a proof for
Theorem 3.2 when λ > 0 as the above argument only holds
for almost every (y, dλ) in R

p+n but not necessarily for almost
every y in R

n for a given dλ. This is because the projection of
a zero-measure set in R

p+n (i.e., the set of (y, dλ)’s) onto the
space of y is not necessarily a zero-measure set in R

n. But our
main result in Theorem 3.2 shows that (22) holds for almost
every y ∈ R

n and any given dλ ∈ R
p. In Section B.5 in the

supplementary material, we present a concrete example which
shows that the entire set of (y, dλ) with a given dλ falls into
the measure-zero part on which the previous results from Kato
(2009) and Tibshirani and Taylor (2012) fail.

Remark 3.2. When λ = 0, using the strong duality of linear
programming, we can reformulate (13) and θ̂(y) as follows:

θ̂(y) ∈ arg min
θ

1
2
‖θ − y‖2

2 + g(θ), (24)

where g(θ) is a piece-wise linear convex function:

g(θ) :=
{

min
ξ

d	ξ s.t. Aξ ≤ c − Bθ if {ξ |Aξ ≤ c − Bθ} �= ∅
+∞ if {ξ |Aξ ≤ c − Bθ} = ∅.

(25)

=

⎧⎪⎨⎪⎩
max

u
(Bθ − c)	u s.t. A	u = −d, u ≥ 0

if {ξ |Aξ ≤ c − Bθ} �= ∅
+∞ if {ξ |Aξ ≤ c − Bθ} = ∅.

The formulation (24) means that θ̂(y) is the proximal mapping
of y with a proximal term g (Definition 1.22 in Rockafellar
and Wets 2011). We note that Exercise 13.45 from Rockafellar
and Wets (2011) characterizes the generalized Jacobian of a
proximal mapping, which can be a potential tool to derive D(y).
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However, due to the complicated form of the proximal term g
in (25), it is not easy to directly apply their result to derive the
explicit expression of the divergence in our Theorem 3.2, and it
requires to first introduce many new notions (e.g., second order
generalized derivative for nonsmooth functions and graphical
derivative) in variational analysis. On the other hand, our proof
for the case of λ = 0 is more elementary and more consistent
with the proof when λ > 0—both of them are based on a general
local projection lemma (see Lemma 3.3).

Remark 3.3. The computation of the index set Jy is straight-
forward. Given a solution ξ̂(y) and θ̂(y) from an optimization
solver, we could easily check if 〈ai, ξ̂(y)〉 + 〈bi, θ̂(y)〉 equals
ci, for each 1 ≤ i ≤ m. After obtaining Jy, the index set
Iy of maximal independent rows can be found by removing
all the rows of [AJy , BJy ] whose removal does not change the
rank of the original matrix [AJy , BJy ]. In particular, we start
with an index set K = Jy. For each row index k ∈ K, if
the rank of [AK\{k}, BK\{k}] is the same as that of [AK , BK], we
remove k from K. (Note that the rank can be computed easily by
singular value decomposition or by directly applying the rank
function in Matlab or rankMatrix function in R.) We repeat
this procedure until no additional index in K can be removed
without reducing the rank of the matrix. The obtained index set
K is Iy.

Remark 3.4. When λ = 0, it is possible that there exist multiple
ξ̂(y)’s satisfying (13) and they correspond to different Jy’s and
Iy’s; while when λ > 0, ξ̂(y) is unique. Even if ξ̂(y) and Jy are
unique, there can still exist multiple maximal independent sets
Iy. However, according to our proof, for any given ξ̂(y), Jy and
Iy, we show that D(y) equals the quantity on the right hand side
of (22). Note that D(y) is well-defined (see its definition in (10)),
unique and does not depend on the choice of ξ̂(y), Jy and Iy.

The key tool to proving Theorem 3.2 is to establish the
following lemma, which shows that for a.e. y, the solution of (13)
is locally an affine projection with linear and quadratic perturba-
tions.

Lemma 3.3. Suppose that −d = A	u for some u ≥ 0 whenever
λ = 0 in (13). For any y ∈ R

n, let (̂θ(y), ξ̂(y)) be any solution
of (13) and let the index set Jy be as defined in (21). For a.e. y ∈
R

n,

θ̂(z) = θ̃(z), for any z in a neighborhood U of y, (26)

where θ̃(z) is defined as the unique θ-component of the optimal
solution of the following optimization problem:

(̃θ(z), ξ̃(z)) ∈ arg min
θ ,ξ

1
2
‖θ − z‖2

2 + d	ξ + λ

2
‖ξ‖2

2 (27)

s.t. AJyξ + BJyθ = cJy .

A rigorous proof of this lemma involves technical arguments
from convex analysis, which will be presented in Section B.2 of
the supplementary material. The proof of Theorem 3.2, based on
Lemma 3.3, will be provided in Section B.3 of the supplementary
material.

4. DF of (Penalized) Convex Regression

One important application of Theorem 3.2 is in characterizing
DF for the LSE in multivariate convex regression (see, e.g., Seijo
and Sen 2011). In particular, consider the nonparametric regres-
sion problem in (1), where f : R

d → R (d > 1) is a
convex function and X := {x1, . . . , xn} is the set of design
points (with n distinct elements) in R

d. The goal is to estimate
θ∗ = (f (x1), . . . , f (xn)). Let Kconv be the set of all vector
θ = (θ1, . . . , θn) ∈ R

n for which there exists a convex function
ψ : Rd → R such that ψ(xi) = θi for i = 1, . . . , n. It can be
shown that Kconv is a convex cone (see Lemma 2.3 of Seijo and
Sen 2011). The multivariate convex LSE is defined as θ̂(y) :=
arg minθ∈Kconv

1
2‖θ−y‖2

2. In fact, Lemma 2.2 from Seijo and Sen
(2011) provides the following explicit characterization of Kconv.

Lemma 4.1 (Seijo and Sen 2011). For a vector θ ∈ R
n, we have

θ ∈ Kconv if and only if there exists a set of n d-dimensional
vectors ξ1, . . . , ξn ∈ R

d such that the following inequalities hold
simultaneously:

〈ξ j, xk − xj〉 ≤ θk − θj, for all j �= k ∈ {1, . . . , n}. (28)

Lemma 4.1 is quite intuitive: since f is a multivariate convex
function, we have for any pair xk, xj ∈ X ,

f (xk) − f (xj) ≥ 〈g(xj), xk − xj〉, (29)

where g(xj) ∈ ∂f (xj) is a subgradient of the convex function
f at xj. Letting ξ j = g(xj), one can easily see the equivalence
between (29) and (28). Using Lemma 4.1, the LSE of multivariate
convex regression can be formulated as the following optimiza-
tion problem (see, e.g., Kuosmanen 2008; Seijo and Sen 2011;
Hannah and Dunson 2011; Lim and Glynn 2012):

(̂θ(y), ξ̂(y)) = arg min
θ∈Rn

ξ=[ξ	
1 ,...,ξ	

n ]	∈Rnd

1
2
‖θ − y‖2

2 (30)

s.t. 〈ξ j, xk − xj〉 ≤ θk − θj, ∀ j �= k ∈ {1, . . . , n},

which is a standard linearly constrained quadratic program
and can be solved by many off-the-shelf solvers (e.g., SDPT3,
Tütüncü, Toh, and Todd 2003). Next, we show that the above
optimization problem can be reformulated as a special case of
(13) with properly chosen A, B and c = 0, d = 0, and λ = 0.

Proposition 4.2. The optimization problem for multivariate con-
vex regression in (30) can be formulated as (14) with p = nd
and ξ = [ξ	

1 , . . . , ξ	
n ]	 ∈ R

nd. In this scenario, A in (14) is a
[n(n − 1)] × nd matrix and each row of A is indexed by a pair
r = (j, k) with j �= k ∈ {1, . . . , n} and each column is indexed
by a pair c = (j′, s) with j′ ∈ {1, . . . , n} and s ∈ {1, . . . , d}.
Moreover, we partition A into [n(n − 1)] × n blocks with each
block of size 1 × d. Let Ar,j′ be the block of A with row r = (j, k)
and column j′ ∈ {1, . . . , n}. Ar,j′ is defined as Ar,j′ = x	

k − x	
j

if j = j′ and Ar,j′ = 0	 if j �= j′. The corresponding B is a
[n(n − 1)] × n matrix and each row of B is indexed by a pair
r = (j, k) with j �= k ∈ {1, . . . , n} and each column is indexed
by c ∈ {1, . . . , n}. Let Br,c be the entry in row r = (j, k) and
column c of the matrix B defined as Br,c = 1 if c = j, Br,c = −1
if c = k, and Br,c = 0 otherwise. The corresponding c will be an
all-zero vector in R

n(n−1).
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The proof of Proposition 4.2 is straightforward and thus
omitted. Given the matrices A and B defined in Proposition 4.2,
one can define the corresponding polyhedronQ of (ξ , θ) in (11)
and it is clear that Kconv = Projθ (Q), which is a projected
convex polyhedron. Given Proposition 4.2, it is straightforward
to apply Theorem 3.2 (with d = 0 and λ = 0) to calculate the
DF of the LSE for multivariate convex regression.

Corollary 4.3. For multivariate convex LSE in (30), let the set of
tight constraints be Jy := {(j, k) : 〈̂ξ j, xk−xj〉 = θ̂k−θ̂j}. Let Iy ⊆
Jy be the index set of maximal independent rows of the matrix
[AJy , BJy ], where A and B are defined in Proposition 4.2. Then
for a.e. y, we have D(y) = n − |Iy| + rank(AIy) and df (̂θ(y)) =
n − E[|Iy|] + E

[
rank(AIy)

]
.

The multivariate convex LSE described in (30) tends to over-
fit the data, especially near the boundary of the convex hull of
the design points—the subgradients take large values near the
boundary. Thus, we might want to regularize the convex LSE. A
natural way to achieve this is to impose bounds on the norm
of the subgradients; see, for example, Sen and Meyer (2013)
and Lim (2014). In the penalized form this would lead to the
following problem:

(̂θ(y), ξ̂(y)) = arg min
θ∈Rn

ξ=[ξ	
1 ,...,ξ	

n ]	∈Rnd

1
2
‖θ − y‖2

2 + λ

2

n∑
j=1

‖ξ j‖2
2(31)

s.t. 〈ξ j, xk − xj〉 ≤ θk − θj ∀ j �= k,

which can be formulated as (16) with p = nd and ξ =
[ξ	

1 , . . . , ξ	
n ]	 ∈ R

nd, where A, B and c are defined in Proposi-
tion 4.2. The divergence of the penalized convex regression esti-
mator θ̂(y) in (31) can be easily characterized by Theorem 3.2
(with d = 0 and λ > 0).

Corollary 4.4. For the penalized multivariate convex LSE
described in (31), let the set of tight constraints be Jy :=
{(j, k) : 〈̂ξ j, xk − xj〉 = θ̂k − θ̂j}. Let Iy ⊆ Jy be the index set
of maximal independent rows of the matrix [AJy , BJy ], where
A and B are defined in Proposition 4.2. Then for a.e. y, we

have D(y) = n − trace
(

B	
Iy

(
BIy B	

Iy
+ 1

λ
AIy A	

Iy

)−1
BIy

)
and

df (̂θ(y)) = E[D(y)].

5. DF of (Bounded) Isotonic Regression

Let us consider isotonic regression on a general partially ordered
set; see, for example, Robertson, Wright, and Dykstra (1988,
Chapter 1). Let X := {x1, . . . , xn} be a set (with n distinct
elements) in a metric space with a partial order, that is, there
exists a binary relation � over X that is reflexive (x � x for
all x ∈ X ), transitive (u, v, w ∈ X , u � v and v � w imply
u � w), and antisymmetric (u, v ∈ X , u � v and v � u
imply u = v). Consider (1) where now the real-valued function
f is assumed to be isotonic with respect to the partial order �,
that is, any pair u, v ∈ X , u � v implies f (u) ≤ f (v). This
model can be expressed in the sequence form as (8) by letting
θ∗

i = f (xi) for i = 1, . . . , n. To construct the LSE in this
problem, we add isotonic constraints on θ , which are of the form

θi ≤ θj if xi � xj, for some i, j ∈ {1, . . . , n}. As a special case,
let us consider X ⊂ R for the univariate isotonic regression.
Assuming without loss of generality that x1 ≤ x2 ≤ · · · ≤ xn,
the isotonic constraint set on θ takes the form of the isotonic
cone M (see Equation (2)) and the LSE is the projection θ̂(y) of
y onto M. For the ease of illustration, the isotonic constraints
can be represented by an acyclic directed graph G̃ = (V , Ẽ),
where V = {1, . . . , n} (corresponding to {θi}n

i=1) and the set of
the directed edges is denoted by

Ẽ = {(i, j) : xi � xj}. (32)

For the univariate isotonic cone M, the edge set Ẽ contains n −
1 edges, where the ith edge runs from node θi to θi+1 for i =
1, . . . , n − 1, that is, Ẽ = {(i, i + 1) : i = 1, . . . , n − 1}.

It is well-known that the projection θ̂(y) of y onto the iso-
tonic constraint set suffers from the spiking effect, that is, over-
fitting near the boundary of the convex hull of the predic-
tor(s) (see Pal 2008; Woodroofe and Sun 1993). However,
such monotonic relationships among variables arise naturally
in many applications and this has lead to a recent surge of
interest in regularized isotonic regression; see, for example, Luss,
Rosset, and Shahar (2012), Luss and Rosset (2014), and Wu,
Meyer, and Opsomer (2015). Probably the most natural form
of regularization involves constraining the range of θ̂(y), that
is, maxi θ̂i − mini θ̂i; this leads to bounded isotonic regression.
More specifically, when the range of f is known to be bounded
(from above) by some γ ≥ 0, we can impose this boundedness
restriction of f by adding the boundedness constraints and the
corresponding bounded isotonic LSE can be defined as follows.

Definition 5.1. The bounded isotonic LSE (with boundedness
parameter γ ) is defined as the projection estimator θ̂γ (y) :=
arg minθ∈C ‖y − θ‖2

2, where the constraint set is

C :=
{
θ ∈ R

n : θi ≤ θj ∀ (i, j) ∈ Ẽ, θi ≤ θj + γ ,

i ∈ max(V), j ∈ min(V), i �= j
}

. (33)

Here, max(V) and min(V) are the maximal and minimal sets
of V with respect to this partial order:

max(V) = {i ∈ V : ñ+(i) = ∅}
and min(V) = {i ∈ V : ñ−(i) = ∅},

where for any node i, ñ+(i) := {j ∈ V : (i, j) ∈ Ẽ} is the set
of elements that are “greater than i” with respect to the partial
order (i.e., successors of i), and ñ−(i) := {j ∈ V : (j, i) ∈ Ẽ}
is the set of elements that are “smaller than i” (i.e., predecessors
of i).

In Definition 5.1, both max(V) and min(V) must be
nonempty for any nonempty partially ordered set. This is
because G̃ is an acyclic directed graph where there always exist
nodes with no successor and nodes with no predecessor. We
also note that max(V) and min(V) might overlap, for example,
when there exist nodes that cannot be compared with any other
nodes under the given partial order. For each i ∈ max(V) and
j ∈ min(V) with i �= j, we add a constraint θi ≤ θj + γ to
impose the boundedness restriction on the range of f .
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Similar to the unbounded case, we can represent the con-
straints in (33) by a graph G = (V , E) where V = {1, . . . , n}
and

E := Ẽ ∪ {(i, j) : i ∈ max(V), j ∈ min(V), i �= j}.

As a special case, for univariate bounded isotonic regression, the
constraint set C in (33) becomes {θ ∈ R

n : θ1 ≤ · · · ≤ θn, θn −
θ1 ≤ γ } and the corresponding edge set is E = {(i, i + 1), i =
1, . . . , n − 1} ∪ {(n, 1)}.

To compute the DF of bounded isotonic LSE θ̂γ (y), first
notice that the setC can be easily represented as a convex polyhe-
dron of the form in (4). We note that as compared to unbounded
isotonic regression, the C in (33) is a convex polyhedron rather
than a polyhedral cone due to the additional boundedness con-
straints. Given the fact that bounded isotonic LSE is a projection
estimator onto a convex polyhedron, Theorem 3.2 (with d = 0,
λ = 0 and A = 0) can be used to compute its DF. Instead
of directly applying Theorem 3.2 in its original form, we draw
some interesting connections to graph theory, which also leads
to a faster computation of the divergence. In particular, let ω(G)

denote the number of connected components of the undirected
version of the graph G = (V , E) (removing the directions of
edges in G), that is, the number of maximal connected sub-
graphs of G. The divergence of θ̂γ (y) can be characterized using
the number of connected components of a subgraph of G as
shown in the following proposition (see the proof in Section C.1
in the supplementary material).

Proposition 5.2. The bounded isotonic constraint set C defined
in (33) is a convex polyhedron in the form of (4), where m = |E|
and B ∈ R

|E|×n is defined as (the rows of B are indexed by the
edge set)

Be,i =
{ 1 if e = (i, j) ∈ E for some j �= i

−1 if e = (j, i) ∈ E for some j �= i
0 otherwise

(34)

and c = (ce)
|E|
e=1 ∈ R

|E| is defined as

ce =
{

γ if e = (i, j) ∈ E for i ∈ max(V), j ∈ min(V)

0 otherwise. (35)

Let Be be the eth row of B and Jy := {e ∈ E : Bêθγ (y) = ce}.
Further, let GJy be the subgraph of G with the edge set Jy. The
divergence of θ̂γ (y) is the number of connected components of
GJy for a.e. y, that is, D(y) = ω(GJy), and therefore, df (̂θγ (y)) =
E[ω(GJy)].

The characterization of divergence in Proposition 5.2 not
only has interesting connections to graph theory but also leads
to a computationally fast procedure to compute the divergence.
In fact, it is easy to compute ω(GJy) using either breadth-first or
depth-first search in linear time in n, which is computationally
much cheaper than directly calculating the rank of BJy in Propo-
sition 2.1. To facilitate the understanding of Proposition 5.2, we
provide a toy example. Consider the following bounded isotonic
constraint set with n = 5:

C = {θ ∈ R
n : θ1 ≤ · · · ≤ θn, and θn − θ1 ≤ γ }. (36)

The set C can be represented as C = {θ ∈ R
n : Bθ ≤ c} where

B is shown in Figure 1(a) and c only has one nonzero element

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 −1 0 0 0

0 +1 −1 0 0

0 0 +1 −1 0

0 0 0 +1 −1

−1 0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) Matrix B

(b) Graph G

Figure 1. The matrix B and the induced graph G.

BJy =

⎛
⎜⎜⎝

+1 −1 0 0 0

0 0 +1 −1 0

−1 0 0 0 +1

⎞
⎟⎟⎠

(a) Matrix BJy

(b) Graph GJy

Figure 2. The matrix BJy and the induced graph GJy .

at the nth position, that is, cn = γ . The graph G induced from
B, which has only one connected component (i.e., ω(G) = 1), is
shown in Figure 1(b).

Now suppose that we have θ̂γ ,1 = θ̂γ ,2 < θ̂γ ,3 = θ̂γ ,4 < θ̂γ ,5
and θ̂γ ,5 = θ̂γ ,1 + γ . Then Jy = {1, 3, 5} and the corresponding
BJy and GJy are presented in Figure 2. From Figure 2, GJy has 2
connected components {θ1, θ2, θ5} and {θ3, θ4} and thus D(y) =
ω(GJy) = 2. It is of interest to compare this with the univariate
unbounded isotonic regression example where the divergence
of θ̂γ (y) would be 3 (i.e., the number of distinct values of θ̂i’s;
see Proposition 1 from Meyer and Woodroofe 2000) instead of
2.

Using exactly the same proof technique as that of Proposi-
tion 5.2, we can easily derive the following result for the DF
of unbounded isotonic regression on a partially ordered set. In
particular, recall the unbounded isotonic cone M = {θ ∈
R

n : θi ≤ θj, ∀(i, j) ∈ Ẽ} where Ẽ is defined in (32) and the
corresponding LSE θ̂(y) = arg minθ∈M ‖θ − y‖2

2. The cone
M can be represented as M = {θ ∈ R

n : Bθ ≤ 0}, where
B ∈ R

|̃E|×n is defined similarly as in (34) (replacing E in (34) by
Ẽ). Let Be be the eth row of B, Jy := {e ∈ Ẽ : Bêθ(y) = be} and
G̃Jy be the subgraph of G̃ with the edge set Jy. The divergence of
θ̂(y) for unbounded isotonic regression is D(y) = ω(G̃Jy), and
therefore, df (̂θ(y)) = E[ω(G̃Jy)].

In addition to characterizing the DF for general bounded
isotonic regression, we also show a useful property of the diver-
gence Dγ (y) in Theorem 5.4 (where we make the dependence
on the model complexity parameter γ explicit). In particular,
we prove that the divergence Dγ (y) (and thus the DF) is non-
decreasing in γ . To show this we first present an important
connection between the solution of bounded isotonic regression
and that of unbounded isotonic regression (which can be viewed
as a special case of bounded isotonic regression with γ = +∞).
This result is of independent interest by itself.

We start with some notation. It is well known that the LSE for
unbounded isotonic regression θ̂ has a group-constant structure
(here y is suppressed for notational simplicity). That is, there
exists a partition U1, U2, . . . , Ur of V = {1, . . . , n} (i.e., Us’s
are disjoint and V = ⋃r

s=1 Us) such that θ̂i = θ̄s for some
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value θ̄s for each i ∈ Us, for 1 ≤ s ≤ r. Moreover, without
loss of generality, we assume that θ̄1 < θ̄2 < · · · < θ̄r .
Let θ̂γ be the LSE for bounded isotonic regression with the
boundedness parameter γ . The next proposition shows that θ̂γ

can be obtained by appropriately thresholding θ̂ .

Proposition 5.3. Let |Us| = ks for s = 1, . . . , r and H(L, γ ) be a
function on R

2 defined as

H(L, γ ) :=
r∑

s=1
ks

(
L − θ̄s

)
+ +

r∑
s=1

ks
(
L + γ − θ̄s

)
− , (37)

where (x)+ = max{x, 0} and (x)− = min{x, 0}. For any given
γ with θ̄r − θ̄1 ≥ γ ≥ 0, H(L, γ ) is a continuous and strictly
increasing function of L. Moreover, limL→−∞ H(L, γ ) = −∞
and limL→+∞ H(L, γ ) = +∞ so that there exists a unique Lγ

satisfying H(Lγ , γ ) = 0. Then, we have

θ̂γ ,i = max(Lγ , min(Lγ + γ , θ̄s)), for all i ∈ Us. (38)

Moreover, Lγ is nonincreasing in γ .

Proposition 5.3 also provides an efficient way to compute
the LSE for bounded isotonic regression. In particular, one
can first compute θ̂ by solving the corresponding unbounded
isotonic regression, which can be efficiently computed by using
existing off-the-shelf solvers (e.g., SDPT3, Tütüncü, Toh, and
Todd 2003). Given θ̂ , one obtains the values of θ̄s and ks for
s = 1, . . . , r, which are necessary for constructing the function
in (37). If γ > θ̄r − θ̄1, the boundedness constraint will be
noneffective and θ̂γ = θ̂ . On the other hand, if θ̄r − θ̄1 ≥
γ ≥ 0, since H(L, γ ) is a continuous and strictly increasing
function of L, one can use bisection search to compute Lγ such
that H(Lγ , γ ) = 0. Then by (38), we threshold θ̂ to obtain θ̂γ :
for each Us, if θ̄s < Lγ , θ̂γ ,i = Lγ for all i ∈ Us; if θ̄s > Lγ + γ ,
θ̂γ ,i = Lγ + γ for all i ∈ Us; otherwise θ̂γ ,i is set to θ̄s for all
i ∈ Us.

The key to the proof of the above result is to find appropri-
ate values of dual variables such that the primal solutions in
(38) and dual solutions together satisfy the KKT condition of
minθ∈C ‖y − θ‖2

2 with C in (33). We achieve this by design-
ing a transportation problem, which is a classical problem in
operations research (see, e.g., Chapter 14 in Dantzig 1959). The
dual solutions are constructed based on the solution of such a
transportation problem. Please refer to the proof in Section C.2
in the supplementary material for details.

Combining Proposition 5.3 and Proposition 5.2, we obtain
the following theorem which shows the monotonicity of DF
in terms of the boundedness parameter γ in bounded isotonic
regression (see Section C.3 in the supplementary material for
the proof).

Theorem 5.4. For any given y ∈ R
n the divergence of θ̂γ (y) is

nondecreasing in γ . This implies that df (̂θγ (y)) is nondecreas-
ing in γ .

6. Additive TV Regression and Other Applications

In this section, we apply our main result to derive the DF for
additive TV regression (see Example 3 in the Introduction)

and �∞-regularized group Lasso. Moreover, our main result
(Theorem 3.2) also yields, as special cases, known results on
DF of many popular estimators, for example, Lasso and gen-
eralized Lasso, linear regression, and ridge regression. Due to
space constraints, we illustrate these applications in Section
D.3 of the supplementary material; the proofs of the results
in this section are also provided in Section D, supplementary
material.

6.1. Additive Generalized TV Regression

For each response yi and input xi = (xi1, . . . , xid), where 1 ≤
i ≤ n, the additive model assumes that E(yi|xi) = ∑d

j=1 fj(xij).
Let θ∗

ji = fj(xij) and θ∗
j = (θj1, . . . , θjn), where it is typically

assumed that each θ j has zero mean (i.e., 1	θ j = 0). Petersen,
Witten, and Simon (2016) proposed the following additive TV
regularizer. Let D ∈ R

(n−1)×n be the discrete first derivative
matrix (i.e., the ith row of D only contains two nonzero elements:
Di,i = 1 and Di,i+1 = −1) and Pj ∈ R

n×n be the permutation
matrix that orders the jth feature from least to greatest. The
estimation of {θ∗

j }d
j=1 in an additive TV regularized regression

takes the form:

{θ̂0, {̂θ j}d
j=1} = arg min{θ j}d

j=1

1
2

∥∥∥y −
d∑

j=1
θ j − θ01

∥∥∥2

2

+τ

d∑
j=1

‖DPjθ j‖1

s.t. 1	θ j = 0, 1 ≤ j ≤ d.

The penalty ‖DPjθ j‖1 encourages θ j to be piecewise constant
with a small number of jumps, depending on the regulariza-
tion τ . In fact, instead of using the discrete first derivative
matrix D, we could impose a higher order smoothness for each
component function fj. More precisely, one can use a higher
order discrete difference matrix Dj for each fj; in the sequel we
will consider this more general setup. For example, the second
order differencing matrix produces piecewise affine fits, with a
few number of kink points. The specific form of higher order
discrete difference matrix is given in Equation (41) of Tibshirani
(2014). Let us denote DjPj by Qj ∈ R

nj×n for notational sim-
plicity, and we consider the following additive generalized TV
regression:

{θ̂0, {̂θ j}d
j=1} = arg min{θ j}d

j=1

1
2

∥∥∥y −
d∑

j=1
θ j − θ01

∥∥∥2

2

+τ

d∑
j=1

‖Qjθ j‖1 (39)

s.t. 1	θ j = 0, 1 ≤ j ≤ d.

Let the θ̂(y) := ∑d
j=1 θ̂ j(y) + θ̂0(y)1 be the estimated func-

tion values at the design points. To characterize its divergence,
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we rewrite the optimization problem in (40) as

(̂θ(y), {̂θ j(y)}d
j=1, θ̂0(y), {γ̂ j(y)}d

j=1)

∈ arg min
θ ,θ j,θ0,γ j

1
2
‖θ − y‖2

2 +
d∑

j=1
τ1	γ j (40)

s.t. θ −
d∑

j=1
θ j − θ01 ≤ 0, −θ +

d∑
j=1

θ j + θ01 ≤ 0

Qjθ j − γ j ≤ 0, −Qjθ j − γ j ≤ 0

1	θ j ≤ 0, −1	θ j ≤ 0, 1 ≤ j ≤ d.

With some algebraic manipulations, we show that the optimiza-
tion in (40) is a special case of (13) with a linear perturbation
term d	ξ and λ = 0 (in particular, in the form of (15)); see
the proof in the supplementary material for the details. We
then apply Theorem 3.2 to obtain the following result on the
DF for θ̂(y). In our proof, we also verify that the condition in
Theorem 3.2 (i.e., −d = A	u for some u ≥ 0) indeed holds.

Proposition 6.1. For the estimator θ̂(y) = ∑d
j=1 θ̂ j(y) + θ̂0(y)1

in (40), the divergence of θ̂(y) is,

D(y) = dim(span{1n×1, ker(K1), . . . , ker(Kd)}),

where, for j = 1, . . . , d, Kj =
(

Qj
0

11×n

)
, Qj

0 is the sub-matrix of Qj

consisting of rows qji (1 ≤ i ≤ nj) of Qj such that q	
ji θ̂ j(y) = 0

and ker(Kj) := {x ∈ R
n : Qj

0x = 0 and 11×nx = 0} is the kernel

of Kj =
(

Qj
0

11×n

)
. Further, df (̂θ(y)) = E(D(y)).

Remark 6.1. For each j, the matrix Kj can be easily constructed
by checking if q	

ji θ̂ j(y) = 0 for 1 ≤ i ≤ nj. After obtaining
Kj, the basis for the null space ker(Kj) can be easily computed
by transforming Kj into the reduced row echelon form using
Gaussian elimination (note that one can use the null function in
Matlab or the Null function in R to compute the basis of ker(Kj)).
Then, we construct a matrix using the basis of ker(Kj) for each
j and 1n×1 as its column so that D(y) can be computed as the
rank of this matrix.

6.2. �∞-regularized Group Lasso

Let G = {G1,G2, . . . ,Gl} be a partition of {1, 2, . . . , d}. Each
element G ∈ G represents a group of variables. The �∞-
regularized group Lasso estimator can be formulated as the
following optimization problem (Zhao, Rocha, and Yu 2009;
Negahban and Wainwright 2011):

β̂(y) ∈ arg min
β∈Rd

1
2
‖y − Xβ‖2

2 + τ
∑
G∈G

‖βG‖∞, (41)

where βG is the subvector of β consisting of the coordinates
indexed by the elements in G. We can easily see that (41) is
a special case of the optimization problem (13). In fact, by

introducing the variable γ ∈ R
l and letting θ = Xβ , (41) can

be equivalently reformulated as

(̂θ(y), β̂(y), γ̂ (y)) ∈ arg min
θ ,β ,γ

1
2
‖θ − y‖2

2 + τ1	γ (42)

s.t. Xβ − θ ≤ 0, −Xβ + θ ≤ 0
βGj − γj1|Gj| ≤ 0, −βGj − γj1|Gj| ≤ 0.

By setting ξ = (β	, γ 	)	 and defining E as the d × l matrix
with Eij = 1 if i ∈ Gj and Eij = 0 otherwise, (42) is a special case
of (13) with

d = (01×d, τ11×l)
	, λ = 0,

A =

⎛⎜⎜⎝
X 0n×l

−X 0n×l
Id −E

−Id −E

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
−In
In

0d×n
0d×n

⎞⎟⎟⎠ , c = 0. (43)

In the next corollary, we characterize the DF of the �∞-
regularized group Lasso estimator using Theorem 3.2.

Corollary 6.2. In the �∞-regularized group Lasso problem
described in (41) and (42), for a.e. y ∈ R

n, df (̂θ(y)) =
df(Xβ̂(y)) = E[rank(XJc

0
)], where

J0 =
{

i ∈ {1, . . . , d} : i ∈ Gj, β̂i(y) = ‖β̂Gj(y)‖∞

for some j ∈ {1, 2, . . . , l}
}

,

and Jc
0 is the complement set of J0 and XJc

0
consists of the columns

of X indexed by Jc
0.

7. Application: SURE and the Choice of Tuning
Parameters

Consider the formulation of the problem posited in (8). For
notational simplicity, we will use λ to denote the tuning param-
eter in the regularized/constrained LSE θ̂λ(y) (we highlight
the dependence of θ̂(y) on λ in this section). For example, in
bounded isotonic regression the tuning parameter is the choice
of the range of θ (i.e., the parameter γ in (33)); in penalized
convex regression (see Equation (31)) the estimator depends on
the tuning parameter λ on the norm of the subgradients.

In this section we use SURE to choose the tuning parameter
λ. Let

Ln(λ) = ‖̂θλ(y) − θ∗‖2
2 (44)

denote the loss in estimating θ∗ by θ̂λ(y). We would ideally like
to choose λ by minimizing Ln(·). Let λ∗ := arg minλ≥0 Ln(λ).
We note that λ∗ is a random quantity as Ln(λ) is random. Of
course, we cannot compute λ∗ as we do not know θ∗. However,
we can minimize an (unbiased) estimator of Ln, assuming σ is
known, as described below. Let

Un(λ) := ‖y − θ̂λ(y)‖2
2 + 2σ 2D(̂θλ(y)) − nσ 2, (45)

where D(̂θλ(y)) denotes the divergence of θ̂λ(y). It is well
known that for all λ ≥ 0, E[Un(λ)] = E[Ln(λ)]; see Stein
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(1981) (also see Proposition 2 of Meyer and Woodroofe 2000).
The quantity Un in (45) is usually called the SURE. Let

λ̂ := arg min
λ≥0

Un(λ) (46)

be the minimizer of Un(λ), which can be computed from the
data (if σ 2 is assumed known). Note that here we would need to
compute the divergence of θ̂λ(y), which we can calculate using
the results in the previous sections.

We empirically study the behavior of the ratio Ln(̂λ)/Ln(λ∗)
for bounded isotonic regression and penalized convex regres-
sion. We also compare the performance of different tuning
parameter selection methods—SURE and cross-validation—
including the no-tuning parameter approach (e.g., the standard
unbounded isotonic regression and un-penalized convex
regression) for these two problems.

In Sections 7.1 and 7.2, we provide simulation studies when
the true value of the noise variance σ 2 is assumed known
for SURE. When σ 2 is known, the SURE method significantly
outperforms its competitors. However, we note that the CV
method does not require any knowledge of σ 2. In Section 7.3,
we estimate σ 2 using an approach proposed in Meyer and
Woodroofe (2000). In this case, the performance of SURE and
CV are comparable but CV is computationally more expensive
than SURE.

7.1. Bounded Isotonic Regression

We generate n iid design points xi ∼ Unif[0, 1]d, for i =
1, . . . , n. We set the regression function f : R

d → R to be
f (x) = ‖x‖2

2. Recall that θ∗ = (f (x1), . . . , f (xn)), which is
a bounded vector (since ‖x‖2

2 ≤ d) and satisfies θ∗
i ≤ θ∗

j
whenever xi ≤ xj. We generate the response yi, for i = 1, . . . , n,
according to model (1) with σ 2 = 1.

Since the true regression function f is a bounded isotonic
function, we estimate θ∗ by minimizing ‖θ − y‖2

2 subject to
the following constraints. For each pair (i, j), we put an isotonic
constraint θi ≤ θj whenever xi ≤ xj. We further add one
additional boundedness constraint max θi −min θi ≤ λ, where λ

is the tuning parameter (i.e., the parameter γ in (33)). For each
given λ, we obtain the LSE θ̂λ(y).

We demonstrate the performance of the selected parameter λ̂

using SURE. In particular, we compute the ratio Ln(̂λ)/Ln(λ∗),
where λ̂ is selected by (46) (we call this the SURE ratio). We
compare the SURE ratio to the so-called CV ratio, where the
boundedness parameter is selected by 5-fold cross-validation.
We note that when implementing the CV method, for a given
training set Ttr, the estimated function value at a point x is set
to f̂ (x) := minxi∈Ttr:xi≥x θ̂λ,i, where θ̂λ,i the estimated function
value at the training data point xi obtained from the bounded
isotonic LSE. Such a way of extending the estimated function
values (on the training set) to new data points ensures that the
extended function is monotone and bounded; this extension has
also been used by other authors (see, e.g., Chatterjee, Guntuboy-
ina, and Sen 2018). We also compare the performance of the
bounded isotonic LSE with the unbounded LSE where we do
not include the boundedness constraint max θi − min θi ≤ λ

(or equivalently, set λ = +∞ and compute Ln(∞)/Ln(λ∗)).

We set d = 2, 5, 7, 10 and for each fixed d, we vary the
sample size n = 100, 200, 500, 1000, 2000 and compute the
SURE, CV and unbounded ratios over 100 independent repli-
cations and plot the results in Figure 3. From Figure 3 one can
see that the SURE ratios are, in general, much smaller than
the unbounded ratios, illustrating the usefulness of including
the boundedness constraint in isotonic regression. When the
dimension is very small (e.g., d = 2) the CV ratio slightly
outperforms the SURE ratio; while for larger d (e.g., d = 7 or
d = 10) the SURE based method significantly outperforms the
CV approach. Moreover, for larger sample sizes n, the SURE
ratios are close to 1 indicating that the bounded LSE tuned
via SURE performs as good as the bounded LSE with oracle
tuning.

7.2. Penalized Multivariate Convex Regression

We generate n iid design points xi ∼ Unif[−1, 1]d, for i =
1, . . . , n. We set the convex regression function f : R

d → R

to be f (x) = ‖x‖2
2, which is symmetric around 0. We generate

the response yi, for i = 1, . . . , n, according to model (1) with
σ = 0.5. Let θ∗ = (f (x1), . . . , f (xn)). We estimate θ∗ by
solving the penalized multivariate convex regression problem
described in (31) using the SDPT3 package (Tütüncü, Toh, and
Todd 2003). We note that since the optimization problem for
penalized multivariate convex regression (in (31)) has a lot of
constraints and many variables (i.e., n(n−1) constraints and nd
variables), we only consider smaller sample sizes (n) in our sim-
ulation experiments. Nevertheless, a smaller n is still sufficient
to demonstrate the superior performance of the estimator tuned
by minimizing SURE. In particular, we consider d = 4 and 10,
n = 100 and 500, and compute the SURE ratio Ln(̂λ)/Ln(λ∗),
where λ̂ is defined as in (46). We compare the SURE ratio to the
CV ratio, where λ is selected by 5-fold cross-validation. We note
that when implementing the CV method, for a given training set
Ttr, the estimated function value at any x is set to

f̂ (x) = max
xi∈Ttr

(
θ̂λ,i + (x − xi)

	ξ̂λ,i

)
, (47)

where θ̂λ,i and ξ̂λ,i are solutions of the penalized multivariate
convex regression problem in (31). The constructed f̂ : Rd → R

is clearly a (piecewise affine) convex function; see Section 6.5.5
in Boyd and Vandenberghe (2004). We also include the “un-
penalized ratio” Ln(0)/Ln(λ∗) as a competitor, that is, the ratio
between the loss obtained from the un-penalized multivariate
convex regression estimator as defined in (30) and the oracle
loss.

We present the results in the form of boxplots in Figure 4,
obtained from 100 independent replicates of y (fixing the design
variables). We observe that penalized multivariate convex
regression, with the regularization parameter tuned by SURE,
has better performance. As we had inferred from Figure 3.
Figure 4 also shows that the SURE ratios are much smaller
than both the CV ratios and un-penalized ratios and their
difference is more pronounced as the dimension d increases.
Further, the SURE ratio concentrates near one suggesting
that SURE is doing a very good job in selecting the tuning
parameter.
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Figure 3. Comparison between the unbounded ratio, the CV ratio and the SURE ratio for isotonic regression.

Table 1. Comparison of the different tuning parameter selection methods for
isotonic regression: the unbounded ratio, the CV ratio, the SURE ratio with known
σ 2, and the SURE ratio with estimated σ̂ 2.

n d Unbounded CV SURE known σ 2 SURE est σ̂ 2

100
2 3.09 (0.86) 1.28 (0.23) 1.27 (0.22) 1.28 (0.23)
5 2.66 (0.37) 1.12 (0.11) 1.11 (0.14) 1.47 (0.15)

10 1.76 (0.25) 1.55 (0.17) 1.09 (0.11) 1.62 (0.17)

1000
2 2.42 (0.50) 1.07 (0.10) 1.10 (0.12) 1.22 (0.15)
5 2.35 (0.18) 1.04 (0.03) 1.03 (0.05) 1.04 (0.06)

10 1.80 (0.07) 1.55 (0.05) 1.02 (0.02) 1.48 (0.04)

NOTE: The standard errors are provided in parenthesis.

7.3. SURE Without the Knowledge of σ 2

In this section, we assume that the noise variance σ 2 in
unknown. To estimate σ 2 we adopt a method proposed
in Meyer and Woodroofe (2000) and then apply SURE with the
estimated σ 2. In particular, we first obtain an initial estimator θ̂

using unbounded isotonic regression (or un-penalized convex

Table 2. Comparison of the different tuning parameter selection methods for
convex regression: the un-penalized ratio, the CV ratio, the SURE ratio with known
σ 2, and the SURE ratio with estimated σ̂ 2.

n d Un-penalized CV SURE known σ 2 SURE est σ̂ 2

100
2 2.74 (1.12) 1.68 (0.52) 1.35 (0.32) 1.46 (0.39)
3 3.22 (0.86) 1.42 (0.30) 1.12 (0.22) 1.15 (0.23)
5 3.62 (0.53) 1.14 (0.25) 1.04 (0.15) 1.30 (0.18)

500
2 2.77 (0.98) 1.20 (0.32) 1.07 (0.11) 1.22 (0.12)
3 3.47 (0.74) 1.51 (0.29) 1.38 (0.08) 1.49 (0.08)
5 3.91 (0.50) 1.40 (0.18) 1.05 (0.05) 1.05 (0.06)

NOTE: The standard errors are provided in parenthesis.

regression) and then estimate σ 2 by σ̂ 2 = ‖̂θ−y‖2
2

n−2D(y)
, where D(y)

is the divergence of the initial estimator θ̂ . The rationale for
this choice comes from Meyer and Woodroofe (2000, Corollary
1) where the authors study (unbiased) estimators for σ 2 in
the setup of (8). The averaged ratios Ln(̂λ)/Ln(λ∗) over 100
independent runs for different tuning parameter selection
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Figure 4. Boxplots of the SURE ratio, the CV ratio and un-penalized ratio (from left to right) for multivariate convex regression.

methods are provided in Table 1 (for isotonic regression) and
Table 2 (for convex regression). For convex regression, the SURE
with unknown σ 2 outperforms CV in most cases, whereas for
isotonic regression CV performs better in some cases. Moreover,
we point out the SURE is computationally more efficient than
CV. In particular, 5-fold CV needs to solve five optimization
problems for each value of the tuning parameter; thus the SURE
method is about five times faster. Moreover, the standard errors
of SURE are comparable to those errors of the CV method, and
are smaller than the errors for the unbounded and un-penalized
cases.

Supplementary Materials

The supplementary material contains all the technical proofs and graphical
illustrations.
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