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Min-max minimal disks with free boundary
in Riemannian manifolds

LONGZHI LIN
A0 SUN
XIN ZHOU

We establish a min-max theory for constructing minimal disks with free boundary
in any closed Riemannian manifold. The main result is an effective version of the
partial Morse theory for minimal disks with free boundary established by Fraser. Our
theory also includes as a special case the min-max theory for the Plateau problem of
minimal disks, which can be used to generalize the famous work by Morse—Tompkins
and Shiffman on minimal surfaces in R” to the Riemannian setting.

More precisely, we generalize, to the free boundary setting, the min-max construction
of minimal surfaces using harmonic replacement introduced by Colding—Minicozzi.
As a key ingredient to this construction, we show an energy convexity for weakly
harmonic maps with mixed Dirichlet and free boundaries from the half unit 2—disk
in R? into any closed Riemannian manifold, which in particular yields the uniqueness
of such weakly harmonic maps. This is a free boundary analogue of the energy
convexity and uniqueness for weakly harmonic maps with Dirichlet boundary on the
unit 2—disk proved by Colding and Minicozzi.

35R35, 49J35, 49Q05, 53C43

0. Introduction 472
1. Notation 479
2. Energy convexity for weakly harmonic maps with free boundary 480
3. Free boundary harmonic replacement: existence and regularity 487
4. Overview of the variational approach 491
5. Conformal parametrization 494
6. Construction of the tightening process 496
7. Compactness of maximal slices 511
8. Modifications for the proof of Theorem 0.3 and discussions 524
Appendix 526
References 528

Published: 25 March 2020 DOI: 10.2140/gt.2020.24.471


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=35R35, 49J35, 49Q05, 53C43
http://dx.doi.org/10.2140/gt.2020.24.471

472 Longzhi Lin, Ao Sun and Xin Zhou

0 Introduction

Given a closed Riemannian manifold A (that is isometrically embedded in RY)
and an embedded submanifold I of codimension / > 1, a map from the unit 2—disk
D C R? into N with boundary lying on T is said to be a minimal disk with free
boundary if it minimizes area up to the first order among all such maps. One physical
model of such surfaces is the soap film whose boundary is constrained (but allowed
to move freely) on the boundary of some smooth domain in R*. When a soap film
achieves the equilibrium state, it will minimize the area up to first order. Geometrically,
the stationary soap film would have vanishing mean curvature in the interior and meet
the boundary of the given domain orthogonally. Therefore, the orthogonality condition
at the boundary is called the free boundary condition.

After earlier works of Gergonne in 1816 and H Schwarz in 1890, Courant first studied
systematically the free boundary problems for minimal surfaces in a series of seminal
papers; see Courant [8, Chapter VI] and also Courant and Davids [9]). In particular,
Courant and Davids proved that given an embedded closed surface S in R3 other
than the sphere, there exists a minimal disk ¥ with free boundary on S under certain
linking conditions; see [8, pages 213-218]. Since then there have been immense
research activities on this topic. To remove the topological assumption on the constraint
surface S, Smyth [51] showed that if .S is the boundary of a tetrahedron (which is
nonsmooth), then there must exist exactly three minimal disks embedded inside the
tetrahedron satisfying the free boundary condition. When S is a smooth topological
two-sphere, Struwe [52] used the mountain pass lemma to establish the existence of at
least one unstable minimal disk with free boundary lying on S'. In higher dimensions
and codimensions (for (A, T")), Ye [57] obtained the existence of an area-minimizing
disk with free boundary when the kernel of 71(I") — 71(N) is nontrivial. About
20 years ago, Fraser [15] developed a partial Morse theory for finding minimal disks
with free boundary in any codimension using the perturbed energy approach of Sacks—
Uhlenbeck [45], and proved the existence of solutions with bounded Morse index
when the relative homotopy group 7 (N, I') is nontrivial for some k£ € N. Recently,
Fraser—Schoen [16; 17] established deep relations between the minimal surfaces with
free boundary in round balls and the extremal eigenvalue problems.

In this paper, we develop a direct variational theory for constructing minimal disks with
free boundary for any pair (N, I'), using the min-max method. In particular, given a
k —parameter family of mappings from the unit disk D into N such that 0D is mapped
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into I", one can associate to it a min-max value analogous to the classical Morse theory.
We prove that if the min-max value is nontrivial, then there exists a minimal disk
together with (possibly empty) several minimal spheres (possibly with a puncture),
which is usually called a bubble tree and whose areas sum up to the min-max value
(the so-called energy identity). Moreover, we prove that every approximate sequence of
maps converges to a bubble tree such that the energy identity holds true. By reflecting
on this strong convergence property, our results can be viewed as an effective version
of Fraser [15]; see more discussion in Remark 0.2(2).

Our theory can be also used to generalize the famous work of Morse—Tompkins [34]
and Shiffman [49] on minimal surfaces in R” to the Riemannian setting (Theorem 0.3).
In particular, if we take T" to be a Jordan curve in N and assume that T" bounds
two different strictly minimizing minimal disks v;: D — N, i = 1,2, such that
Vi|lap: 0D — I is a monotone parametrization, then our theory produces finitely many
harmonic disks uj (and minimal spheres) such that when restricted to D, only one
will have degree 1 and all others will have degree 0. If additionally one has that
the uy|gp: 0D — T' are monotone parametrizations, then in the special case when
N has nonpositive curvature (so that there exist no punctured minimal spheres), our
theory produces a third nonminimizing minimal disk, and therefore it provides a direct
generalization of the work of Morse—Tompkins [34] and Shiffman [49]; see Section 8
for more details.

Another novelty of this paper is reflected by our constructive method. The Schwarz
alternating method introduced by H Schwarz goes back to the late 1860s, and later
it was generalized to an iterative method for finding the solution of an elliptic PDE
on a domain which is the union of two overlapping subdomains. In [6], Colding
and Minicozzi adapted this method and used the harmonic replacement to construct
min-max minimal surfaces. During this repeated replacement procedure, at each step
one replaces a map u by a map u that coincides with u outside a disk and inside the
disk is equal to an energy-minimizing map with the same boundary values as u. A key
ingredient to this construction is a version of energy convexity for weakly harmonic
maps with Dirichlet boundary and small energy on the unit 2—disk D, which also
yields the (quantitative) uniqueness for such weakly harmonic maps; see also Lamm
and the first author [27]. In this paper, we generalize this min-max construction of
Colding—Minicozzi using harmonic replacement to construct minimal disks with free
boundary in any closed Riemannian manifold. To this end, we will show an energy
convexity for weakly harmonic maps with mixed Dirichlet and free boundaries from
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the half unit 2—disk into any closed Riemannian manifold (Theorem 2.2), which is the
free boundary analogue of Colding—Minicozzi’s energy convexity and uniqueness for
weakly harmonic maps. We shall remark that a priori it is not at all clear if such energy
convexity should hold, due to the complication of the free boundary component of the
map. The key to this is an e-regularity (gradient estimate) for weakly harmonic maps
with mixed Dirichlet and free boundaries on the half unit 2—disk (Theorem 2.5).

Now we proceed to present the precise mathematical statements of our main results. To
make the presentation simpler, we will focus on 1—parameter min-max constructions,
though our results extend in a straightforward manner to k parameters. We will use
[0, 1] as the parameter space. Consider the total variational space

o:[0,1]— C%D,N)NWL2(D, N) is continuous,
Q=10:Dx[0,1] >N | o(-,1)(d0D) C T forallz €0, 1],
o(-,0) and o(-, 1) are constant maps.

Each B € Q will be called a sweepout. Given a map B € @, we define Qg to be the
homotopy class of 8 in Q.

Here and in the following, we write E(-) and Area(-) for the Dirichlet energy and
area functionals on C%(D, V)N W 1-2(D, ). Associated to each homotopy class 2 B>
there is a min-max value, also called the width of Q2g,

(1) W =W(Qp):= inf max Area(y(-,s)).
y€Qg s€[0,1]

As the first main result, we establish a direct variational construction for minimal
surfaces associated with this critical value W .

Theorem 0.1 Given B € Q with W = W(S2p) > 0, there is a sequence of sweepouts
vl e Qp with max,e[o, 1] E(y/(-,s)) = W such that for any given € > 0, there exist
7 and § > 0 such that if j > 7 and

Area(y/ (-,5)) > W =38,

then there exist finitely many harmonic maps uy: D — N which have free boundary
ux(dD) C I, and finitely many (possibly empty) harmonic maps ii;: S*> — N, such

that
av(v 9. UuUiant) <e.
k l
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Here we have identified each map u; with the varifold associated to the map, and dy
denotes the varifold distance. Moreover we have the energy identity

Z Area(uy) + Z Area(ii;) = W.
k /

Remark 0.2 (i) By the work of Sacks—Uhlenbeck [45, Corollary 1.7] and Fraser [15]
(see also [14, Lemma 1.1]), we know that these harmonic maps are conformal and
hence parametrize minimal disks with free boundary on I" or minimal spheres.

(i1) Our result is an effective version of Fraser’s result [15] in the sense that we obtain a
strong convergence property. In particular, a sequence of maps {y /% (-, s)} is usually
called a min-max sequence if

lim Area()/jk(-,sk)) =W.
k—o00

We prove that every min-max sequence will subconverge to a set of minimal disks with
free boundary and possibly some minimal spheres in the varifold sense. The essential
ingredient is to prove that all the min-max sequences converge to a bubble tree limit and
the energy identity holds. Note that the energy identity has caught a lot of attention from
mathematicians in conformally invariant variational problems; see eg Chen and Tian [4],
Ding and Tian [12], Ding, Li and Liu [11], Jost [25], Parker and Wolfson [36; 37]
and Qing and Tian [40], and for quantification results for harmonic maps with free
boundary, see eg Jost, Liu and Zhu [26] and Laurain and Petrides [30]. A similar strong
convergence property was first proven by Colding and Minicozzi [6] for the min-max
construction of minimal spheres, and it played an essential role in their proof of the
finite-time extinction for certain 3—dimensional Ricci flow. A similar property was
also obtained for the min-max construction of closed minimal surfaces of higher genus
by the last author [58; 60], and for min-max construction of closed minimal surfaces
via viscosity method by Riviere [43]. To the authors’ knowledge, our work is the first
occasion to obtain such a strong property in the context of free boundary problems.

(iii) As a special case of our result, one can take (A, I') to be a compact manifold
with convex boundary (M, dM). Using the convex boundary as barriers, our theory
applies in this case and the resulting minimal disks with free boundary on dM and
minimal spheres will all lie inside M.

Our main result has an almost direct corollary for a min-max construction of minimal
disks with fixed boundary. In particular, we now assume I' to be a Jordan curve
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in . Suppose vo: D — N and vy: D — N are two area-minimizing minimal disks
(conformal and harmonic maps), where v;|yp: dD — I is a monotone parametrization
for i = 1,2. The total variational space for the fixed boundary problem will be

o:[0,1]— C%(D,N)NW'2(D, N) is continuous,
Qr=1q0: Dx[0,1] >N | o(-,t)(dD) CT,

0(',0) =7y and U(', 1) =.
Given a map B € Qr, we define Qg to be the homotopy class of B in Qf. The
width W associated with €24 can be defined in the same way, namely

2 W =W(Qg):= inf max Area(y(-,s)).
y€Qg s€l0,1]

Then W > max(Area(vg), Area(vy)) > 0. The next result is a slight variant of
Theorem 0.1.

Theorem 0.3 Given B € Qy with W = W(Qp) > max(Area(vg), Area(vy)), there
is a sequence of sweepouts y’ € 2 with maxge[o,1] E(y?(-,s)) = W such that for
any given € > 0, there exist J and § > 0 such that if j > 7 and

Area(y? (-,s)) > W =38,

then there exist finitely many harmonic disks uy: D — N with u;(dD) C T' and
finitely many (possibly empty) harmonic spheres ii;: S? — N with

av(v ¢ UmuUiant) <e.
k l

Moreover, when considered as restricted maps from 0D to ", only one map among the
uy has degree 1, whereas all others have degree 0. We also have the energy identity
Dk Area(uy)+ ) ; Area(iy) = W.

Remark We postpone the discussions of this result until Section 8.

We also want to mention the min-max theory for constructing minimal submanifolds
with free boundary using geometric measure theory. In the 1960s, Almgren [2] initiated
a program to develop a Morse theory for minimal submanifolds (with or without
free boundary), and he obtained in [3] the existence of an integral varifold which
is stationary with free boundary in the sense of first variation in any dimension and
codimension; see more details in [31]. Later along this direction, higher regularity was
established for hypersurfaces. In particular, Griiter and Jost [19] proved the existence
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of an unstable embedded minimal disk inside any compact convex domain in R*. Later,
Jost [24, Theorem 4.1] generalized their work to any compact three-manifold which is
diffeomorphic to a ball with mean convex boundary. Higher-dimensional results were
developed very recently by De Lellis and Ramic [10] (for both free and fixed boundary
problems in convex manifolds; see also Montezuma [33]), and by Li and Zhou [31]
(for the free boundary problem in any compact manifolds with boundary). We refer to
Marques and Neves [32] for other recent developments of the min-max theory using
geometric measure theory.

Sketch of main ideas

Here we provide a brief summary of our main new ideas. Though the main scheme
follows the approach laid out by Colding—Minicozzi [6] for minimal spheres (see also
Zhou [58; 60] for minimal surfaces with higher genus), the presence of free boundary
in our setting brings in several main new obstacles.

For the analytic aspect, there are two main ingredients that we have to establish for
weakly harmonic maps with (partial) free boundary. The first ingredient is a version of
energy convexity which says that the energy functional is strictly convex near a weakly
harmonic map with mixed Dirichlet and free boundaries on the half 2—disk. Unlike
the proof in [6] where Colding—Minicozzi used the moving frame method developed
by Hélein [20] in order to get a Hardy-type estimate for weakly harmonic maps with
Dirichlet boundary and small energy on the 2—disk D, we first use the Uhlenbeck—
Riviere decomposition method developed by Riviere [41] to get a refined e-regularity
(gradient estimate) for weakly harmonic maps with mixed Dirichlet and free boundaries
on the half 2—disk (Theorem 2.5), and then appeal to the first-order Hardy inequality
(Lemma 2.4); cf Lamm and Lin [27], where the energy density |Vu|2 is estimated in
the local Hardy space 4!(D). The key geometric observation in the proof of the energy
convexity lies in two orthogonality conditions: one observed by Colding—Minicozzi [6],
and the other by Zhou [59]. Very recently, this idea also permitted the first author and
Lin [29] to obtain an energy convexity and uniqueness for weakly intrinsic biharmonic
maps defined on the unit 4-ball with small bi-energy, which in particular yields a
version of uniqueness for weakly harmonic maps in dimension 4. The other ingredient
is the uniform continuity estimate up to the free boundary for weakly harmonic maps.
Whereas the continuity up to the Dirichlet boundary was proven by Qing [39], we
prove the uniform continuity for weakly harmonic maps with mixed Dirichlet and
free boundaries by a careful covering argument using our previous gradient estimate.
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We think that the results and techniques in both of the ingredients are of independent
interest for the free boundary problem of harmonic maps.

The variational construction consists mainly of two parts. The first part is a two-stage
tightening process, following closely the approach of Colding—Minicozzi [6] (this
can be made a 2k —stage process when the parameter space is k—dimensional). The
main challenges here include the W12 N C%—continuity for (partial) free boundary
harmonic replacements, and an interpolation construction to prove energy improvement
inequalities. In fact, the key idea in both places is to construct comparison maps and
then use the energy minimality conditions. One natural candidate of comparison maps
is the linear interpolation in RN of two maps u;: D — N, i = 1,2. Though such a
map will go outside of A/, Colding—Minicozzi in [6] used the nearest-point projection
to pull it back to A'. However the projection does not necessarily map the image of
dD into I'. Therefore we have to develop new methods to overcome this issue. To
prove the W 12_continuity, we find a way to reduce the problem to an interpolation
between two curves; and in the second place, we choose to do interpolation in Fermi
coordinates. Based on the two new results, the tightening process can then be carried
through in the free boundary setting analogously to [6].

The second part is a bubbling convergence procedure for almost harmonic maps with
free boundary. The bubbling convergence for almost harmonic maps on spheres was
developed by Colding—Minicozzi [6, Appendix B], and for free boundary «—harmonic
maps it has been investigated systematically by Fraser [15]. Our result can be viewed
as a combination of the two results. Among several things, the most novel observation
in this part is the asymptotic analysis for harmonic maps with free boundary defined
on a long half-cylinder (which is conformally equivalent to a thin half-annulus). In
particular, we prove that the angular energy is much smaller than the total energy of
this map. Since boundary terms will appear in the integration by parts argument, we
have to use our gradient estimate together with a delicate doubling argument to take
care of these boundary terms, so as to carry out Colding—Minicozzi’s method (which
works on cylinders).

Layout of the paper

The paper is organized as follows. We fix some notation in Section 1. In Section 2,
we prove the energy convexity for weakly harmonic maps defined on the half-disk
with mixed Dirichlet and free boundaries (Theorem 2.2). In Section 3, we prove that a
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weakly harmonic map with mixed Dirichlet and free boundaries on the half-disk with
continuous partial Dirichlet boundary is also continuous on the whole free boundary
including the corner points; and we also present the proof on the existence of a weakly
harmonic map with free boundary and with prescribed partial Dirichlet boundary, which
we call the partial free boundary harmonic replacement. In Section 4, we outline the
main ingredients needed to establish the min-max theory in the free boundary setting. In
Section 5, we prove that the min-max values for the area and energy functionals are the
same by using conformal reparametrizations. In Section 6, we carry out the construction
of the tightening process; in particular, we show how to use a two-stage harmonic
replacement procedure to make the sweepout as tight as possible. In Section 7, we
prove that any min-max sequence of maps will converge to a bubble tree consisting of
harmonic disks and harmonic spheres; here we also show that the bubbling convergence
satisfies the energy identity, or equivalently, the total energy of the bubble tree is the
same as the min-max value. In Section 8, we point out necessary changes needed to
adapt our theory to the min-max Plateau problem (Theorem 0.3).

Acknowledgements The authors would like to thank Professor William Minicozzi for
encouragement and helpful comments, and also Professors Rugang Ye and Tony Tromba
for helpful discussions. Zhou is partially supported by NSF grant DMS-1811293.

Added in proof We were informed that Laurain and Petrides have recently proved a
similar result, and Theorem 2.2 was announced in a seminar proceedings paper [28],
but without a proof.

1 Notation

We first fix some notation.
o RR? denotes the Euclidean two-plane, where (x1,x,) (or (x, y)) and (r, 0) are
the Cartesian and polar coordinates, respectively.
o H? = {(x1,x3) € R?: x, > 0} denotes the upper half-plane.

e D, =D,(0) ={(x1,x2) e R?: xf + x% < r2} denotes the disk of radius r
centered at the origin.

e D}f:=DsNH?2={(r,0):0<r <s, 0<6 <} denotes the upper half-disk
with radius s.

* For simplicity, we sometimes write D+ = D1+.
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Then we write dD;F = 3¢ U ¢!, which is the union of the chord (diameter) and the
arc of the upper semicircle, ie

3 ={(r.0):0<r<s,0=0o0rn} and 04 ={(r.0):r=s50<60<nu}.

Similarly, we will write

€ =93¢ and 91 =204.
We write u: (D, dD) — (N, T) if u is a map from D to N and u(dD) C I'. Similarly,
we write u: (D;7,9¢) — (W, T) if u is a map from D;f to A" and u(3¢) C T.

Given u: D — N or u: Df — N, the Dirichlet energy is defined as

1 2
E() = 2/DorD;r|Vu| dx dy.

The Euler—Lagrange equation for the Dirichlet energy is the so-called harmonic map
equation, which is a quasilinear system defined by

3) —Au = A(w)(Vu, Vu),

where A(u) is the second fundamental form of the embedding A" < R . See eg [20].

Definition 1.1 A W 12—map u: (D, dD) — (N, T') is called a weakly harmonic map
with free boundary if u satisfies the harmonic map equation weakly in D and

0
Pr along dD.
ar

J’_

Similarly a W12—map u: (D}, 9¢) — (N, T) is called a weakly harmonic map with

partial free boundary if u satisfies the harmonic map equation weakly in D;f and

u
— LT along §¢.
R along d;

2 Energy convexity for weakly harmonic maps with partial
free boundary

In this section, we present the first main result, that is, the energy convexity and
uniqueness for weakly harmonic maps with mixed Dirichlet and free boundaries. This
is not only one of the key ingredients of our min-max existence theory for minimal
disks with free boundary, but it also has its own interest from the point of view of PDEs
and calculus of variations.
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We first recall Colding—Minicozzi’s energy convexity for weakly harmonic maps defined
on the 2—disk D with Dirichlet boundary and small energy; see also [27].

Theorem 2.1 [6, Theorem 3.1] There exists a constant ¢y > 0, depending only
on N, such that if u,v € WH2(D,N), u =v on dD, and u is weakly harmonic with
E(u) < ¢, then

(4) %/ |Vv—Vu|2dx§/ |Vv|2dx—/ |Vu|? dx.
D D D

In this section, we prove a free boundary analogue of Theorem 2.1. We will abuse
notation and still denote the energy threshold as ¢¢. More precisely, we prove:

Theorem 2.2 (energy convexity for weakly harmonic maps with mixed Dirichlet and
free boundaries) There exists a constant gy > 0, depending only on N and T", such
that if u,v € WH2(DF, N) with u|ya = v|ya, ulygc CT, v|yge CT, E(u) < &,
and u is a weakly harmonic map with partial free boundary, then we have the energy
convexity

®) l/ |Vv-w|2dxs/ |Vv|2dx—/ |Vul® dx.
2 Jp+ D+ D+

An immediate corollary of Theorem 2.2 is the uniqueness of weakly harmonic maps
with mixed Dirichlet and free boundaries on D™

Corollary 2.3 There exists an g9 > 0, depending only on N" and T, such that for any
two weakly harmonic maps u, v € W 12(D¥, N') with Dirichlet boundary |34 = v|y4
and free boundaries u|yc C I' and v|yc C T, if their energies satisfy E(u) < &y and
E(v) <e&g, then we have u = v in D™

In order to prove Theorem 2.2, we will use the following first-order Hardy inequality
and appeal to the refined e-regularity for weakly harmonic maps with mixed Dirichlet
and free boundaries (Theorem 2.5).

Lemma 2.4 (Hardy inequality) Let u,v be in WH2(DF, RN) with u|ya = v|ya.
Then we have

L / _ )P
(6) /D+|v u| TEEE dx <4 D+|V(v u)|”dx,

where x = (x1,x;) € DT,
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Proof First we extend u and v across 9€ by reflection, setting 7 (x1, x3) = u(—x1, X2)
and v(xy, x2) = v(—x1,x,) for x; <0,toget v—1u € Wol’z(D). Approximate v — i

in W12 by a sequence of smooth functions with compact support @; € C°(D), and
let w; be the restriction of @W; to DT . Now for each w; we have

|wi|*r
@) D+ (1_|x|)2 / /0 (1—r)2 dr df
2o ) B .
:/ [M _/ (|w,| +2w, (wl)rr)dr]de
o LI=rfo Jo \1=r 1—r
1 2 1 ) .
b4 |w;|“r 2 1 L )2
2(/0 /0 (1—r)2 dr d@) (/0 /0 |(wi),|“r drdo
12 1 1
2(/ &dx) (/ |Vwi|2dx) ,
p+ (1—|x])? D+

IA

=<
which yields
2
) f 'w—’|2dx 54/ Vi |? dox.
p+ (I—|x]) D+
Now (6) follows from (8) and Fatou’s lemma. a

The next result is a refined e-regularity for weakly harmonic maps on D with
Dirichlet and free boundaries; cf [46; 30; 26] and Fraser [15]. This e-regularity is
crucial to the proof of Theorem 2.2. We shall remark that such e-regularity is well-
known for weakly harmonic maps defined on the 2—disk D with Dirichlet boundary,
see eg Qing [39, Lemma 4].

Theorem 2.5 There exists a constant €y > 0, depending only on N and T", such that
ifu e WH2(D*, N) is a weakly harmonic map with mixed Dirichlet boundary on 3
and free boundary u|yc C T and E(u) < &g, then for any x € D™ U (3€)° we have

©) Vul () < SYF0
T~ ]

for some constant C > 0 that only depends on N and T'.

Proof By the reflection across the free boundary I' constructed by Scheven in [46],
u € WH2(D%) can be extended to 7 € W1-2(D) so that 7 weakly solves in D the
system of equations

(10) div(QVi) = w- QVi
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for some w = (w})lsi,an € L?*(D,so(n) ® /\IRZ) (ie a)l] = —a)j’:) and Q e Wh2n
L*°(D,GL(n,R)) such that

(1) Jo|=C|VE] aeinD  and QL) + 107 o) = C,

where C > 0 is a constant depending only on N and T'; see Jost, Liu and Zhu
[26, Proposition 3.3]. Moreover, by the assumption E(u) < g9 and the reflection
construction, we have

(12) Vil 2(py <Cy/eo and  |@]l2(p) = C /5.

Then, using the Uhlenbeck—Riviere decomposition method developed by Riviere [41]
and Riviere—Struwe [44] in the study of regularity of elliptic PDEs with antisymmetric
structure, we can obtain a constant « > 0 such that (cf [42, page 50])

(13) sup ,0_“/ |All] dx < C /.
0<p<i,p€D1/2 Dy(p)

Proof of (13) To see this, we first note that since % — 17 also satisfies (10) with the same
Q and w, where Il = % [p t dx is the average of i on D, without loss of generality
we may assume that # = 0. Then by the work of Sharp (see eg [47, Corollary 1.4,
Proposition 3.1]) on the higher integrability for solutions to a system of PDEs similar
to (10), we know that there exists a constant C > 0 such that

(14) IV2@lL1(Dy,0) = CllillLi(py < CIViEllLi(py < Cv/eo.

See [48, Theorem 1.2] and [26, Theorem 2.4]. Here we have used the Poincaré—
Wirtinger inequality in the second inequality. We note that this higher integrability (14)
essentially follows from the stability of the local Hardy space 4! (D) (see eg Lamm and
Lin [27, Section A.2]) under multiplication by Holder continuous functions, coupled
with the Holder continuity of # in D proved by Scheven [46, Theorem 4.1].

Then by the continuous embedding of W1-1(D) into L>!(D), where L?! is the
Lorentz space (see eg [22; 38; 55; 20]), we have

(15) IViill2.1(p, ;) = ClIViillw1.1(p, ) < ClIVitllLipy < € /2o

Now for any p € D 1 and 0 <r < %, we use the Hodge decomposition (see eg
[23, Corollary 10.5.1]) to find A € W'2(D,(p),R") and B € W, *(D,(p),R")
such that

(16) OVii=VA+V*+B in D,(p),
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where V4 := (—0x,, 0x,) and we have

IV AllL2(p, oy + IV BllL20, (o)) = CIVEN 20D, (-
Then we have, taking divergence on both sides of the first equation in (16),
7 AA=div(QVu)=w-QVu in D,(p),
and, taking curl on both sides of the first equation in (16),

{AB =V+t0.-Vii in D.(p).

(18) B=0 on dD;(p).

Now let A = Ay + A, on D,(p) sothat A4, =0 and

(19) {AAl =div(QVi#) in D,(p),

A1 =0 on 4D, (p).

Then using [20, Theorem 3.3.3] (which implies that the standard L7 —theory extends
to Lorentz spaces), we furthermore get

(20) VA1l 20D, (py) = CNOVidll 2.0, (py) = ClIVillL2.1(p, (p))-
Hence by [20, Theorem 3.3.4] we conclude that

1) [A1llLo(p,(p)) = CU A1l 21D, (py) T IVALL21 (D, (p)))
= ClIVA1llL2.1p, (py)
= Cy/eo,
where we again used [20, Theorem 3.3.3] (which ensures that the Poincaré inequality

extends to Lorentz spaces) and the fact that 4; = 0 on dD, (p) in the second estimate.
Thus, an integration by parts yields

22) VA3, ) == R
r\D

rp
< CV/eoll Vit 2 p, (pyy:

where we have used (12) and the fact that Q € W12 N L*°(D, GL(n,R)). Note that
again by integration by parts (using A; =0 on dD,(p) and A4, = 0) we have

|w- OViu|dx
)

(23) IIVAzlliz(Dr(p)) = IIVAlliz(Dr(p)) — V4, ”iz(pr(p)) = 5||Vﬁ||§2(D,(,,))-

Geometry & Topology, Volume 24 (2020)



Min-max minimal disks with free boundary in Riemannian manifolds 485

Now since A, is harmonic on D, (p) we know that for every g € D, (p) the function

1
0 — _2/ |VA,|? dx
P D, (q)

is increasing; see eg [42, Lemma IV.1]. Now let C > 0 be such that ||Q ! | Loo(D) = C

{ 1 1}
d = min{ ———, = ¢,
4y/CC 2

where C is from (23). Then we have

and

1 1
&) f VAaf dx < ~-f VAo dx < — || Vil |3 .
Dy(p) 16CC Jp,p) 16 L2, (p))

Now using (18) and by the results of Coifman-Lions—Meyer—Semmes [5] or Wente’s
lemma [56], we know

(25) 1Bl LoD, (o) + IV Bll2.1 (D, (o)) = CIViElZ2(p, (1))

Therefore, combining (16), (22), (24) and (25) we have

26) IVilZ2(p,, ()
<107 ooy IV AL Z2(p, (pyy + 21V A2l L2y, (o + 1V Bl L2, (1)
= CVeol Vil 2 p, (pyy + 5 IV L2(p, (py + CIVEl L2, ()

Choosing ¢¢ sufficiently small we arrive at
@D IVl by, oy = 21V 220,y

1 . .. . . .
forany p € D 1 and 0 < r < 5. Iterating this inequality gives the existence of a

constant « > 0 such that for all p € D 1 and all p < %, one has

(28) p—Z“/ |Vii|? dx < c/ |Vii|? dx < Cey.
Dy (p) D

Now by (10) we have
Al = Q7! (-=VQVii + v - QVi).

Then using (11), for all p € D% and all p < % we have
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29 p ¢ / | Al dx
Dy (p)

<Cp™@ / |VO||Vii| + |Vil|? dx
Dy (p)

1 1
2 2
scre|([  wora) ([ warar) s+ [ vt
D, (p) D, (p) D, (p)

<C . /¢p.
Here we have used |VQ||p2(py = C for some C > 0 depending only on A and T".
This proves (13). O

Now using (13), a classical estimate on Riesz potentials then gives, for all p € D L

(30) [Vul(p) =C * XDy )z |AU|+ ClIVid| L2 (p).

1
|x = pl
where xp,,, is the characteristic function of the ball D1 . Together with injections
proved by Adams in [1] (see also [18, Exercise 6.1.6]), the latter shows that

||Vﬁ||Lr(Dl/4) = C\/%

for some r > 2. Reinjecting this into the equation (10) and bootstrapping the estimates,
we get

IVl oo (D, 1) = C /0.

In particular, |V#|(0) < C./eg. Then by a scaling argument we get the desired
estimate (9). m|

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 In order to prove the energy convexity (5), it suffices to show
31 qu—l/ IV (w—u) dx.
2 D+

where (using the boundary conditions and the harmonic map equation)
(32) xp;:/ |Vv|2dx—/ |Vu|2dx—/ V(v —u)|* dx
D+ D+ D+
= 2/ (V(v—u),Vu) dx
D+

=2/D+(v—u, A(u)(Vu,Vu))dx+2/aC<v—u g—z>ds.
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Here v = (0, —1) is the outward unit normal to 3 . Now we note that for any p,q € N
(resp. I'), there exists a constant C > 0 depending only on A (resp. I') such that

(p—q)*1 < Clp—ql?,

where the superscript L denotes the normal component of the vector p —q at g; see
eg [7, Lemma A.1]. Therefore, using

—Au= Aw)(Vu,Vu) L T,N,

the Cauchy—Schwarz inequality together with (32) yields

(33) \DZ—CI/ lv—u|?|Vu|? dx — CZ/ lv—ul? ‘ds

where C; > 0 depends only on A and C, > 0 depends only on I". Now by Lemma 2.4,
Theorem 2.5 and using the facts that v =« on 84 and x, =0 on 8¢ =[—1, 1] x {0},
we have

Jv—ul?

v >_C d C
=G [ | =z &~ e [ ]

, 1 1—x1 lo—ul?
> —4C380/ |[V(v—u)| dx—i—C;;ﬁ/ / Ox, (—) dx, dx
D+ ~1Jo 1—|x1]

(U—M, (U—M)XZ)
1—|xq]

dx

=—4C380/ |V(v—u)|2dx+c4./—50/
D+ +
2—4C380/ |V(v—u)|2dx—l/ IV(v—u)|? dx—Cs./2g [
D+
z—Cﬁ./sof |V(v—u)|2dx——/ |V (v—u)|* dx.
D+ 4 Jp+

In the second-to-last inequality we have used Young’s inequality. Choosing ¢¢ suffi-

ciently small that C¢./g¢ < L we get the desired estimate (31). a

3 Existence and regularity of partial free boundary harmonic
replacement

In this section, we discuss the existence and regularity of the (partial) free boundary

version of the harmonic replacement. The fixed boundary harmonic replacement was
discussed in Colding—Minicozzi [6].
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3.1 Continuity of weakly harmonic maps with partial free boundary

In this section, we prove the C° regularity up to the boundary for weakly harmonic
maps with mixed Dirichlet and free boundaries and small energy. For weakly harmonic
maps with fixed continuous Dirichlet boundary, this C° boundary regularity was proved
by Qing [39].

Let u: (D1,9¢) — (W, T) be a weakly harmonic map with mixed Dirichlet and free
boundaries and small energy E(u) < &g (where &g is from Theorem 2.5) such that the
Dirichlet boundary u: 34 — N is continuous. Then by Helein’s interior regularity [20],
u is smooth in D% ; by Qing’s (Dirichlet) boundary regularity [39], u is continuous
up to the interior of the Dirichlet boundary on 34 ; moreover, by the (free) boundary
regularity result of Scheven [46], u is also smooth up to the interior of the free boundary
on 9€. So the only thing left to be verified is that u is continuous up to the two corner
points (1,0) and (1, ) (in polar coordinates on DY), ie the endpoints of the Dirichlet
boundary on 34 or the free boundary on 9.

It suffices to prove the continuity around p = (1, 7). We will first prove that there
exists a sequence of points {x;} on 9¢, converging to p, such that the u(x;) are
all close to u(p); next we show that all the intermediate points in u([x;, x;41]) are
also close to u(p). For the convenience of later proof, we will parallell shift D' in
R? so that p = (0,0). Now Dt ={(x,») e R?:y>0,(x — 1)+ y? < 1} and

A={(x,y) eR?:y>0,(x—1)%+ y? =1}, and we will use polar coordinates
on R2.

We first need a variant of the Courant-Lebesgue lemma (cf [39, Lemma 2]) at the
corner point p.

Lemma 3.1 Given 0 </ < l, there exists I’ € (,21) such that

al’)
(34) /
0

where a(1’) is the angle such that (I, (")) € 3. Consequently, we have

N 1
(35) lu(?,61) —u(l’,62)| < ar Tog2 E(M|(Dz,(0)\D,(0))nD+) |61 — 6212,

where N is the dimension of the ambient space of the embedding of N into RY,

8u 1
(I'.6) b < 355 Elpy 0\ by 0pn+)-

1Given Scheven’s reflection construction and equation (10), one may also use the Uhlenbeck—Riviere
decomposition method as in Miiller—Schikorra [35] to prove boundary regularity.
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Proof The proof is virtually the same as the proof of [39, Lemma 2]:

2L pa™) oy 5 1 | 0u
E(ulwzz(o)\D,(o»ﬂD”E/; /o (

arl T2\
where «(r) is the angle such that

2
)rd@ dr,

(ra(r) ed? ={(x.y) eR?:y>0, (x— )2 +y> =1}

Therefore there exists [/ € (/,2/) such that

/a(l/) au
0

36
lu(l’,01) —u(l’, 6,)] <

2

1
(',6)do < @E(“|(D2,(0)\D,(O))HD+)'
Then we have

2 9u
—(",0)do
/ ' 6) ‘

01

=\ 1og2 EW@aoniopap+)? 101 =0 T

Now we are ready to prove the continuity up to the corners on the boundary of D™,

Theorem 3.2 There exists an o > 0 such that if u: (D%, 9¢) — (W, T') is a weakly
harmonic map with mixed Dirichlet and free boundaries with E(u) < &g, and u is
continuous on 8A, then u is continuous on D+.

Proof Since u is continuous on 94, by the discussion prior to Lemma 3.1 it suffices
to show that given & > 0, there exists § > 0 such that for x € 3 and |x — p| <8 we
have |u(x)—u(p)| < e. By the continuity of u on 34, we can find §; > 0 such that if
pr=(,a(l) €3 and | p; — p| < 81, then |u(pr) —u(p)| < f5.

Now we identify the unit interval [0, 1] with half of 3¢ =[—1, 1]x {0} C R? and abuse
notation so that x € [0, 1] represents a point on 9€ . Consider the decomposition

[0,1] = D[z—k—l,z-k] = G I.
k=0

k=0

Note that we have
o0

> E@ln,_\p,-)np+) = €0.
k=0
Then there is some K; > 0 such that for all £ > K, we have

g2

E@l(D,—1\D,-0nD+) = 150087
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Now using Lemma 3.1, for any k& > K| we can pick x; € I such that

lu(xk) —u(p)| < lu(xp) = u(ppx Dl + [u(pix) —u(p)| < 5.

Now let us consider a family of half-disks D,': C DT, where D,j has corner points
(27%=2,0) and (27%4+27%=2 (). Then the center of D;‘ is yp = Q7 k1427k=2 ()
and the radius of D,j' is rj :=27%=1 Each D,j' can only overlap with at most four
of the other D,‘: , S0 we have

[e.e]

kZ:;)E(mD:) < 4.
Thus, for any &y > 0, there exists a K, > 0 such that for any £ > K, we have
E(u|pi) = &o. Then by rescaling and Theorem 2.5, for any y € [27k=1 27k] with
k > K, we have

(36) Vu(y)] = C2¥ e
Then integration along the interval between y and xj gives
|u(y) —u(xp)| = 2C /eo.

If we choose ¢( small enough (depending only on ¢), then for any y € [27*=1 2] with
k> K, wehave |u(y)—u(x;)| <. Soforall y € (0,27X), where K =max{K;, K,},
we have

lu(y) —u(p)| <e.
We conclude the continuity of u at p and hence finish the proof of the theorem. O
As a corollary of Theorem 3.2, we have:

Corollary 3.3 A weakly harmonic map u with mixed Dirichlet and free boundaries
on D7 is continuous on D+ provided that u is continuous on 34.

3.2 Existence of (partial) free boundary harmonic replacement

Theorem 3.4 There exists £y > 0 such that for any v € CO(D_JF,./\/) NWL2(DT, N)
with v(3¢) C T and E(v) < &, there exists a unique harmonic map

ueC’«(DT, NM)NwhH2(Dt, N)
such that E(u) <eq, u=1v on 4, u(d¢) C T and u meets T' orthogonally along 9¢ .

Remark 3.5 The map u in Theorem 3.4 is usually called the (partial) free boundary

harmonic replacement of v.
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Proof of Theorem 3.4 Combining Hélein’s interior regularity for weakly harmonic
maps on two-dimensional domains, Qing’s (Dirichlet) boundary regularity [39], the free
boundary regularity of Scheven [46] and Theorem 3.2, we know that the (partial) free
boundary harmonic replacement u of v, if it exists, is smooth in DT and continuous
in DF.

The (partial) free boundary harmonic replacement can be constructed as follows:
suppose v € CO(DFT,N)NW2(D*, N) is such that v(d€) C T and E(v) < &. Let
us define the space F to be the space of maps

Fi={we W'D N):wlya =v|ya, w(®) T}
Now we choose an energy-minimizing sequence u’ € F, ie

lim E(u') = inf{ E(w) : w € F}.

By the Rellich compactness theorem, we can find a subsequence of {u’} that weakly
converges to a W12 map u. By first variation of the energy functional at u we
know that u is a weakly harmonic map with mixed Dirichlet and free boundaries
on DT. Then indeed we know that {u’} converges strongly in W12 to u by the
energy convexity Theorem 2.2 and Poincaré inequality Lemma A.2. a

4 Overview of the variational approach

In this section, we provide an overview of the proof of Theorem 0.1.

As in the proof of the classical Plateau problem, the area functional is too weak to
control the maps, so we have to change gear to the energy functional. The next result
says that one can take an approximating sequence of sweepouts in a given homotopy
class so that their maximal energy converges to the maximal area. In particular, we
have:

Theorem 4.1 Given B € Q with W = W(Qp) > 0, there exists a sequence of
sweepouts y/ € Qg with

max E(y/(-,s) \(W.
s€l0,1]

Remark The proof is given in Section 5. Note that we have

W < max Area(yj(-,s)) < max E()/j(-,s)) N\ WL
s€[0,1] s€[0,1]
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The next ingredient is a tightening theorem. We first fix some notation concerning balls
in D.

Definition 4.2 A generalized ball B in the unit disk D is either an interior ball of D
or the intersection with D of a ball of R? centered at some boundary point of dD.
Thatis: BC D or B= B,(x)N D where x € dD and r < % We will call the first
case a classical ball and the second case a boundary ball.

Given p > 0, when B is a classical ball we let pB C D denote the ball with the same
center as B and radius p times that of B; when B is a boundary ball, we can define

pB C D as follows: there exists a unique fractional linear transformation I1g from D
to the upper half-plane H? such that TTg(B) = D™, and pB is defined as T (D).

Remark In the following, we will frequently identify a boundary ball B with its
image I1p(B) in HZ.

The following result plays the role of deformation lemma in nonlinear analysis; see
eg [54].

Theorem 4.3 Given 8 € Q with W = W(Q2g) > 0, there exist a constant €; > 0 and
a continuous function W: [0, co) — [0, oo) with ¥(0) = 0, both depending on (N, T'),
such that given any y € Q with no nonconstant harmonic slices other than ¥ (-, 0) and
Y (-, 1), there exists y € Q3 such that E(y(-,t)) < E(¥(-,t)) for each t, and for
each t with E(Y(-,t)) > %W we have the following property:

(x) If B is any finite collection of disjoint generalized closed balls in D with
[ wreap<e.
Us B

and if v: g %B — N is the free boundary harmonic replacement of y(-,t)
on | Jg %B, then

/ Yy ()= Vol < ®(EF(.0) — E(r(-.1)).
Us LB

Remark The proof is given in Section 6.

We also need the following compactness result. Let egy7 and e be the small thresholds
(depending only on N and (N, T"), respectively) from [39, Lemma 4] (cf [45, Main
Estimate 3.2]) and Theorem 2.5 (cf [15, Proposition 1.7]), respectively, giving us
interior estimates for harmonic maps or free boundary harmonic maps with energy less
than egy and efF, respectively.
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Theorem 4.4 Let €, Eg > 0 be such that €; < min{egy, er}, and suppose that
ul: (D,dD) — (N, T) is a sequence of maps in C°(D, N)NW-2(D, N') with Eo >
E(u/) which satisfies

37) Area(u’) > E(u!)— ji
as well as the following condition:

(1) For any finite collection B of disjoint generalized closed balls in D with

/ IVul|? <€,
Us B

if v: Uy %B — N is the harmonic replacement of u/ on | J %B, then

/ |Vu/ —Vu|? < l
Us B J

Then a subsequence of the varifolds for the maps u’ converges to a collection of
harmonic maps vy, ..., Vy: (D,0D) — (N,T') with free boundary, and harmonic
spheres vy, ...,7;: S? — N. Moreover, the energy identity holds:

m l
dE@)+ Y E@) = lim E(?).
i=0 k=1 I

Remark The proof is given in Section 7. Note that E(v;) = Area(v;) and E(7;) =
Area(v;).

Now we prove the main Theorem 0.1 using Theorems 4.1, 4.3 and 4.4.

Proof of Theorem 0.1 Choose a sequence 7/ € Q g as in Theorem 4.1 and assume
that

max EF/(-,1)) < W + l

t€l0,1] J
We can slightly change the parametrization so that 7/ maps a small open subset of D
to a point, so that each slice cannot be harmonic unless it is a constant map; we refer
to [6, footnote 8] for details. Applying Theorem 4.3 to 7/ gives a sequence y/ € Q B

We will show that {y/} has the desired properties.

Let us argue by contradiction. Let G be the collection of harmonic maps from
S? — N and free boundary harmonic maps (D, dD) — (N, ") such that the sum of
the energies is exactly W . Suppose {y”} does not have the desired property, which

Geometry & Topology, Volume 24 (2020)



494 Longzhi Lin, Ao Sun and Xin Zhou

means that there exists some ¢ > 0 such that there exist j; — oo and s; € [0, 1] with
dy (Y% (-, s5,),6") > ¢ and Area(y’/*(-,s5)) > W — % Then by E(u) > Area(u)
we get limyg_, o0 E(y7%(-,s%)) = W, and

1

E(-50) = B/ (1) = EGI (- 0) = Arealy/(-.50)) = 12 5= = 0.

Since the tightening process decreases the energy, we get
E(y/*k(-,sp)) — Area(y’* (-, s5)) = 0 as k — oo.

By Theorem 4.3 we have that if B is any finite collection of disjoint generalized closed
balls in D with

/ IVy k(- s < et
Us B
and if v: (Jg %B — N is the harmonic replacement of y7% (-, sx) on gz %B, then
VK (-, s3) = Vo2 < cp(l ¥ ,i) 0.
Us LB k" Jk

Therefore applying Theorem 4.4 gives a subsequence of the y/# (-, sy) that varifold-
converges to a collection of desired harmonic disks with free boundary and harmonic
spheres. The energy identity implies that the sum of the energies of the limit is
exactly W . However this contradicts dy (y7/% (-, sx),G") > e. This finishes the proof
of Theorem 0.1. |

5 Conformal parametrization

We now prove Theorem 4.1. The main idea of the proof follows [6, Appendix D]; see
also [58, Section 3] and [60, Section 3]. For a given sweep-out, we will find conformal
reparametrizations of the regularization of this sweep-out, so that the energy of each
slice of this family can not be much larger than its area.

Proof of Theorem 4.1 First we claim that for a given sweep-out ¥ (-,7) € Q5, we
can find a regularized sweep-out y (-, ) € Q5 which lies in C°([0,1],C*(D,N)) as a
map of ¢ and is such that y (-, ) is close to 7 (-, ¢) uniformly in the W12 N C°-norm
for all ¢ € [0, 1]. This follows from a standard argument using mollification just like [6,
Lemma D.1]. Here we only point out the necessary modifications of [6, Lemma D.1]
to make sure that the images of dD under each slice y(-,¢) lie in the constraint
submanifold I'. In particular, near the boundary dD we can first enlarge the domain D
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to Dq4q (for small a > 0) by reflecting y(-,¢) across I' in the Fermi coordinates
around I' (cf [15]) and then do classical mollification under the Fermi coordinates.
The mollified maps when restricted to D will map dD to I' by our construction.
By the classical mollification result [13, page 250, Theorem 1] and Lemma A.1, we
can make sure that the obtained maps are close to 7(-,¢) uniformly in W2 n C°
near dD. In the interior of D, we can just mollify 7(-,¢) in RV . To combine them,
we can choose a partition of unity to glue these two mollifications together, and by
the same argument as [13, page 252, Theorem 3] the obtained maps are also close to
#(+,t) uniformly in W12 N C%(D). Up to this step, under the obtained maps the
boundary dD goes into I', but the interior of D may get out of /. Finally, one can
follow [6, Lemma D.1] to project these maps to A using the nearest-point projection to
get the desired y(-,¢). By choosing the mollification parameter small enough, we can
make sure max;e[o,1]/|¥(-,#) — ¥ (-, )|l is as small as we want. Note that an explicit
homotopy between y and ¥ is given by letting the mollification parameter go to 0. So
we finish the sketch of the proof of the claim.

Then y(-,t) induces a continuous one-parameter family of C! metrics

g(t) = y(t)* (metric on N)

on D. This family of metrics may be degenerate, so we define the perturbed metrics
as g(t) = g(t) + egg, where g is the standard flat metric on D. Then by the same
methods as in [6, Lemma D.6], [58, Proposition 3.1] and [60, Proposition 3.4], we
can construct a family of conformal reparametrizations /1;: Dg, — Dg(;) (which fix
three given points on dD) that varies continuously in C® N W 12(D, D). Then with
the conformality we can control the energy:

(38) E(y(-,t)ohs) = E(hs: Dgy — Dg(r))
< E(h;: Dg, — Dg(,)) = Area(Dg(t))

= /D(det(gglg(l)) + sTr(galg(l)) + 82)% dVolg,

D=

< Area(Dg(;)) + 71’(82 +2¢ s1;p|galg(t)|) .

Choose & > 0 so that 7(e? + 2 sup, |g5 ' g()])2 < §, and we get
E(y(-.t)oh;) —Area(Dg,) < 3.

If 7/ is a sequence of sweepouts in - then v/ oh; constructed as above is a sequence
as desired. a
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6 Construction of the tightening process

This section is devoted to the proof of Theorem 4.3.

6.1 Continuity of harmonic replacement

In this part we want to prove that the free boundary harmonic replacement process is
actually continuous as a map from C O(D_"‘) N WL2(DT) to itself, if we restrict to
maps with small energy. This generalizes the continuity of the harmonic replacement
process on classical interior balls by Colding—Minicozzi [6].

Theorem 6.1 Let o be as in Theorem 2.2 and set
M={ueC' (D N)NWL2(DT,N): E(u) < &g, u(d) CT}.

Given u € M, let w € M be the unique free boundary harmonic replacement of u (pro-
duced by Theorem 3.4). Then u — w is continuous as a map from C°(D+T)NW1-2(DT)
to itself.

6.1.1 W 12_continuity First we prove that this map is W2 continuous. In [6],
Colding—Minicozzi’s idea was to construct a comparison map by interpolating in RN
between two maps of the same boundary value in W1-2(D, /), and then projecting the
interpolation back to A. In our free boundary setting, however, such an interpolation—
projection trick may not leave the image of € lying inside I'. Here we prove the
W 1-2_continuity by contradiction. The main idea is that if the W -2 —continuity fails,
then we can find a sequence u; converging to U, but the replacements w; of the u;
have energy strictly greater than the energy of weso. In this scenario, we are able to
construct some comparison maps v; sharing the same fixed boundary value with w;,
but having energy strictly smaller than that of w; for i large. This contradicts the
uniqueness of free boundary harmonic maps with small energy; see Corollary 2.3.

The key ingredient in our proof is the construction of certain new comparison maps.
We first collect a few preliminary results for the construction.

There are five components in the comparison map. One of the components consists of
“small” free boundary harmonic maps. The following lemma shows that the energy of
these maps is actually small.
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Lemma 6.2 There exists a §o > 0 such that if a Lipschitz map f: [0, 7] — N satisfies
fO)eT, f(r)el and [J| f'|* <8 <8, then there exists a map v: DT — N such
that v(1,0) = f(6), v(d¢) C T and E(v) < C§ for some universal constant C > 0
depending only on N', T" and §.

Proof By the gradient bound of f and the fact that f(0), f(;r) € I', we can assume
that the image of f lies in the Fermi coordinates {y!,..., "} around I', where
Lemma A.1 in the appendix applies. We can further assume that locally I'" is identified
as a subset of {y¥*1 =...= y" =0} and f(0) = 0. Define

v(r,0) =r- f(0),

where r - f(6) is the scalar multiplication under Fermi coordinates; hence v is a
map from DT — A/, and v(r,0) and v(r, ) both lie in T for any r € [0, 1], thus
v(d°) CT.

It is only left to check that the energy of v is small. By Lemma A.1, we only need to
check that the energy of v is small as a map to the Euclidean space R™. In particular,
Lemma A.l implies that f(;r | /> < (1 + )8 under the Euclidean metric for some
small o > 0. Also, as f(0) =0, we get | f(0)| < \/m for 6 € [0, 7]. Now
we have the energy estimates for v as a map into standard Euclidean space RV

2 1 |dv

av n
or r2|06

(39) E(v>=f01/0”(—

1 pm
s// (/1P + /1P rdodr<Cs
0JO

for some universal constant C > 0. This completes the proof. a

2
)rd&dr

Another component in our comparison map is a modified interpolation band. First we
recall a lemma in [6] to construct the interpolation of band between two circles.

Lemma 6.3 There exists 69 > 0 such that for § < éy the following statement holds.
Let f,g:[0,7] — N be two C° maps such that

f—gl <8, /|f’|258/ and /|g/|255/

for some §' > 0. Then there exists a p € (O, %] and amap v: DT\ Df’_p — N such
that
1 1
(1—p,0)= f(0), v(1,0)=g() and E{®)<C§28'2

for some constant C > 0 depending only on N .
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modified band
Figure 1

Proof We refer the proof to [6, Lemma 3.11], where the construction works for the
whole circles, but it can be generalized to half-circles without any modification. Note
that our assumption here is even stronger. O

With this construction on hand, we can construct an interpolation between two arcs
on a modified band. Let us first define a modified band. A modified band MB, j is
defined as

(40) MB,p =
{(r,0):r€la,b],0 €0, x]}\ U {(r, 0): ‘(r, 9)—(%([) +a),§){ < %(b—a)}.
E=0,71

See Figure 1. In the following context we may use ¢ to denote the angle parameter of
the arcs of the removed disks.

Lemma 6.4 There exists 8o > 0 such that for § < 8 the following statement holds.
Let f,g: [0, 7] = N be two C°® maps such that || f — g|lp <§, [|f'|* <& and
[lg'|*> <& for some §' > 0. Then there exists p € (0, %] and a map v: MB1_, 1 —> N
such that v(1—p, 0) = f(0), v(1,0) = g(0) and E(v) < C§28'2 for some constant C
depending only on N and p. Moreover, for the arc of the removed half-disks of the
modified band (reparametrized by angle parameter ¢ ), we have

b3
| @R ase =t
0
where ds(¢) is the intrinsic arc-length integral.
Proof We construct a change of variables. Construct a map h: D1\ Df_p —MBi_p1

as follows: given s € [1 — p, 1], we consider the arc MB{_, ; N {r = s} and denote

the length of this arc by /y; for any fixed (r,0) € DT\ D1+_p, let 2 map it to (r,0’),
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where the ratios satisfy

[lo-51:31=[6'-3]:1]

Then the Jacobian and the gradient of this change of variables is bounded by some
universal constant. Let ¥ be given by Lemma 6.3; then v = 7o (h~!) is the desired
interpolation map. The only thing we need to check is the last estimate. In particular,
the energy of v on the boundary of the removed half-disks is bounded by that of v on
6 = 0 times a universal constant, and the energy of v therein is bounded. a

Now we start proving that the harmonic replacement ¥ — w is continuous as a map
from CO°N W12 to W12 for u with small energy.

Proof of W 1-2_continuity We prove by contradiction. Suppose the W ! —continuity
of the harmonic replacement process fails. Then we can find a sequence of maps
{uj: DT — N} converging to uso in CO(D+, N)N W12(DT, N), but whose free
boundary harmonic replacements {w;} do not converge to the corresponding replace-
ment Weo (of o) in W12, Note that a subsequence of w; (still denoted by w;)
must converge weakly to weo, SO by lower-semicontinuity of energy, E(Weo) <
liminf E (w;).

The fact that w; does not converge to W, in W12 implies that there exists & > 0 and

a subsequence (still denoted by w;) such that ||w; — u)<,o||§V1’2 > 2¢ holds, ie

1= 0= ) 9 01 = ). V= ) = 25
The weak convergence implies that ||w; —woo |72 — 0 and [(Vw;, Vwee) = E(Weo).
Thus we get E(w;) — E(weo) = € for i large.
We divide DT into five different pieces, DT = U;=1 Fj, where
D) Fi={(r0):re[0,n2(1-p)},
(i) Fo={(r,0):r €[mA(1—p), A(1—-p)]},
(i) F3 =MBy—p)a>
(iv) F4= {y eDt: ‘y—()\—%)»,o, O)‘ < %)\p}u{y eDt: !y—()»—%kp, 71)‘ < %)\,0},
(v) Fs={(r,0):re[Ar,1]}.
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See Figure 1. Here 7, p, A € (0, 1) will be determined later. Note that the F; have

some common boundaries, and we will see in the construction below that the maps

on the common boundaries share the same value. Let us choose a radius ry > % such
2 . : 2

that fD+\D;r_r0 |Vuoo|” < {%. Then given i large enough that ||u; —”oo||W1.z <%

we have || pH\DF, |Vu; |2 < §. Using the coarea formula, we can pick some radius
Y

r1 € (rg, 1) such that fr=rl |0gUoo|® < C(ro)e and fr=r1 10gu;|* < C(ro)e.
Construction of v;

e On Fj, we define v; to be w after rescaling to a suitable scale to fit Fj.

e On F,, we define v; to be the part of u, defined on DT\ Dfr_rl after inversion

(in polar coordinates, we change r to 2 —ry —r) and rescaling. Note that the
_|._

1—r

energy of v; on F, is bounded by the energy of 1o, on DT\ D | times a

universal constant 4.

* On Fj3, we define v; to be the interpolation between ueo (=} and u;|—,
from Lemma 6.4 on the modified band, then rescale to fit F.

e On Fy, we define v; to be the map constructed in Lemma 6.2 (up to rescaling),
which provides two maps with small energy.

e On Fs, we define v; to be the part of u; defined on DT\ D;r_rl (up to rescaling).

Here p comes from Lemma 6.4, n =1 —r; and A = 1 —r;. These parameters are
chosen in order to guarantee that in the definition of the v;, the rescalings are possible;
ie the ratios between inner radius and outer radius of the bands or modified bands do
not change.

Now we claim some properties of the v; that we just constructed. First, on 34 the
fixed boundary, v; = u;; on 9 the free boundary, v; always has image in I". Second,
v; is continuous. So it is an eligible comparison map (with weo ).

Finally we estimate the energy of v;. We will repeatedly use (without mention) the fact
that the energy is invariant under conformal reparametrization on the domain. Note
that the energy of v; on F; equals E(weo); on F, and Fjs the total energy of v; is
bounded by £/3; on F3 by Lemma 6.4, the energy of v; is bounded by a constant times
lttoo — u; ||1C/02, and on F4 by Lemma 6.2 the energy of v; is bounded by a constant
times ||Uoo — U; ||1C/02. Combining all the pieces gives

1/2

E(vi) = E(weo) + 23_8 +C””oo_“i||co .
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1/2 e
co < 6 In

conclusion, when i is large enough, E(v;) < E(Weo) + % < E(w;)— % < E(wj).

Since u; converges to ueo in C°, when i is large enough C|luco — ;|

Note that v; shares the same fixed boundary data with w;, and thus we have constructed
a map v; with same fixed boundary data as w; along 94 and v;(d¢) c T, but
v; has energy strictly less than that of w; on D™ this is a contradiction to the
energy-minimizing property of the free boundary harmonic replacement (Theorem 2.2).
Therefore the harmonic replacement is continuous in W12, a

6.1.2 C°-continuity

Proof of C%—continuity Now we are ready to prove the C°—continuity of the har-
monic replacement process. We argue by contradiction. If the harmonic replacement
process is not C°, we can find a sequence of maps u;: D* — N converging to
oo in CO(D+) N W12(D1) while for the corresponding free boundary harmonic
replacements w; (of u;) we have ||w; — woo”Co([F) >e>0.

From the proof of Theorem 3.2, we know that the w; are equicontinuous on D¥ . Thus
by the Arzela—Ascoli theorem, up to a subsequence w; must converge to some w/, in
C O(D_Jr ). Now using the W 1-2—continuity of the harmonic replacement process that
we have just proved, we have ||w; — weollp1.2(p+) —> 0 as i — oo, which implies
Weo = W), . This contradicts ||w; — woo||co(ﬁ) >e>0. O

6.2 Uniform continuity of energy improvement

In this part, we prove two inequalities regarding energy improvements for two sets of
free boundary harmonic replacements on generalized balls; see Definition 4.2. These
inequalities will play a key role in the proof of Theorem 4.3. Similar results were
proved by Colding—Minicozzi [6, Section 3] for fixed boundary harmonic replacements.
We suggest to first-time readers to come back to this section after reading Section 6.3.

Let g¢ be the minimum of the gy in Theorems 2.1 and 2.2. We adopt the following
notation: given a map u € CO(D,N) N W12(D,N) with u(dD) C T and a finite
collection B of disjoint generalized closed balls in D such that the energy of u on
Ug B :=Jpgep B is at most %60, let H(u,B): D — N denote the map that coincides
with u on D\ |Jz B and is equal to the harmonic replacements of u on | Jz B;
cf Theorem 2.1 for the harmonic replacement with fixed boundary used by Colding—
Minicozzi, and see Remark 3.5 for the free boundary harmonic replacement, where the
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existence is guaranteed by Theorem 3.4. Note we also have H(u, B)(dD) C T", and
without loss of generality we will call H(u, BB) the free boundary harmonic replacement
of u on B. Given two such disjoint collections By and B;, we use H(u, By, ;) to
denote H(H (u,By), B;). Recall that for o € (0, 1], we denote by a8 the collection of
concentric balls with radii that are shrunk by the factor ¢ in the sense of Definition 4.2.

First we have the following interpolation formula for free boundary replacements; cf
[6, Lemma 3.11]. Let x denote the radius for which the Fermi coordinates system
exists in a tubular neighborhood of radius x surrounding I" where Lemma A.1 in the
appendix applies.

Lemma 6.5 There exists T > 0 such that given two C® N W 12 maps f, g: 8;% - N
with f(0), f(r),g(0),g(w) € I', if f and g agree at one point on 8‘1‘% and satisty

R/A|f/—g’|2§r2 and |f(0)— f(0)| <& forall 0 <6 <m,
8R

then there exist p € (0, R/2] and a C°® N W12 _map w: D; \ D;_p — N such that

the image of w| 8G\0G lies in T", and the following estimate holds:
—p

1 1

2 2
f |Vw|2§C(R[ |f’|2+|g/|2) (R/ If/—g’lz),
D\DY_, L) o

where C > 0 is a universal constant depending only on k, t, I' and N.

Remark 6.6 This lemma generalizes an interpolation formula by Colding—Minicozzi
for maps defined on circles [6, Lemma 3.11] to maps defined on half-circles, and
the constructed interpolating map has the chord boundary 8% \ BICe_ 0 lyingon I'. In
[6, Lemma 3.11], Colding—Minicozzi first took the linear interpolation of f, g in RV,
and then projected it back to the ambient manifold N'. However this method doesn’t
work in the free boundary setting because the projection RV — A’ may not map the
boundary 8% to the constraint submanifold I".

Here we use the Fermi coordinate system to construct the desired interpolation between
f and g. In the proof we have to work in two different coordinate systems, and
Lemma A.1 will be used to show the equivalence.
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Proof of Lemma 6.5 There is one point 0 < 6 < 7 such that f(6) = g(f). Choose
T =k /3. Then by the assumptions and integrating, we get | /(6) — g(#)| < § for all
6 €0, ], so that |g(0) — g(0)| <« for all 8 €0, r].

As aresult, we can assume the images of f and g both lie in a convex neighborhood U,
of £(0), and in U we can pick the Fermi coordinate systems {y!,..., "} as in

k+tl —...= p" =0}. In Lemma A.1, g!, g2

Lemma A.1, where T is a subset of {y
and g* denote, respectively, the metric of A/, the flat metric in {y',..., "} and the

flat metric of R . We will use |- | to denote the norm under the metric g>.
Since the statement is scaling-invariant, it suffices to prove the case R = 1. For
p € (0, 3] to be determined, define w: D\ D1+_p — RN by
r+p—1
wir.) = 16+ (272 e - r6).

On ¢ \81C_p, since f(0), f(;r), g(0), g(x) € I', we know that in the Fermi coordinate

chart, f(0), f(x), g(0) and g(x) lie in the plane {ykt! =... = y" = 0}. As a

result, the interpolation function w also has the image w| 8C\aC lying in the same
-0

plane, and thus lying in I".

The energy density in this coordinate system is

n . . . .

. 1 (0w' dw’ ow' dw’ 2

e(w)—.Zlg,-,-(ax et gy gy) S 0 @IVel.
l,J=

Now we proceed to prove the estimate of ||Vw ||§ , . First we need a Wirtinger-type
inequality. Suppose /(- ) is a function on 94 and /(s) = 0 for some s € [0, 7r]. Then
for any ¢ € [0, ], we have

t
()] = [h(0) — h(s)] s[ W (o) dx < /aA'h/"

Integrating the square of both sides for ¢ € [0, 7], we get

/aA|h(t)|2 < n(/aAWI)z <n? /aA|h’|2.

Then we get, setting h = f — g,
[r-eP=x? [ 15-g.
94 a4
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Thus

E(D*\D}" )

< 14+a)|Vw||?
[y CHelvul

1—p

1 i 1 i
< (1+) (; | 1=z a0+ | (llf’||§z+“g'”§2)(9)‘”)””

1

1—p
1 1 T 1 T

<(tar [ (; [Cir-er@do+; [ (|f’|2+|g’|2)(9)d9)rdr
—p

< (1+a)2(% /0 |/'—g'(6) do+2p /0 (I712+1g'P)(6) de)

< 2 12 72 % 112 %
<tsava?( [ i) ([ o)
once we pick p = (fyal /'~ &'/ (fpal 112+ 12)2. 3

Now we are ready to prove the energy improvement inequalities for free boundary
harmonic replacements. Similar results were first obtained by Colding—Minicozzi
for fixed boundary harmonic replacements [6, Lemma 3.8]. Again we let &y be the
minimum of the gy in Theorems 2.1 and 2.2.

Lemma 6.7 There is a constant k > 0 such that if u: D — N isin C°N W12 and
B1 and B, are two finite collections of disjoint closed generalized balls in D such that
the energy of u on each UB,- B is at most %eo, then

A1) E(u)— E(H(u, By, By)) = k(E(u) — E(H(u, 18))).

Furthermore, for any pu € [%, %] we have

(E(u) — E(H(u. B,)))*

(42) .

+ E(u)— E(Hu,2uBy))
> E(H(u,By)) — E(H(u, By, uB3)).

Proof The proof is analogous to the proof of [6, Lemma 3.8], and the main difficulty
arises from those boundary balls. We will include the details for completeness, and
focus on how we use the new interpolation result, ie Lemma 6.5.

Let By = {Bl} and B, = {sz}. We need to clarify the second replacement. Observe
that the total energy of u on the union of the balls B; U B, is at most %80, and the free
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boundary harmonic replacement on B; does not change the map outside these balls
and is energy-nonincreasing, then it follows that the total energy of H(u,B;) on B; is
at most %80.

We will divide B, into two disjoint subsets B, 4 and B, _, set

By ={Bj €B,: 3B} C B, forsome B, € Bi} and B, _=B;\Bs .
Since the balls in B, are disjoint, we have
E(u)— E(H(u. 5By)) = (E(u)— E(H(u, 3B2,4))) + (E(u) — E(H (u, 3B2,-))).
Now we have two cases.
Case 1 Suppose

E()—E(H(u,1B,1)) = E(u)— E(H(u, 3B,-)):;
then
E@)—E(H(u,18B5,+)) = S(E) — E(H(u, 1B5))).

Since the balls in %Bz,Jr are contained in balls in B; and harmonic replacements
minimize energy, we get

E(H(u,B1,By)) < E(H(u,By)) < E(H(u, 3B2.+)).

so that

(43) E(u)— E(Hu,Bi,By)) > E(u)— E(H (u, $B.+))
= L(E@) — E(H (1, 15,)))
> k(E(u)— E(H(u, 1B,)))?

if kK <1/(2¢gp).
Case 2 Suppose

E(u)— E(H(u,5B2,4)) < E(u)— E(H(u. 3B2,-)):
then
E(u)—E(H(u,3B,.-)) = $(E)— E(H(u. $B,))).

Let 7 > 0 be given by Lemma 6.5. We can assume that

(44) 9/ |Vu—VH(u,B)* <%
D
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Otherwise Theorems 2.1 and 2.2 give (41) with k = t2/(2¢7). In fact, if
9/ |Vu—VH@u,By)>> 12,
D

then applying Theorems 2.1 and 2.2 to each classical ball or boundary ball in By,
we get

E(u)—E(H(u,Bl,Bz))zE(u)—E(H(u,Bl))Zl/ |Vu—VH(u,Bl)|2>T—2.
2 /b 18

Noting that E(u) — E (H (u, $B,)) < 1e0, we get the desired estimate.

Assuming (44), we want to show the following estimate for each B Jz €By,_:
@) [ vH@B)R- [ VA5 )P
B? B?

2
2/532|Vu|2—/le{VH(u,%Bj2)\
J

27j

2 2 : 2 :
—C(/ |Vul|*+|VH(u,B)| ) (/ |Vu—V H(u,By)| ) .
B? B?

If (45) is true, summing it over balls in 182’_ andlusing the Cauchy—Schwartz inequality
for discrete sums |>"ajb;| < (3 ajz.)j > b]?)f and Theorems 2.1 and 2.2, we get

(46) E(H(u.B,))— E(H(w. By, B;.))
> E(u)— E(H(u. 1B,_)) — Ce? (Ew) — E(H(u.By))*

—

> E(u)— E(H(u. 1B,,_)) — Ce2 (E(u) — E(H(u. By By._)))*.
Then noting that

E(H(u,B1))— E(H(u,By,B;,-)) < E(u) — E(H(u, By, B>,-))
< E(u)—E(Hu,B;,By)) < 3¢9 < &0,

we get the desired estimate (41).

So we only need to prove (45) to conclude Case 2. If sz is a classical ball, this is just
the result in [6]. Now let us consider the case when B 12 is the boundary ball D}Jg of
radius R centered at 0 in the upper half-plane H?. Set u; = H(u, B;). By the coarea
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formula, there exists some r € [%R, R] with

/|Vu1 Vul? <—/ (/ |Vu, — Vu|)ds< /;|Vu1—Vu|2,
(/ (Vi + V) < 2 /° (/“|vu” +|Vu|)ds

48()
<Z Vuil? +|Vul?) < —=.
_’”/ngﬂ ui)? + | Vul?) R

The second estimate indicates that the length of the image of u| 94 is bounded by a
universal constant times &g. So if gq is smaller than a constant multiple of k¥ (where « is
the radius for Fermi coordinates of I'; see Lemma 6.5), we will get |u(x) —u(0)| < %K
forall x € 8;4. Also note that Bg € B, _, by definition %B R does not completely lie
in By, so 8;‘1 does not lie in B; for all r € [%R, R]. Hence u; and u must agree at
one point on 8;4. Then we can apply Lemma 6.5 to get some p € (0, %r] and a map
w: D\ D;"_p — N, with w(r,0) = uy(r,0) and w(r — p, 6) = u(r, 6), such that

1 1

2 2
/ |Vw|2§C(/ |Vu|2+|Vu1|2) (/ |Vu—Vu1|2) .
D\D;, D; D;f

The map x — H(u, D;})(rx/(r — p)) maps D;F_p to N and agrees with w on 8;4_p
So we get a map from D; to A/ which is equal to H(u, B1) on D}F \ D;", equal to w
on D\ Dj_p and equal to H(u, D;")(r-/(r — p)) on D;"_p. This new map gives
an upper bound for the energy of H(uq, D}F):

|VHw,DﬂFs/
/D+ bR DI\D

|Vu, > + / IVwl|? /lVH(u,D+)|2.
b AV Dp\D, F "

Using the previous estimate and the fact “Vul |2—|Vu|2‘ <(|Vui|+|Vu))|Vu—uy)l,
we get

[ vap=[ v opP

DR DR

= [ v [ vaGopE-[ | vwP
D; D;F p\Dit,

1 1

2 2

Z/ IVMIZ—/ IVH(u,DrJ“)IZ—C(/ IVu|2+|Vu1|2) (/ |V(“_ul)|2)-
D D D} D}
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Since r > %R, we have

/ Vul? =/ |W|2—/ Vul?
D D;F D\D}

R/2 R/2
= |Vu|2—/ |VH(u, D} )|2+/ \VH(u, D% ,)|?
< |Vu|2—/ |VH(u,D+>|2+/ VH@, DE ).
/Df o} ok, i

Combining this with the previous estimate we get (45). Hence we can conclude the
proof of (41).

Now one can prove (42) by the same argument as in [6], based on the proof of (41)
above. This completes the proof. |

6.3 Tightening process

Now we have developed the necessary tools to prove Theorem 4.3. In fact, the proof is
virtually the same as the proof of [6, Theorem 2.1]. All the main ingredients in the free
boundary setting needed in the proof have been obtained in previous sections. We give
the proof here for completeness and the convenience of readers.

Again, let g9 be the minimum of the &y in Theorems 2.1 and 2.2. Given a sweep-out
0 €Q and 0 < & < gg, we define the maximal improvement for free boundary harmonic
replacement on families of generalized closed balls with energy at most ¢ by

eoelt) = sgp{E(a(- ) —E(H(o(-,1),3B))}.

Here the supremum is taken over all collections B of disjoint closed generalized balls
in D where the total energy of o (-,7) on B is at most . Note that e, ¢(?) is positive
if o(-,t) is not harmonic.

We first show that the maximal improvement of a given slice (which is not harmonic)

can control the maximal improvement of any nearby slices.

Lemma 6.8 Given ¢ € (0,1), if o(-,t) is not harmonic and 0 < ¢ < g¢, then there is
an open interval I' containing t such that es ¢/5(s) < 2e4,¢(t) for all s in the double
interval 21" .
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Proof By Theorem 6.1 and [6, Corollary 3.4], there exists §; > 0 depending on ¢
such that if ||o(-,7) —o (-, s)||conw1.2 <1 and B is a finite collection of disjoint
generalized closed balls in D where both o (-,¢) and o(-,s) have energy at most &g,
then

(47) |E(H(o(-.5),3B))— E(H(o(-.1). $B))| < Zeo,s(0).

Since t — o(-, ) is continuous as a map to C° N W12 we can choose I’ so that for
all s € 21" we have ||o(-,1) —o(-,$)||conpi1.2 <8 and

48) fD||Vo(-,z>|2—|Vo(~,s)|2\ < min{. Lege(n).

Now suppose that s € 2717 and the energy of o (-, s) is at most % on a collection B. It
follows from (48) that the energy of o (-,¢) on this B is at most &. Combining (47)
with (48) we get

|E(a(-.8)—E(H(o(-.5),3B))— E(0(-.1)) + E(H(o(-.1), $B))| < €q,e(1).

Since this estimate applies to any such B, and noting that e, ¢ is monotone nondecreas-
ing in &, we get that e, ¢/5(5) < 2€g,6(1). a

Theorem 4.3 indicates that our tightening process should effectively decrease the energy
of those nonharmonic slices with large energy, ie when E > %W. The next lemma
shows that we can find a harmonic replacement to decrease the energy of those slices
by a certain amount.

Lemma 6.9 If W > 0 and ¥ € Q has no harmonic slices other than ¥(-,0) and
Y (-, 1), then we get an integer m depending on ), along with m collections By, . .., Bp
of generalized closed balls in D where the balls in each collection B; are pairwise
disjoint, and m continuous functions ry, ...,y [0, 1] = [0, 1] such that, for each t :

(i) Atmosttwo rj(t) are positive and ZBGB,- frj (t)B|V)7(-,l)|2 < %80 foreach j.
(i) If E(J(-.1)) > LW, then there exists j(t) such that the harmonic replacement

on (%rj(,))[)’j(,) decreases energy by at least %6’)7’80/8(1).

Proof The energy of the slices is continuous in #, so the set I = {t CEW (1) > %W}
is compact. For each ¢ € I, choose a finite collection B’ of disjoint closed balls in D
with fUBt IVF(-.0))* < %80 so that

(49) E@(-.1)—E(H(V(-.1), 3B")) = 1e5 ¢0/a(t) > 0.
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Note that 0, 1 ¢ 1. Lemma 6.8 gives an open interval I containing 7 such that for all
se2l,

(50) €5.60/8(8) < 2e5 ¢ /4(1).

Using the continuity of 7(-,s) in C® N W12, we can shrink I’ so that 7(-,s)
has energy at most %80 in B’ for s € 21" and in addition, using Theorem 6.1 and
[6, Corollary 3.4], we have

S |EFC.) = EH(F(-.9).38) = EF(-.0)+ E(H((-.1), 35))]

< §5.00/4(0).
Since I is compact, we can cover I by finitely many of the 17, say I'',..., ' By
discarding some of them, we can arrange that each ¢ lies in at least one I and at
most two consecutive /% . That is, we get a family of intervals /% such that I% only
intersects /%1 and [%+! and I%-1 and I%+! do not intersect each other. Now for
each j =1,...,m, we choose a continuous function r;(¢): [0, 1] — [0, 1] with the
following properties: j(t) =1 on I%i and rj(t) =0 for t 215 N(I5-1UT% UT%+1);
rj(t) = 0 on the intervals that do not intersect i

Property (1) follows directly from the construction of the 7; (¢), and property (2) follows
from combining (49), (50) and (51). a

Now using this lemma we can prove Theorem 4.3.

Proof of Theorem 4.3 Let 5y,...,5,, and rq,...,ry, be given by Lemma 6.9. We
will use an m—step replacement process to define y .

We firstset y® =7. Thenfor j =1,2,...,m define y/(-,t)=H(y/~1(-,1), ri(t)Bj).
Finally we set y = y™.

WEe first claim that this is a well-defined process and y is again in 2. In fact, prop-
erty (1) in Lemma 6.9 implies that each energy-minimizing map replaces a map with
energy at most %80 < ¢&g. Moreover, Theorem 6.1 and [6, Corollary 3.4] imply that the re-
placement depends continuously on the boundary values, which are themselves continu-
ous in ¢. Finally it is clear that y is homotopic to ¥ since continuously shrinking the dis-
joint closed balls on which we make harmonic replacement gives an explicit homotopy.

Now we show that this ) satisfies the requirements of Theorem 4.3. Suppose ¢ € [0, 1]
is chosen with E(y(-,t)) > %W, then property (2) of Lemma 6.9 implies that the
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harmonic replacement for 7(-,¢) on (37j(1))B;() decreases the energy by at least
%ey’go (¢). Thus using (41) of Lemma 6.7 we get

(52) EGF(-,1) = E(y(-,0) = k(Leg o/5(t))*  for some k > 0.

Suppose that B is a finite collection of disjoint generalized closed balls in D such that
the energy of y(-,¢) on B is at most %80. We can assume yX(-,r) has energy at
most %80 on B for every k, since otherwise using Theorems 2.1 and 2.2 we could
chose W to be a linear function W(x) = Cx for some C > 0 sufficiently large. Now
we apply (42) in Lemma 6.7 twice with yu = % and then u = % to get

(53) E(y(-.0))—E(H(y(-.1).4B))
< EG(.0)— E(H(F(.0. 1)) + 2(EG(-.0) — E(v(-.1))?

< ege0s(O)+ 2(EG(.0) = E(r(-.0)".

Combining (52) and (53) with Theorems 2.1 and 2.2, we complete the proof by choosing
Yx)=Cx+ Cx? for some sufficiently large C > 0 and &; = 11—280. o

7 Compactness of maximal slices

This section is devoted to the proof of Theorem 4.4. In particular, we will prove that
any sequence of maps (as slices of approximating sweepouts) whose energy converges
to the width will converge to a bubble tree of free boundary harmonic disks and
harmonic spheres. Similar bubble tree convergence was first studied by Fraser [15] for
o —harmonic disks with free boundary (where the notion of @—maps was introduced by
Sacks—Uhlenbeck [45]). In our proof, we adopt the schemes in both [6, Appendix B]
and [15]. We generalize the notion of almost harmonic maps with their asymptotic
analysis and compactness in [6, Appendix B] to our free boundary setting.

7.1 Compactness of free boundary almost harmonic maps

We first introduce our notion of almost harmonic maps with free boundary. Note that
generalized balls were defined in Definition 4.2.

Definition 7.1 We say a sequence of maps u/: (D,dD) — (N,T) is &;—almost

harmonic in the free boundary sense if:
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(Bo) Forany generalized ball B C D with [ B |Vu/ |2 < e1, there is a harmonic replace-
ment v: %B — N of u’/ (with possible free boundary along v(aéB N 8D) cr
if it is not empty) which satisfies the bound

/ |Vul/ —Vu)? < l
iB J

8

Next we have the following preliminary compactness result for a sequence of almost
harmonic maps in the free boundary sense with finite energy. In particular, any such
sequence converges to a harmonic map with free boundary in W12 locally away from
only finitely many points in D. Let egy and eF be as in Section 4.

Theorem 7.2 Let €1 > 0 be such that €; <min{esy,er}. Letu/: (D,9D)— (N, T)
be a sequence of W12 _maps satisfying property (By) in Definition 7.1 and having
E(u/) < Ey < oo. Then there exist a finite collection of points {x1,...,x;} C D, a
subsequence of maps (still denoted by u/), and a harmonic map u: (D, dD) — (N, T)
with free boundary, such that u/ — u weakly in W1-2(D) and for any compact subset
K C D\ {xy,...,x;}, u/ — u strongly in W2(K). Furthermore, the measures
|Vu/|? dx converge to a measure v on D with v({x;}) > &, forall 1 <i <k and
V(l_)) =< EO .

Proof After passing to a subsequence we can assume that the u/ converge weakly in
W12(D) toa W2—map u: D — N, and the measures |Vu/|? dx converge weakly
to a limiting measure v on D with v(D) < Ej.

So there are at most Eg/e; points Xi,...,xx € D, with lim,_ V(Br(xj)) = €.

Next we show that away from these points the convergence is strong in W12 and u is a
harmonic map with free boundary in T'. Given any x € D\ {x1, ..., X}, by definition
there exist a generalized ball By and an integer Jx such that | B, |Vu’|* < & for
j > Jx. If x is an interior point we can choose By to be a classical ball which is
contained in D, otherwise By will be some boundary ball. By condition (Bg) we get
a harmonic replacement vi: %Bx — N such that

/ Vul — Vol < L.

1B, J

Note that the energy of vi on the ball %Bx (x) is less than &1, so by the e—regularity
of Qing [39, Lemma 4] and Theorem 2.5, we get a uniform C k _bound for v) in %Bx

for k > 1. Hence a subsequence vy converges strongly in W 1-2 (%Bx) to a harmonic
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map vy: 5 Bx — N with possible free boundary along vy (3§ Bx N 0D) C T. By the
triangle inequality we get

/1 |Vu/ —Vue|? < 2/1 |Vul — Vol |? +2/1 |Vvi — Vo> =0
§Bx §Bx 9gDOx
as j — oo.

We can also derive the L2—convergence of u/ to vy on %Bx by the inequality

[ |uj—vx|2§2/ |uj—v£|2+2/ vl —vx]?
& B § B § By

9 9
and the Poincaré inequality (when By is a classical ball of D) or its variant Lemma A.2
(when By is a boundary ball of D).

We have proved that the sequence u/ converges to vy strongly in Wl’z(%Bx), and
hence u = vy in %Bx. Therefore we conclude that u is a free boundary harmonic
map on D\ {xy,...,xg}. Furthermore, for K relatively compactin D\ {xy,...,xz},
the W12(K)—convergence of u/ to u follows from a standard covering argument.

Finally, since u has finite energy, we can apply the removable singularity theorem
by Sacks—Uhlenbeck [45, Theorem 3.6] or Fraser [15, Theorem 1.10] at each x; for
interior points or free boundary points respectively, so that u extends to a global
harmonic map on the whole of D with free boundary along u(dD) C T. a

7.2 Harmonic maps on half-cylinders

In this and the following subsections, we will generalize the analysis of harmonic
maps defined on cylinders in [6, Appendix B] to harmonic maps with free boundary
defined on half-cylinders. The analysis of harmonic maps and almost harmonic maps
on cylinders in [6] is essential to the proof of the so-called energy identity. More
precisely, in the blow-up process (see Section 7.4), the energy could be lost (so that the
energy identity fails) only when some energy escapes from the “necks” (modeled by
cylinders or half-cylinders), and this is the case we want to rule out in our scenario. In
the free boundary setting, not only spherical bubbles but also disk bubbles may appear
during the blow-up process. So we need to carefully analyze the maps defined on the
“necks” between the spheres and disks, ie cylinders and half-cylinders.

Let us set up some notation. Let C, 5 denote the flat half-cylinder [a, b] x [0, 7], where
[0, 7] can be viewed as half of a circle S'. We will use (¢, §) as parameters on Cap-
Note that C, 5 is conformally equivalent to the half-annulus in plane: [e€, e?1x [0, 7]
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conformal
—_—

[ >

Figure 2

under polar coordinates, see Figure 2. We will also abuse the notation 9€C to denote
the part of the boundary [a, b] x {0, 7}, and later this will be the free boundary part of
our maps and we will only focus on the boundary behavior of the maps along this part.
Moreover, when we say a map u: C — A is a harmonic map with free boundary on T,
we will always assume u|yc is the free boundary with u(@c)cr.

Theorem 7.3 Given § > 0, there exist e, > 0 and [ > 1 depending on § such that if
u is a nonconstant C*—harmonic map from the flat half-cylinder C_s 1,31 to N with
free boundary along I', and the energy E(u) < &,, then

(54) / lugl®> < |Vul?.
C_11 C—21.21

Roughly speaking, this theorem implies that for nonconstant free boundary harmonic
maps with small energy, the 6 —energy (on a sub-half-cylinder) is far smaller than the
total energy. Then by the Cauchy—Schwartz inequality this implies that the area of the
image of u is strictly less than the energy of u.

In order to prove Theorem 7.3, we follow the idea of Colding—Minicozzi to prove
a differential inequality for various energies of a free boundary harmonic map. In
particular we need some free boundary versions of the lemmas in [6, Appendix B].

Lemma 7.4 Given a C*—free boundary harmonic map u from C_ 131 to N C RN
with E(u) < e, for some &, > 0 sufficiently small, we have

1 1 t+A
(55) 8%/|u9|22€/|u9|2—C/|Vu|4—C4/_82x/ /|Vu|2ds
t t t t—A N

forall t € [-21,2]] and A € (0,1). Here [,(-) denotes the integral over the t —slice
1(t.0) €C_3;,31:0 €0, ]}, and C > 0 is some universal constant depending only on
N and T.
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Proof We can assume &, < &g, as in Theorem 2.5. Differentiating |, (lug |2 twice gives

1
66 50 [luol = [luial + [ s rso
t t t

- [|uta|2—/<u99,un> + (g s
t t

- / ugg|? — f (00 (At —ugg)) + (g, AT (ur.up) |
t t

> /qu9|2 +/|uee|2—sup|AN|/|u99||w|2
t t N t Y
—2sup|AF|C«/szl/ /|Vu|2 ds.
T A t—A s

Here AT and A% are the second fundamental forms of T' <> A" and A < R¥. In the
second equality we used integration by parts; in the third inequality, since u is a free
boundary map, on the boundary (where 6 =0 or 6 = 1) ug is a tangent vector of A" and
also perpendicular to I", and u;; = V{X u; when projected to the tangent space T, N,
where u; is tangent to I'; in the last inequality we used |Au| < sup N|AN ||Vu|* by the
harmonic map (3), and also the gradient estimate (Theorem 2.5) applied to half-disks
of radius A centered at (¢,0) and (¢, 7). By the Cauchy—Schwartz inequality we get

1 3 1 t+A
10 (ol = [lusolP+ 5 [lusel* = [1vul*=cvery [ [1vup as
t t t t t—A N

for some universal constant C > 0 depending only on A and T".

Next we claim: for u satisfying the assumptions of the theorem,

(57) /IugI2 < C/|u99|2 for t € [-21,21],
t t

where C > 0 is a constant depending only on A and I'. Note that once we have this
inequality we get the desired inequality (55) in the lemma.

To prove (57), we reflect the map u(z,-): [0, 7] — RY across T' to obtain a map
defined on the circle 7(z,-): S' — R¥ . In particular, let Pr denote the nearest-point
projection map from a tubular neighborhood of T' in R to I". When the tubular
neighborhood is chosen small enough, we can assume that

|DPr|<1 and |D*Pr|<C

for some universal constant C > 0. By the gradient estimate Theorem 2.5, we can
assume that the image of u(C_5;,5/) lies in this tubular neighborhood when ¢, > 0 is
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chosen small enough. Now define the map 7i(z,-): S — RY by

u(t, 0) when 0 € [0, 7],
2Pr(u(t,—0)) —u(t,—0) when 6 € [—m,0].

By the free boundary assumption, we know that # is C!*! on S'. As [, ilg =0, by

i, 0) = {

the Wirtinger inequality we get [ |ig 1> < Ss1ltgg |, and hence we can deduce that
b3 b T
68 [ ol = [ oo+ [ 1P 6) ~u. 600

T T
< /0 |ugg|* + /0 |2DPr(ugg) — ugg + 2D* Pr(ug, ug)|*

T » T 4
SC/ luggl +C/ lug|™.
0 0

Note that by the gradient estimates Theorem 2.5, C f: lug|* < C2%e, fon lug|?. So the

desired estimates (57) follow by taking &, > 0 small enough, so that C 2g, < % a

The next lemma is an ODE comparison lemma.

Lemma 7.5 Suppose f is a nonnegative C? function on [—2[,2] C R satisfying

1
1 > _- _
(59 e f—a
for some constants C,a > 0. If max_; ;1 f > 8Ca, then
21/ /
60) / >42Ca sinh(—).
( -2/ 4 242C

Proof Let f (t) = f(~/4Ct). Then we get a differential inequality for f ,
f "> f —4Ca,
where ]7 is defined on [—1/+/C,1/+/C], and

max ]72 8Ca.
[~1/24/C,1/2+/C]

Then applying [6, Lemma B.4] gives

1/JC _ 5 ]
> 8+/2Ca sinh — |,
/—l/«/ff a sin (2 2C)

which implies

21 /
>4+/2Ca sinh(—). O
/ 24/2C

=21
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Now we can prove the main theorem of this subsection.

Proof of Theorem 7.3 First we analyze [, (|u ¢|* = |lug|?). Differentiating it and
applying integration by parts gives

60 300 [ e = o) = [ .t} = (o wor)= [ (. ue + ) =o.
t t t

Here again we use the fact that ug and u; are perpendicular to each other on the free
boundary, and u,; + ugg = Au, which is normal to A/ and hence perpendicular to u;.
Thus fz(|”t|2 —|ug|?) is a constant, and

2 Z_L _ 1 2
6 [l -loPr =g [ P -pl =g [

C—21.21 C—21.21

Moreover, we get

©63) [|Vu|2 =z/|ue|2+/(|ut|2—|ue|2) sz/|ue|2+i Vul?.
t t t t 4 C—27,21

Let us choose ¢, smaller than the values of &g in [45, Lemma 3.4] and Theorem 2.5.
Then the interior gradient estimates for harmonic maps (see [45, Lemma 3.4]) and for
free boundary harmonic maps (Theorem 2.5) imply that

(64) sup |Vul? < Ces.

C_21.21

Let f(¢) = [,|ug|*. Then by Lemma 7.4 we get

t+A
©5) 0= 550 Ce / Vil ~C Ve | f Vul? ds

t+)u
= L1 =2Ceaf =20 Vaag [ 10
_Cer v — 252 Va2
4/ C_21.21 41 C—21.21
1 1/t+)u ) C\/g )
> — 1) — — - Vul,
selro-a [ )-S5

where C > 0 depends only on A and I', and we can further assume that &, is small
enough that Czez < % and 2C28;/4 <1.

Letting A — 0, by continuity of f we get the differential inequality

(66) 10z 76 f0—a.
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where a = (C \/e2/ 1) IC_21 . |Vu|?. Then we apply Lemma 7.5 to get either

2
(67) max f <8 Ve |Vu|?
[=1.1] ! C_21,21

or

sinh(/ /2@) Vul?

C_21.21

(68) fc lug|? /f(t)dz>4«/fcf

If we choose / large enough then the second inequality can not hold. Then we get

(69) / lug|* <21 max f <8C?./e; |Vul|?.

C1.1 [=1.1] C—21.21
Then the inequality (54) holds if 8C?2,/e; < §. So we can choose &, small and then
choose [ large to get the desired inequality. a

7.3 Almost harmonic maps on half-cylinders

The main results in this part generalize the results in the previous subsection to almost
harmonic maps on half-cylinders.

Let us first fix some notation. Given a half-cylinder C, ,,, we will view it as its
conformally equivalent half-annulus D:ZZ \ D:?l cDt. A generalized ball B C

\ D or1 is either a ball in the interior of the annulus DJr \ D o1 > OF is a half-
ball centered along the chord boundary Becrz \ 851 . When B is a half-ball, we write
d¢ B = 9B N dC. Note that this definition is the same as that in Definition 4.2.

Definition 7.6 Given 1 > 0 and a half-cylinder C;, ,,, we will say that a W12 —map
u: Cpy ry, > N with u(d€C) C T is w—almost harmonic with free boundary if for
any finite collection of disjoint generalized balls 5 in the conformally equivalent half-
annulus DJC2 \ D} _r1 » there is a free boundary harmonic replacement v: ( %B - N
with free boundary along u( B %3CB) C I' such that

/ |vu—w|25ﬁ/ IVul?.
Us §B 2 Je

ry.rp

The first lemma of this subsection shows that for almost harmonic maps with free
boundary the estimate in the previous subsection still holds.
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Lemma 7.7 Given § > 0 there exists i > 0 depending on §, N' and T" such that
if u: C_3;31 — N is a pu—almost harmonic map with free boundary and E(u) < &5,
where [ is from Theorem 7.3, then

(70) /j ugl? < 8 Vul?.
C—1.1 C—31.31

Proof We will argue by contradiction. Suppose the lemma does not hold. Then
there exists a sequence u/ of %—almost harmonic maps from C_3; 3; to N with free

boundary u; (8CC_3Z,31) C T, energy E(u’/) <e¢,, and

(71) ./ |ugz>5/" |Vul 2.
C—1.1 C—31.31

Now we have two cases depending on whether the energy of the limit is zero.

Case 1 Suppose limsup;_, o, E(u/) > 0. Then up to a subsequence, fc_,,, |u£|2
is uniformly bounded from below by (71). We will apply the compactness result
(Theorem 7.2) to this sequence. In particular, we can use the same argument as
Theorem 7.2 to find a subsequence that converges weakly to a free boundary harmonic
map u: (C_37,37,C_37,31) = (N, T), and strongly in W12 on any compact subset
of C_3;,3;. Note that since E (u’) < &5, there will be no energy concentration points.
The uniform lower bound of fc_” |ué |2 and the W !-2—_convergence on C_,; imply
that # can not be a constant map. Finally by the lower semicontinuity of energy along
W2 _weak convergence,

[ welzs [ i
C_11 C—31.31

which contradicts Theorem 7.3.

Case 2 Suppose lim;j o E (u/) = 0. We will use a blow-up argument. Let

j_ ul —ut (0)
-~ E@h)/2’

This is a sequence of maps from C_3; 37 to Nj = (N —u/ 0))/(Eu’)"/?). Here
0 = (0,0) is a boundary point on C_3; 37, SO u’ (0) € T'; hence we can always see the
free boundary I'j = (I — u’ (O))/(E(uj)l/z) in the blow-up process.

Note that E(v/) = 1 and by (71), we have
/ v)1? >8> 0.
C1.1
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Furthermore, the sequence of the v/ are still %—almost harmonic because this property
is invariant under dilation. So we can argue as before to get a subsequence that
converges in W12 on compact subsets of C_; 1,31 to a free boundary harmonic map
v: C_3131 > R" C RN with free boundary T' = R ¢ RV . As before, we get

/ vl = 5.
C—11

which again contradicts Theorem 7.3. (Note that for free boundary harmonic maps into
(R”, R¥) we do not need the assumption E(v) < &,; see also [6, Remark B.3].) O

With this lemma we can prove that the 8 —energy of a free boundary almost harmonic
map on a long half-cylinder would be far less than the total energy.

Theorem 7.8 Given § > 0 there exists v > 0 depending on §, N and T" such that if
m is any positive integer and u is v—almost harmonic from C_ (43,31 to N with
free boundary along u(aCc_(mH),,y) C T, and E(u) < &,, then

(72) / lugl® <768 |Vul?.
C—mi1.0 C—(m+3)1.31

Proof The proof follows by covering C_,;+3)7,3; by sub-half-cylinders of length 6/,
together with Lemma 7.7. We refer to the proof of [6, Proposition B.19] for details. O

The following simple lemma will be useful in the next subsection.

Lemma 7.9 Suppose u: C_(;,43)1,31 — N is a map satisfying

/ ug|> < §E(u) and / IVul*> < SEu).
C—m1.0 C—(m+3)1,—m1YCo 31

Then
Area(u) < $E(u).

Proof First note that

2 2 2\1/2
Area(u)=/ (g Pluac | — (g )/ s/ A
C_(m43)1,31 C_

(m+3)1,31
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By ab < 4a2 + 76 b2 we get

4 3
oy [ el =3 [ el [
C—ml,O C—ml 0 —ml,O

1/ 3/ 1
<= g | + lus|”+ < E(u)
3 CfmIO 16 —ml,0 ' 9
<JE).

Combining with the second assumption, we have

(74) Area(u) < $E(u) + § E(u) = E(u) — §E(u) < SE(u). o
7.4 Proof of Theorem 4.4

Now we are ready to prove Theorem 4.4. We will follow the same scheme as in
[6, Section B.6]. One key point in our setting is that we may get two different kinds of
bubbles. We may get spherical bubbles as in [6, Section B.6], as well as free boundary
disk bubbles as [15]. The new techniques developed in previous sections will be
essentially used to study these bubbles.

A boundary ball B of D is always the intersection of a classical ball B, (x) of R?
with D, ie B = B,(x) N D for some x € dD and r > 0. In the following proof we
say r is the radius of B and sometime abuse notation to write B = B, (x).

We use I to denote a fixed conformal map that maps the upper half-plane H2 to the
unit disk D which maps (0, 1, 00) to three given distinct points on dD. We denote
by p* the image of oo and by D~ the image of D;r C H2 under the map IT. For a
given boundary ball B, (x), we define the conformal dilation of B,(x) to be the map
W, & D — D such that v, x =To ®, xo0 ! , where @, X is the composmon of a
dilation of H2 by the factor 1 and a translation of H2 by —I1~!(x). (Note IT~!(x)
is a boundary point of H2.)

Proof of Theorem 4.4 We divide the whole proof into two parts. The first part is
about the bubbling compactness, and the second part is about the energy identity.
Note that bubbling convergence with energy identity implies varifold convergence by
[6, Proposition A.3]. (Even though in [6, Proposition A.3] the domain of the maps is
the sphere, the proof works in our case for a disk domain with no change.)

Bubbling convergence Let u/ be a sequence as in the theorem. Then property ()
implies property (Bg) in Definition 7.1. By the compactness result Theorem 7.2,
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we can find a free boundary harmonic map vg: (D, dD) — (N, T") (which may be
trivial), and a finite collection of singular points Sy C D, such that a subsequence (still
denoted by u/) converges to vy weakly in W12(D) and strongly in W12(K) for
any compact subset K C D \ Sg. The measures |Vu/|?dx converge to a measure vy
with vo(D) < Eq, and at each singular point x € Sp, we have vo({x}) > ;.

Next we want to renormalize the maps near the singular points. Let us start with
boundary points. Suppose x € Sy lies on dD. Let €3 > 0 be smaller than %81 and &;.
Fix a radius p > 0 so that x is the only singular point in the boundary ball B;,(x) and
/, B, (x)|Vv0|2 < 3. For each j, we choose r; > 0 to be the smallest radius for which

inf

/ |vuj |2 = €3,
¥€By—r; ()NAD J B, (x)\ By, ()

and choose a point y; € dD so that By, (yj) C Bp(x) with pr(x)\Br. (yj)|Vuf|2 =¢;3.
Since u; converges strongly to vy on any compact subset of B, (x)\{x}, by the energy
bound we get y; — x and r; — 0.

For each j, since the energy functional is invariant under conformal changes, the dilated
sequence of maps ﬁ{ =ul oW, ;.y; still satisfies the almost harmonic property (By) in
Definition 7.1, and they all have the same energy as the u/ . Using the compactness
result Theorem 7.2 again, we get a subsequence (still denoted by ﬁ{ ), and a finite
collection of singular points S; C D, and a free boundary harmonic map vy: D — N,
such that ﬁ{ converges to v; weakly in W'?(D) and strongly in W'-?(K) for any
compact K C D\ S;. Moreover, the measures |Vi?{ |2dx converge to a measure v,
on D.

The choice of By, (y;) guarantees that
vi(D\{p*}) =vo({x}) and vy (D7) =wo({x})—e3.
Next we want to show the following claim:
Claim The maximal energy concentration at any y € S;\{p ™} is at most vo({x})—e3.

Proof of the claim Note that any such point y satisfies vy ({y}) > &1 > &3, hence it can
only lie in D~ . Then the fact v{ (D7) <vo({x}) —e3 implies v{({y}) <vo({x})—e3.

Now we iterate this blowing-up construction at every boundary singular point in Sy
and Sy, and we will get subsequent singular sets Sy, S1, S, .. ., and dilated sequences
of maps {u’}, {17{}, {ﬁé ,...,one more singular set after each blowing-up process.
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From the claim we know that this process must terminate after at most Eg/e3 steps,
and we have in total m singular sets Sy, S1, ..., Sm. Then for each sequence of dilated
maps ﬁ& a €{0,...,m}, there are no boundary singular points away from S, . Lastly
we can apply the blowing-up process in [6, Appendix B.6] to each ﬁé at those interior
singular points, and finally get that the sequence u/ converges to a collection of free
boundary harmonic disks vg, vy, ..., vy: (D,dD) — (N,T) and harmonic spheres
U1,...,0%: S? — N. Note that these harmonic spheres arise as blow-up limits near
interior singular points.

Energy identity In this part we will show the summation of the energy of all the v;
is equal to the limit of the energy of the u/, ie no energy was lost in the bubbling
convergence process.

In order to prove this, we need to reexamine what happens to the energy during the
blowing-up process. The “no loss of energy” for blowing up of interior singular points
has already been proved by Colding—Minicozzi in [6, Appendix B.6, Step 4], so we
only need to analyze the case for blowing up at boundary singular points.

At each blowing-up step, the energy is taken away from a singular point x and then
goes to one of two places:

e it can show up in the new limiting free boundary harmonic disk of a singular
pointin dD \ {pT}, or

e it can disappear at p™T.

In the first case, the energy is accounted for in the final summation and no energy is lost.
So we only need to rule out energy loss in the second case. With out loss of generality,
we can only prove the “no loss of energy” for the first blow-up process, ie for the
convergence of {ZZ{ }. Note that if there is energy loss, then vi (D \ {p}) < vo({x}).

We argue by contradiction. Suppose vy (D \{pT}) <vo({x}) —3§ for some 8 > 0. Note
that we must have § < 3. Thus we can choose two sequences of radii s; > ¢; so that
each Aj = By; () \ By; () is a half-cylinder with

I 2o 3
(75) si—>0, = — o0, [Vu’|©>6>0.

Vj A].
Actually we may choose s; close to p, and ¢; close to sj/Aj, and s;/t; > A; for a

sequence A; — oo. After a conformal change, the 4; are a sequence of half-cylinders
whose length goes to oco. Moreover, there is quite a bit of freedom in choosing s;
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and 7, ie we can change s; and ¢; a little bit and the above conditions are still satisfied.
So we may also assume #/ has small energy near the two ends of the half-cylinder A j
as the second condition in Lemma 7.9.

Theorem 7.3 (With = %) together with § < &3 < &, implies the theta energy of
u’ on Aj is small, so the first condition of Lemma 7.9 is satisfied for j sufficiently
large. Then by Lemma 7.9, we get that the area of the image of u/ on 4 j must be
strictly less than the energy of u/ on A j for j large, which is a contradiction to the
area assumption (37). Thus we complete the proof. |

8 Modifications for the proof of Theorem (.3 and discussions

In this part, we record necessary modifications to adapt the proof of Theorem 0.1 to
Theorem 0.3. There are only two places where we have to do some modifications.

Modification for Theorem 4.1 Again, the first step is to show that we can approximate
a given y(-,t) € Q by some 7(-,t) € Q which lies in C°([0, 1], C2(D, N)). So we
need to do mollifications on y . However, direct mollifications as we did in Section 5 can-
not work here, because the endpoint maps y (-, 0) =vy and y (-, 1) =v; may change af-
ter mollifications. In order to handle this issue, we first mollify the whole family y (-, ¢)
as in Section 5 to get a continuous family of C? maps ¥(-,): (D,dD) — (N, T);
next, by reparametrizing ¢ — s(t) = (1 —2p)t + , we get a new family (-, s) which
is defined for s € [i, 1 — uu]. Moreover, since s(t) — ¢ as s — 0 and y(-,1) is C°
as a function of ¢ to C2(D, N), for any given & > 0, we can choose x small so that
maxge, 1 [7(-.5) = 7(-.9)lc2 <e.

Note that y(-,0) and y (-, 1) are both smooth, so by varying the mollification parameter
we can connect y(-,0) and (-, 1) to (-, n) and (-, 1 —p) respectively, and hence
get a continuous family of C2—maps (-, s): (D, dD) — (N, T') for s € [0, 1]. The
slices of ¥ (-, s) for s €[0, ] are mollifications of y (-, 0) and the slices of ¥(-, s) for
s € [1 — u, 1] are mollifications of y (-, 1). Thus we get a regularization of y(¢) which
stays close to y(¢) in C°(D,N) N W12(D, N). The conformal reparametrization
procedure works in the same way as Section 5. Note that since y(-,0) = vy and
y(-,1) =7v; are both conformal harmonic maps, the pull-back metrics of g on N are
already conformal to the standard metric gg on D, so the conformal reparametrization
maps /A (t) satisfy 7(0) = h(1) = id. Therefore after the conformal reparametrization
procedure, the endpoint maps are still vy and vy, so it is a legitimate sweepout
homotopic to y . We know that for this family (-, s), the area and the energy are close.
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Modification for Theorem 4.3 In the tightening process, we only want to pull tight
the slice with energy larger than the energy of vy and vy . Therefore, we need to modify
the theorem so that in the statement, (x) holds for those ¢ with E(}y(-,1)) = W/A,
where A > 1 is chosen with W /A > max(Area(vg), Area(vy)). All the proofs in
Section 6 work in exactly the same way by changing %W to W/A.

Modification for Theorem 4.4 In the bubbling convergence procedure, we have one
additional assumption on the sequence u” : that is, when restricted to 9D, u/: 9D — T
is monotone. This is because the monotonicity is preserved when taking the limit.

Now we show that there is only one possible disk bubble. In order to show this, we only
need to argue that each blow-up on the boundary can only generate a punctured sphere
rather than a harmonic disk. Let’s say uj is generated from blowing up a boundary
point on D. Then by the classical Courant—Lebesgue lemma, the length of uy|yp is
shorter than % of the total length of I'. Since the limiting series after conformal dilation
are all monotone on the boundary, u; should also be monotone on the boundary, which
implies that u; maps the whole boundary to a single point, ie uy is a punctured sphere.

Some further discussions One main goal of the min-max construction for the fixed
boundary problem is to produce a third nonminimizing minimal disk spanning I", which
is a direct generalization of the work of Morse—Tompkins [34] and Shiffman [49] (see
also Struwe [53]) to the Riemannian setting. There is one issue left open in our current
result. In fact, it will be good if one can restrict the sweepouts to all those o € 2y where
o(-,t): 0D — T is a monotone parametrization for each ¢ € [0, 1]; if this could be done,
our proof will show that one of the disk bubbles has monotone boundary parametrization,
and all other disk bubbles must map the boundary dD to a point on I", so that they
are punctured harmonic spheres. Thus if we assume additionally that the ambient
manifold A has nonpositive curvature, then by the uniqueness of harmonic maps all
of these (punctured) harmonic spheres must be constant, so the min-max solution
we obtain in Theorem 0.3 gives an effective construction of a third nonminimizing
(unstable) minimal disk; cf Hohrein’s PhD thesis [21] for the general existence result
of unstable minimal surfaces of higher genus in manifolds with nonpositive curvature.
Unfortunately our current mollification process could possibly destroy the monotonicity
property of the boundary parametrization in general. It will also be good to reduce the
regularity of the boundary curve I' to be just rectifiable, but our theory needs a nice
Fermi neighborhood of I', which requires smoothness.
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Appendix

For the definition of Fermi coordinate system near I' C N we refer to [31, Appendix A].
We will say a quantity A4 is a—close to quantity B if wehave | —a < A/B <1+«.

Lemma A.1 There is a constant k > 0 depending only on N', T and the isometric
embedding N' < R¥ | such that for any x € T, the k —neighborhood Uy of x has a
local Fermi coordinate system, satistying the following condition: let g! be the metric
of N under Fermi coordinates, g? be the standard Euclidean metric under the Fermi
coordinate system, and g> be the standard Euclidean metric of RV . Then there is a
constant o > 0 depending on « such that:

(i) For any vector V € T,N C TPRN where p € Uy, ||V || g« is a—close to ||V || 4
for k,l €{1,2,3}.

(ii) For any pair of points p1, p2 € Ug, || p1 — p2llg2 is a—close to || p1 — palg3-

Proof We only need to show that « exists for any x € I', then by a covering argument
we can prove k exists globally. Fix x e I.

(i) By the definition of Fermi coordinates, we can choose the Fermi coordinates so
that gl.lj (x)= gl.zj (x) =4;j. Thenif « is small enough, locally (1 —«)id < (g 1g?<
(1 + @) id, so we get (i) for k, € {1,2}. Since N < R is an isometric embedding,
the lengths of V' measured by g! and g* are close when « is small enough, hence (i)
is true.

(ii) First we show || p1— p2||2 is a—close to the distance between py, ps in V. Note
that for any curve connecting p; with p, in Uy, the length of the curve evaluated
under g! and g? should be a—close, since the lengths of the tangent vectors of the
curve are a—close. Since the length between p; and p, is the shortest distance among
all curves, we see that || p1 — p2||g2 is a—close to the distance between p; and p,
on N (note that we can choose « small so that U, is convex).

Since at each point x of A/ scaling up makes N converge to the tangent space at x, the
distance for points close to x on A is equivalent to the distance in R™ . Then apply this
argument to all Fermi neighborhoods with small x we get that || p; — p2||g3 is a—close
to the distance between py, py in . Itis easy to see that || p1 — p2 || g3 <disty(p1, p2),
thus disty(p1, p2) is a—close to || p1 — p2|| g3 for some «. This proves the lemma. O

We also need the following Poincaré-type inequality with partial zero boundary values:
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Lemma A.2 Given a function f: D} — R with f |a;4 = 0, there exists a constant

C = C(r) such that
2 2
[ rr=cf v

Proof We just extend f to the whole of D, by letting f(x,—y) = f(x,y) in
Cartesian coordinates. Then f is a function on D, which vanishes on the boundary,
hence we can apply the classical Poincaré inequality. Note that this reflection doubles
[ f? and [|V f]* at the same time, so we get the desired Poincaré inequality. |

A.1 Bubble convergence implies varifold convergence

The main goal of this section is to prove that bubble convergence implies varifold
convergence; cf [6, Proposition A.3]. Let us recall some notions from geometric
measure theory; for more details see [6, Section 1.3], and for further details see [50].
Let 7: GobN — N be the Grassmannian bundle of 2—planes over N, and let us
consider the pairs (X, F)) where X is a compact surface (not necessarily connected)
and F: X — G, is a measurable map such that f := o F isin WH2(X, ). We
also use J¢ to denote the Jacobian of /. We say that a sequence X; = (Xj, F;) with
uniformly bounded areas varifold converges to (X, F) if for all h € C°(G,N) we

have
/ hoFiin—>/ hoFlJy.
X; X

This is a kind of weak notion of convergence of measures. There exists a distance
function djy-, the varifold distance, which induces this topology.

Here is one important example: a varifold induced by a map. Let u: D — N be a
W12 _map, then a pair (X, F) induced by u is constructed as follows: X is just D,
and F: X — G,/ is given by sending x to du(Tx X ). This is only defined on the
measurable space where J, is nonzero, but we can extend it arbitrarily to all of X
since the corresponding Radon measure on G, N (ie the varifold induced by u) given
by h — |, 'y ho FJ, is independent of the extension.

Proposition A.3 If a sequence v/: D — N of W12 _maps bubble converges to a
finite collection of smooth maps {uy, . ..,un} such that either u;: (D,dD) — (N, T")
is a harmonic disk with free boundary or u;: S?> — N is a harmonic sphere, and the
energy identity holds, then this sequence also varifold converges to the varifold induced

by {ug,...,um}.
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We want to emphasize that the energy equality, which appears in the last part of
Theorem 4.4, plays a key role in the proof.

Proof (see also [6, proof of Proposition A.3]) For each v/ we let V/ denote the
corresponding map to G, N'. Similarly for each u; let U; denote the corresponding map
to G, . By the construction of bubble convergence (in the proof of Theorem 4.4), we
can choose m +1 sequences of domains Ql .. Q] C D that are pairwise disjoint for
each j,sothatforeachi =0,...,m, applylng v (the inverse of the corresponding
conformal dilation) to Q] gives a sequence of domams converging to either D\ S; (if
it is a disk bubble) or S 2 \ &; (if it is a sphere bubble), and they account for all the
energy by the energy identity, ie

lim Vv 2=
i=e Ip\(U; )

In order to show varifold convergence, we only need to show for any & € C%(G,N)
that

/hoU,Ju = lim [ hoV/J,= lim oV oW i ey, s
5 :

Jj—o00 QJ Jj—o00 ;!(Q{)
where the last equality is the change of variables formula.

Given ¢ > 0 and 7, let Q. be the set where J,, > &. Then we only need to show

hoU;Jy,; = lim hoV/ oW iJyiow, ;)-
Qi =00 Jurt@l) "

Note that J,joy, ;, = Ju; in L' since v/

— u; in W12 so the measure of
i. . €
{x € Qa . ijoqli,j < 5}
goes to zero; the W 1-2—convergence implies that for given § > 0, the measure of

(xeQl: oy, , =5 [V/ oW —Ui| = 5}

goes to zero. Then by the dominated convergence theorem we get the desired identity.
Thus we conclude the varifold convergence. a
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