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1. Introduction

The min-max construction of closed geodesics dates back to Birkhoff [6], and tremen-
dous progress has been made since then (see [11] for a nice summary). The min-max
construction of closed curves (or networks) of (nonzero) constant geodesic curvature,
however, has not been thoroughly investigated. In particular, it has been conjectured by
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Arnold [5, p. 395] and Novikov [5, Section 5] that every topological two sphere admits
closed embedded curves of any prescribed constant geodesic curvature. This conjecture
remains open, and we refer to [9,14,15] for more background and some partial results
towards this conjecture.

The goal of this article is to show that on a closed surface, for any ¢ > 0, our CMC min-
max theory [19,18] (which is based on the Almgren-Pitts min-max theory for minimal
hypersurfaces [3,13]) produces a solution of the same regularity as the surfaces in [19],
except for finitely many points, at which the solution is a stationary junction:

Theorem 1.1. In any closed Riemann surface (S,g), given ¢ > 0, there is a curve y in
S which is almost embedded with constant geodesic curvature ¢, except at finitely many
stationary junctions of integer density.

Moreover, each smooth constant geodesic curvature segment appears with multiplicity
one.

See Theorem 2.1 for a precise statement.

The key is a graph theoretic argument (Section 4) to classify blowups which have a
number of iterated replacements in open disks. In particular, we prove that such blowups
are integer multiple of a line:

Proposition 1.2. In any neighborhood where the c-min-maz curve v has replacements,
any tangent cone of v must be an integer multiple of a straight line.

See Corollary 3.5 and Theorem 4.6 for details.

This classification result (for blowups) is new even for the case of geodesics, that is
¢ = 0. The existence of a nontrivial geodesic network was known by Pitts [12] (based upon
earlier works of Almgren [4]; note that Pitts’ result also holds true in higher codimension).
In fact, in [12] Pitts proved that the 1-dimensional min-max varifold is always supported
in the image of its tangent varifold under the exponential map at any given point.
Consequently, the min-max varifold is represented by a geodesic network. Note that
Pitts’s result does not preclude the tangent varifold being a bouquet of half lines (even
if the min-max varifold is almost minimizing near that given point).

The existence of a geodesic network has another proof by combining Pitts [13] with
Allard-Almgren [2]. Pitts [13] (based upon earlier works of Almgren [4]) proved the
existence of a weak min-max solution as a nontrivial, stationary, integer rectifiable, 1-
varifold in any closed manifold. The regularity theory of Allard-Almgren [2] for stationary
1-varifolds then implies that Pitts’s weak solution is a geodesic networks (with constant
integer multiplicity on each geodesic segment). We also refer to Calabi-Cao [7, Appendix]
and Aiex [1] for other proofs of this result.

However, even on surfaces, one can not follow Pitts’s regularity argument in [13]
(which succeeds for hypersurfaces of dimension between 2 and 6) to prove this network
regularity without Allard-Almgren [2]. The main missing ingredient for curves is that
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Simons’ classification for minimal stable hypercones [17] does not hold for curves. In
particular, Pitts’s argument [13, 7.8] cannot be extended to prove that tangent cones are
linear without Simons’ classification.

Nevertheless, using our new characterization for blowups, Pitts’ work [13] does directly
imply the geodesic network regularity of his weak solution. In fact, away from finitely
many points, Pitts’ weak solution has the good replacement property in small balls,
so any tangent varifold satisfies the assumptions of our classification result (using an
observation in [19, Lemma 5.10]), and hence is an integer multiple of a line. With this,
one can proceed the same as Pitts to obtain the desired regularity.

In this paper, we carry out the process described above in the setting for ¢ > 0, using
the theory we developed in [19,18].

In Section 2, we introduce the problem and state the main result. In Section 3, we col-
lect necessary results in our previous CMC min-max theory and prove the main theorem.
In Section 4, we prove the key ingredient on classifying blowups.

Remark 1.3. In [10], the authors have built upon our results, improving the regularity to
show that the networks produced are either smooth or C!'! curves. In particular, they
proved that if the (unique) junction is not a smooth point, then the tangent cone consists
of two lines intersecting transversally.

2. Min-max construction for weighted length functional

In this part, we will briefly introduce the setup for the min-max construction of
constant geodesic networks. We refer to [19] for more details.

Let (S, g) be a closed 2-dimensional surface with a Riemannian metric g. Fix a pos-
itive number ¢ > 0. Given any Caccioppoli set Q) C S, we define the c-weighted length
functional or c-length as

L£°(2) = Length(9Q) — c Area(Q), (2.1)

where Length and Area are calculated with respect to the metric g.
1-parameter families of Caccioppoli sets {€;}/c[0,1) is said to be a sweepout, if

e (= @, O =3
o the boundaries {92} are continuous in ¢ with respect to the flat topology.

We can then define the min-max value of £¢ as

L¢ = inf { max L(0Q) : {Q}ep,1 is a sweepout} . (2.2)
tel0,1] ’

In this paper we will prove that
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Theorem 2.1. There exists a nontrivial 1-varifold V', finitely many points {p;}?_, C S,
and a Caccioppoli set 2, such that

(1) V is induced by O (of multiplicity 1);

(2) away from {p;}_,, the boundary v = I is an almost embedded curve of constant
geodesic curvature c;

(3) at each p;, the density of V is an integer, and any tangent cone is a stationary
geodesic network in R?, smooth away from 0.

Here ‘almost embedded’ means that « is a smooth immersion, and near each self-
intersection point v decomposes to two connected embedded components which touch
but do not cross.

Remark 2.2. In fact, by refining Pitts’s combinatorial argument [13, 4.10] with the ob-
servation of Colding-De Lellis (the remark after [8, Proposition 3.3]), one can show that
the set {p;}?, consists of only one point. See also Remark 3.3.

3. Results from [19] and proof of Theorem 2.1

In [19,18] the authors established an existence theory, which in this setting yields
that there is a certain 1-varifold V associated with L°. This V satisfies a list of useful
properties that we will summarize in the following. In particular, the theory in [19,
18] works in any closed Riemannian manifold (M™*! g) (using the corresponding n-
dimensional c-weighted area functional), and when 3 < n+ 1 < 7, we proved that V is
induced by the boundary of some Caccioppoli set g, whose boundary Yo = 91 is an
almost embedded closed hypersurface of constant mean curvature c.

However, since the classification of stable minimal hypercones by Simons [17] does
not hold in dimension n = 1, we cannot directly obtain similar regularity results for V'
when n = 1. Instead, we will exploit some stronger properties of V that were obtained
in [19] to achieve some partial regularity. In fact, we will use certain good replacement
properties in small disks instead of just in small annuli.

Note that we used a discrete setup in [19,18] following the classical work of Almgren-
Pitts [3,13]. We will not dip into these sophisticated notations, as we can start directly
with the outcomes in [19].

Before summarizing what we proved in [19], we need to introduce the notion of ¢-
replacements. A 1-varifold V is said to have c-bounded first variation, if for any smooth
vector field X on S,

| / divSX<m>dv<x,s>\ <o [ X@IAVI@).
S
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Definition 3.1. Given a 1-varifold V' with c-bounded first variation and an open set U in
S, V* is said to be a c-replacement of V in U if

(1) V coincides with V* outside the closure U, i.e., VLLGr (S\U) = V*LGr(S\U)";

(2) IVII(S) = ¢+ Area(U) < [[V*|I(S) < [VII(S) + ¢ - Area(U);

(3) V*, when restricted to U, is induced by the boundary of some open subset Q* N U
(here * is an Caccioppoli set), that is, V*LLGry(U) = [0Q2* N U], such that 0Q*NU
is an almost embedded curve of constant geodesic curvature c;

(4) V* has c-bounded first variation.

We proved in [19] that V has certain good replacement properties:

Theorem 3.2. [Theorem 5.6, Proposition 5.8, Lemma 5.9 in [19]] Given ¢ > 0, let L° be
defined as (2.2), then there exists a 1-varifold V in (S, g), such that

(1) L€ > 0 and hence V is nontrivial;

(2) V has c-bounded first variation;

(3) for anyp € S,V has a c-replacement V* in any small enough annulus centered at p;
hence by a covering argument, there exists a finite set P = {p;}_,, so that for any
p € S\P, there exists a neighborhood U C S\P of p, such that V has a c-replacement
V*inU;

(4) in any neighborhood U where V' has a c-replacement, V* also has a c-replacement
V** in U; and this procedure of taking c-replacements can be iterated as many times
as one wants.

Remark 3.3. In [19, Theorem 5.6, Proposition 5.8, Lemma 5.9], we proved that V is
c-almost minimizing in any small annulus and hence has a c-replacement. As mentioned
earlier, by a remark of Colding-De Lellis after [8, Proposition 3.3], one can prove that
V' is c-almost minimizing in any small open neighborhood, except about one point. (In
particular one can reduce the set P to consist of a single point.)

To gain regularity of V* in U, we used curvature estimates for stable hypersurfaces
of constant mean curvature in [19, Theorem 2.6], but this is trivially true in dimension
n = 1 for curves of constant geodesic curvature.

As a key step to obtain our main regularity results in [19], we analyzed the blowups
of V' by proving their good replacement properties. Together with the above remark, it

follows that:

Proposition 3.4. Let V' be as in Theorem 3.2. Given any p € S\{p;}!~,, and a tangent
varifold C € TanVar(V,p) of V at p, then C satisfies,

! Here Grq(U) is the Grassmannian bundle of 1-lines over U.
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(1) C is a stationary 1-varifold in R?;

(2) given any open set U C R?, C has a 0-replacement C*;

(3) C* has O-replacement in any open set W C R2, and this procedure of taking 0-
replacements can be iterated as many times as one wants;

(4) C is integral, that is, C' is an integer multiplicity rectifiable varifold.

Proof. Properties (1)-(3) follow directly from [19, Lemma 5.10]. Note that in [19, Lemma
5.10], we only presented the proof that the tangent varifold C has replacements in any
small annuli, as this was sufficient for the regularity argument in that setting. In fact,
the same proof also shows that the tangent varifold C (at any point p ¢ {p;}* ;) has
replacements in any open set.

In particular, the good replacement property of C' follows from that of V. To be more

z—p
i

precise, denote C = limiﬁoo(np’ri)#V, where r; > 0, lim; ,o, r; = 0, and Mpry 1T
is the rescaling map of S (by embedding S into some Euclidean space R™Y). As in [19,
Lemma 5.10], to construct a replacement of C' in any open set U C R?, we can first take
the c-replacement V; of V in m, ;. (U) (which will be a proper subset of the set where V/
has c-replacement for 7 large enough). Then the limit of rescaling C* = lim; ;o (0, ., ) # Vi
will be the replacement of C' in U by the arguments in [19, Lemma 5.10].

Property (4) follows (1)-(3), and we provide details as follows for completeness. Using
the existence of O-replacements and the same arguments as [13, 3.13],° one can show
that C has strictly positive density everywhere, and hence is rectifiable; (see [16, Theo-
rem 42.4]). Together with (1), we know that C is rectifiable cone by [16, Theorem 19.3].
Therefore C, as a rectifiable cone, is a unit of rays starting from the origin with positive
constant multiplicity along each ray. Finally we argue that the multiplicities must be in-
tegers. Indeed, given each p € support(V)N S, we can take a O-replacement C* over the
ball B(p, ). By the definition of 0-replacement, C* is induced by an integer multiple of
line segments in B(p, %), and also C* and C have the same length in B(p, %) Therefore
C must also have integer multiplicity inside B(p, %) This concludes the proof. O

As a direct corollary of Theorem 4.6 in Section 4, we have,
Corollary 3.5. Any C in Proposition 3./ is an integer multiple of a line passing the origin.

Now we are ready to sketch the proof of Theorem 2.1. Using Corollary 3.5 in place
of [19, Proposition 5.11], the regularity of V' away from {p;}?_, follows from that of [19,
Theorem 6.1] with minor modifications. The structure of tangent cones of V' at {p;}?,
follows from a classical argument of characterizing tangent cones of min-max varifold by
Almgren-Pitts [13, 3.13]. We will mainly focus on the differences with the proof of [19,
Theorem 6.1].

2 Indeed, [13, 3.13] assumes the “almost minimizing” property, but the proof only uses the existence of
O-replacements, which is a corollary of “almost minimizing” property.
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Proof of Theorem 2.1. We will prove parts (1)(2)(3) in three steps.

Step 1: We first focus on a neighborhood of a point p € spt||V||\P, where the set
P = {p:}", is given in Theorem 3.2. Take a small enough radius r > 0, such that
V has c-replacements in the geodesic ball B,.(p) C S. Fix any 0 < s < r, and take
a c-replacement V* in the annulus A,,(p) = B,(p)\Bs(p). By the definition of c-
replacement, V*L_ A . (p) is induced by the boundary of some Caccioppoli set ¥, and
is an almost embedded curve, denoted by 1, of constant geodesic curvature c.

Take a radius s < ¢t < r, such that the sphere B;(p) intersects 7, transversally,” and
intersects along the regular (non-touching) set of v;.* Now take a c-replacement V**
of V* in By(p) (usually called the second replacement). Again V**|_B;(p) is given by
an almost embedded curve v, of constant geodesic curvature c. Using Corollary 3.5 in
place of [19, Proposition 5.11], we can follow the same procedure as in [19, Theorem 6.1,
Steps 1 and 2] to show that v1 = v, in the overlapping region A, ;(p), and hence they
form an almost embedded curve «y in B, (p).

The next step is to use c-replacements in annuli A, ;(p), where 0 < 7 < s. Let V**
be the c-replacement of V* in A;;(p), which is induced by an almost embedded curve
v-. By the same reasoning, we have v, = 71 in A, ;(p), and hence by ODE uniqueness
theory, v» = v N A7 +(p).

Then by the moving sphere argument [19, Theorem 6.1, Step 5], we can show that V'
is induced by ~ inside Bs(p). This finishes the proof of the regularity of V away from
{p:}", (part (2) in Theorem 2.1).

Step 2: By the same argument as [18, Proposition 7.3], V' is induced by the boundary
of some Caccioppoli set €2, and

£°(Q) = LE.

Remark 3.6. Note that in [19], the main goal was to produce a nontrivial CMC hypersur-
face with prescribed mean curvature, so we did not investigate the relation between the
min-max limit varifold V and Caccioppoli sets. This part was delayed until [18, Propo-
sition 7.3], where we proved that V is induced by the boundary of some Caccioppoli set
Q, and the £ value of Q is the assigned c-min-max value, i.e. £°(Q) = Le.

This completes part (1) of Theorem 2.1.

Step 3: Finally we prove the structure of tangent cones TanVar(V, p;) at each p;, i.e.
part (3) in Theorem 2.1. Given a tangent cone C at p;, we know that C' is stationary
and integer rectifiable, since V' has c¢-bounded first variation and is integer rectifiable.
Now by smooth convergence, since V' consists of constant curvature curves, C' must be a
geodesic network with constant integer multiplicity in each segment. Since C is a cone,
spt||C|| must be a finite union of half lines coming out of the origin. The only thing left

3 The existence of such t follows from Sard’s Theorem.
4 The touching set of v, is a discrete set.
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to prove is to show that the sum of all integer multiplicities must be an even number,
hence the density of C' at the origin - which is the same as that of V" at p; - is an integer.
Write

C = lim (7, p,)4V, as varifolds.

J]—00

T—Pi
Tj

Here {r;} is a sequence of positive numbers converging to 0, and T, . (z) = are
the rescaling maps.”

Note that V = 02, and consider the limit

Q' = lim (7, ,,)#Q, as Cacciopolli sets.
j—oo
By the weak convergence, the spt ||[0€']| C spt ||C]|, and it is easy to see that away from
the origin the multiplicity of C' minus the multiplicity of 9Q’ (which is identical to 1) must
be an even number. On the other hand, one can see that there must be even numbers of
half lines in spt||0€Y|| (to form the boundary of a set). Summing all ingredients together,
we have proven that the number of half lines of C' (counting multiplicity) is even. O

4. Combinatorial argument

In this part, we change gear to study geodesic networks arising in Proposition 3.4.
Our main goal is to prove Theorem 4.6.

We define a stationary network V (embedded) in R? to be a network whose edges
vw are straight line segments with positive integer weight (multiplicity) 74, and which
satisfies at each vertex v of V' the stationarity condition

> mywTow = 0. (4.1)

Here fvw is the outward unit tangent from v along the edge vw.

By a slight abuse of notation we henceforth consider stationary networks V' consisting
of N vertices lying on the unit circle S! C R?, each with an exterior radial edge to
infinity; and E edges interior to the circle. In what follows let V be the interior graph
of V' (consisting of those edges inside the circle); any graph theoretic concepts (degree,
neighborhood, etc.) are with respect to V.

We say that such a stationary network V' is admissible if it satisfies:

5 Here we can isometrically embed (S, g) into some Euclidean space R%, and the calculation is done

in RE.

z—p;
Tj
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Fig. 1. A stationary junction with vertex at the origin, and intersection points v; with the unit circle marked;
models a tangent cone C'.

(1) At each vertex v, we have

where N, is the set of vertices adjacent to v. Note that, treating v, w as points in
S1 c R?, we have T = ﬁ, and the exterior edges have unit tangent T, = v and
weight m,,. (This is just a restatement of stationarity, clarifying the notation for the
exterior edges.)

(2) There are no crossings between interior edges.

We say that V is a replaceable network if it additionally satisfies the replacement
property:

(3) At each vertex v in V| there is a replacement V/; that is, there exists an admissible
network V] whose vertex set is {v} U {T,,|w € N,} C S1, and whose corresponding
exterior edges have multiplicity m,,, resp. M-

Finally, we say that V is a good network if it is a replaceable network, each replace-
ment V' of V is also replaceable, and so forth, so that V has arbitrarily many iterated
replacements. In fact we will only use four iterated replacements - two to rule out N = 3,
another to rule out NV = 4 and the fourth to rule out NV > 5.

The goal of this section will be to show that the only good network is the straight line
network. Before proving this, however, we briefly discuss the correspondence between
the networks considered here and the blowups in Section 3. See Figs. 1, 2, 3 and 4 for
examples of the replacement process.
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Fig. 2. An admissible network, models (for instance) a replacement C* in the unit ball.

Fig. 3. An iterated replacement C*” inside a small (red) circle about v;.
\ W

Fig. 4. The resulting (admissible) replacement network about v1; a local model for C** near v;.
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4.1. Relation to min-maz tangent cones

By Proposition 3.4, the tangent cone C' to the min-max varifold is an integral station-
ary 1-varifold in R2. So (for instance by [2]) it is, up to translation, a network consisting of
straight rays meeting at the origin, with integer multiplicities satisfying the stationarity
condition (4.1).

Any iterated replacements applied to C are then also stationary, and hence consist
of straight-line networks satisfying the stationarity condition at each vertex. Taking
a replacement C* in B; gives a network which must be regular - that is, consist of
straight-line segments without crossings - except possibly on the gluing interface 0B.
So in particular, admissible networks model the first replacement C*.

The replacement networks defined above are the result of considering iterated replace-
ments of C* in small balls about each vertex, and then cutting and rescaling so that the
replacement ball coincides with B;. In this way, the replacement networks are the local
models for iterated 0-replacements of C* (in the sense of Proposition 3.4), and to prove
Corollary 3.5 it indeed suffices to show that any good network is a straight line.

4.2. Bounding the number of interior edges

Lemma 4.1. Let f(N) be the maximum number of straight line segments that can be drawn
between N distinct points on the unit circle, which do not connect adjacent vertices, and
do not have any crossings. Then f(N) = max(N — 3,0).

Consequently, the total number of interior edges in an admissible network is bounded

by

ON -3 N >3

E<F(N):= .
< F() {max(N—l,O) SN <2

Proof. Any such edge divides the remaining vertices into a set of k vertices and a set of
[ vertices, k,l > 1. Then we have the recursive formula

fIN)=max{1+ f(k+2)+ f(l+2)|k+1=N—-2,k,1>1}.

It is clear that f(1) = f(2) = f(3) = 0. A straightforward induction then shows that
f(N)=N-—-3forall N>3. O

Note that if V' is an admissible network and any vertex v has degree 1 in f/, then the
interior edge must be the diameter through v. Since no interior edges may cross, this
implies that at most two vertices can have degree 1 (v and its antipode). Indeed, we have

Lemma 4.2. Let V be an admissible network and a vertex v of (interior) degree 1. Then
the number of interior edges is bounded by
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2N-5 ,N>14

E<F(N)= .
1 N <3

Proof. As above, the interior edge from v must be a diameter of the circle and its
antipode w must be a vertex in V. The diameter vw splits the remaining vertices into
two sets of k and [ vertices, where k+1 = N — 2 and without loss of generality 0 < k < [.
If w also has degree 1, then E <1+ F(k)+ F(l).

Otherwise, w has a second incident edge with positive weight, so to satisfy stationarity
it must be connected by a third edge to the other side of vw. In particular we must have
k,d>1l,and E<1+ F(k+1)+F(l+1).

Thus we have three cases: k = 0, in which case w must have degree 1 and

E <1+ F(N —2);
k =1, in which case N > 4 and
E<1+F(2)+F(N-2)=2+F(N —2);
finally 2 < k <[ in which case
E<1+F(k+1)+F(l+1)=2N -5.
The result follows by the cases for F(N —2). O

4.3. The case N =3

Let V' be an admissible network with vertices v; = e,

Set o, = 0y — 0;. Note that

= eiek _ e’i@j . eiozjk _ 1
T'k = - g = 620-7 - .
J |620k _ 610_7 ete — 1|

Also note that for 6 € [0, 27], we have

647

_ 0 0 .
e —1=2sin 52.6“9/2 = 2sin 5627

)

; 0

—i0 . .
—1=—92gin -

e sin 5 i€

—i0/2

Then stationarity at each vertex v; gives (after dividing through by €% respectively)

mi + mlgiei‘J‘l?/Q + mlgieiam/Z =0, (42)

mo — mlgie_ial2/2 + mggieio‘%/Z =0, (43)
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ms — mygie “213/2 — mggie123/2 = (), (4.4)

Note that all vertices must have degree 2 (that is, m;; > 0). (Otherwise, exactly one
vertex has degree 1, but then 2e = " deg(v) = 5 which is impossible.)

For each vertex vj, it is geometrically clear that the other two vertices cannot lie on
the same side of the diameter through v;, or else it would be impossible to satisfy the
stationarity. Therefore ayo € (0,7), ass € (0,7), ay3 € (m,27). (In particular aga # T,
since then the only way to satisfy stationarity at v; would be mi3 = 0, which cannot
happen; and similarly aas, a3 # 7.)

Set sji, = sin % and c;i = cos O% Note sj, c12, c23, —c13 € (0, 1).

We may rewrite the real part of the system above as

mq —S812  —S13 0 mi2
mo | + | —S12 0 —S923 miz | =0 (45)
m3 0  —s13 —s23 ma3

and the imaginary part as

C12 c13 0 mia
—C12 0 Co3 mis =0. (46)
0 —C13  —C23 Mag

12 C13 0
Since the c¢;; are nonzero, the matrix C' = (—012 0 c23 | has rank 2, nullity
0 —ci3 —cos

C13C23
1 and one can verify that the kernel is spanned by (—612623> .
C12€13

Lemma 4.3. Let V be an admissible network with N = 3. Then e'“* are rational points
on the unit circle.

mi2 C13C23

Proof. By the characterization of the kernel, we have <m13> =p <—012023> for some
ma3 C12C13

B # 0. The plugging into (4.5) we have

1 <m1> (-812 —s13 0 ) ( C13C23 )
—— | ma —512 0 —823 —C12€23
B ms 0 —s13 —s23 c12€13
C23523

—C13513 |,

C12512

where in the last line we have used the trigonometric addition formulae. Considering the

and so forth, it follows that each tan “* is rational and hence e'®/* is

SR UPE
mi12MmM13
a rational point. O

quotients
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Proposition 4.4. There is no good network V with N = 3.

Proof. Suppose V is a good network with N = 3. First take a replacement V{ of V
at v;. Using that ¢ — 1 = 2singeie+T7r for 6 € [0,27], the replacement network V{

should have vertices v = vy, v = T2, vy = T3 (up to a coordinate rotation); the

. . 1 1 1 .
corresponding angle differences are agg) = alzj, a§3) = %, aé3) = 22 Now consider

the iterated replacement V] at v{; then the angle differences will become aglgl) = e lin

(11) _ ay3+37 (11) _ cog
Qi3 = —3 Qo3 " = -

Apply the same twice iterated replacement at vs; then in particular the (non-reflex)

opposite angle difference halves twice, so the resulting network V3% will have agg) = 2z,

By Lemma 4.3 we must have ¢® € Q(i) for each of these a. Since Q(i) is a field this
implies that exp(i( :(ngl) - agg))) = 3/t =

absurd. O

)

%(—1 + 1) is a rational point, which is

4.4. General N

Recall that E, deg,--- denote the edges, degree, etc. of the interior graph V.
Proposition 4.5. There is no good network V with N = 4.

Proof. Suppose V is a good network with N = 4. By the previous proposition, there are
no good networks with N = 3, so by taking a replacement we see that each vertex v in
V cannot have degree equal to 2.

If there is a vertex with degree 1, then by Lemma 4.2, we have that F < F;(4) = 3.
But since there are at most two vertices with degree 1, and the remaining vertices must
have degree at least 3, we have

(3(N —2) +2) =4,

N | =

E= % > deg(v) >

which is a contradiction.
On the other hand, if there are no vertices with degree 1, then they all have degree
at least 3, so > deg(v) > 3N = 12, but this contradicts the earlier bound

D degv=2E <2F(4) =10. O

Theorem 4.6. The only good network V is the straight-line network which has N = 2,
diametrically opposite vertices and equal multiplicities.

Proof. It is clear that there is no admissible network with N = 1, and the only admissible
network with NV = 2 is the straight line configuration.

Since we have proven there are no good networks with N = 3,4, by taking replace-
ments we have ruled out any vertex v in 1% having degree 2 or 3, and we may assume
N > 5.
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If there is a vertex with degree 1, then by Lemma 4.2, we have that E < Fj(N) =
2N —5. But since there are at most two vertices with degree 1, and the remaining vertices
must have degree at least 4, we have

Zdeg %4(N—2)+2)=2N—3,

which is a contradiction.
On the other hand, if there are no vertices with degree 1, then all vertices must have
degree at least 4 and so > deg(v) > 4N. But

> " deg(v) = 2E < 2F(N) = 4N — 6,
which is a contradiction. O

Remark 4.7. The stationarity of V' at each vertex automatically implies that:

(1) V is stationary at infinity, that is,
Z m,v = 0.
v

(2) The mass of the interior graph V is the same as the graph which extends the exterior
rays into the origin, that is,

va = Z My |V — W)
v

Uw€‘>
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