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We prove that on a closed surface, for any c > 0, our min-max 
theory for prescribing mean curvature produces a solution 
given by a curve of constant geodesic curvature c which is 
almost embedded, except for finitely many points, at which 
the solution is a stationary junction with integer density. 
Moreover, each smooth segment has multiplicity one. The key 
is a classification of blowups which is new even for c = 0.
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1. Introduction

The min-max construction of closed geodesics dates back to Birkhoff [6], and tremen-
dous progress has been made since then (see [11] for a nice summary). The min-max 
construction of closed curves (or networks) of (nonzero) constant geodesic curvature, 
however, has not been thoroughly investigated. In particular, it has been conjectured by 
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Arnold [5, p. 395] and Novikov [5, Section 5] that every topological two sphere admits 
closed embedded curves of any prescribed constant geodesic curvature. This conjecture 
remains open, and we refer to [9,14,15] for more background and some partial results 
towards this conjecture.

The goal of this article is to show that on a closed surface, for any c > 0, our CMC min-
max theory [19,18] (which is based on the Almgren-Pitts min-max theory for minimal 
hypersurfaces [3,13]) produces a solution of the same regularity as the surfaces in [19], 
except for finitely many points, at which the solution is a stationary junction:

Theorem 1.1. In any closed Riemann surface (S, g), given c > 0, there is a curve γ in 
S which is almost embedded with constant geodesic curvature c, except at finitely many 
stationary junctions of integer density.

Moreover, each smooth constant geodesic curvature segment appears with multiplicity 
one.

See Theorem 2.1 for a precise statement.
The key is a graph theoretic argument (Section 4) to classify blowups which have a 

number of iterated replacements in open disks. In particular, we prove that such blowups 
are integer multiple of a line:

Proposition 1.2. In any neighborhood where the c-min-max curve γ has replacements, 
any tangent cone of γ must be an integer multiple of a straight line.

See Corollary 3.5 and Theorem 4.6 for details.
This classification result (for blowups) is new even for the case of geodesics, that is 

c = 0. The existence of a nontrivial geodesic network was known by Pitts [12] (based upon 
earlier works of Almgren [4]; note that Pitts’ result also holds true in higher codimension). 
In fact, in [12] Pitts proved that the 1-dimensional min-max varifold is always supported 
in the image of its tangent varifold under the exponential map at any given point. 
Consequently, the min-max varifold is represented by a geodesic network. Note that 
Pitts’s result does not preclude the tangent varifold being a bouquet of half lines (even 
if the min-max varifold is almost minimizing near that given point).

The existence of a geodesic network has another proof by combining Pitts [13] with 
Allard-Almgren [2]. Pitts [13] (based upon earlier works of Almgren [4]) proved the 
existence of a weak min-max solution as a nontrivial, stationary, integer rectifiable, 1-
varifold in any closed manifold. The regularity theory of Allard-Almgren [2] for stationary 
1-varifolds then implies that Pitts’s weak solution is a geodesic networks (with constant 
integer multiplicity on each geodesic segment). We also refer to Calabi-Cao [7, Appendix]
and Aiex [1] for other proofs of this result.

However, even on surfaces, one can not follow Pitts’s regularity argument in [13]
(which succeeds for hypersurfaces of dimension between 2 and 6) to prove this network 
regularity without Allard-Almgren [2]. The main missing ingredient for curves is that 
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Simons’ classification for minimal stable hypercones [17] does not hold for curves. In 
particular, Pitts’s argument [13, 7.8] cannot be extended to prove that tangent cones are 
linear without Simons’ classification.

Nevertheless, using our new characterization for blowups, Pitts’ work [13] does directly 
imply the geodesic network regularity of his weak solution. In fact, away from finitely 
many points, Pitts’ weak solution has the good replacement property in small balls, 
so any tangent varifold satisfies the assumptions of our classification result (using an 
observation in [19, Lemma 5.10]), and hence is an integer multiple of a line. With this, 
one can proceed the same as Pitts to obtain the desired regularity.

In this paper, we carry out the process described above in the setting for c > 0, using 
the theory we developed in [19,18].

In Section 2, we introduce the problem and state the main result. In Section 3, we col-
lect necessary results in our previous CMC min-max theory and prove the main theorem. 
In Section 4, we prove the key ingredient on classifying blowups.

Remark 1.3. In [10], the authors have built upon our results, improving the regularity to 
show that the networks produced are either smooth or C1,1 curves. In particular, they 
proved that if the (unique) junction is not a smooth point, then the tangent cone consists 
of two lines intersecting transversally.

2. Min-max construction for weighted length functional

In this part, we will briefly introduce the setup for the min-max construction of 
constant geodesic networks. We refer to [19] for more details.

Let (S, g) be a closed 2-dimensional surface with a Riemannian metric g. Fix a pos-
itive number c > 0. Given any Caccioppoli set Ω ⊂ S, we define the c-weighted length 
functional or c-length as

Lc(Ω) = Length(∂Ω) − c Area(Ω), (2.1)

where Length and Area are calculated with respect to the metric g.
1-parameter families of Caccioppoli sets {Ωt}t∈[0,1] is said to be a sweepout, if

• Ω0 = ∅, Ω1 = Σ;
• the boundaries {∂Ωt} are continuous in t with respect to the flat topology.

We can then define the min-max value of Lc as

Lc = inf
{

max
t∈[0,1]

Lc(∂Ωt) : {Ωt}t∈[0,1] is a sweepout
}

. (2.2)

In this paper we will prove that
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Theorem 2.1. There exists a nontrivial 1-varifold V , finitely many points {pi}n
i=1 ⊂ S, 

and a Caccioppoli set Ω, such that

(1) V is induced by ∂Ω (of multiplicity 1);
(2) away from {pi}n

i=1, the boundary γ = ∂Ω is an almost embedded curve of constant 
geodesic curvature c;

(3) at each pi, the density of V is an integer, and any tangent cone is a stationary 
geodesic network in R2, smooth away from 0.

Here ‘almost embedded’ means that γ is a smooth immersion, and near each self-
intersection point γ decomposes to two connected embedded components which touch 
but do not cross.

Remark 2.2. In fact, by refining Pitts’s combinatorial argument [13, 4.10] with the ob-
servation of Colding-De Lellis (the remark after [8, Proposition 3.3]), one can show that 
the set {pi}n

i=1 consists of only one point. See also Remark 3.3.

3. Results from [19] and proof of Theorem 2.1

In [19,18] the authors established an existence theory, which in this setting yields 
that there is a certain 1-varifold V associated with Lc. This V satisfies a list of useful 
properties that we will summarize in the following. In particular, the theory in [19,
18] works in any closed Riemannian manifold (Mn+1, g) (using the corresponding n-
dimensional c-weighted area functional), and when 3 ≤ n + 1 ≤ 7, we proved that V is 
induced by the boundary of some Caccioppoli set Ω0, whose boundary Σ0 = ∂Ω is an 
almost embedded closed hypersurface of constant mean curvature c.

However, since the classification of stable minimal hypercones by Simons [17] does 
not hold in dimension n = 1, we cannot directly obtain similar regularity results for V
when n = 1. Instead, we will exploit some stronger properties of V that were obtained 
in [19] to achieve some partial regularity. In fact, we will use certain good replacement 
properties in small disks instead of just in small annuli.

Note that we used a discrete setup in [19,18] following the classical work of Almgren-
Pitts [3,13]. We will not dip into these sophisticated notations, as we can start directly 
with the outcomes in [19].

Before summarizing what we proved in [19], we need to introduce the notion of c-
replacements. A 1-varifold V is said to have c-bounded first variation, if for any smooth 
vector field X on S,

∣∣∣∣
∫

divSX(x)dV (x, S)
∣∣∣∣ ≤ c ·

∫
|X(x)| d‖V ‖(x).
S
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Definition 3.1. Given a 1-varifold V with c-bounded first variation and an open set U in 
S, V ∗ is said to be a c-replacement of V in U if

(1) V coincides with V ∗ outside the closure U , i.e., V�Gr1(S\U) = V ∗�Gr1(S\U)1;
(2) ‖V ‖(S) − c · Area(U) ≤ ‖V ∗‖(S) ≤ ‖V ‖(S) + c · Area(U);
(3) V ∗, when restricted to U , is induced by the boundary of some open subset Ω∗ ∩ U

(here Ω∗ is an Caccioppoli set), that is, V ∗�Gr1(U) = [∂Ω∗ ∩U ], such that ∂Ω∗ ∩U

is an almost embedded curve of constant geodesic curvature c;
(4) V ∗ has c-bounded first variation.

We proved in [19] that V has certain good replacement properties:

Theorem 3.2. [Theorem 5.6, Proposition 5.8, Lemma 5.9 in [19]] Given c > 0, let Lc be 
defined as (2.2), then there exists a 1-varifold V in (S, g), such that

(1) Lc > 0 and hence V is nontrivial;
(2) V has c-bounded first variation;
(3) for any p ∈ S, V has a c-replacement V ∗ in any small enough annulus centered at p; 

hence by a covering argument, there exists a finite set P = {pi}n
i=1, so that for any 

p ∈ S\P, there exists a neighborhood U ⊂ S\P of p, such that V has a c-replacement 
V ∗ in U ;

(4) in any neighborhood U where V has a c-replacement, V ∗ also has a c-replacement 
V ∗∗ in U ; and this procedure of taking c-replacements can be iterated as many times 
as one wants.

Remark 3.3. In [19, Theorem 5.6, Proposition 5.8, Lemma 5.9], we proved that V is 
c-almost minimizing in any small annulus and hence has a c-replacement. As mentioned 
earlier, by a remark of Colding-De Lellis after [8, Proposition 3.3], one can prove that 
V is c-almost minimizing in any small open neighborhood, except about one point. (In 
particular one can reduce the set P to consist of a single point.)

To gain regularity of V ∗ in U , we used curvature estimates for stable hypersurfaces 
of constant mean curvature in [19, Theorem 2.6], but this is trivially true in dimension 
n = 1 for curves of constant geodesic curvature.

As a key step to obtain our main regularity results in [19], we analyzed the blowups 
of V by proving their good replacement properties. Together with the above remark, it 
follows that:

Proposition 3.4. Let V be as in Theorem 3.2. Given any p ∈ S\{pi}n
i=1, and a tangent 

varifold C ∈ TanVar(V, p) of V at p, then C satisfies,

1 Here Gr1(U) is the Grassmannian bundle of 1-lines over U .
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(1) C is a stationary 1-varifold in R2;
(2) given any open set U ⊂ R2, C has a 0-replacement C∗;
(3) C∗ has 0-replacement in any open set W ⊂ R2, and this procedure of taking 0-

replacements can be iterated as many times as one wants;
(4) C is integral, that is, C is an integer multiplicity rectifiable varifold.

Proof. Properties (1)-(3) follow directly from [19, Lemma 5.10]. Note that in [19, Lemma 
5.10], we only presented the proof that the tangent varifold C has replacements in any 
small annuli, as this was sufficient for the regularity argument in that setting. In fact, 
the same proof also shows that the tangent varifold C (at any point p /∈ {pi}n

i=1) has 
replacements in any open set.

In particular, the good replacement property of C follows from that of V . To be more 
precise, denote C = limi→∞(ηp,ri

)#V , where ri > 0, limi→∞ ri = 0, and ηp,ri
: x → x−p

ri

is the rescaling map of S (by embedding S into some Euclidean space RN ). As in [19, 
Lemma 5.10], to construct a replacement of C in any open set U ⊂ R2, we can first take 
the c-replacement Vi of V in η−1

p,ri
(U) (which will be a proper subset of the set where V

has c-replacement for i large enough). Then the limit of rescaling C∗ = limi→∞(ηp,ri
)#Vi

will be the replacement of C in U by the arguments in [19, Lemma 5.10].
Property (4) follows (1)-(3), and we provide details as follows for completeness. Using 

the existence of 0-replacements and the same arguments as [13, 3.13],2 one can show 
that C has strictly positive density everywhere, and hence is rectifiable; (see [16, Theo-
rem 42.4]). Together with (1), we know that C is rectifiable cone by [16, Theorem 19.3]. 
Therefore C, as a rectifiable cone, is a unit of rays starting from the origin with positive 
constant multiplicity along each ray. Finally we argue that the multiplicities must be in-
tegers. Indeed, given each p ∈ support(V ) ∩S1, we can take a 0-replacement C∗ over the 
ball B(p, 12 ). By the definition of 0-replacement, C∗ is induced by an integer multiple of 
line segments in B(p, 12), and also C∗ and C have the same length in B(p, 12). Therefore 
C must also have integer multiplicity inside B(p, 12). This concludes the proof. �

As a direct corollary of Theorem 4.6 in Section 4, we have,

Corollary 3.5. Any C in Proposition 3.4 is an integer multiple of a line passing the origin.

Now we are ready to sketch the proof of Theorem 2.1. Using Corollary 3.5 in place 
of [19, Proposition 5.11], the regularity of V away from {pi}n

i=1 follows from that of [19, 
Theorem 6.1] with minor modifications. The structure of tangent cones of V at {pi}n

i=1
follows from a classical argument of characterizing tangent cones of min-max varifold by 
Almgren-Pitts [13, 3.13]. We will mainly focus on the differences with the proof of [19, 
Theorem 6.1].

2 Indeed, [13, 3.13] assumes the “almost minimizing” property, but the proof only uses the existence of 
0-replacements, which is a corollary of “almost minimizing” property.
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Proof of Theorem 2.1. We will prove parts (1)(2)(3) in three steps.
Step 1: We first focus on a neighborhood of a point p ∈ spt‖V ‖\P, where the set 

P = {pi}n
i=1 is given in Theorem 3.2. Take a small enough radius r > 0, such that 

V has c-replacements in the geodesic ball Br(p) ⊂ S. Fix any 0 < s < r, and take 
a c-replacement V ∗ in the annulus As,r(p) = Br(p)\Bs(p). By the definition of c-
replacement, V ∗�As,r(p) is induced by the boundary of some Caccioppoli set Ω∗, and 
is an almost embedded curve, denoted by γ1, of constant geodesic curvature c.

Take a radius s < t < r, such that the sphere ∂Bt(p) intersects γ1 transversally,3 and 
intersects along the regular (non-touching) set of γ1.4 Now take a c-replacement V ∗∗

of V ∗ in Bt(p) (usually called the second replacement). Again V ∗∗�Bt(p) is given by 
an almost embedded curve γ2 of constant geodesic curvature c. Using Corollary 3.5 in 
place of [19, Proposition 5.11], we can follow the same procedure as in [19, Theorem 6.1, 
Steps 1 and 2] to show that γ1 = γ2 in the overlapping region As,t(p), and hence they 
form an almost embedded curve γ in Br(p).

The next step is to use c-replacements in annuli Aτ,t(p), where 0 < τ < s. Let V ∗∗
τ

be the c-replacement of V ∗ in Aτ,t(p), which is induced by an almost embedded curve 
γτ . By the same reasoning, we have γτ = γ1 in As,t(p), and hence by ODE uniqueness 
theory, γτ = γ ∩ Aτ,t(p).

Then by the moving sphere argument [19, Theorem 6.1, Step 5], we can show that V
is induced by γ inside Bs(p). This finishes the proof of the regularity of V away from 
{pi}n

i=1 (part (2) in Theorem 2.1).
Step 2: By the same argument as [18, Proposition 7.3], V is induced by the boundary 

of some Caccioppoli set Ω, and

Lc(Ω) = Lc.

Remark 3.6. Note that in [19], the main goal was to produce a nontrivial CMC hypersur-
face with prescribed mean curvature, so we did not investigate the relation between the 
min-max limit varifold V and Caccioppoli sets. This part was delayed until [18, Propo-
sition 7.3], where we proved that V is induced by the boundary of some Caccioppoli set 
Ω, and the Lc value of Ω is the assigned c-min-max value, i.e. Lc(Ω) = Lc.

This completes part (1) of Theorem 2.1.
Step 3: Finally we prove the structure of tangent cones TanVar(V, pi) at each pi, i.e. 

part (3) in Theorem 2.1. Given a tangent cone C at pi, we know that C is stationary 
and integer rectifiable, since V has c-bounded first variation and is integer rectifiable. 
Now by smooth convergence, since V consists of constant curvature curves, C must be a 
geodesic network with constant integer multiplicity in each segment. Since C is a cone, 
spt‖C‖ must be a finite union of half lines coming out of the origin. The only thing left 

3 The existence of such t follows from Sard’s Theorem.
4 The touching set of γ1 is a discrete set.
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to prove is to show that the sum of all integer multiplicities must be an even number, 
hence the density of C at the origin - which is the same as that of V at pi - is an integer.

Write

C = lim
j→∞

(τ rj ,pi
)#V, as varifolds.

Here {rj} is a sequence of positive numbers converging to 0, and τ rj ,pi
(x) = x−pi

rj
are 

the rescaling maps.5

Note that V = ∂Ω, and consider the limit

Ω′ = lim
j→∞

(τ rj ,pi
)#Ω, as Cacciopolli sets.

By the weak convergence, the spt ‖∂Ω′‖ ⊂ spt ‖C‖, and it is easy to see that away from 
the origin the multiplicity of C minus the multiplicity of ∂Ω′ (which is identical to 1) must 
be an even number. On the other hand, one can see that there must be even numbers of 
half lines in spt‖∂Ω′‖ (to form the boundary of a set). Summing all ingredients together, 
we have proven that the number of half lines of C (counting multiplicity) is even. �
4. Combinatorial argument

In this part, we change gear to study geodesic networks arising in Proposition 3.4. 
Our main goal is to prove Theorem 4.6.

We define a stationary network V (embedded) in R2 to be a network whose edges 
vw are straight line segments with positive integer weight (multiplicity) mvw, and which 
satisfies at each vertex v of V the stationarity condition

∑
vw∈V

mvw
�Tvw = 0. (4.1)

Here �Tvw is the outward unit tangent from v along the edge vw.
By a slight abuse of notation we henceforth consider stationary networks V consisting 

of N vertices lying on the unit circle S1 ⊂ R2, each with an exterior radial edge to 
infinity; and E edges interior to the circle. In what follows let V̊ be the interior graph 
of V (consisting of those edges inside the circle); any graph theoretic concepts (degree, 
neighborhood, etc.) are with respect to V̊ .

We say that such a stationary network V is admissible if it satisfies:

5 Here we can isometrically embed (S, g) into some Euclidean space RL, and the calculation x−pi

rj
is done 

in RL.
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Fig. 1. A stationary junction with vertex at the origin, and intersection points vi with the unit circle marked; 
models a tangent cone C.

(1) At each vertex v, we have

mv
�Tv +

∑
w∈Nv

mvw
�Tvw = 0,

where Nv is the set of vertices adjacent to v. Note that, treating v, w as points in 
S1 ⊂ R2, we have �Tvw = w−v

|w−v| , and the exterior edges have unit tangent �Tv = v and 
weight mv. (This is just a restatement of stationarity, clarifying the notation for the 
exterior edges.)

(2) There are no crossings between interior edges.

We say that V is a replaceable network if it additionally satisfies the replacement 
property:

(3) At each vertex v in V , there is a replacement V ′
v ; that is, there exists an admissible 

network V ′
v whose vertex set is {v} ∪ {�Tvw|w ∈ Nv} ⊂ S1, and whose corresponding 

exterior edges have multiplicity mv, resp. mvw.

Finally, we say that V is a good network if it is a replaceable network, each replace-
ment V ′ of V is also replaceable, and so forth, so that V has arbitrarily many iterated 
replacements. In fact we will only use four iterated replacements - two to rule out N = 3, 
another to rule out N = 4 and the fourth to rule out N ≥ 5.

The goal of this section will be to show that the only good network is the straight line 
network. Before proving this, however, we briefly discuss the correspondence between 
the networks considered here and the blowups in Section 3. See Figs. 1, 2, 3 and 4 for 
examples of the replacement process.
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Fig. 2. An admissible network, models (for instance) a replacement C∗ in the unit ball.

Fig. 3. An iterated replacement C∗∗ inside a small (red) circle about v1.

Fig. 4. The resulting (admissible) replacement network about v1; a local model for C∗∗ near v1.



X. Zhou, J.J. Zhu / Advances in Mathematics 361 (2020) 106941 11
4.1. Relation to min-max tangent cones

By Proposition 3.4, the tangent cone C to the min-max varifold is an integral station-
ary 1-varifold in R2. So (for instance by [2]) it is, up to translation, a network consisting of 
straight rays meeting at the origin, with integer multiplicities satisfying the stationarity 
condition (4.1).

Any iterated replacements applied to C are then also stationary, and hence consist 
of straight-line networks satisfying the stationarity condition at each vertex. Taking 
a replacement C∗ in B1 gives a network which must be regular - that is, consist of 
straight-line segments without crossings - except possibly on the gluing interface ∂B1. 
So in particular, admissible networks model the first replacement C∗.

The replacement networks defined above are the result of considering iterated replace-
ments of C∗ in small balls about each vertex, and then cutting and rescaling so that the 
replacement ball coincides with B1. In this way, the replacement networks are the local 
models for iterated 0-replacements of C∗ (in the sense of Proposition 3.4), and to prove 
Corollary 3.5 it indeed suffices to show that any good network is a straight line.

4.2. Bounding the number of interior edges

Lemma 4.1. Let f(N) be the maximum number of straight line segments that can be drawn 
between N distinct points on the unit circle, which do not connect adjacent vertices, and 
do not have any crossings. Then f(N) = max(N − 3, 0).

Consequently, the total number of interior edges in an admissible network is bounded 
by

E ≤ F (N) :=
{

2N − 3 , N ≥ 3
max(N − 1, 0) , N ≤ 2

.

Proof. Any such edge divides the remaining vertices into a set of k vertices and a set of 
l vertices, k, l ≥ 1. Then we have the recursive formula

f(N) = max{1 + f(k + 2) + f(l + 2)|k + l = N − 2, k, l ≥ 1}.

It is clear that f(1) = f(2) = f(3) = 0. A straightforward induction then shows that 
f(N) = N − 3 for all N ≥ 3. �

Note that if V is an admissible network and any vertex v has degree 1 in V̊ , then the 
interior edge must be the diameter through v. Since no interior edges may cross, this 
implies that at most two vertices can have degree 1 (v and its antipode). Indeed, we have

Lemma 4.2. Let V be an admissible network and a vertex v of (interior) degree 1. Then 
the number of interior edges is bounded by
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E ≤ F1(N) =
{

2N − 5 , N ≥ 4
1 , N ≤ 3

.

Proof. As above, the interior edge from v must be a diameter of the circle and its 
antipode w must be a vertex in V . The diameter vw splits the remaining vertices into 
two sets of k and l vertices, where k + l = N −2 and without loss of generality 0 ≤ k ≤ l. 
If w also has degree 1, then E ≤ 1 + F (k) + F (l).

Otherwise, w has a second incident edge with positive weight, so to satisfy stationarity 
it must be connected by a third edge to the other side of vw. In particular we must have 
k, l ≥ 1, and E ≤ 1 + F (k + 1) + F (l + 1).

Thus we have three cases: k = 0, in which case w must have degree 1 and

E ≤ 1 + F (N − 2);

k = 1, in which case N ≥ 4 and

E ≤ 1 + F (2) + F (N − 2) = 2 + F (N − 2);

finally 2 ≤ k ≤ l in which case

E ≤ 1 + F (k + 1) + F (l + 1) = 2N − 5.

The result follows by the cases for F (N − 2). �
4.3. The case N = 3

Let V be an admissible network with vertices vj = eiθj .
Set αjk = θk − θi. Note that

�Tjk = eiθk − eiθj

|eiθk − eiθj | = eiθj
eiαjk − 1
|eiαjk − 1| .

Also note that for θ ∈ [0, 2π], we have

eiθ − 1 = 2 sin θ

2 ieiθ/2 = 2 sin θ

2ei θ+π
2 ,

e−iθ − 1 = −2 sin θ

2 ie−iθ/2.

Then stationarity at each vertex vj gives (after dividing through by eiθj respectively)

m1 + m12ieiα12/2 + m13ieiα13/2 = 0, (4.2)

m2 − m12ie−iα12/2 + m23ieiα23/2 = 0, (4.3)
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m3 − m13ie−iα13/2 − m23ie−iα23/2 = 0. (4.4)

Note that all vertices must have degree 2 (that is, mjk > 0). (Otherwise, exactly one 
vertex has degree 1, but then 2e =

∑
deg(v) = 5 which is impossible.)

For each vertex vj, it is geometrically clear that the other two vertices cannot lie on 
the same side of the diameter through vj , or else it would be impossible to satisfy the 
stationarity. Therefore α12 ∈ (0, π), α23 ∈ (0, π), α13 ∈ (π, 2π). (In particular α12 �= π, 
since then the only way to satisfy stationarity at v1 would be m13 = 0, which cannot 
happen; and similarly α23, α13 �= π.)

Set sjk = sin αjk

2 and cjk = cos αjk

2 . Note sjk, c12, c23, −c13 ∈ (0, 1).
We may rewrite the real part of the system above as

(
m1
m2
m3

)
+

(−s12 −s13 0
−s12 0 −s23

0 −s13 −s23

) (
m12
m13
m23

)
= 0 (4.5)

and the imaginary part as

(
c12 c13 0

−c12 0 c23
0 −c13 −c23

) (
m12
m13
m23

)
= 0. (4.6)

Since the cij are nonzero, the matrix C =
(

c12 c13 0
−c12 0 c23

0 −c13 −c23

)
has rank 2, nullity 

1 and one can verify that the kernel is spanned by 

(
c13c23

−c12c23
c12c13

)
.

Lemma 4.3. Let V be an admissible network with N = 3. Then eiαjk are rational points 
on the unit circle.

Proof. By the characterization of the kernel, we have 

(
m12
m13
m23

)
= β

(
c13c23

−c12c23
c12c13

)
for some 

β �= 0. The plugging into (4.5) we have

− 1
β

(
m1
m2
m3

)
=

(−s12 −s13 0
−s12 0 −s23

0 −s13 −s23

) (
c13c23

−c12c23
c12c13

)

=
(

c23s23
−c13s13
c12s12

)
,

(4.7)

where in the last line we have used the trigonometric addition formulae. Considering the 
quotients m1m23

m12m13
and so forth, it follows that each tan αjk

2 is rational and hence eiαjk is 
a rational point. �
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Proposition 4.4. There is no good network V with N = 3.

Proof. Suppose V is a good network with N = 3. First take a replacement V ′
1 of V

at v1. Using that eiθ − 1 = 2 sin θ
2 ei θ+π

2 for θ ∈ [0, 2π], the replacement network V ′
1

should have vertices v′
1 = v1, v′

2 = �T12, v′
3 = �T13 (up to a coordinate rotation); the 

corresponding angle differences are α(1)
12 = α12+π

2 , α(1)
13 = α13+π

2 , α(1)
23 = α23

2 . Now consider 
the iterated replacement V ′′

11 at v′
1; then the angle differences will become α(11)

12 = α12+3π
4 , 

α
(11)
13 = α13+3π

4 , α(11)
23 = α23

4 .
Apply the same twice iterated replacement at v3; then in particular the (non-reflex) 

opposite angle difference halves twice, so the resulting network V ′′
33 will have α(33)

12 = α12
4 . 

By Lemma 4.3 we must have eiα ∈ Q(i) for each of these α. Since Q(i) is a field this 
implies that exp(i(α(11)

12 − α
(33)
12 )) = e3iπ/4 = 1√

2(−1 + i) is a rational point, which is 
absurd. �
4.4. General N

Recall that E, deg, · · · denote the edges, degree, etc. of the interior graph V̊ .

Proposition 4.5. There is no good network V with N = 4.

Proof. Suppose V is a good network with N = 4. By the previous proposition, there are 
no good networks with N = 3, so by taking a replacement we see that each vertex v in 
V̊ cannot have degree equal to 2.

If there is a vertex with degree 1, then by Lemma 4.2, we have that E ≤ F1(4) = 3. 
But since there are at most two vertices with degree 1, and the remaining vertices must 
have degree at least 3, we have

E = 1
2

∑
deg(v) ≥ 1

2(3(N − 2) + 2) = 4,

which is a contradiction.
On the other hand, if there are no vertices with degree 1, then they all have degree 

at least 3, so 
∑

deg(v) ≥ 3N = 12, but this contradicts the earlier bound
∑

deg v = 2E ≤ 2F (4) = 10. �
Theorem 4.6. The only good network V is the straight-line network which has N = 2, 
diametrically opposite vertices and equal multiplicities.

Proof. It is clear that there is no admissible network with N = 1, and the only admissible 
network with N = 2 is the straight line configuration.

Since we have proven there are no good networks with N = 3, 4, by taking replace-
ments we have ruled out any vertex v in V̊ having degree 2 or 3, and we may assume 
N ≥ 5.
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If there is a vertex with degree 1, then by Lemma 4.2, we have that E ≤ F1(N) =
2N −5. But since there are at most two vertices with degree 1, and the remaining vertices 
must have degree at least 4, we have

E = 1
2

∑
deg(v) ≥ 1

2(4(N − 2) + 2) = 2N − 3,

which is a contradiction.
On the other hand, if there are no vertices with degree 1, then all vertices must have 

degree at least 4 and so 
∑

deg(v) ≥ 4N . But
∑

deg(v) = 2E ≤ 2F (N) = 4N − 6,

which is a contradiction. �
Remark 4.7. The stationarity of V at each vertex automatically implies that:

(1) V is stationary at infinity, that is,
∑

v

mvv = 0.

(2) The mass of the interior graph V̊ is the same as the graph which extends the exterior 
rays into the origin, that is,

∑
v

mv =
∑

vw∈V̊

mvw|v − w|.
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