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Parallel three-dimensional simulations of quasi-static elastoplastic 
solids. Part I: Numerical formulation and examples

Nicholas M. Boffia, Chris H. Rycrofta,b

“Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139 
bComputational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

Abstract

In this two-part paper, we extend to three dimensions a new projection method for simulating 
hypo-elastoplastic solids in the quasi-static limit. The method is based on a surprising 
mathematical correspondence to the incompressible Navier-Stokes equations, where the 
projection method of Chorin (1968) is an established numerical technique. In both parts, 
we explore the method through numerical simulation of a three-dimensional continuum-level 
elastoplastic model of a bulk metallic glass based on the shear transformation zone (STZ) 
theory of amorphous plasticity.

Here in part I, we review the development of the quasi-static projection method, and 
extend it to three dimensions. We discuss the development of a three-dimensional parallel 
geometric multigrid solver employed to solve a linear system for the quasi-static projection. 
We test the method by simulating three-dimensional shear band nucleation and growth in 
materials undergoing simple shear, and explore the agreement of the method with an explicit 
timestepping method as the quasi-static limit is mathematically approached. We consider 
several three-dimensional examples and contrast the dynamics of shear banding in these 
situations with previous two-dimensional studies. We consider the generation of physically 
realistic randomly distributed initial conditions in a relevant STZ internal variable, and 
discuss relevance to experimental studies of shear banding.

Keywords: fluid mechanics, Chorin-type projection method, plasticity, elastoplasticity

1. Introduction

Elastoplastic behavior is ubiquitous in materials of modern engineering relevance and 
scientific inquiry, including metal matrix composites [1], auxetics [2], granular materials [3], 
and amorphous materials such as gels [4], thin films [5], and bulk metallic glasses (BMGs) [6], 
Elastoplastic behavior is defined as any combination of elastic and plastic deformation, and 
admits a number of mathematical descriptions [7]. For stress levels below the material yield 
stress, the material deforms purely elastically and returns to its undeformed state upon
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removal of the load. When the yield stress is reached, the material begins to deform plastically, 
leading to permanent, irreversible deformation that persists beyond load removal [8].

The mathematical representation of elastoplasticity is fundamental to its study, and 
any modeling choice amounts to a description of the interaction of the elastic and plastic- 
components of deformation at a microscopic level [9]. An in-depth understanding of the 
limitations of each formulation is a target of modern research, and the development of an 
optimal theoretical framework has remained elusive [7], Two of the most popular choices are 
hyper-elastoplasticity [10, 11] and hypo-elastoplasticity [12]. In hyper-elastoplasticity, the 
deformation gradient is decomposed multiplicatively into the product of an elastic part and a 
plastic part, F = FeFp. In hypo-elastoplasticity, the Eulerian rate of deformation tensor is 
decomposed additively into elastic and plastic parts, D = Del + Dpl [13]. Hypo-elastoplasticity 
has some drawbacks, but is well-suited to problems with small elastic deformation and large 
plastic deformation. We focus on hypo-elastoplasticity in the remainder of this article.

The hypo-elastoplastic formulation has several numerical advantages. Since it is based on 
the Eulerian rate of deformation tensor, it is well-suited to a fixed-grid framework. Fixed grids 
have simpler topologies than their Lagrangian counterparts, and are easier to program and 
to parallelize. This is particularly important in three dimensions, where the computational 
expense mandates parallelization techniques, and the implementation difficulty increases. 
Fixed-grid methods are the methods of choice for fluid simulation [14, 15, 16] and are useful for 
fluid-structure interaction [17, 18, 19]. Fixed-grid frameworks allow a wider range of numerical 
linear algebra techniques to be used, such as the geometric multigrid method [20, 21].

The additive decomposition of D, coupled with the linear-elastic constitutive relation 
and a continuum formulation of Newton’s second law, leads to a closed system of partial 
differential equations for the material velocity, stress, and internal variables intrinsic to the 
plasticity model. These equations can be solved via an explicit finite-difference discretization 
scheme. Such explicit methods resolve elastic waves, and their timesteps are restricted by the 
well-known Courant-Friedrichs-Lewy (CFL) condition [22]. The CFL condition states that 
At < A is necessary for numerical stability, where ce is a typical elastic wave speed in the 
medium and h. is the grid spacing. In metals and other materials of interest, elastic waves 
can travel at kilometers per second. The CFL condition thus poses a prohibitive limit on the 
timestep, and the development of alternative simulation approaches is necessary.

After scaling the hypo-elastoplastic equations to the long time and small velocity limit, the 
continuum version of Newton’s second law can be replaced by a constraint that the stresses 
must remain in quasi-static equilibrium [23]. This leads to an explicit update equation for 
the stress tensor, still given by linear elasticity and dependent on the velocity, coupled with a 
quasi-static constraint on the stress tensor. In this limit, there is a surprising mathematical 
analogy with incompressible fluid flow. The incompressible limit of the Navier-Stokes 
equations replaces an explicit equation for the fluid pressure with a divergence-free constraint 
on the fluid velocity, but the explicit equation for the velocity is unaffected. A well-known 
algorithm for this setting is the projection method of Chorin [24, 25]. In this method, the 
velocity held is first updated explicitly, but this intermediate velocity does not obey the 
incompressibility constraint. An elliptic problem is solved which simultaneously enforces the
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incompressibility constraint and enables computation of the pressure. A similar algorithm 
was recently developed for the quasi-static limit of hypo-elastoplasticity and studied in two 
dimensions [23]. The stress is first updated explicitly such that the intermediate value does not 
obey the quasi-static constraint. The stress tensor is then projected back onto the manifold 
of divergence-free solutions through an elliptic problem for the velocity. Importantly, this 
quasi-static projection method does not resolve elastic waves, and hence enables timesteps 
that are orders of magnitude larger than those required by the CFL condition. In this work, 
we extend the quasi-static projection algorithm to three dimensions, and place it on a firmer 
theoretical footing by making a connection to more general projection methods in fluid 
dynamics.

As a physical testbed for our methodology, we employ an athermal formulation of the STZ 
theory of Falk, hanger, Bouchbinder and coworkers as a plasticity model for a bulk metallic- 
glass [26, 27, 28, 29]. The combination of the STZ theory and BMG modeling is an excellent 
setting for our three-dimensional method. Metallic glasses naturally lend themselves to study 
through the hypo-elastoplasticity framework, as their elastic deformation is generally small 
and well-described by a linear theory, yet they can exhibit significant plastic deformation [30]. 
Their elastic moduli are typically on the order of 10-100 GPa, and hence experimental loading 
conditions often place samples in the quasi-static regime [31]. They present interesting and 
poorly understood fundamental physics [32, 33, 34, 35]. A useful test case has been to 
study the necking instability in a bar under uniaxial tension [36, 37, 38] since it highlights 
the interplay between elastic and plastic deformation. The physical mechanisms of BMG 
fracture were explored using the two-dimensional projection method [39, 23], subsequently 
allowing BMGs fracture toughness to be predicted across a wide range of experimental 
conditions [40]. Later experimental measurements due to Ketkaew et. al. demonstrated 
that these simulation-based predictions were quantitatively correct [41]. Indeed, testable 
predictions for complex amorphous systems such as BMGs are rare, and the development of 
efficient numerical methods such as the ones presented here provide a way to generate them, 
and to guide future experimental inquiry.

Under loading, BMGs exhibit shear bands [42], a nonlinear instability characterized by 
rapid strain localization [43] along a thin band [44] within the material. Experimentally, 
shear bands rapidly lead to material failure [45, 46], and are one of the primary limitations 
in employing BMGs in applications [47]. Analytical work probing shear bands in amorphous 
materials is difficult, particularly in two or three dimensions, which highlights a need for 
computational investigations. The development of our method enables the study of shear­
banding in three dimensions at large scale and high resolution without excessive computational 
expense. Our simulations demonstrate that this scale and resolution is indeed necessary, and 
expose interesting fine-scale and uniquely three-dimensional features of shear banding. Our 
methodology opens the door to future studies probing the shape, structure, and topology of 
shear bands, as well as the mechanism and statistical properties of their formation.

We emphasize that though the STZ theory is a useful test case for our method both 
physically and numerically, the algorithm is general and can be used for many plasticity 
models within the hypo-elastoplasticity framework. This could include free-volume based
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models of BMGs [48], hypo-elastic materials [49, 50, 51], geophysical models [52, 53], and rate- 
independent plasticity models [54, 55, 56, 57]. We also emphasize that Chorin’s projection 
method represents a first step towards more complex projection-based algorithms such as 
gauge methods [58, 59, 60] and pressure-Poisson methods [61, 62], and that we have laid the 
groundwork here to generalize these algorithms to the case of hypo-elastoplasticity.

The structure of this paper is as follows. In Section 2, we formally describe the relation 
between Chorin’s projection method and the projection algorithm for hypo-elastoplasticity 
employed here. In Section 3, we describe a finite-difference implementation of our projection 
method, and describe a forward-Euler based explicit method for solving the hypo-elastoplastic 
equations in the non-quasi-static limit. We also discuss our development of a parallel geometric 
multigrid method used for the stress projection. In Section 4, we demonstrate convergence 
between the explicit and projection methods in a regime in which the two are expected to 
produce similar results, and study several interesting examples of shear banding dynamics in 
a metallic glass. We conclude with some interim remarks in Sec. 5, and our work is continued 
in part II [63], where the projection method is extended to an arbitrary reference domain via 
a domain transformation.

2. Projection methods for fluid dynamics and hypo-elastoplasticity

We denote by cr(x, t) the Cauchy stress tensor and by v(x, t) the velocity held at a 
position x and time t in a material. The total rate of deformation tensor D is defined as 
the symmetric part of the velocity gradient, D = I(Vv + (Vv)T). For any held /(x, t), we 
define the advective time derivative by ^ + (v • V) /. The fundamental assumption of
hypo-elastoplasticity is that the rate of deformation tensor can be additively decomposed 
into a sum of elastic and plastic parts, D = Del + Dpl.

For stiff elastoplastic materials with small elastic deformation, the linear elastic constitutive 
law provides an accurate description,

^ = C : Dd = C : (D - Dpl) . (1)

C is the fourth-rank stiffness tensor, taken to be homogeneous and isotropic. With Fame’s 
hrst parameter A and shear modulus p,, the components of C are given by (= AT W, + 
p. (SikSji + SuSjk) [64]. The time derivative ^ — LTcr — crL + Tr(L)cr denotes the
Truesdell objective stress rate, where L is the velocity gradient L = Vv.1

1The Truesdell rate is usually presented in the form = ^ - Lcr - <tLt + Tr{L)cr. In this work we 
have replaced LT in the standard definition with L [8], The standard form of the Truesdell rate defines 
L as the Frechet derivative of the velocity field. We use the symbol Vv to denote the gradient of the the 
velocity held; formally, the gradient of a vector held is the transpose of its Frechet derivative. The coordinate 
transformation methodology presented in part II of this work requires the use of both vector held gradients 
and Frechet derivatives, and hence we distinguish between the two here. This corresponds to the convention 
(Vf),^ = difj for the gradient of a vector held (ie., the derivatives go row-wise).
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From Newton’s second law, the material velocity obeys the equation

dv
pTt V • cr (2)

where p denotes the material density. Equations 1 & 2 form a hyperbolic system of equations 
for the stress and velocity fields, which can be solved explicitly using standard finite-difference 
simulation methods. This hyperbolic system will resolve elastic waves, and so the timestep 
At and grid spacing Ax must satisfy the CEL condition At < Ax/c.e for numerical stability, 
where ce is an elastic wave speed. In materials such as metals and metallic glasses, elastic- 
waves travel on the order of kilometers per second. Spatial discretizations capable of resolving 
fine-scale features of interesting physical phenomena in these materials can be as small as 
micrometers. For Ax = 1 pm and ce = 1 kni/s, the CFL condition requires At < 1 ns, an 
extreme restriction for phenomena that occur on realistic timescales.

We consider a scenario in which plastic deformation occurs on a timescale much greater 
than the time for waves to propagate through the material. In this setting, macroscopic 
plastic deformation takes place due to the accumulation of small velocity gradients over long 
times. The details of a limiting procedure describing this physical regime were performed in 
previous two-dimensional work [23] and will not be reproduced here.

In this quasi-static limit, the equation for the velocity in Eq. 2 can be approximately 
replaced by a constraint on the stress

V • <7 Sd 0. (3)

Equation 3 is referred to as the quasi-staticity constraint. The evolution equation for the 
stress in Eq. 1 is unaffected by the limiting procedure, and hence Eq. 1 must be solved subject 
to the global constraint Eq. 3 to obtain solutions valid in this limit.

At this stage, it is unclear how to do so. The velocity v appears in Eq. 1 through D, but 
there is no longer an equation that can be integrated explicitly to solve for it. It is also not 
guaranteed that solutions of Eq. 1 subject to the constraint in Eq. 3 will agree with solutions 
of Eq. 1 and Eq. 2.

A ,9. /Wd dy^mmcg
We now demonstrate an analogy between the computational issues presented in the 

previous section and those encountered in incompressible fluid dynamics. Consider a fluid 
with velocity v, pressure p, and density p. The fluid velocity field obeys the Navier-Stokes 
equation,

dv _ _9
— = — Vp 1 ’,V72’

The fluid density satisfies
dp

zA72v. (4)

- = -p(v-v)
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(a) (b)

Figure 1: The projection-based timestepping scheme for (a) the velocity field in incompressible fluid dynamics 
and (b) the stress tensor in quasi-static hypo-elastoplasticity. In both cases, an intermediate field value 
(denoted with a superscript *) is first computed which does not obey the divergence-free constraint. This 
intermediate field value is then projected back onto the manifold of divergence-free solutions to compute the 
field at the next timestep.

along with an equation of state linking the fluid density to the fluid pressure. Using an 
explicit scheme to solve the hyperbolic system in Eqs. 4 & 5 will resolve sound waves in the 
fluid, which leads to timestep restrictions from the CFL condition. In the long-time limit, 
Eq. 5 is traded for the incompressibility constraint on the velocity held,

V • v = 0. (6)

This limit reduces the coupled partial differential equations for the pressure and velocity 
to a single constrained equation for the velocity. The pressure is present in the equation 
for the velocity, though its evolution equation has been exchanged for the incompressibility 
constraint; this is much like the quasi-static limit of hypo-elastoplasticity described in the 
preceding section.

Chorin [24, 25] developed a numerical method for this system of equations that involves the 
use of an orthogonal projection, spurring significant research into related algorithms [61, 62]. 
Such projection methods proceed via a two-step procedure, where an intermediate velocity v* 
is first computed which does not obey the incompressibility constraint, v* is then orthogonally 
projected onto the manifold of divergence-free solutions through the solution of an elliptic 
problem for an auxiliary held related to the pressure. The process of projection simultaneously 
enforces the constraint and enables computation of the pressure held.

One typical approach is to employ a Hodge decomposition [61, 62],

v* = v + (7)

where v is the desired divergence-free velocity held and (p is an auxiliary held. One then 
updates v* via the equation

v; + (v-V)v + Vg = i/V^v*, (8)

where Vg is an approximation to the pressure gradient. Substituting Eq. 7 into Eq. 8 leads 
to a formula for the pressure

Vp = V (g + <^) - (9)
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from which p can be computed. The divergence of Eq. 7 implies that V • v = 0 if <ft is such 
that

= V - V*. (10)

The Poisson problem in Eq. 10 can be solved for <ft using standard techniques of numerical 
linear algebra, and the projection can be completed by computing v = v* — V0. Boundary 
conditions on <ft depend on the physical scenario of interest, and are critical for obtaining 
higher-order methods [61, 62]. The algorithm proceeds by setting v* = v. This procedure is 
schematically represented in discrete-time in Fig. 1(a). Projection methods avoid the CEL 
condition associated with compressive waves in the fluid, and hence can use significantly 
larger timesteps than explicit methods.

It is possible to demonstrate that solving Eq. 10 represents an orthogonal projection. We 
define the inner product between two vector-valued fields,

(v,u) v • ucrx, (11)

where $2 is the simulation domain. Using this inner product, we can compute

— v*) = — f (vra+1 — v") • V0(x)d3x(vra+1 - vra, vra+1

(v . v"+i - V - v") <^(x)(f X = 0, (12)

thereby establishing that the projection vra+1 — v* is orthogonal to the difference between 
the two velocity fields, vra+1 — vra.

/mu% o/projecZzoM /or %po-eZ&gZo%dogZzc%
We now formulate a three-dimensional projection method for solving Eq. 1 subject to the 

quasi-static constraint Eq. 3. We define an intermediate stress

<7* = <7 + C : V$, (13)

where <E>(x, t) is an auxiliary vector field. We can solve for cr* by dropping the C : D term in 
Eq. 1,

<7* + (v • V) (7 = LT(7 + O-L - Tr(L)(7 + C : (Vq - Dpl) . (14)

In Eq. 14, q represents an approximation to the velocity v. Substituting Eq. 13 into Eq. 14, 
we find

C : D = C : V (q - $;), (15)

from which D can be computed. Taking the divergence of Eq. 13 and requiring V • <7 = 0, $ 
must satisfy the equation

V-(C:V$) = V-<7*. (16)

Equation 16 is a linear system with source term V • cr* that can be solved for <E>. Once $ 
has been found, cr* is projected onto the manifold of divergence-free solutions by computing

7



Table 1: Material parameters used in this study, for both linear elasticity and the STZ model of amorphous 
plasticity. The Boltzmann constant kB is used to convert energetic values to temperatures.

Parameter Value
Young’s modulus E 101 GPa
Poisson ratio v 0.35
Bulk modulus K 122 GPa
Shear modulus f.i 37.4 GPa
Density p0 6125 kg m-3
Shear wave speed Q 2.47 kin s-i
Yield stress sy 0.85 GPa
Molecular vibration timescale to 10“13 s
Typical local strain e0 0.3
Effective heat capacity c0 0.4
Typical activation barrier A/ks 8000 K
Typical activation volume fl 300
Thermodynamic bath temperature T 400 K
Steady state effective temperature Xoo 900 K
STZ formation energy ez/kB 21000 K

<7 = <7* — C : V<D The algorithm then proceeds by setting <7* = <7, and is represented 
schematically in Fig. 1(b). A projection method is defined by the choice of the approximate 
velocity field q, the auxiliary vector field <E>, and the integration method for Eq. 14.

As in the case of fluid dynamics, we can show that the projection is orthogonal in a 
suitable inner product. To do so, we define an inner product between two stress tensors as 
in [23],

(cr, cr') = f <7 : S : cr' d3x, (17)
J n

where S = C-1 is the stiffness tensor. Equation 17 computes the elastic strain energy of a 
material with stress field cr and strain field S : cr', or vice-versa by symmetry. Because S is a 
symmetric positive definite tensor for physically realistic Lame parameters, this definition is 
an inner product. By explicit computation,

(<rra+1 - <t'\ (7n+l -tr*) = j (<7ra+1 - (7n) : S : C : V<1> d x

= / : V* d3x

= - / (V - - V - x = 0. (18)

3. Numerical implementation

In this section, we describe an implementation of an explicit forward Euler method to 
solve Eqs. 1 & 2, as well as a specific instance of the quasi-static projection method in Eqs. 14
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& 16. We model elastoplastic deformation in a BMG using an at hernial variant of the STZ 
theory.

As a plasticity model for a metallic glass, we use an athermal form of the STZ theory 
suitable for studying diverse materials including BMGs below the glass transition temperature, 
dense granular materials, and soft materials such as foams or colloidal glasses [27, 28]. Within 
the STZ theory, irreversible molecular rearrangements are assumed to occur sporadically 
throughout an otherwise elastic material, and each rearrangement induces a small increment 
of strain. The accumulation of many such events leads to macroscopic plastic deformation. 
These rearrangements are assumed to occur at rare, localized, sites known as STZs when local 
stresses surpass the material yield stress sy. Thermal fluctuations of the atomic configuration 
are neglected in the athermal formulation: molecular rearrangements are entirely driven 
by external mechanical forces. Thermal theories introduce additional coupling between 
a configurational subsystem governing the rearrangements that occur at the STZs, and a 
kinetic/vibrational subsystem governing the thermal vibrations of atoms in their cage of 
nearest neighbors [65].

STZs may be conceptualized as clusters of atoms predisposed to configurational rearrange­
ments when subjected to external shear [27]. Each rearrangement corresponds to a transition 
in the configurational energy landscape; these transitions are usually towards a lower-energy 
configuration, but there is a small probability for a reverse transition. Before the application 
of external shear, the material sample is at a local minimum. External shear alters the shape 
of the energy landscape, and can make transitions to other states considerably more likely.

The density of STZs in space follows a Boltzmann distribution in an effective disorder 
temperature denoted by % [66, 67, 68, 69]. % governs the out-of-equilibrium configurational 
degrees of freedom of the material and has many properties of the usual temperature: it is 
measured in Kelvin, and can be obtained as the derivative of a configurational energy with 
respect to a configurational entropy [70]. % is distinct from the thermodynamic temperature 
T, though it plays the same role for the configurational subsystem as T does for the 
kinetic/vibrational subsystem.

The plastic rate of deformation tensor is proportional to the deviatoric part of the stress 
tensor cr0 = cr — |ltr(cr), so that Dpl = Dplff. s is a local stress measure given by the 
Frobenius norm of the deviatoric stress tensor, s2 = | JW cr2 ^. The magnitude of the plastic 
rate of deformation is given by

7bDP' = e-e=/^%C(s,T) A (19)

where tq is a molecular vibration timescale, e, is a typical STZ formation energy, and ks is 
the Boltzmann constant. C(s,T) represents the total STZ transition rate. With 7Z(±s,T) 
denoting the forward and reverse rates between two configurational states, the total transition 
rate is C(s,T) = \ (77.(s, T) + TZ(—s, T)). The transitions follow a linearly stress-biased 
thermal activation process,

(20)
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A is a typical energetic barrier for a transition, Q is a typical STZ volume, and eo is a 
typical local strain due to an STZ transition. While thermal fluctuations are neglected in the 
athermal model, the thermodynamic temperature still sets the magnitude of transition rates 
in the system. Using the form Eq. 20 yields the overall transition rate

C(s,T) = e-A/^cosh . (21)

The effective temperature satisfies [27, 71, 32, 33]

c„h = SAA. (Xoo _ X) + pV . (DP'Vx) . (22)

Equation 22 consists of a term causing growth to an asymptotic value x<x> and a diffusive 
term with diffusion length scale /. Both saturation to x<x> and diffusion occur in response to 
plastic deformation. The term Dpl : cr0 is the rate of energy dissipated by externally applied 
mechanical work, so that STZs are created and annihilated proportional to this rate. c.q is an 
effective heat capacity; Eq. 22 is thus essentially a heat equation, representing the first law of 
thermodynamics for the configurational subsystem [27]. The interdependence of Eqs. 19 & 22 
enables the development of shear bands via positive feedback, as increasing % also increases 
Dp' [32, 33].

,9. A
An explicit forward Euler discretization of Eq. 2 reads

vra+1 - V' 2 ra

At
- (v" - V) v" + V - (23)

The small viscous stress term kV2v is artificially imposed for numerical stability of the 
explicit method [72], but is not needed in the quasi-static method. In three dimensions, 
this term induces a restriction on the timestep At < (U. Hence, if k is viewed as a physical 
constant, this condition is more restrictive than the CFL condition. However, for stability, it 
is sufficient to choose k as scaling linearly with the grid spacing, in which case the timestep 
restriction scales in the same way as the CFL condition.

An explicit forward Euler discretization of Eq. 1 reads

,ra+l — a
At

(vra • V) cr" + (LT)n cr" + <rraLra + Tr(Lra)<rra + C : (24)

We now formulate a specific three-dimensional projection method for solving Eq. 1 subject 
to the quasi-static constraint Eq. 3. We first neglect the C : D term in Eq. 1 and compute 
an intermediate stress cr*,

cr * Tr(L”)cr” (25)
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If the velocity at the next timestep vra+1 were known, we could compute

D"+^ = ^ (26)

and complete the forward Euler step in Eq. 25 as

= <r* + Af (C : D"+i) . (27)

Taking the divergence of Eq. 27 and rearranging terms leads to the equation

AfV - (C : D"+i) = -V - <r*. (28)

Equation 28 is a linear system for the velocity vra+1 involving mixed spatial derivatives. The 
source term is given by —V • cr*. After solving for vra+1, it can be used to compute crn+l via 
Eq. 27. Through this process, cr* is projected back to be divergence-free, arriving at crn+l.

The mixed derivatives in Eq. 28 increase the complexity of the projection for hypo- 
elastoplasticity when compared to the Poisson problem in fluid dynamics, but Eq. 28 can 
nevertheless be solved rapidly via standard techniques of numerical linear algebra such as the 
multigrid method. The multigrid method relies on the Gauss-Seidel method for iterative 
smoothing of the solution, and Gauss-Seidel smoothing is guaranteed to converge if either 
the linear system is (A) weakly diagonally dominant, or (B) symmetric positive definite. In 
general the linear system in Eq. 28 will not satisfy condition A, but will satisfy condition B. 
Hence Gauss-Seidel smoothing is guaranteed to converge, which we use as a component in a 
multigrid method—details of this multigrid solver are presented later. A connection to the 
general continuous-time framework presented in Sec. 2.4 is provided in Appendix A.

The evolution equation for the stress, Eq. 1, depends on spatial derivatives of the velocity, 
while the equation satisfied by the velocity, Eq. 2, depends on spatial derivatives of the stress. 
We exploit this structure through a staggered grid with uniform spacing Ax = Ay = Az = h. 
The stress tensor cr and effective temperature % are stored at cell centers and indexed by 
half-integers, while the velocity v is stored at cell corners and indexed by integers, as shown 
in Fig. 2(b).

Let (df/dx)ij'k denote the partial derivative of a field / with respect to x evaluated at 
grid point (i,j, k). The staggered centered difference is

= 7T (fi+l.i.fc - + fi+lj+hk - fij+hk

+ fi+l.i.fc+i - fi,j,k+1 + /i+ij+U'+i - Aj+U'+i) • (29)

Equation 29 averages four edge-centered centered differences surrounding the cell center 
and has a discretization error of size 0(h2). The derivative at a cell corner is obtained by
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the replacement (i,j, k) —> (i — |, j — |, k — |). The diffusive term appearing in the velocity 
update in Eq. 23 is computed via the standard center-difference formula,

h2 (30)

The advective derivatives in Eqs. 23 & 24 must be upwinded for stability; we use the second- 
order essentially non-oscillatory (ENO) scheme [73]. With denoting the second
derivative with respect to x of the held / at grid point (i,j, k) computed using Eq. 30, the 
ENO derivative is defined in the x direction as

I ~fi+2,j,k + U: • 1 .././•■ - 3./:,;./. if xii j k < 0 and > [fxx]i+

\ - 1/: 1 + /: 2..,./■• if itij k > 0 and > [fxx]i-
1 /■' • 1 ,/■/'• - /■' 1 ,/■/'• otherwise.

(31)
Equation 31 uses the curvature of / to switch between an upwinded three-point derivative 
and a centered difference. Versions of Eqs. 29, 30, & 31 in the y and z coordinates are 
obtained analogously.

To solve Eq. 28 via numerical linear algebra, the spatial derivatives must first be discretized 
using finite differences. In addition to the finite differences discussed above, Eq. 28 also 
contains mixed partial derivatives. The ^-derivative is computed numerically as

f &2f \ _ /i+ip+u- — /i+ip-u- — fi-ij+i,k + (32)

with analogous expressions for other mixed partials.

&A PaWWizaZzcm MPT a/id
We solve Eqs. 23 & 24 in parallel using a custom implementation written in C++ and 

using the MPI library for parallelization [74]. The global grid is split into smaller subgrids, 
each of which is assigned to an individual processor (Fig. 2(a)). The finite difference stencils 
in Eqs. 29 & 30 require data from adjacent gridpoints, and the ENO derivative in Eq. 31 
requires data from at most two grid points away. On grid points within two points of a 
subdomain boundary, the derivative calculation can therefore require inaccessible data in a 
distributed memory setting.

To handle this, we pad each processor subdomain with “ghost regions” of width two. A 
ghost region is a cubical shell of non-physical grid points whose field values are filled with data 
from adjacent processors, so that each subdomain can freely and locally access information 
computed and stored in adjacent subdomains (Fig. 3). At the simulation boundaries, ghost 
regions are used to enforce boundary conditions. For periodic boundary conditions, the 
ghost regions wrap around to processor subdomains on the other side of the simulation. 
For non-periodic conditions, the ghost grid points store whatever values enforce the desired 
boundary conditions.
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(i. j + 1. k + 1)

Figure 2: (a) Domain decomposition. The overall grid is given by the large, multi-colored cube. Processor 
subdomains are delimited by the thick black markings separating the global grid into a 4 x 4 x 4 grid of smaller 
cubes. The fine black lines denote individual grid cells, which are further amplified in the depiction of the 
staggered grid to the right, (b) The staggered arrangement of fields on the grid. The cube here corresponds to 
to a single grid cell of side length h. Velocities v are stored at cell corners denoted by black spheres. Stresses 
a and effective temperatures \ are stored at cell centers indicated by the purple sphere. First-order velocity 
derivatives are required to update the stress; by averaging the four available centered differences surrounding 
the center of the cell, we obtain a second-order staggered stencil. The same arrangement arises for computing 
stress derivatives at the cell corners in the velocity update.

i)

At the start of each timestep, each processor communicates with 26 nearby processors 
via non-blocking communication, sharing six faces, twelve edges, and eight corner regions. 
Each processor sends data to nearby processors, receives the data it requires from the same 
nearby processors, and loads that data into its ghost regions. The total cost of parallel 
communication scales with the surface area of a processor subdomain. To reduce the overhead, 
we compute a decomposition into rectangular regions that minimizes the surface area.

3.6. Performing the projection step
We solve Eq. 28 for the velocity using a custom parallel implementation of the geometric 

multigrid method, a multi-resolution linear system solver that is particularly suited to elliptic 
problems that take place on a physical grid [75]. Let Go be the original grid, and let 
A0x0 = bo be the linear system to solve on this grid. In the multigrid method, a hierarchy of 
progressively coarser grids Gi, Gg,..., Gg is introduced. In our implementation, if Ghas 
resolution Qk x Mk x Nkl then Gk+1 has resolution \Qkj2], \Mk/2], \Nk/2], Interpolation 
operators ; Gk —>■ Gk~i are introduced based on linear interpolation, and restriction 
operators R& : Gk —>■ Gk+\ are introduced based on local averaging. Both Tk and R&, can be 
represented as rectangular matrices, and in our implementation R&_i = Tj—this condition 
is not necessary for a practical implementation, but is useful in some convergence proofs [21].

Our multigrid implementation uses the standard V-cycle [20, 21] with two pre-smoothing 
steps and two post-smoothing steps. On Go the grid is decomposed among the processors in
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Figure 3: Processor ghost regions. The two solid cubes represent two adjacent processor subdomains; the 
boundary between them is indicated by a gray plane in the center of the figure. Surrounding each processor 
subdomain is a transparent two-grid-point ghost region bounded by black dashed lines. For clarity, the ghost 
region grid in the left processor subdomain has been drawn in a thin gray, while the ghost region grid in 
the right processor subdomain has been drawn in black. These two processors communicate the overlapping 
rectangular strip surrounding the separating plane in the center of the figure.

the same way as the simulation fields (Fig. 2(b)). The smoothing steps are performed using 
the Gauss-Seidel method on each processor, with the ghost regions being synchronized after 
each step. This requires building a representation of the linear system on each grid, which 
we do via recursive matrix multiplication [76, 77],

A k — R-fc-iAfc_iTfc. (33)

The implementation works with periodic and non-periodic boundary conditions, and arbitrary 
grid dimensions. As the grids are coarsened, the amount of work on each grid is rapidly 
reduced, to the point where it is no longer effective for all processors to share the work. The 
implementation therefore has the ability to amalgamate the coarser problem onto a smaller 
set of processors, with the rest remaining idle.

The multigrid implementation uses C++ templates, so that the linear system can be 
compiled to work with an arbitrary data type. For the current problem, bo is given by the 
source term — AfV • a and Xq contains values of vn+1 across the entire grid. Hence, we 
compile the multigrid library where the elements of bo and xq are 3-vectors, and the elements 
of Aq are 3x3 symmetric matrices. The matrix Aq is sparse, and a grid point (i,j,k) is 
only coupled to the 27 grid points in the 3x3x3 surrounding cube of grid points given by 
coordinates (i + {—1,0,1}, j + { — 1,0,1}, k + {—1, 0,1}) in our discretization scheme.
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4. Shearing between two parallel plates

In the following sections, we consider several material samples being sheared between two 
parallel plates. This example is experimentally relevant, has simple boundary conditions, 
demonstrates complex shear banding dynamics [43, 42, 44, 45, 47, 35, 34, 46], and has been 
studied previously in two dimensions [23]. It represents a natural physical scenario to compare 
three dimensional results to two dimensional results, compare simulation data to experiments, 
and to quantitatively compare the explicit and quasi-static methods.

The domain occupies —L < x < L, —L < y < L, and —yL < z < yL with y = 4 and 
L = 1 cm. A natural unit of time is given as t.s = L/cs where cs = \Jy/p is the material 
shear wave speed, and we measure time in this scale. In all simulations, we consider a 
domain periodic in the x and y directions with shear velocity applied on the top and bottom 
boundaries in z. The boundary conditions are given by

v(z:,z/,=by.W) = (±[A(A),0,0),

where the function U(t) is given by

if Z < Za, 
otherwise.

(34)

(35)

The ramp-up in the function U(t) prevents a large deformation rate near the boundary 
that would be present with U(t) = Ub immediately at t = 0. The elasticity and plasticity 
parameters are defined in Table 1. From these values, the natural timescale is ts = 4.05 ps.

A diagram of the global three-dimensional grid and the ghost regions at simulation bound­
aries used for implementing the boundary conditions is shown in Fig. 4. The cell-cornered grid 
points run according to i G {0,... , Q — 1}, j G {0,... , M — 1}, and A: 6 {0,..., N}; because 
the grid is non-periodic in z there is an extra grid point in this direction. The velocities at 
grid points with A: = 0 and k = N are fixed according to the boundary velocity in Eq. 34. 
The cell-centered grid points run according to i 6 {4, |,... Q — 4 j g {4, |,... M — 4}, and 
A: G {4, |,... N — 4}. Ghost layers of cell-centered grid points are at (i,j, —4), (y j, —|), 
(i,j, N + 4); and (i,j, N + |). The values of er and % in the ghost layers are linearly inter­
polated from the two most adjacent layers, to ensure that these fields remain free on the 
boundary. At the simulation boundaries in the x and y directions, ghost points outside the 
simulation domain are filled with values that wrap around.

In each case considered in the following sections, the physics of the material sample is 
encoded in the initial effective temperature distribution y(x, t = 0). Following the introduction 
in Sec. 3.1, % is a continuum-scale variable that encodes the density of STZs, and hence its 
initial condition affects the future evolution of plastic deformation within the material.

We now demonstrate the qualitative equivalence between results computed with the 
explicit and quasi-static methods. We consider an initial condition corresponding to a finite 
cylindrical inclusion

%(x, A = 0) = 600 K + (200 K)e-5°^+^/^, (36)
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Figure 4: A diagram of the simulation grid layout for the simplified case of (Q,M,N) = (2,2,2). Corner- 
centered grid points are shown in pink and cell-centered grid points are shown in green. Ghost grid points 
used for enforcing boundary conditions are shown adjacent to the ±x faces and are surrounded by see-through 
rectangular prisms. For clarity, these are omitted from the ±z faces. Corner-centered ghost points and 
cell-centered ghost points are smaller and are shown in lighter pink and green than their physical counterparts. 
The ghost points adjacent to the ±x and ±y faces wrap around, and are used to enforce periodic boundary 
conditions. In the z direction, the ghost grid points are used to linearly interpolate the a and % values, 
leaving them effectively free. In the z direction, there is one extra corner-centered grid point, giving the 
appearance of a grid of size 2x2x3. This grid point is used to enforce shear boundary conditions on the 
velocity field, but the equivalent cell-centered grid points are used to store ghost a and % values.

for x > — L/2 and x < L/2, and 600 K otherwise. Initially the cylindrical inclusion is slightly 
more amenable to plastic deformation, and hence we expect to see a shear band nucleate 
from it. To visualize the effective temperature held in three dimensions, we use a custom 
opacity function defined as

0(x) = Xoo Xbg
X(X)-X6g

-r XM-Xbg ^ 1 
Xoc—Xbg 2^

otherwise.
(37)

Equation 37 sets the opacity of a grid point based on the value of y(x). The parameters 
a and rj are chosen on a case-by-case basis to reveal the most interesting features2. The 
initial condition is depicted in Fig. 5. The grid is of size 64 x 64 x 32 to accommodate 
the limitations of the explicit simulation method, corresponding to a grid spacing h =

2Ideally, we would like to use the same opacity parameters for all plots. However, due to significant 
variations in the ranges of the % fields and their spatial structures, we found it was necessary to set the 
parameters on an individual basis. We note, however, that the color scale is absolute across all simulations.
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Figure 5: The effective temperature field % in the initial configuration for the quasi-static to explicit method 
quantitative comparison. Here, a = 0.25 and r] = 0.5 in the opacity function.

A viscous stress constant of k = O.lSy1 was used in Eq. 23. The timestep for the explicit 
method is AA = A&".

A typical applied shear velocity that is comparable to a realistic loading rate in a 
laboratory experiment is = 10-7L/A [43]. With this velocity, running an explicit simulation 
is prohibitively expensive due to the CFL condition. To ensure that significant plastic 
deformation occurs on timescales reachable by the explicit method, a scaling parameter ( 
is introduced. The molecular vibration timescale t0 is rescaled to t0C-1 and the applied 
shear velocity is inversely rescaled to Ub = 10_7L/AC- The simulation is conducted until a 
final time of tf = 2 x 106ts/C- As ( approaches zero, the quasi-static limit of Eqs. 1 & 2 is 
formally approached. We therefore expect greater agreement for smaller values of Due to 
the appearance of A in Eq. 19, the introduction of ( has the effect of linearly scaling the 
magnitude of plastic deformation by a factor of A quasi-static timestep of Atqs = 200A/C 
is used.

I11 Fig. 6, we show three snapshots of the effective temperature field from each of the two 
simulation methods, at t = 50A, t = 75A, and t = 100A respectively. The explicit simulation 
is shown on the left and the quasi-static simulation is shown on the right. The results are 
qualitatively similar in all three snapshots. At t = 50A, a shear band begins to emerge, 
nucleating outwards from the center of the simulation. A thin region of higher % is visible in 
the center of the band. By t = 75A, the shear band has fully formed and spans the system. 
At t = 100A, the band grows stronger and % continues to increase.

Figure 7 shows cross-sections in z for fixed x = 0 arid y = 0 of ||<70||qs — ||cro||e for several 
time points before the onset of plastic deformation, highlighting some differences between the 
two methods. The explicit simulation exhibits oscillations due to elastic waves propagating 
through the medium. Because the quasi-static method does not resolve these elastic waves, 
the oscillations are apparent in the deviatoric stress differences. When plastic deformation
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Figure 6: Snapshots of the effective temperature distribution %(x, t) for the explicit simulation (left) and 
quasi-static simulation (right) for ( = 104. The simulation helds are qualitatively similar. In all plots, a = 0.4 
and rj = 1.4 in the opacity function. (a,b) t = 50ts. (c,d) t = 75ts. (e,f) t = 100ts. The colorbar is the same 
as in Fig. 5.

18



0.0006

0.0004

0.0002

0.0000

-0.0002 t=10ts

Figure 7: (a) The magnitude of the deviatoric stress tensor ||cr01| for the explicit and quasi-static simulation 
methods along a cross section in c for x = 0 and y = 0 fixed. Results for the explicit and quasi-static 
simulation methods are shown in dashed and solid lines respectively. Oscillations at t = 5ts and t = 10ts are 
due to elastic waves propagating through the medium in the explicit simulation, but are difficult to see by 
eye at this scale, see (b). As plasticity kicks in past t = 15ts, these waves damp out. (b) The difference in the 
magnitude of the deviatoric stress tensor ||cr01| for the explicit and quasi-static simulation methods, along a 
cross section in .: for x = 0 and y = 0 fixed. The oscillations are due to elastic waves propagating through 
the medium in the explicit simulation.

sets in, plasticity-induced damping removes the elastic waves and the agreement improves.

Having demonstrated the qualitative agreement between the two simulation methodologies 
for ( = 104 in the previous section, we now examine convergence as ( is decreased. The same 
simulation geometry, boundary conditions, and initial conditions in the effective temperature 
held are used here as in the previous section. To quantitatively compute the agreement 
between the explicit and quasi-static methods, we define a norm on simulation fields f,

f ii m = (38)

The integral in Eq. 38 runs over the entire simulation domain and is computed numerically 
via the trapezoid rule. The appearance of | • | in Eq. 38 is taken to be the Euclidean norm for 
vectors, absolute value for scalars, and the Frobenius norm for matrices.

Explicit and quasi-static simulations were carried out for values of ( = 104, 5 x 103, 2.5 x 103 
and 1.25 x 103. Equation 38 was evaluated for yqs — ye, crqs — cre, and vqs — ve at intervals 
of 0.027s. The norm in y is measured in terms of \oo, the norm in a is measured in terms 
of sy, and the norm in v is measured in terms of Ub to ensure all values are of order unity. 
The explicit timestep was Ate = and the quasi-static timestep was A/,(|S = -AT. for each 
simulation.

Plots of all three norm values are shown as a function of time in Fig. 8(a) for the value 
of £ = 1.25 x 103. Oscillations due to elastic waves are visible in all simulation fields until
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Figure 8: L2 norm of the y, v, and a simulation field differences between the explicit and quasi-static 
method computed using Eq. 38 and normalizing by the respective characteristic variables as defined in the 
text, for different values of (. (a) A comparison of the four different held norms, for the values of ( = 104. 
The remaining three panels show the differences in (b) velocity, (c) effective temperature, and (d) stress, 
respectively, for a range of values of (.

around t % 12ts when the yield stress is reached. After the onset of plastic deformation, the 
norm in effective temperature increases steadily, most rapidly during the period of shear 
band nucleation from t ~ 12ts to t ~ 25ts. The disagreements in a and v decrease during 
the elastic region, and steadily increase after plastic deformation begins.

Figures 8(b), 8(c), and 8(d) show the quantitative comparisons as a function of time for 
values of ( = 104, 5 x 103, 2.5 x 103, and 1.25 x 103 for v, %, and cr respectively. In all plots, 
better agreement with smaller ( is observed during the elastic regime and during the onset of 
plasticity while t < 12ts. After shear band nucleation from 12ts <t< 25A, all values of ( 
have roughly equal error magnitudes, with slightly greater agreement for higher values of (. 
This is consistent with previous comparisons in two dimensions, where the dominant factor 
governing the disagreement between the two simulation methods was shown to be due to 
differences in the discretization rather than the value of ( itself [23].

A method to reduce the differences in discretization is to increase the background % held. 
With higher values of background %, fmer-scale features in the shear banding dynamics are 
less prominent. This ensures that differences in the spatial discretization will be minimized. 
There is also less rapid development of the shear band, and thus the difference in timestep 
between the two methods will be less significant. Snapshots of the effective temperature 
held are shown in Fig. 9 at t = 10% for background % held of ybg = 600 K, 650 K, 700 K. 
Figure 10 confirms that the differences between the two types of simulation decreases as ybg 
increases.
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Figure 9: Qualitative demonstration of the effect of increasing the background % field with %bg set to (a/b) 
600 K (c/d) 650 K and (e/f) 700 K. All snapshots are displayed at t = 106ts for a value of £ = 104, with 
fixed values of a = 0.75 and rj = 3 in the opacity function. Simulation results are shown for the explicit 
method on the left and the quasi-static method on the right. For lower yt,„ . the shear band is more prominent, 
develops more rapidly, and has more fine-scale features, ensuring that the differences in spatial and temporal 
discretizations become more pronounced.
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Xbg — 600 K Xbg — 650 K Xbg — 700 K

Figure 10: Normalized Lo difference in (a) v (b) % and (c) a between the explicit and quasi-static methods 
for various choices of background % field. Agreement improves as Xbg increases due to a reduction in hire-scale 
features that differ between the two methods due to differences in the discretization.
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We now turn to simulating realistic physical timescales with the quasi-static method, 
where the scaling parameter is ( = 1. We first consider the nucleation of shear bands from 
localized imperfections of higher %. Physically, this describes defects within the material 
structure which may be particularly susceptible to plastic deformation [78]. To begin, we 
consider a single defect, corresponding to an initial % field of the form

J-) ■ (39)

The simulation was performed on a grid of size 256 x 256 x 128, corresponding to a grid 
spacing of h. = L/128. The length scale l appearing in Eq. 22 was fixed at 3h. and sets the 
width of the shear bands. The boundary velocity was set to a value of Ub = 5 x 10-'L/ts, and 
the simulation was conducted to a final time of t.f = 4 x 105ts, using a quasi-static timestep 
of At = 200ts. For three-dimensional visualization, we use the opacity function from Eq. 37.

Snapshots of the effective temperature field at various time points are shown in Fig. 11. 
The initial condition is shown in Fig. 11(a). At t = 105ts in Fig. 11(b), the defect has started 
to expand. By t = 2 x 105ts in Fig. 11(c), a shear band begins to nucleate, indicated by a 
quadrupolar structure emanating from the defect. The background % field also begins to 
increase, as demonstrated by the presence of the transparent light blue background. By 
t = 2.5 x 105ts in Fig. 11(d), a distinct system-spanning band has become clear with a 
propagating front visible near its center. The band displays no curvature in either of the x 
or y directions. By t = 150ts in Fig. 11(e), a prominent band has formed, and there is no 
longer a visible propagating front. The band continues to grow stronger and thicker through 
t = 175ts in Fig. 11(f) and t = 200ts (not shown).

We now introduce a second defect to highlight some three-dimensional characteristics of 
shear banding. We expect that their relative size and location will determine the dynamics, 
with the possibility of forming a single shear band that connects the two defects. The initial 
effective temperature field is

;y(x,t = 0) = 550 K + (170 K) exp ( —200

y(x, t) = 550 K + (200 K) + exp (40)

Two cases of Eq. 40 are considered. First, Xi = (—0.5, —0.5, 0.35), X2 = (—0.5, 0.5,0.25), 
corresponding to two defects symmetric about the y = 0 plane with the same x coordinate, 
a slight offset in z, and different sizes. The results for this case using the same simulation 
parameters as Fig. 11 are shown in Fig. 12. Second, we take X^ = (—0.5, —0.5,0.35), X2 = 
(0.5, —0.5, 0.25); this is the same as the previous case, but with the roles of x and y interchanged. 
The results for this case again with the same grid size, quasi-static timestep, and boundary 
velocity as for the single defect are shown in Fig. 13.

There is an interesting contrast between the time-sequences displayed in Figs. 12 and 13. 
The initial configurations are shown in Figs. 12(a) and 13(a). Much like in the single defect 
simulations, t = 50ts in Figs. 12(b) and 13(b) displays expansion of the defects, and t = 100ts
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Figure 11: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
The initial condition is given in Eq. 39, corresponding to a small Gaussian defect at the center of the material. 
a = 0.35 and i] = 1.1 for plots (a)-(c). a = 0.4 and i] = 1.4 for plots (d)-(f). (a) t = 0ts. (b) t = 105ts. (c) 
f = 2 x 104s. (d) f = 2.5 x 104g. (e) ( = 3 x 104g. (f) f = 4 x 104g.
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Figure 12: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
The initial condition is given in Eq. 40 with Xi = (—0.5, —0.5,0.35), X2 = (—0.5,0.5,0.25). a = 0.35 and 
i] = 1.1 for plots (a)-(c). a = 0.4 and i] = 1.4 for plots (d)-(f). (a) t = 0. (b) t = 105ts. (c) t = 2 x 105fs. (d) 
f = 2.5 x 104s. (e) f = 3 x 104g. (f) f = 4 x 104^.
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Figure 13: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
The initial condition is given in Eq. 40 with Xi = (—0.5, —0.5,0.35), X2 = (0.5, —0.5,0.25). a = 0.35 and 
i] = 1.1 for plots (a)-(c). a = 0.4 and i] = 1.4 for plots (d)-(f). (a) t = 0. (b) t = 105ts. (c) t = 2 x 105fs. (d) 
f = 2.5 x 104s. (e) f = 3 x 104g. (f) ( = 4 x 104g.
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iii Figs. 12(c) and 13(c) shows the initiation of shear band nucleation. In Fig. 12(d), we see 
the formation of a single curved band connecting the two defects, while in Fig. 13(d), the 
band is flat. Figs. 12(e), 12(f), 13(e), and 13(f) make this more clear as the band becomes 
more defined. The curvature seen in Fig. 12 is in the direction orthogonal to shear.

The dependence of band curvature on the relative orientation of the two defects can be 
best understood in terms of the qualitative structure of Fig. 11(c). There is a substantial 
extension of elevated % along the x direction (parallel to shear, in-plane), a small extension 
along the y direction (orthogonal to shear, in-plane), and a moderate extension along the 
z direction (orthogonal to shear, out-of-plane). In Fig. 12, the defects are offset in y and 
z. Because the % field is stronger in z than in y, this relative placement of the defects can 
accomodate curvature along the y direction. On the other hand, in Fig. 13, the defects are 
offset in x and z. The strength of the % field extension in the x direction is great enough 
that the fiat, horizontal regions of the two forming bands reach each other. The two bands 
join into one fatter fiat band.

Taken together, Figs. 11, 12, & 13 provide insight into the structure and nucleation of 
shear bands from localized material defects. They help understand experimentally observed 
band curvature and raise the possibility that the placement and orientation of microscopic 
material properties can influence the qualitative structure of macroscopic shear bands. Finally, 
they provide intuition for more complex initial conditions, such as the random initializations 
considered later in this work, as a superposition of many defects.

We now turn to a set of more complex initial conditions in the effective temperature field. 
Results for circular initial conditions parallel and perpendicular to the direction of shear are 
shown in Figs. 14 and 15 respectively. Mathematically, the initial conditions are

and

y(x, t = 0) = 550 K + (200 K) exp (—750 (d2 + x2)) ,

y(x, t = 0) = 550 K + (200 K) exp (—750 (d2 + y2)) ,

(41)

(42)

representing circles in the yz and xz planes respectively. Simulations were carried out using 
the same simulation geometry, discretization, quasi-static timestep, and boundary velocity as 
in the previous section. The initial conditions in Eqs. 41 and 42 are displayed in Figs. 14(a), 
15(a) respectively.

By t = 8 x 104ts in Figs. 14(b) and 15(b) little has changed. At t = 1.6 x 105ts in 
Figs. 14(c) and 15(c), differences due to the orientation of the circles become clear. The circle 
oriented perpendicular to shear closes vertically into a disk. The circle oriented along shear 
exhibits signatures of shear band nucleation at four equally space points. At t = 2.5 x 105ts
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Figure 14: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
a = 0.35 and rj = 1.1 in (a)-(c). a = 0.4 and rj = 1.4 in (d)-(f). (a) t = 0 (b) t = 8 x 104fs (c) t = 1.6 x 105fs 
(d) f = 2.4 x lO^s (e) ( = 3.2 x 104^ (f) f = 4 x 10^^.
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Figure 15: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
a = 0.35 and rj = 1.1 in (a)-(c). a = 0.4 and rj = 1.4 in (d)-(f). (a) t = 0 (b) t = 8 x 104fs (c) t = 1.6 x 105fs 
(d) f = 2.4 x lO^s (e) ( = 3.2 x 104^ (f) f = 4 x 10^^.
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in Fig. 14(d), the disk has expanded and has developed a pointed front in the y direction. 
There are also two thick, curved bands forming close together near the center of the disk. 
In Fig. 15(d), there are two thinner, well-separated bands forming off the top and bottom 
of the circle with propagating fronts. By t = 3.2 x 105ts in Figs. 14(e) and 15(e), these 
differences have become even more prominent. The disk is still clear in Fig. 14(e) emerging 
from the two bands, and these bands are seen to have a curved structure in the y direction. 
They are also fatter and less separated than the bands seen in Fig. 15(e). These features 
continue to develop into the final pane at t = 4 x 105ts. Taken together, Figs. 14 and 15 
demonstrate another example of the dependence of shear banding structure and dynamics on 
the orientation of initial conditions in the % field with respect to shear.

In this section, we consider the case of a randomly distributed initial effective temperature 
field. The initial conditions presented in the previous sections provide insight into the 
dynamics of shear banding, but it is unlikely that they have exact physical correspondences. 
The STZ theory postulates that STZs are randomly distributed throughout the material, and 
a random initial condition in % is most faithful to this fundamental assumption [79]. Random 
initial conditions are thus expected to shed the most light on the structure of shear bands 
observed in experiments. The randomly fluctuating % field furthermore leads to the formation 
of multiple shear bands, and potentially enables the study of shear band interactions in the 
STZ model [80].

We first populate the grid and a shell of ghost points with random variables yy(x) using 
the Box-Muller algorithm. With yx and ox respectively denoting the desired mean and 
standard deviation, we perform the convolution

rev'
N (43)

where V denotes the set of grid points and V' denotes the set of grid points with the addition 
of the ghost points. Equation 43 ensures that the effective temperature value at each point 
is normally distributed with mean yx and standard deviation ax. In practice, the sums in 
Eq. 43 are performed with a cutoff length scale specified as a multiplicative factor of the 
convolution length scale Zc, and the number of ghost points in V' is set by the choice of cutoff 
length scale. Results for a random initialization with yx = 500 K, ox = 15 K, lc = 5h. and a 
cutoff factor of 5 (leaded to 25 ghost points in each direction for the convolution) are shown 
in Fig. 16. The grid is of size 512 x 512 x 256. The simulation geometry, quasi-static timestep, 
and boundary velocity are the same as in previous sections. The initial conditions are shown 
in Fig. 16(a).

By t = 5 x 104ts in Fig. 16(b), the effective temperature has increased somewhat uniformly 
across the grid. At t = 105ts in Fig. 16(c), both horizontal and vertical shear bands begin to 
nucleate throughout the simulation. Fig. 16(d) displays a multitude of thin, system-spanning 
horizontal bands connected by vertical bands. Curvature is present in the horizontal bands 
both parallel and orthogonal to the direction of shear. A branching pattern is seen at
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600K 700K 800K 900K
Figure 16: Snapshots of the effective temperature distribution %(x, t) for a quasi-static simulation with ( = 1. 
a = 0.6 and i] = 1.5 for subfigures (a) and (b). a = 0.7 and i] = 1.55 for subfigures (c)-(f). (a) t = 0. (b) 
f = 5 x 10%. (c) f = 10%. (d) f = 1.5 x 10%. (e) f = 2.5 x 10%. (f) f = 4 x 10%.
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t = 2.5 x 105ts and t = 4 x 105ts in Figs. 16(e) and (f), where thick bands split into two 
thinner bands and later rejoin.

5. Interim Remarks

We have discussed a family of quasi-static projection methods for hypo-elastoplasticity 
through an analogy with incompressible fluid dynamics. A single member of this family was 
chosen, and a discrete scheme was developed for use in three dimensions, generalizing previous 
work in two dimensions [23]. Several numerical examples were considered within the shear 
transformation zone model of amorphous plasticity, and both qualitative and quantitative 
convergence of the quasi-static method to an explicit scheme was demonstrated.

In part II of this paper [63], the hypo-elastoplastic equations are derived in a fixed 
reference domain that can be related to a physically deforming grid through a time-dependent 
linear transformations T(t). This framework enables straightforward implementation of 
several otherwise complex continuum-scale boundary conditions, such as pure shear and the 
Lees-Edwards boundary conditions used in molecular dynamics simulations. The projection 
method developed is extended to the transformed domain. We demonstrate the convergence 
of the transformed method to the standard method presented here in a physically equivalent 
setup. Several other interesting numerical examples within the shear transformation zone 
model of amorphous plasticity are considered, including the dependence of shear banding 
dynamics with random initializations in % on the mean /j,x of the distribution. Particular 
attention is paid to the effect of periodicity in z on shear banding dynamics. Part two 
concludes with a summary of the ideas discussed here and in part II itself.

Appendix A. Connection to the continuous-time framework

We can make a connection to the general continuous-time framework presented in 
as follows. By comparison of Eqs. 16 and 28, we can identify $ = At v. Equation 
says that

C : Dra+1 C : ^Vq + At <9Dra+1 X
at y'

Sec. 2.4 
15 then

(A.l)

Recall that q is chosen to be the best available approximation to vra+1, and note 
symmetry of C,

C:Vg = C:)(Vq + V(q)T).

that by 

(A.2)

Equation A.l thus says the following: C : Dra+1 is given by the best available guess before 
the solve for vra+1 - C : Vq - plus an (9(At) correction constructed via a first-order Taylor 
expansion in time.
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