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Abstract

Performance variability is an important factor of high-performance computing (HPC) sys-

tems. HPC performance variability is often complex because its sources interact and are

distributed throughout the system stack. For example, the performance variability of I/O

throughput can be affected by factors such as CPU frequency, the number of I/O threads,

file size, and record size. In this paper, we focus on the I/O throughput variability across

multiple executions of a benchmark program. For a given system configuration, the distribu-

tion of throughputs from run to run is of interest. We conduct large-scale experiments and

collect a massive amount of data to study the distribution of I/O throughput under tens of

thousands of system configurations. Despite normality often being assumed in the literature,

our statistical analysis reveals that the performance variability is not normally distributed

under most system configurations. Instead, multimodal distributions are common for many

system configurations. We propose the use of mixture distributions to describe the multi-

modal behavior. Various underlying parametric distributions such as normal, gamma, and

the Weibull are considered. We apply an expectation maximization (EM) algorithm for pa-

rameter estimation and use the Bayesian information criterion (BIC) for parametric model

selections. We also illustrate how to use the estimated mixture distribution to calculate the

number of runs needed for future experiments on variability analysis. The paper provides a

useful tool set in studying the behavior of performance variability.
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1. Introduction

1.1. Background

High performance computing (HPC) systems must continue to improve in order to address

increases in the complexity and scale of computing demands. However, variability is a huge

impediment to the effective scaling of HPC systems. HPC system variability has several

forms. One common example is that given a computing task, repeated executions of that

task will require different amounts of running time. In some scenarios, the difference in

running time is nonnegligible and hard to predict. Observations and experiments have

shown that performance variability in HPC systems exists and is common [1]. Variability

makes system optimization challenging. Thus, variability control is an important problem

in HPC research.

One important step in variability control is to describe the system variability. The

description of system variability involves two steps, namely, running proper experiments

on the system to collect enough data, and applying appropriate statistical tools to analyze

the experimental data. It is important that the statistical tool chosen can capture the

complex distribution patterns under different system configurations. Little comprehensive

work has been done describing HPC system variability. One possible reason could be the lack

of resources to run enough experiments to collect sufficient experimental data for statistical

analysis. In addition, due to the complexity of computing systems, both in terms of hardware

and applications, the source of performance variability is not easy to identify. In most existing

work, the distribution of the performance of an HPC system is assumed to follow a normal

distribution.

Our research finds that the distribution of the performance is much more complicated

than a normal distribution. In the throughput data collected from the IOzone benchmark [2],

multimodal distributions for performance are common across many system configurations.

Although the details will be discussed in Section 2, Figure 1 shows typical examples of I/O

throughput distributions under four different system configurations collected from hundreds

of runs of IOzone for those configurations. The histograms of throughputs show little to

no evidence of being normal distributions. Thus, the distribution of I/O throughputs is

complicated and needs further investigation.

In this study, we apply advanced statistical tools to describe the characteristics of the

distribution of system performance variability. We collect large scale data by running the

IOzone benchmark on an HPC system. Mixture distributions are used to model the through-

put data collected from the IOzone benchmark. We develop an expectation-maximization

(EM) algorithm to automatically identify the distribution parameters, and use the Bayesian

information criterion (BIC) to select the underlying distribution and the number of compo-
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Figure 1: Histograms for typical throughput distributions from four example configurations with different

number of modes. The x-axis is the throughput (KB/s), and the y-axis is the counts.

nents in the mixture distribution. The result of the data analysis implies that the standard

normality assumption for system performance is not accurate. Multimodal phenomena show

up in many system configurations. That is, the distribution of the throughput follows a

multimodal mixture distribution for many of the cases. The parametric mixture distribution

not only provides an automatic tool to discover the distributional behaviors of the perfor-

mance, but also provides a basis for computing an appropriate sample size (i.e., the number

of runs) for future experiments. We develop a procedure for estimating sample size using the

parametric mixture distribution, which may be beneficial for future research in controlling

variability.

1.2. Related Literature

Researchers have noticed the existence of variability in HPC systems for more than a

decade [3, 4]. Performance variability was analyzed in some existing work [1, 5, 6, 7]. Prior

to this paper, statistical modeling of variability was restricted to one or two system pa-

rameters [8, 9, 10, 11]. These previous statistical models provide useful results for specific

applications and work with simplified systems, heavy data augmentation, or strong assump-

tions about performance variability.
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Most existing work on performance variability has focused on operating system (OS)

induced variability [12, 13]. Yet, system I/O variability has been particularly difficult for

statistical models to capture [6, 9]. I/O variability under two system parameters was modeled

in [14]. Recent generic I/O modeling has been nonparametric, and hence limits the number

of conclusions that can be drawn from the model structure [15]. Other recent I/O modeling

work uses black-box machine learning methods to predict variance and mean, but lacks the

ability to identify underlying distributions [16, 17, 18]. Maricq et al. [19] propose an open

source tool for analyzing the variability under different server configurations. They also use

nonparametric statistical methods to see how representative an individual server is of the

general population and determine how many experimental trials one needs to capture the

system variability behavior.

Variability is becoming an important factor in building supercomputers [20, 21], cloud

computing systems [22, 23, 24] and robust scalable network security [15]. For this reason it

is critical that we improve our ability to understand, predict, and manage variability with

sophisticated statistical models.

Performance analysis also appears in many areas. For example, Umar et al. [25] propose

two energy models and estimation frameworks for Aspen DSL. Using experimental data, their

model can reduce energy consumption by 45%. Rolinger et al. [26] present a performance

analysis framework for tensor decomposition. Their study concentrates on measured memory

usage, processor stall cycles, execution time, and scalability. Tong et al. [27] present a

trace-based analysis tool that can classify MPI applications as bottlenecks based on their

performance. The classification model can help better understand application performance

limiting factors. In addition to performance control, managing energy consumption is also

popular [28, 29]. Yu et al. [28] focus on the trade off between power consumption and

performance using a trace based validation, and show that the model is accurate and scalable.

Lemeire et al. [29] give a methodology to study the computing efficiency and the overhead

impacts on runtime performance. They define three types of efficiency and propose analytical

formulas to measure and predict the respective efficiencies.

For the related statistical work, mixture distributions are widely used to describe distri-

butions with multimodal behaviors. The EM algorithm is usually used to find the maximum

likelihood estimates of parameters in mixture distributions [30, 31]. For parametric model

selection, many statistical criteria are based on the maximum likelihood criterion. An obvi-

ous drawback of the maximum likelihood criterion is that it has no penalty on the number

of parameters in the model. As a result, the best models are always the ones that have the

most parameters, which has the risk of over-fitting. Many extensions of maximum likelihood

are based on the idea of adding a penalty on the number of parameters. Two examples are

the Akaike information criterion (AIC) [32] and the Bayesian information criterion (BIC)
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[33]. To estimate the sample size and quantify the uncertainty in estimation, confidence

intervals can be used and early work can be traced back to [34]. In this paper, we use an

approach that is similar to [35] to measure the uncertainty in estimating the quantiles of the

distribution, and we develop a procedure for the sample size calculation. Since our mixture

model is different from the lifetime model used in [35], we derive the theoretical formula for

our specific model to construct confidence intervals.

In summary, our proposed parametric analysis uses a mixture distribution for I/O vari-

ability modeling and analysis that is new to the literature. The mixture distribution provides

an effective tool for describing the multimodal behavior of the I/O performance distribution.

The model is also useful for designing future experiments for I/O variability studies.

1.3. Overview

The rest of the paper is organized as follows. Section 2 gives a description to the IOzone

experimental setup and the collected dataset. Section 3 describes the statistical model using

mixture distributions, an EM algorithm for parameter estimation, and parametric model

selections. Section 4 develops a method to use the mixture model to determine sample

size for future experiments. Section 5 presents the modeling and data analysis results and

discusses the findings. Section 6 gives a numerical example for sample size determination.

Section 7 concludes and discusses areas for future research. Some technical details are

available in the appendix.

2. Experiment Setup and Data Collection

2.1. Experiment Environment

We decided to focus our analysis on storage using the rationale that persistent storage

would exhibit the highest variance among available local resources while offering the most

defined and interesting performance characteristics. That is, we identified I/O as a likely

high variance operation, and the IOzone benchmark is used to generate I/O workloads with

various configurations. While IOzone is not identical to any particular workload, it does

cover a board range of possible I/O patterns including operations such as random access

that are likely to exhibit higher variance. The total execution time and throughput reports

are used to analyze and compare different configurations to determine which selections are

subject to the highest levels of performance variance.

We ran the experiments on a 12-node server. The nodes are all identical Dell PowerEdge

R630s. Each node is configured as Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50 GHz, 16GB

DRAM (2 DIMMs), and a new 200GB SSD with Intel model SSDSC2BA200G4R. There

are 2 sockets with 4 cores per socket. So in total, there are 8 physical cores. With hyper-

threading enabled, there are 16 CPUs seen by the OS and user space. The operating system
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is Debian GNU/Linux with a 4.14 kernel and IOzone version 3.465. The installation is the

most minimal possible, that is only systemd and sshd are running in user space. Turbo Boost

is disabled and we use cpufreq-utils to manually set the CPU0 frequency prior to running the

benchmark. The task scheduling we used is the default completely fair scheduling (CFS).

The SSD block device is issued a TRIM command prior to benchmark execution. This allows

us to begin each run with the most identical device state possible. Benchmarks are run in a

background process and no remote access occurs during the execution of a workload.

2.2. Dataset collection

The dataset we used in this study has variables including HPC system hardware and

application parameters. The attributes and levels are shown in Table 1. The hardware

configuration includes CPU clock frequency. The application configurations include number

of threads, file size, record size, and I/O operation mode. The file size (fs) and record size

(rs) have a constraint that their ratio fs/rs must be an integer. In total we have 22734

different settings.

Regarding I/O access patterns, we studied six I/O operation modes in this paper as shown

in the last row of Table 1. Specifically, the six I/O operation modes under consideration

are random readers, rewriters, initial writers, readers, random writers, and re-readers. The

detailed descriptions for those six modes are available in [2]. Similar behaviors have been

observed in other I/O operation modes. Cameron et al. [1] studied 13 I/O operation modes in

a small scale for the prediction of throughput variance, and saw similar multimodal behaviors.

The matrix plot in Figure 2 shows the combinations of all four numerical variables in the

experiments. It describes how frequency, threads, file size, and record size are configured for

each of the I/O operation modes. The diagonal plots show the name of the axes. The off-

diagonal plots show the corresponding scatter plots with respect to the pair of variables. For

example, the subplot in the first row, second column shows the scatter plot for all settings

for frequency and file size.

While clock frequency and I/O mode have relatively few possible values on the chosen

systems, other configurable system parameters have prohibitively many options for brute-

force testing. Given that much of the system I/O software and underlying I/O hardware

operate of powers of two, we use an exponentially spaced selection values for file size (powers

of four) and record size (powers of two). The number of threads was chosen to be a multiple

of eight because there are eight physical CPU cores available on the systems.

The output of an experiment is the throughput of IOzone given a certain system con-

figuration (in a scale of 106 KB/s). For a given system setting shown in Table 1, we run

the IOzone filesystem benchmark [2] at least 150 times to capture the characteristics of the

throughput distribution. To illustrate some general patterns in the throughput distribution,
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Table 1: System parameters and their levels used in the study of I/O variability.

System
Parameters

No. of
Levels

Levels

Hardware
CPU Clock

Frequency (GHz)
7 1.2, 1.6, 2.0, 2.3, 2.8, 3.2, 3.5

Application

Number of Threads 9 1, 8, 16, 24, 32, 40, 48, 56, 64

File Size (KB) 10
4, 16, 64, 256, 1024, 4096,

8192, 32768, 65536

Record Size (KB) 13
4, 8, 16, 32, 64, 128, 256, 512 1024,

2048, 4096, 8192, 16384
I/O Operation

Mode
6

random readers, rewriters, initial writers,
readers, random writers, re-readers

we select four typical settings and plot the histograms of the throughputs in Figure 1. From

those histograms, we can see that the distributions of throughputs have a clear pattern of

multiple modes. The top two histograms show two major modes together with some possible

small modes in the tails. The bottom two histograms show three major modes with some

possible small modes in the tails. All of them can not be described using a single normal

distribution, indicating more sophisticated analytical methods are needed.

3. Mixture Model and Parameter Estimation

3.1. The Mixture Model

In this section, we introduce mixture models for the throughput data and develop a

tailored EM algorithm for the estimation of the parameters in the mixture models. We

represent the throughput under a given configuration by a random variable. In addition,

the throughput of each run under the same configuration can be treated as independent and

identically distributed (iid). Let X = (X1, . . . , Xn) where the Xi are iid random variables

each representing the throughput of one run under the same configuration, and n is the

number of runs. We model Xi by a k-component mixture distribution with probability

density function (PDF),

f(x, θ) =
k∑

j=1

πjfj(x, θj), (1)

where πj ≥ 0 is the proportion of the jth component, fj(x, θj) is the PDF of the j-th

component for a type of distribution (e.g., normal distribution) with parameter vector θj .

Let θ be the vector for all parameters and note that
∑k

j=1 πj = 1.
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Figure 2: Grid of plots showing all pairwise combinations of the four numeric variables. Note that at

each configuration (dot) represented in each plot, there are six separate experiments covering different I/O

operation modes.

8



0

25

50

75

100

25 50 75 100 125

2 components

0

25

50

75

100

25 50 75 100 125

3 components

0

25

50

75

50 100

4 components

0

25

50

75

0 50 100

5 components

Figure 3: Histograms of random samples from mixture normal distributions with different number of com-

ponents.

For the model in (1), each component represents a mode in the throughput distribution.

To illustrate the flexibility of the mixture model in describing multimodal data, we simulate

some data from a normal mixture model (i.e., using a normal distribution as the underlying

component distribution in (1)) with the number of components ranging from two to five.

The simulated data is shown in Figure 3, which reveals similar patterns to those in Figure 1

from the real data. From the figure, we can see that by choosing the number of components

and the parameters θ for the mixture distribution, one can obtain a much more accurate

description of throughput data than when using a single normal distribution.

To use the mixture model in (1), one needs to specify the number of components k, and the

underlying distributions fj(x, θj). The specification of k will be discussed in Section 3.3. For

the underlying distribution type, we consider the normal, gamma, the Weibull, lognormal,

loglogistic, and the Frechét distributions, which are widely-used in statistical modeling. The

PDFs of those distributions are listed in Table 2.

Let θj = (µj, σj)
T . For the normal, lognormal, the Weibull, loglogistic, and the Frechét

distributions, µj is the location parameter and σj is the scale parameter. For the gamma

distribution, µj is the shape parameter and σj is the scale parameter. Thus the parameter

vector to be estimated for the mixture model is θ = (π1, . . . , πk−1, µ1, . . . , µk, σ1, . . . , σk)
T .

Note that the total number of parameters here is p = 3k − 1 for the distributions listed in

Table 2. For example, if the number of components in a normal mixture model is k, there

are k location parameters, k scale parameters, and k − 1 parameters for the proportion πj
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Table 2: Probability density functions (PDFs), f(x, µj , σj), for the different distributions under considera-

tion. Here, φsev(z) = exp [z − exp(z)], φlogis(z) = exp(z)/ [1 + exp(z)]
2
, φlev(z) = exp [−z − exp(−z)], and

Γ(·) is the gamma function.

Distribution PDF

normal 1√
2πσ2

j

exp
[
− (x−µj)2

2σ2
j

]

gamma 1

Γ(µj )σ
µj
j

xµj−1 exp
(
− x

σj

)

Weibull 1
σjx

φsev

[
log(x)−µj

σj

]

lognormal 1

x
√

2πσ2
j

exp
{
− [log(x)−µj ]2

2σ2
j

}

loglogistic 1
σjx

φlogis

[
log(x)−µj

σj

]

Frechét 1
σjx

φlev

[
log(x)−µj

σj

]

of the jth distribution component.
∑

j πj = 1 determines πk.

3.2. The EM Algorithm for Parameter Estimation

The EM algorithm uses an iterative approach to find the maximum likelihood estimates

(MLE) of parameters, which is widely used to estimate statistical parameters for various

models ([30]). The implementation of the EM algorithm under our mixture model with

many component distributions needs tailored work. For the model in (1), we add a latent

random variable Z = (Z1, . . . , Zn) to indicate which component the Xi is sampled from.

Given the component, Xi follows the distribution with PDF fi(x, θj). That is

Xi|Zi = j ∼ fj(x, θj). (2)

Here, “∼” means “follows.” Then the likelihood for (X ,Z) is

L(θ,X,Z) =
n∏

i=1

k∏

j=1

[πjfj (Xi, θj)]
I(Zi=j) , (3)

where

I(Zi = j) =




1, Zi = j

0, Zi 6= j
. (4)
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The marginal likelihood for X is

L(θ,X) =

n∏

i=1

k∑

j=1

πjfj(xi, θj). (5)

The EM algorithm can find the maximum likelihood estimates of θ without knowing the

latent variable Z. With initial values for θ, the EM algorithm performs a fixed point

iteration to determine a final value for θ, which is described in the following sections.

3.2.1. Choosing Initial Values

We need initial parameter values, which are denoted by,

θ
(0) = (π

(0)
1 , . . . , π

(0)
k−1, µ

(0)
1 , . . . , µ

(0)
k , σ

(0)
1 , . . . , σ

(0)
k ).

We use the k-means clustering technique to divide our sample xi, i = 1, . . ., n into k groups.

Let nj, j = 1, . . ., k be the number of points in each group, and we have
∑k

j=1 nj = n.

Then we set π
(0)
j = nj/n. For the initial values µ

(0)
j and σ

(0)
j , suppose the j-th group has

data points {xj1 , . . . , xjnj
}. Then µ

(0)
j and σ

(0)
j are chosen to be the MLE using these data

points under the corresponding underlying component distribution. For example, if we use

a normal mixture model, then µ
(0)
j and σ

(0)
j are the MLE of the normal distribution using

data {xj1 , . . . , xjnj
}.

3.2.2. Fixed Point Iteration

The expected loglikelihood for θ given the current estimate θ
(t) is defined by

Q(θ|θ(t)) =E
Z|X,θ(t) log [L(θ,X,Z)] (6)

=

k∑

j=1

n∑

i=1

P (Zi = j|Xi = xi, θ
(t)) · log [πjfj(xi, µj, σj)] .

The updated estimate for θ, denoted by θ
(t+1), is the value of θ that maximizes Q(θ|θ(t)).

That is

θ
(t+1) = argmax

θ
Q(θ|θ(t)) . (7)

The update for πj has a closed-form expression. Let Tij be the conditional probability of

being in component j given the data. In particular,

T
(t)
ij = P (Zi = j|Xi = xi, θ

(t)) =
π
(t)
j fj(xi, θ

(t)
j )

k∑

l=1

π
(t)
l fl(xi, θ

(t)
l )

. (8)
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Then πj is updated as

π
(t+1)
j =

1

n

n∑

i=1

T
(t)
ij . (9)

For the normal and lognormal mixture models, the update of the location and scale param-

eters (i.e., µ and σ in θ) has closed forms. Specifically, for a normal mixture model, the

updating formula is

µ
(t+1)
j =

n∑

i=1

T
(t)
ij xi

n∑

i=1

T
(t)
ij

and σ
(t+1)
j =

n∑

i=1

T
(t)
ij

(
xi − µ

(t+1)
j

)2

n∑

i=1

T
(t)
ij

. (10)

For a lognormal mixture model, the updating formula is

µ
(t+1)
j =

n∑

i=1

T
(t)
ij log(xi)

n∑

i=1

T
(t)
ij

and σ
(t+1)
j =

n∑

i=1

T
(t)
ij

(
log(xi)− µ

(t+1)
j

)2

n∑

i=1

T
(t)
ij

. (11)

The Weibull, gamma, loglogistic and Frechét mixture models do not have closed-form up-

dates. So we use the gradient descent method to update θ
(t). We repeat the fixed point

iteration until θ(t) converges.

3.3. Model Selection

To specify the mixture model in (1), we need to determine the number of components

k and the underlying distribution type fj(x, θj). We use the Bayesian information criterion

(BIC) for model comparisons, which is defined by

BIC =− 2 log(L̂) + log(n)p, (12)

where n is the number of iid samples, and p = 3k − 1 is the number of parameters in the

model. Here,

L̂ =

n∏

i=1

k∑

j=1

π̂jfj(xi, θ̂j) (13)

is the maximum likelihood value evaluated at π̂j and θ̂jbeing the parameters estimated by

the EM algorithm. The second item in equation (12) is the penalty for the number of

parameters, which enables us to determine the number of components in the mixture model.

The best model should have the smallest BIC value since it has a larger likelihood value and

fewer number of parameters.
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4. Sample Size Determination

One application of the mixture model is to determine the number of throughput runs

(i.e., sample size n) for future experiments, which is a sample size determination problem.

For a given configuration, researchers are typically interested in how many runs are needed

so that the distribution of the throughput can be estimated with enough precision. Among

statistical tools, confidence intervals provide an easy way to display the scale of uncertainty.

A narrow confidence interval often means a smaller uncertainty in parameter estimation.

The width of a confidence interval is related to the standard error, which typically reduces

as the number of runs (i.e., the sample size n) increases.

Note that we use X to denote the random variable for the throughput under a given

system configuration. The cumulative distribution function (CDF) of X is defined as F (x) =

Pr(X ≤ x). The quantile function xq is defined as the smallest x such that F (x) = q

for continuous distributions, where 0 < q < 1. Because we are interested in estimating

the distribution function F (x), it is not straightforward to measure the uncertainty in the

estimation of a function. In the literature, people use the uncertainties in lower and upper

quantiles (e.g., x0.1 and x0.9) to represent the uncertainties in the estimation of a distribution

function (e.g., [35]). This is because the lower and upper tails of a distribution are typically

difficult to estimate. A good estimation (i.e., with low uncertainty) for the lower and upper

quantiles typically implies a good estimation for the distribution. Further, xq is centered so

that x0.1 and x0.9 are far from zero.

To develop this idea, let x̂q be the estimator of the q quantile, xq, of the throughput

distribution. Let
√
var(x̂q) be the standard error for the estimator. To account for the scale

of X , we consider the following ratio,

Γq =

√
var(x̂q)

x̂q

, (14)

as a metric for measurement of uncertainty, which is similar to those used in some statistical

literature (e.g., [35]). We refer to Γq as the scaled standard error (SSE) for the q quantile

estimator.

To estimate var(x̂q) under different sample sizes n, we choose a mixture model with k

components as the underlying distribution for a system configuration. Then the PDF for

the throughput distribution is

f(x, θ̂) =
k∑

j=1

π̂jfj(x, µ̂j, σ̂j), (15)

where fj(x, µj , σj) is the PDF of a component distribution, with the same notation as in Sec-

tion 3. The parameter vector θ̂ = (π1, . . . , πk−1, µ1, . . . , µk, σ1, . . . , σk)
T is estimated by the

EM algorithm. The detailed formula for the calculation of var(x̂q) is given in Appendix A.1.
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From (A.5), we can see that var(x̂q) is on the order of 1/n and Γq = Γq(n) is a function

of n. Thus, a larger n will lead to a smaller Γq(n), which means higher confidence for

the quantile xq. The choice of Γq(n)’s threshold depends on the computing resources and

accuracy requirement. A smaller threshold will lead to better accuracy while requiring more

runs and vice versa.

The procedure we used to determine the optimal sample size for a given system configu-

ration is illustrated in Figure 4 and described as follows.

1. For a given system configuration, run a pilot experiment with n runs to collect some

initial data. A sample size of 30 to 40 can typically provide good estimates for the

parameters.

2. Use the EM algorithm to fit the proposed 30 mixture models over the pilot data, then

select the best fitted model among the 30 using BIC.

3. Use the best estimated mixture model, one can calculate Γ0.1(n) and Γ0.9(n) as a

function of n by (A.5). Here we use 0.1 quantile (lower quantile of the distribution)

and 0.9 quantile (upper quantile of the distribution) to control the accuracy in the

estimation of the distribution. In a conservative situation, one can use the 0.05 quantile

and 0.95 quantile to control the accuracy of the estimation.

4. Select a suitable sample size n such that Γ0.1(n) and Γ0.9(n) are both small enough.

This choice depends on the application and the available resources. One can choose

the threshold to be 0.5 (for fewer runs) or 0.1 (for better accuracy). Here a threshold

of 0.5 means the standard error is of the 50% of the true value, while a threshold of

0.1 means the standard error is of the 10% of the true value.

Section 6 provides an illustration of this algorithm for sample size determination.

5. Modeling and Data Analysis Results

In this section, we provide the modeling and analysis results for the data presented

in Section 2. We vary the possible number of components from 1 to 5. Because we use

6 candidate distributions for a single component, there are 5 (number of components) ×
6 (kinds of distributions) = 30 mixture models in total. We fit all the 22734 HPC settings

with these 30 mixture models and record their corresponding BIC values. All throughputs

under one configuration are standardized before running the EM algorithm.

Regarding the computing time of the EM algorithms, Table 3 shows the mean comput-

ing time (in seconds) and its corresponding standard deviation (in parentheses) over 1000
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Figure 4: Flow chart of the statistical analysis framework.

randomly selected configurations, for different combinations of distribution components and

the number of components. One can see that the computing time increases as the number

of components increases. Note that for the normal and lognormal distributions, the com-

puting is fast due to the availability of the closed-form expressions in updating. For other

distributions, it takes longer due to the need for numerical optimization.

We first focus on which distributions have the best overall fits. The results are shown in

Table 4. The second column of Table 4 (i.e., Sum of Best BIC), using a normal distribution

as an example, is calculated as follows.

1. For the m-th setting (m is from 1 to M =22734), select the minimum BIC among all

the normal mixture models with 1 to 5 components, denote as BICnorm
m .

2. The sum of BIC for normal distributions is calculated as
∑M

m=1 BIC
norm
m .

The third column of Table 4 shows the number of times that each kind of component dis-

tribution is best through the whole dataset, while the last column shows the corresponding

proportion. We see that the normal, lognormal, and loglogistic distributions have the low-

est sum of BIC. The normal and lognormal distributions appear to be the most frequently

selected component distributions. In particular, 50.00% of the 22734 configurations are se-

lected to be either normal or lognormal mixture models. This reveals that the throughput

of I/O systems, which in the past was thought to be normally distributed, follows not only

15



Table 3: The mean computing time (in seconds) and its standard deviation (in parentheses) for 1000 randomly

selected configurations, for different distribution components and the number of components. “0.0” means

the computing time is less than 0.01.

Distribution
Number of Components

1 2 3 4 5

normal
0.00
(0.00)

0.03
(0.05)

0.07
(0.08)

0.12
(0.17)

0.18
(0.21)

gamma
0.01
(0.01)

2.85
(2.59)

11.63
(12.41)

28.97
(26.92)

56.27
(43.79)

Weibull
0.00
(0.00)

4.27
(3.69)

13.92
(15.16)

33.43
(38.76)

61.84
(68.44)

lognormal
0.00
(0.00)

0.03
(0.11)

0.08
(0.12)

0.12
(0.13)

0.18
(0.18)

loglogistic
0.01
(0.00)

7.21
(6.46)

24.63
(24.89)

59.51
(61.81)

113.33
(114.27)

Frechét
0.00
(0.00)

4.52
(3.29)

13.70
(12.52)

32.55
(31.63)

67.36
(67.15)

normal but also lognormal distribution. In addition, compared to a normal distribution, a

lognormal distribution is more right skewed. As a result, the previous assumptions about

I/O variability ignore the right long tail, which is also seen in Figure 1.

When it comes to the number of components, the results are shown in Table 5. In

particular, 70.2% of the 22734 configurations are detected to have a better fit for mixture

models. Our result shows that multimodal behavior is common in I/O variability. Using

a single component distribution does not accurately describe I/O variability. Also, the

proportion of configurations that have more than three components is nonnegligible. In

other words, it is not rare that I/O throughput distributions are complex, which makes the

prediction and control of system variability challenging.

To visualize the fitting results, Figure 5 shows the mixture model fitting results for the

same four configurations as seen in Figure 1. We plot the empirical CDF and estimated

mixture distributions for the corresponding data. From the plot we see that mixture models

can fit the data very well, under different settings. For those four configurations, we can see

that four to five components are needed to describe the multimodal behavior.

6. Applications of Sample Size Determination

We construct Γq with q = 0.1, 0.9 using the historical data from one system configuration

as an illustration. The system configuration information is given in Table 6. Using the data
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Figure 5: Four examples for probability plots corresponding to the data used in Figure 1. The best number

of components for the six distribution types are plotted, and the black lines are the empirical CDF for the

throughputs. The label “gamma4*” means a gamma mixture model with four components, while the “*”

means the lowest BIC among all the mixture distributions.
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Table 4: Sum of best BIC values for each setting of different distribution types and summary counts for best

distributions for all 22734 configurations.

Distribution Sum of Best BIC
Best Distributions
Counts Proportion

normal 7066154 5378 0.237
gamma 7746079 1784 0.078
Weibull 8096009 2981 0.131
lognormal 7014309 5983 0.263
loglogistic 6857704 3339 0.147
Frechét 7160068 3269 0.144

Table 5: Summary for the best number of components selected for all 22734 configurations.

Summary
Number of Components

1 2 3 4 5
Count 6774 9000 2957 1945 2058

Proportion 0.298 0.396 0.130 0.086 0.091

analysis procedure in Section 5, we get a normal mixture model with two components for

this configuration. The parameter estimates for this model are listed in Table 7.

Using the result in Table 7, we calculate Γ0.1(n),Γ0.9(n) for n from 1 to 900 and plot Γq

vs. n in Figure 6. The SSE convergence rate is in the order of 1/
√
n. We see that although we

collected data on 900 runs, less than 250 data points are needed to capture the characteristics

of the mixture normal distribution in Table 7. At sample size n = 250, the total deviation of

the two SSEs from zero (i.e., |Γ0.1(n)| + |Γ0.9(n)|), is about 6.32% of the starting deviation

|Γ0.1(1)| + |Γ0.9(1)| when the sample size is one. Recall that xq was centered so that Γq(n)

can be negative.

So we can say that at n = 250 we can reduce the uncertainty by 93.38%. In addition,

the rate of decrease in uncertainty slows with increasing n. So the marginal benefit of the

increase in sample size vanishes. Overall, this gives us a useful way to balance the reduction

of uncertainty with the number of runs needed. In this example, although we have done 900

runs, Figure 6 shows that 250 runs should provide comparable precision in estimation. Our

Table 6: System configuration used for the illustration of confidence interval construction.

Freq fs rs Threads Test Replicates
3.5 4 4 1 initial writers 900
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Table 7: Parameter estimates under a normal mixture model with two components for the configuration in

Table 6.

Proportion Component 1 Component 2
π1 µ1 σ1 µ2 σ2

0.03977 1.6023 2.3462 −0.06634 0.8376

0

1

0 250 500 750
Sample Size

Q
ua

nt
ile

 R
at

io
q=0.1
q=0.9

Figure 6: Plot for the quantile ratios Γ0.1 and Γ0.9 vs n.

tool can also be used to quantify uncertainty if one is limited to a relatively small number of

runs. If one only has a budget of 40 runs for the configuration in Table 7, we can estimate

the amount of uncertainty when n = 40 (i.e., as measured by |Γ0.1(40)|+ |Γ0.9(40)|), which
is about 15.8% of the starting deviation (i.e., |Γ0.1(1)|+ |Γ0.9(1)|) according to Figure 6.

7. Conclusions and Areas for Future Research

In this paper, we focus on using parametric mixture models to describe the common

multimodal behavior in the distribution of the I/O throughput from 22734 HPC system con-

figurations. The data collected and our statistical analyses are generalizable to performance

variability regardless of the specific deployment configuration. An EM algorithm is developed

for parameter estimation using the Bayesian information criterion for model selection. The

developed algorithm can automatically determine the number of components (up to five)

and the underlying distribution (from a list of six) for the mixture model. The modeling

and analysis results show that a throughput distribution can have very complex multimodal
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behavior, which can not be well-modeled by a normal distribution. The proposed mixture

models are flexible enough to accurately represent the complex throughput distributions and

provide a handy tool to automatically identify those configurations with multimodal behav-

ior. An important discovery is that right skewing is common in HPC variability, evidenced

by the large proportion of lognormal distributions being selected as the best component dis-

tribution in Table 4. In other words, for many configurations, most throughput will be at

a relatively low level but there will also be a substantial number of high throughputs. This

provides insight into the variability control of HPC systems.

In this paper, we considered CPU clock speed, the number of threads, file size, record

size, and six I/O operation modes as system factors. Due to the limit in time, we chose

to focus on the impact of those five factors, and collected data from more than 22,000

configurations. Other hardware such as the memory and secondary storage, and I/O access

patterns can also affect the I/O performance. However, the modeling framework introduced

in this paper can be easily extended to more factors. For example, we observed in a small-

scale experiment that different types of storage, such as SSD and harddisk drive (HDD),

have similar multimodal behaviors. Branching out to other benchmarks and workloads is

also something we are exploring in ongoing and future work.

One important future step in management of performance variability is to develop a

general tool to predict the throughput distribution for a new system configuration. Being

able to identify and describe performance variability is also an important step. Thus, in this

paper, we focussed on modeling the common multimodal behavior of I/O throughputs. The

mixture model can describe the distribution of throughputs well, although it is not designed

for the prediction of the distribution of throughput for a new configuration. Some existing

work can predict the variance in throughput based on machine learning and statistical meth-

ods [15, 16, 17, 18]. Using scalar measures like the variance to describe complex behavior,

however, may be inadequate. For example, a throughput distribution with uni-modal may

have similar variance to another distribution that is multimodal. However, predicting the

distribution of throughput is a challenging task. Future effort will be devoted to develop

a prediction tool that takes a system configuration as the input and provides a parametric

distribution of throughput as output.

Another important future step is to understand the causes of variability. The current

method can model variability well but one would not know what causes the variability. Being

aware of this, we are now working on collecting data for “performance counter statistics”

with the identification of those high variability configurations (i.e., those with multimodal

behavior), which could provide finer details to find the cause of the variability. Our goal

for this future work is to provide a systematic analysis of I/O performance variability to

separate noise from variability that we can control. We intend to offer a crucial and initial
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benchmark that underpins the current research. In the future, it is important to investigate

other sources of variability such as garbage collection, congestion, or black-swan effects, and

model those sources of variability.
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Appendix A. Technical Details

Appendix A.1. Calculation of var(x̂q)

By the delta method (e.g., [35]), we have

var(x̂q) =

(
∂x̂q

∂θ̂

)T

Cov(θ̂)

(
∂x̂q

∂θ̂

)
, (A.1)

where Cov(θ̂) is the covariance matrix, and

∂x̂q

∂θ̂
=

(
∂x̂q

∂π1
, . . . ,

∂x̂q

∂πk−1
,
∂x̂q

∂µ1
, . . . ,

∂x̂q

∂µk

,
∂x̂q

∂σ1
, . . . ,

∂x̂q

∂σk

)T
∣∣∣∣∣
θ=θ̂

. (A.2)

To obtain var(x̂q), we need to know Cov(θ̂) and ∂x̂q/∂θ̂. The calculation of ∂x̂q/∂θ̂ is given

in Appendix A.2. To obtain Cov(θ̂), we use the inverse of the the Fisher information matrix.

That is

Cov(θ̂) =
1

n

[
I1(θ̂)

]−1

. (A.3)

Here,

I1(θ̂) = −E

[
∂2f(X, θ̂)

∂θ̂∂θ̂
T

]
(A.4)

is a (3k− 1)× (3k− 1) matrix. With the above formulas, we can calculate Γq(n) under each

sample size n as

Γq(n) =

√(
∂x̂q

∂θ̂

)T [
I1(θ̂)

]−1 (
∂x̂q

∂θ̂

)

x̂q

√
n

. (A.5)
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Appendix A.2. Calculation of ∂x̂q/∂θ̂

To calculate ∂x̂q/∂θ̂, we use implicit function theory to derive the formula. The CDF

for the mixture normal distribution with k components is

F (x, θ̂) =

k∑

j=1

πjFj(x, µj, σj), (A.6)

where Fj(x, µj , σj) is the CDF of one component with location parameter µj and scale

parameter σj . Let x = x̂q be the q-th quantile of the mixture normal distribution, we have

F (x̂q, θ̂) = q = πjFj(x̂q, µj, σj) +
∑

l 6=j

πlFj(x̂q, µl, σl). (A.7)

Take derivatives on πj , we have

0 =Fj(x̂q, µj, σj) +

k∑

l=1

πlfj(x̂q, µl, σl)
∂x̂q

∂πj

(A.8)

∂x̂q

∂πj

=− Fj(x̂q, µj, σj)
k∑

l=1

πlfj(x̂q, µl, σl)

. (A.9)

For ∂x̂q/∂µj , we have

0 =πj

(
∂x̂q

∂µj

− 1

)
fj(x̂q, µj, σj) +

∑

l 6=j

πlfj(x̂q, µl, σl)
∂x̂q

∂µj

(A.10)

∂x̂q

∂µj

=
πjfj(x̂q, µj, σj)
k∑

l=1

πlfj(x̂q, µl, σl)

. (A.11)

For ∂x̂q/∂σj , let zj = (x̂q − µj)/σj. Then, we have

0 =πjfj(x̂q, µj, σj)

(
∂x̂q

∂σj

− zj

)
+
∑

l 6=j

∂x̂q

∂σj

πlfj(x̂q, µl, σl) (A.12)

∂x̂q

∂σj

=
πjzjfj(x̂q, µj, σj)
k∑

l=1

πlfj(x̂q, µl, σl)

. (A.13)

Therefore, we obtain every element in ∂x̂q/∂θ̂.

For further illustrations, the following gives formulas for ∂x̂q/∂θ on the normal mixture
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model with two components,

∂x̂q

∂µ1

=
π1fnorm(x̂q, µ1, σ1)

π1fnorm(x̂q, µ1, σ1) + (1− π1)fnorm(x̂q, µ2, σ2)
(A.14)

∂x̂q

∂σ1
=

π1fnorm(x̂q, µ1, σ1)× x̂q−µ1

σ1

π1fnorm(x̂q, µ1, σ1) + (1− π1)fnorm(x̂q, µ2, σ2)
(A.15)

∂x̂q

∂µ2

=
(1− π1)fnorm(x̂q, µ2, σ2)

π1fnorm(x̂q, µ1, σ1) + (1− π1)fnorm(x̂q, µ2, σ2)
(A.16)

∂x̂q

∂σ2
=

(1− π1)fnorm(x̂q, µ2, σ2)× x̂q−µ2

σ2

π1fnorm(x̂q, µ1, σ1) + (1− π1)fnorm(x̂q, µ2, σ2)
, (A.17)

where fnorm(x, µj, σj), j = 1, 2 is the PDF of the normal distribution.
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