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Abstract

Consider a coherent system, in which the degradation processes of its performance characteristics
are positively correlated, this paper systematically investigates a bivariate degradation model of
such a system. To analyze the accelerated degradation data, a flexible class of bivariate stochastic
processes are proposed to incorporate the effects of environmental stress variables and the depen-
dency between two degradation processes is modeled by a copula function. A two-step system
reliability analysis approach is developed and it is implemented with the Hamiltonian Monte Carlo
algorithm. Simulation studies validate this approach and the consequences of model misspecification
are evaluated too. Furthermore, two real-world examples are presented to demonstrate the appli-
cability of the proposed modeling framework of system reliability on correlated degradation processes.
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1. Introduction

1.1. Background

Complex engineering systems are built for fulfilling a myriad of functional requirements and simul-
taneous degradations of these system functions over time are common. For many systems, degradation
is one of the main causes of system failure. In this paper, the degrading system we refer to is a single-
component product with multiple performance characteristics (PCs). But the study we perform can
be extended to a large scope, where the functions of multiple components in either a serial or a parallel
system gradually deteriorate due to wears and tears, etc.

Over the past two decades, much work has been done on assessing system reliability based on the
failure time data from life tests or accelerated life tests [1], and through data analysis, the system failure
time distribution is estimated so as to predict system reliability. However, since many engineering
systems are highly reliable and have more complex failure mechanisms, it is often technically challenging
and costly to acquire lifetime data. Instead, the degradation tests (DTs) and accelerated degradation
tests (ADTs), which collect the measurement data of the system’s PCs, provide an efficient way for
studying system aging. In recent years, utilizing degradation data to predict system reliability has
become more important than ever before.
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In literature, a degradation process over time, }Y )i+t ~ 1|, is often modeled through one of two
major frameworks — the general path model and the stochastic process model. The general path model
utilizes the regression technique to fit a degradation path function and, oftentimes, it is a model with
random effects to account for unit-to-unit variability [2]. Some recent developments of the general path
model include, e.g., [3-6]. Alternatively, the stochastic process model treats degradation measurements
as the realization of a stochastic process, such as the Wiener process [7-9], Gamma process [10-12], and
Inverse Gaussian process [13—15]. In most previous studies, researchers considered only a single PC;
however, in reality, a system may consist of multiple PCs and there may exist dependencies among these
PCs. If the dependencies among different degradation processes are ignored, some serious drawbacks,
such as biases in system reliability prediction, can occur.

1.2. A Motivating Example

As a motivating example, a polymeric material degradation process is described in this section. The
photodegradation caused by ultraviolet (UV) radiation is the primary cause of failure for polymeric
materials [16]. In our daily life, this process commonly happens on the products with paints or coatings,
such as automobile body, bridges, buildings, and some other outdoor structures. When such products
are in use, many environmental factors (temperature, humidity, as well as UV spectrum and intensity)
affect their performance. Meanwhile, the polymeric material’s life is determined by several PCs, such
as the benzene ring mass loss and the C-O stretching of aryl ether [17, 18]. Thus, to make a good
assessment of this material’s service life, it is necessary to conduct a multivariate analysis.
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Figure 1: Degradation Path for Two PCs of Polymeric Material.

From 2002 through 2006, U.S. National Institute of Standards and Technology (NIST) conducted a
few years of weathering experiments on organic coatings in both an indoor laboratory and some outdoor
exposure facilities [19]. For the indoor experiment, they placed specimens in temperature/humidity-
controlled chambers illuminated by controlled UV light. Ever since the experiments began, degradation
was measured periodically at intervals of a few days using Fourier-transform infrared spectroscopy
(FTIR) [20]. The heights of FTIR peaks correspond to the amount of particular chemical products
and they have units cm™. Among the studied damage numbers, one of them was the peak at 1510
cm™, which corresponds to the benzene ring mass loss. Three other peaks being monitored contain
1250 cm™ (aromatic C-O), 1658 cm™(oxidation products), and 2925 cm™(CH mass loss). In this
paper, we study two damage numbers — 1250 cm™, denoted by PC1, and 1510 cm™, denoted by PC2.



Failure is defined as the damage measurement exceeding a predetermined threshold. To accelerate
the deterioration, various levels of external environmental variables were applied. From the indoor
data we received, temperature (TEMP, in degrees Celsius °C) has two levels — 25°C and 35°C, and
neutral density (ND), which is attributed to UV intensity, has four levels — 10%, 40%, 60%, and 100%.
Figure 1 shows the degradation paths of two PCs from all test units at different combinations of stress
variables. It can be seen that the acceleration effect brought by a stress is evident since each PC
degrades faster as temperature or neutral density increases. Meanwhile, we notice that the two PCs
share a similar degradation pattern even though the degradation of PC2 seems to be more advanced.
This finding indicates that the degradation processes of two PCs could be correlated. Therefore, to
evaluate the health of polymeric material, the following three modeling challenges must be addressed:
1) A flexible and reasonable bivariate degradation model is desired to account for the similarity and
the distinction between the two PCs; 2) We need to deal with environmental variables and their effects
on the degradation process; 3) An analytical approach to system reliability prediction needs to be
established such that it can utilize the rich information contained in the degradation dataset.

1.8. Literature Review

The past related work on degradation-based system reliability analysis either assumes PCs are
independent to each other or they are dependent with a known joint distribution. For example, Wang
and Coit [21] introduced a multivariate normal distribution for the degradation processes of dependent
components based on general path model. Pan and Balakrishnan [22] built a bivariate model based
on Birnbaum Saunders distribution with gamma process as marginals. Wang et al. [23] adopted a
nonlinear multivariate Wiener process (i.e., a multivariate normal distribution) to estimate remaining
useful lifetime. Si et al. [24] implemented a multivariate general path model considering dynamic
measurements. However, assigning a multivariate joint distribution to marginals may not be a suitable
solution, as it is difficult to find an appropriate joint distribution in most cases especially when the
marginal processes are subject to distinct distributions [25]. In such cases, a more flexible multivariate
model is desired.

In recent years, the modeling of multiple degradation processes via copula function has gained
a great deal attention, mostly due to the flexibility of copula function [26]. Copula is a tool to
couple correlated marginal distributions to produce a new joint distribution. It is able to resolve two
multivariate modeling difficulties — the existence of dependence between multiple PCs and the lack of
closed-form multivariate distribution. For instance, Wang et al. [23] provided a modeling structure
based on Gamma process via Frank copula. Peng et al. [27] proposed a bivariate modeling based on
IG process via Gaussian copula and applied it on a degradation dataset from heavy machine tools.
Pan et al. [28] applied Frank copula with Wiener process as marginals to the same dataset used in [22].
But the bivariate models proposed by these researchers all have the same stochastic process governing
both marginals. Until recently, Peng et al. [29] utilized Wiener process and IG process to model a
bivariate degradation process with both monotonic and non-monotonic paths. Rodriguez-Picén et al.
[30] proposed a bivariate degradation model with marginal heterogeneous stochastic processes. Peng
et al. [31] incorporated measurement error into stochastic process models with Gaussian copula. To our
best knowledge, most previous work focused on the demonstration of some specific types of bivariate
models (such as Frank copula with Gamma process in [32]). But there is still a lack of complete
theoretical exposition to characterize the influence of PC dependence on system reliability with the
copula approach. Furthermore, we notice that these literature usually took use of the traditional
Metropolis algorithm to carry out statistical inference. However, it may not work well when dealing
with problems with complex model structure and large data volume, such as the motivating example
that involves several covariates and contains more than 4,111 data points.



1.4. Owverview

In this paper, our objective is to develop a copula-based framework for analyzing a degrading
system’s reliability. This framework provides a general modeling approach for bivariate ADT data. In
this approach, we separate the selection of marginal degradation process model and the construction of
dependence structure between two marginal processes. Instead of the traditional Metropolis algorithm,
a new computational Bayesian inference method, Hamiltonian Monte Carlo (HMC), is employed to
estimate the unknown parameters in both marginal and joint models, and posterior samples are utilized
to predict system reliability. We also provide two real-world examples to illustrate the proposed
framework for system reliability analysis.

Three primary contributions have been made by this paper. First, we provide a systematic ap-
proach to investigating a degrading system’s reliability in presence of dependent component failures.
The results can be applied to general coherent serial and parallel systems. Second, we demonstrate
the incorporation of covariate information into the proposed model. As discussed in Section 6.2, a
quantitative analysis of the effects of covariates can be performed. Finally, based on the HMC algo-
rithm, we develop an efficient Bayesian treatment to system reliability assessment, which differs from
the traditional computational method used by other researchers.

The rest of the paper is organized as follows: Section 2 elaborates the modeling framework of a
degrading system with dependent degradation processes. Section 3 introduces the specific models for
bivariate degradation processes. It consists of Section 3.1, which provides the proposed general model
structure, Section 3.2, which contains a detailed instruction of how to incorporate covariates into the
model, and Section 3.3, which gives the marginal reliability function. In Section 4, the Bayesian ap-
proach to model parameter estimation is discussed. In Section 5, two simulation studies are carried out
to assess the performance of the proposed inference method and to evaluate the consequences brought
by model misspecification. Finally, two examples with real datasets are provided to demonstrate the
workflow of the proposed degradation data analysis method in Section 6. Section 7 concludes the

paper.

2. Copula Function and System Reliability Assessment

2.1. Degrading System with Multiple PCs

Consider a system with M components, or PCs, subject to degradation over time. Typically, we
define a vector Y)t+[ )Y)t+Ys)t4. .., Yy )t+H to indicate the performance measurement for each

PC at time ¢. Without loss of generality, we assume that Y;)t+increases over time, j [ 2,3,..., M.
For instance, Y;)t+may correspond to the fatigue-crack length of aluminum alloy [2]. Further denote
a vector, w [ )wi,ws,...,wy, representing the “soft failure” threshold; i.e. if Y;)i+~ w;, the j%

PC is considered to be failed. In this paper, we consider a coherent system where the degradation of
any PC will make the system less healthy. Meanwhile, we use R)t+[ )Ri)t+ Ro)t+..., Ry)t+ to
indicate the reliability for PC;ie. R;)t+ P)Y;)t+< w;+j [ 2,3,..., M. Thus, the system reliability,
Ry)t+ is defined as the probability that the system is functioning with Ry)t+[ g¢)R)t+H; where g is
an increasing function of each R;)t+for a coherent system. This implies that the system reliability is
determined by the joint distribution of Y')t+ Two examples of coherent system include serial system
and parallel system. For a serial system, the system reliability is given by R, [ [ jj‘il P)Y;)t4+< wj+
J jj\il R;)t+if all PCs are independent with each other. Similarly, for a parallel system, the system
reliability is given by Ro)t+[ 2 [ jj‘il )2 P)Yjt4<wiH[ 2 [ jj‘il)Q R;)t+- However, when
the independent property is unrealistic, since it is often the case that there exist interactions between
PCs, the aforementioned system reliability formulas are no longer valid. To describe this dependency,
we introduce the concept of associated random variables as below:



Definition 1 [33]: A random d-vector, X, is positively associated if the following inequality
Elg1) XHg2) X+ ~ Elg1) X +E]g2) X+,

or equivalently,
Cov)g1) X +g2) X Hr~ 1

holds for all real-value functions ¢g; and g9, which are increasing (in each PC) and their expectations
exist,.

In this paper, we assume Y are positively associated because it is often the case that in reliability
applications PCs are positively correlated. It can be easily seen that the equality holds when Y8,
J 1 2,3,..., M, are mutually independent for any increasing functions g; and go. This implies that
if the PCs are mutually independent in a system, the system reliability only depends on the marginal
reliabilities R)t+ But when they are dependent, the system reliability is determined by both the
marginal reliabilities and the dependence structure. Based on the definition, the following theorem
summarizes the effect of PC dependency on the system reliability for both serial and parallel systems.

Theorem 1. Consider a degrading coherent system with M positively associated perfor-
mance measurements at time ¢, ie. Y)i+ [ Y)t+Ya)t+..., Yy )t+H, M ~ 3. Let R)i+ |
YRyt Ro)t+. .., Ryr)t+HE denote the marginal reliabilities at time ¢. Then the system reliability
satisfies the following properties:

1. For a serial system,

M
j=1
2. For a parallel system,
M
j=1

The proof for this theorem is provided in Appendix. From Theorem 1, one can see that when the
performance measurements of PCs are positively associated, a general serial system is more reliable
than a system with independent PCs, while the opposite is true for a general parallel system. To allow
for modeling the dependence structure, we can take use of the idea of copula function, which will be
explained in the next section.

2.2. Copula Function

A copula is the function that connects the joint distribution function with individual marginal
distribution functions. It is defined as C)uy, us, . .., uq+; |1,2"% o< ]1,2", which is the joint cumulative
density function (cdf) of a d-dimensional random vector on the unit cube |1,2® with uniform marginal
distributions. Mathematically, C)uy,u, ..., uqg+[ P)U; > w1, Us > ugy,..., Uy > ug+ where U; —
Unif)1,24{j | 2,3,...,d. These uniform marginal distributions may be transformed from other
continuous distributions. The following theorem shows the connection between copula and a general
multivariate distribution.



Sklar’s Theorem [34]: Let X | )Xy, Xs,...,X;4 be a random vector with marginal cdfs
F)) a4 Fy)rok. .., Fy)rgt and let H)wzy, 2o, ..., x4+ be their joint cdf. Define u; | P)X; < x4
{7 2,3,...,d. Then, there exists a copula function C' such that

C)Ul,UQ,...,Ud+[ C)Fl)xl—th)l‘Q—{,—...,Fd)l'd—{-F
| P)Xq > 21, X9 > x0,..., Xy > 2+ (3)
[ H)$1,$2,...,xd+

With the cdf of a joint distribution, it is easy to derive its probability density function (pdf) as

~d
h)xy, Tg, .., xaH ) F1)vit Fo)rod. . Fy)zat fi)a (4)

J=1

where f;)z;+s the marginal pdf of X; and ¢)Fy)x14F)zo4. . ., Fy)zg+Hs the copula density function,
which can be obtained by taking partial derivative of copula function.
The survival function, @) as defined in [35] is given by

d
(%ul,u%...,ud—i—[ 20 H) 2—|I-€ H C,mmk)u“,uw,,ulk—i,— (5)
k=1 17 iy <ig<xip! d
with Ci, iy i, ) Uiy s Wiy - - -, Wi, +denoting the marginal of C' related to )iy, g, ..., ix+

For example, considering a bivariate case, Equation (5) becomes
(%ul,uﬁ—[ 2wy up0 C)ug, us+

Among all available copulas, there is a popular family of copulas called the Archimedean family.
This family admits explicit formulas and they allow modeling variable dependence through an associa-
tion parameter. In this paper, we consider the following four widely-used copulas in the Archimedean
family: Gumbel copula, Frank copula, Clayton copula, and Joe copula. These copulas hold various
types of tail dependence — Gumbel copula and Joe copula have upper tail dependence (Ay), Clayton
copula has lower tail dependence (A1), and Frank copula is symmetric with no tail dependence. Inside
each of these copula functions, there is an association parameter, §, which measures the dependency
between two variables. The specific functions of these copulas are given as below:

e Gumbel copula: C)ug,us+ g x} ]) 1pi w10 ) 1pi usL%|, where 0V ]2,€ +and 7| 2 2/8
with Ay [ 3 3% and A\ [ 1;

« Clayton copula: C)uy,us+|[ ne ))u150 Uy’ 2—1-(15,1(, where § V | 2,€ 4/}1| and 7 | 2%5
with )\U [ 1 and )\L [ 3 1/6;

exp( 0) 1
71 20 520 1 with D)d+] LY Zydt and Ay [ Ap [ L

et 1

« Frank copula: C)uy,us+  51pi }20 [exp(_ du1) 1][exp( dus) 1]\/Where IV ) € ,1—1—21,6 +and

e Joe copula: Cyur,up+ 2 12 w£0)2 upf )2 w)2  up£s, where 6V |2, € +with
M| 3 3Y9and A\ | 1.

Note that the relationship between Kendall’s correlation 7 and the association parameter ¢ is also given
for each of the copulas above. For Joe copula, 7 can be approximated by Monte Carlo simulation [36].



2.3. System Reliability from Copula Viewpoint

Recall that when PCs are not mutually independent, the system reliability, Rs)t+ is determined by
the joint distribution of Y')¢+ By introducing the concept of copula, we can develop a straightforward,
yet flexible, approach for constructing the joint distribution of Y)t+ More importantly, since the
copula function generates this joint distribution via the cdfs of marginal random variables, it provides
an intuitive method of combining marginal reliabilities and dependence structure to calculate the
system reliability. Figure 2 illustrates the construction of bivariate joint distribution via a copula
function, as well as the system reliability derived directly from a copula.

Joint Distribution
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Marginal Distribution' ™™ Marginal Distribution

C(FOL)FO(0)

fon()
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Figure 2: Construction of Bivariate Joint Distribution via Copula Function.

Therefore, from the copula perspective, the reliability of a degrading system with dependent PCs

can be described by the following theorem:
Theorem 2. Consider a degrading coherent system with M positively associated performance

measurements of components at time ¢, i.e. Y)t+[ )Y1)i4Ya)t4. .., Vo )t+H, d ~ 3. Let R)t+]|
YR)t+ Ro)t+. .., Ry )t+H denote the marginal reliabilities at time ¢. Then, the system reliability

satisfies the following properties:

1. For a serial system,

RO P)Y)t4< wy, Yo)t4+< wa, ..., Yy )t+< wa+ o
[ C R\)t+Ry)tH;. .. ,RM)H:gCop(,

2. For a parallel system,

Rs)t+[ 2 P)Yi)t+> w1, }/Q)t—l—> W, ... ,YM)t+> Wyt (7)
[ 2 @ R)t+Ro)t+. .., RM)t+:GC°p<.

where 8°° is a set of parameters in the copula function.
Note that if all PCs are mutually independent, the system reliability is [ j]\il Rj)t+and 2 [ j]\il)Q
R;)t+Hor a series system and a parallel system, respectively, and they can be derived from a indepen-

dence copula, defined as C)uy, ug, ..., up+ [ jle u;.



It is also noticed that by introducing copula functions, three attractive features to data analysis
are immediately obtained: 1) The marginal distributions of individual variables and their dependency
structure can be separated. This feature will reduce the difficulty of parameter estimation. 2) There
is no restriction on marginal model. It can be any distribution model that provides the best fit to
the data. Thus, we will not be restricted to the same marginal distribution for different PCs. 3)
The system reliability can be evaluated analytically once the marginal cdfs or marginal reliabilities
are given. Therefore, utilizing a copula to characterize a degrading system will greatly facilitate the
system reliability analysis.

3. Bivariate Degradation Process

3.1. A General Multivariate Model

Consider an ADT of N test units with M PCs. There are L environmental stress variables and K
distinct time points when each test unit’s degradation was measured. The degradation measurement
is denoted by y;;)tx+or yi;x for the i test unit, j%* PC, and k' time point, and the stress vector for
each test unit is denoted by s;. As a result, the degradation dataset for the j** PC is given by

Yij1 v s
o

Y152 ta 87

Y1k, Zle 81

Y[ )y t.SH | v b sSH ] 12,3,..., M|,

Yijr,  tk, S

[ee]
YNjky lky SN

where s; [ )si,89,...,s,frepresents the values of stress variables for the i’ test unit and K is
the total number of measurements for the " unit. K; may vary from unit to unit. Under the
stochastic process modeling framework, we work on degradation increments, which are defined as
Ayi)te+ vij)te+  vij)te 1+ According to [37], the stochastic process modeling is favored than the
general path modeling of degradation data because it is capable of including unexplainable randomness
resided in the data, which may be caused by some unobserved environmental factors or some unknown
effects of observed environmental factors. Based on the independent increment and infinite divisibility
properties of Lévy process [38], a degradation dataset can be analyzed by using the following general
multivariate model structure:

(AYi1(tr), AYia(tr), - ., AV (tr)) = C Fi(Ayi(te)), Fo(Ayia(ty)), - - . 7FM(AyiM(tk))§900p<a

AY;;(ty) —>MDP(Yj;0JMa’"),

(8)

where C( is a copula function, representing the joint cdf of PCs, and Fj(Ay;(ty)), °°P, and 0?4‘" are the
marginal cdf of individual PC, the parameters of copula function and the parameters of marginal degradation
process (MDP), respectively. The MDPs in consideration here are Wiener process, Gamma process and Inverse
Gaussian (IG) process, and they are given as follows:

LAY trt— N Ozjh)si—bz\q)j)tk——*yj—i,—ﬁjzh)si—l%\@j)tk——*yﬁt(
MDP)Y ;=07 4+ \AYy;)ti+—Ga )a;h)sA &;)tx=/+ f;+
{Ayij)tﬁ—ﬂG)Oéjh)si#\‘I’j)tk:ﬁ#ﬁjh)siﬁf\‘Pj)tkiyﬂz*

(9)



In Model (8), some popular copula functions, such as those from the Archimedean group, can be
considered for modeling the dependence structure among PCs, while each MDP can be any one of the
univariate processes listed in (9). To ease the mathematical notation, we use a and f to indicate the
two parameters in a MDP and use h)>-to represent a function of covariates in the marginal model.
Finally, A ®)t,=y;+ @)tpy=y;+ @)t 1=y;+ which is the time interval after a power transformation of
original time with parameter ;.

Using this general modeling approach, a great amount of bivariate degradation models can be
introduced. For instance, a bivariate degradation model with two different marginal processes, such as
a Wiener process and an IG process, are demonstrated below:

YA Y )t A Yo )t H—C ) F1 ) A yin )i+ Fo) A yio )t H=9+
AYiti+—N arg x) n/5i4@)t=n+B1 g x) /8401 )t=n4, (10)
AYp)ti+—1G azg x) n/si4@2)t=p4 Fo]g x) 77/3192)?517142(-

Here, ¢ denotes the association parameter between two PCs. Specifically, for PC1, a; and 3 represent
the drift parameter and the diffusion parameter of a Wiener process, respectively. For PC2, a, and [,
represent the mean and shape parameters of an IG process, respectively. In Model (10), we introduce
a stress variable, s;, to represent the stress level on the i" test unit. If it is thermal stress, a simplified
Arrhenius function can be used to capture the degradation acceleration effect of temperature. The
detailed explanation of how to include a covariate in degradation analysis will be presented in the next
section.

3.2. Covariate Information

When a product is highly reliable, its degradation rate could be too small to be noticeable under the
normal use condition; thus, ADTs are adopted to expedite the degradation process by subjecting the
product to some harsher environmental conditions, such as higher temperature or stronger vibration.
Other common stress factors could be humidity, electric current, and voltage, etc. These stress factors
are treated as covariates or markers in a statistical model [37]. To evaluate the effect of a covariate,
Nelson [39] and Meeker and Escobar [2] discussed several acceleration functions that connect different
types of stresses with a product’s lifetime via the knowledge of chemical kinetics.

Five commonly used acceleration functions are listed in Table 1, where parameters ¢ and 7 are
product or material characteristics. These functions are indeed the link functions that incorporate
the effects of corresponding covariates into a general degradation model. Note that an un-accelerated
degradation test can be viewed as having h)s+| 2. In engineering applications, choosing a good
link function requires some domain knowledge of the underlying physical/chemical material change
mechanism. In the literature, Doksum and Normand [40] used a linear link function to analyze biomaker
data. Tang et al. [41] also assumed the linear link function and they applied it to analyze a LED
dataset. Padgett and Tomlinson [42] declared that, when linking temperature to a Wiener process
model, the power law function outperforms the Arrhenius function for analyzing a dataset of carbon-
film resistor. When having more than one acceleration factor, Liao and Tseng [43] combined the
Arrhenius function and the power law function to incorporate both temperature and electric current
in their LED experiments, while Fang et al. [6] considered the Eyring function to integrate two stress
variables, temperature and humidity.

In addition, finding an appropriate way to incorporate the link function into the degradation model
structure requires the researcher to have a good understanding of the impact of stress factor on model
parameter [37]. For example, to account for the degradation acceleration induced by temperature,
Model (10) chooses a multiplicative effect derived from the Arrhenius law on the parameter; i.e.,



Table 1: Common Link Functions for
Stress Acceleration Relations.

Acceleration Relation Link Function

Linear relation h)s+ &0 &is
Arrhenius relation h)s+ Ee /¢
Power Law relation h)s+ &s"
Inverse-log relation h)s+ &)mpi s
Exponential relation — h)s+ £e"

a;g x) 1n/si+ Furthermore, g x) n/s;+and |g x) 7/s;4* are incorporated into the diffusion param-
eter of Wiener process and the shape parameter of IG process, respectively. This indicates that a test
unit under higher temperature will have a higher volatility in degradation. Nevertheless, there are a
number of different ways to link parameters to stress variables. For instance, Park and Padgett [10]
applied and compared four different link functions on analyzing a carbon-film resistor dataset and a
fatigue crack size dataset. Peng [15] utilized the Arrhenius relation to involve explanatory variables
into the Inverse Normal-Gamma mixture (ING) model and argued that it was a proportional mean
model. Tang et al. [44] and Sun et al. [45] made use of the Arrhenius relation in modeling the drift
parameter of a nonlinear Wiener process.

3.3. Marginal Reliability

For an individual PC, its marginal reliability function is relatively easy to obtain from a univariate
stochastic process model. Without loss of generality, we let a degradation process start from Y')1+|
1 and the failure time is the time when Y')t+first pass a threshold, w. For example, Folks and
Chhikara [46] proved that the first passage time (7,,) of a Wiener process followed an inverse Gaussian
distribution, /G)w/a, w?/ 3%+ The marginal reliability functions of the three stochastic processes listed
in (9) are summarized as below:

o Wiener process
R)t+ P)T, > t+ P)Y)t+< w+

[ 2 -]2 D=H 1))+ 24{

B h)s+ (11)
Baw [ |2 D)=+ B
g X)F[ ]3 et Jah) s-4@)t=+0 2+{_

o Gamma process
R)t+] P)T, > t+] P)Y)t+< w+t

| om)sib)t:w(7 ah)s )t o (=

(12)




o IG process

R)t+H P)T, > t+ P)Y)t+< w+

[ Bh)sRP)t=+ ) w
w ah)s+P)t=y+

0 X) 38h)s@)t=y+ _

«

{ "
\/ﬂh)s—lzq))t——*y—lz ) ; :;)t +0 5 {
w ah)s-H®)t=y

Here, ®)t=y+{ t7, a power transformation on the time scale.

4. Bayesian Approach to System Reliability Analysis

In Sections 2 and 3, we provide an overview of system reliability analysis with generally dependent
degradation PCs. To systematically analyze a product with multiple, generally correlated, degrading
PCs, we propose a two-step Bayesian approach, which is illustrated by a flowchart in Figure 3. In
the first step our goal is to select the best multivariate degradation model to fit the data and to infer
model parameters. Then, in the second step we utilize the posterior samples of model parameters to
conduct system reliability analysis.

Step 1: Degradation Modeling and Parameter Estimation

When a bivariate degradation process is modeled by the modeling framework as in (8), we may
group these model parameters as 0" [ }ay, B, v, m5t, 037" [ }ag, Ba, 2, m3t, and 89 [ §. Thus,
the log-likelihood function is given by

N K
w L)0)" ", 057 09+ T] [[ me Fi)Ayi) b0+ Fo) Ayio)ti-+65"" 4 490017(
=1 k=1
N K;

0 H H 1w f;)Ay;;) tk+:9M“r

k=1

(14)

.

[y

=1 5=

It is difficult to directly maximize Equation (14) so as to find the maximum likelihood estimation
(MLE) of model paramters. However, the separation of marginals and copula density suggests that we
can firstly estimate the marginal parameters and then infer the copula association parameter, leading
to a two-stage approach. The basic idea of this approach originates from the work provided by Joe
[47]. However, if the problem has a complex data structure and large data size (e.g., the motivating
example aforementioned contains more than 4,111 data points), it is difficult find a numerically stable
solution by MLE. Instead, by leveraging the flexibility of computational Bayesian methods, we develop
a Bayesian version of the two-stage inference technique. This two-stage Bayesian inference method is
illustrated in the upper part of Figure 3.

First, we select the best marginal model for each PC. The univariate models listed in (9) are consid-
ered as potential candidates. Following the Bayesian inference method, the mathematical expression
of posterior distribution of MDP parameters is given by

p>0§\/1ar }?mﬁ)eyarE f)Y] 9§\4ar+

Maro_ Mar, (15)
oom)0; " 4= Nyt 407+ [ 2,3
i=1 k=1
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Figure 3: Flowchart of Two-step Bayesian Approach for System Reliability Analysis.

After the parameters embedded in each model are estimated, the Bayesian Information Criterion (BIC),
which is given below, can be employed to compare their goodness-of-fit:

BIC|[ 3w)#+0 pm)ni

where p and n are the number of parameters and the sample size, respectively.
Next, we select the best joint model via copula functions. Based on the marginal mod-
els determined in the first stage, the corresponding pairs of cdfs for degradation increments,

Mar Mar
F1)Ay;1,-8 + Fo) A yior=6, +<aare computed and they are treated as sample data for inferring
copula func{lions. By the Ba£esian pproach, the posterior distribution of copula parameter is given

by
N K,
Cop Cop | Mar Mar Cop
p)9 Y1,SI2+OO7T)0 += C Fl)Ayil)tk+:0{g 4,—F2)Ayi2)tk+:ef =0 . (16)
i=1 k=1
To construct these posterior distributions as formulated in Equations (15) and (16), we need to

employ the Markov chain Monte Carlo (MCMC) technique to generate the posterior samples of pa-
rameters of interest and to obtain the point or interval estimations by summarizing these posterior



samples. Several previous publications, including [28], [29], and [48], utilized the well-known Metropolis
algorithm, which is described below.

Algorithm 1: Metropolis Algorithm [49]

Given a current sample 8, a new sample ¢+Y i

is obtained as follows:

1. Sample 8= —.J)6 0) 4 where J is a proposal distribution;

2. Compute the acceptance ratio

r p)0=Data+ . m)0L)O= Data+
p)0 Data+ 7)04L)0) Data+

where Data represents a set of observed data points.

3. Let
0= with probability n lo)r, 24

0(s+1)
| 0" with probability 2 1 lo)r, 2+

This step can be accomplished by sampling v —Uni form)1, 2-+and setting et+Y [ 0% ifu<r,
and setting 8V [ 0% otherwise.

In those papers, the BUGS family of Bayesian inference platforms [50] were used. The BUGS soft-
ware typically sets the proposal distribution, .J, as either a multivariate normal distribution or several
univariate normal distributions centering at the current sample. Essentially, the Metropolis algorithm
presents a random-walk behavior, which results in inefficiency when exploring a high-dimensional pos-
terior surface. For example, the running time of Algorithm 1 until convergence for the aforementioned
motivating example will be extremely long. To expedite the inference process, we choose another
family of MCMC algorithms called the Hamiltonian Monte Carlo (HMC). Being closely related to
the Hamiltonian mechanics, HMC treats the parameter of interest, 04 1, as a position variable and
introduces an auxiliary variable, p,, ;, as a momentum variable. Meanwhile, the potential energy is
defined as the negative posterior log-likelihood, i.e. U)0+4]  m L)@ Data+ and the kinetic energy is

defined as K)p+| #. According to the property of energy conservation of Hamiltonian dynamics,
the Hamiltonian function, H)@,p+[ U)08+0 K)p+; should remain invariant along the whole period
of movement. In other words, under the framework of a Hamiltonian system, the energy is mutually
transferred between the potential energy and the kinetic energy with the change of system state. In
terms of determining P)@, p+ which is the probability indicating the system being at a certain state

)0, p+ the concept of a canonical distribution from statistical mechanics can be applied. This is given

by
2 H)0,p+
P)0, p+ 78 X) 7

[ 2 N U)0+ N K)p+
78 T |8 T
2 K)p+

[ 277')0%)0 Data—I—g X) T

T
com)04L)0 Data+g X) %

Gaussian kernel

< 7)04L)0 Data+N)p 0, I+



where Z is a normalizing constant, and 7" is the temperature of the system and it can be assumed to
be 2. In summary, the HMC algorithm is given by Algorithm 2 below.

Algorithm 2: HMC Algorithm [51]
Given a current sample 8%, a new sample 8°+Y is obtained as follows:

1. Sample p® — N)0, I+
2. Run Leapfrog algorithm at )0(8) ,p'®+Hor L steps with step size € to obtain proposed state )HS, Ptk

2.1 Make a half step for momentum at the beginning:

U
el pF )e/345,00Y% (i 2.

2.2 Alternate L times with full step for position:
6= 60 eps {i 2,....d.
2.3 Make a half step for momentum at the end:

oU
Pl pF /35005 (il 2...d.

Thena GS [ )01§7 02% e ’e%and pS [ )p1§7p2§7 e ,p}"
Thus, H)8, p®)+ U)8“)40 K)p®)+and H)O<p=t U)O<H K)p~k

3. Compute the acceptance ratio

P)6< p=+
P)oY pl)+

m)0L)0= Data-N)p=0,I+
)0 4L)0") Data-+N)p) 0, I+

rl

[ g x ) H)OY, )+ H)Og,pg+([

where Data represents a set of observed data points.

4. Let
0= with probability n lo)r, 2+

0(s+1)
[ 0 with probability 2 nlo)r, 2+

This step can be accomplished by sampling v — Uniform)1, 2-+and setting oL+Y [ 0=ifu<r
and setting @Y [ 0 otherwise.

In Algorithm 2, the Leapfrog algorithm at Step 2 is a method of numerical approximation to
calculate @ and p according to the Hamiltonian equations. HMC differs from the Metropolis algorithm
on two aspects: 1) HMC adds two normal densities into the acceptance ratio calculation. This may
look like a trivial difference, but the resulted ratio value of HMC is much higher due to the subtle
difference between H )0(5), p®)4and H)O< p=f which is purely caused by the approximation error of
Leapfrog algorithm. In fact, there should be no change due to the property of energy conservation
of Hamiltonian system. Thus, with a higher sample acceptance rate, HMC is more efficient than
the Metropolis algorithm. 2) Apparently, in Step 2 of the HMC algorithm, the gradient of posterior
distribution is utilized to generate new momentum variable, p. The Metropolis algorithm simply uses a
proposal distribution that is not directly related to the target distribution. Thus, given an equal length
of running steps, HMC should reach to the steady state much sooner than the Metropolis algorithm.



HMC is able to find a lower value of negative log-likelihood in fewer number of iterations and has the
autocorrelation of samples decayed much faster [52]. In this paper, we use a HMC software package
called RStan [53]. In addition, we use non-informative prior distributions, such as uniform distributions
within relatively large intervals.

Step 2: System Reliability Analysis

After the joint degradation model was established, the system reliability is to be calculated. The
lower part of Figure 3 shows the procedure of reliability prediction. Given the posterior samples of
model parameters after a burn-in period, a total number of S samples are drawn. Then, the marginal
and system reliability are calculated based on Equations (11) to (13) and Equations (6) and (7),
respectively. Again, using these samples, both the point and interval estimation of reliability can be
obtained.

5. Simulation Study

5.1. Performance of the Proposed Inference Method

In this section, we conduct a Monte Carlo simulation study to demonstrate the performance of the
proposed two-stage system reliability analysis approach. For illustration, we simulate three different
bivariate models with heterogeneous marginals and they are the Frank copula with Wiener-Gamma
combination (Simulation Model %2 or SM%2), the Gumbel copula with Gamma-IG combination
(SM%3), and the Clayton copula with Wiener-IG combination (SM%4).

SM%2 5 )AYi )tk AYio)tH— Crrank ) F1) A yir )trHs Fo) A yio )t H=21+
AYi )t N)2.6A ty, 1.6 Aty
AY;Q)tk—HGCOZLAtk, 34

SM%3 5 YA Yi1 )tk A Yo ) teH— Coumper ) F1) A yir )t Fo) A yin )t -+
AYZQ)tkHIG)?)Atk, 6A tz—i,—

SM%4 5 YA Y )tet A Yo )tk H— Cotayion ) F1) A yir )t Fo) A yio )t H=8+
AYoo)ty+—1G)2.6A ty, 5A L+

where Atk [ tk tk 1-

Algorithm 3: Random Degradation Value Generation
1. fori[ 2to N do
2. for k[ 2to K do

3. Generate )uy, ug+rom C)uy, us 0+

4. Calculate Ay;j, through F; ')u; gy for j [ 2,3
5. Set viik | Yijk 10 Ayijr, where y;50 [ 1for j[ 2,3
6. end for

7. end for

To ease the computational burden, we set N | 2, h)s+| 2, ®)t+{ t and the number of degradation
measurements to be K [ 41,66, or 91. We repeat each simulated process 2,111 times. To initialize



the simulation procedure, an algorithm (see the pseudocode in Algorithm 3) for generating random
degradation values is implemented. Then, on each replicate, the two-stage system analysis method is
applied. Finally, an indicator variable, stating whether or not the true parameters are covered by the
:6( credible interval, is recorded, as well as the sample mean of the estimated parameter values.
The simulation bias, standard deviation (SD) and coverage probability (CP) for each parameter
in SM%2 are shown in Figure 4. Due to the space limitation, the results for SM%3 and SM %4 are
presented in the supplementary document. As expected, the 95% credible interval for each parameter
in each model has its CP value around its nominal level for all sample sizes. Also, the simulation biases
and SDs decrease as the sample size increases, except for the bias of ¢ estimate in SM%3, where the
estimation values at three scenarios remain at the same level. This is due to the small sample size and
it is not a big concern. Therefore, when dealing with the real example that has a larger sample size, the
inference method that we used here should perform more effectively on estimating model parameters.
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Figure 4: Monte Carlo Simulation Results for SM#1

5.2. Model Misspecification

As mentioned in the literature review, most previous works on bivariate degradation models as-
sumed the same type of stochastic process model for both PCs. Among these models, the Wiener



processes with various copula functions are often employed due to its close relationship with normal
distribution. However, if the combination of a non-monotonic process and a monotonic process, such
as the Wiener-Gamma combination, is present, accepting the Wiener-Wiener model a priori with-
out an examination of data may result in a bad joint distribution model. In this simulation study,
we simulate three degradation processes that are generated by the Wiener-Gamma combination with
various copulas and parameters. To reduce the variability caused by simulation, we set N [ 41 and
K [ 41, leading to a relatively large sample size. Similarly to the previous study, we let h)s+{ 2. The
degradation data are generated from models SM %5, SM %6, and SM %7 using the parameter values
as shown below. Specifically, we set the power transformation to be as ®)t,=y+[ t] ¢, , where v
controls the time scale. Different v values (being less than or greater than 2) will adjust the shape
of degradation path (i.e., convex, linear, or concave). In addition, Gumbel copula, Frank copula and
Clayton copula are applied to realize various types of degradation process dependency. The results of
parameter estimation are included in the supplementary document.

SM%5 3 YA Y1 )t A Yoo ) teH— Caumper ) F1) N yin )ty Fo) A yio )t H=H
AYi ) t+— N)2.60)t,=1.741.6°®)t,=1.7+H;
AYpo)t+—Ga)dd)t,=1.64 3+

SM%6 5 YA Yy )t A Yio ) trH— Crrank ) F1) Ay ety Fo) A yio ) tr+H=3+
AYi)te+— N)2.69)t,=2+41.6°®)t,=2-+;

SM%T ; YAYir )t AYio)teH— Ccrayion ) F1) N yin )t Fo) A yio )t H3+
AYi) )t t— N)2.60)t,=2.341.62 D)1, =2.3+:
AYp)t+—Ga)dd)t,=2.54 3+

Figures 5, 6, and 7 show the degradation paths of simulated data, as well as the contour plots
of model densities for the degradation increments from 1 to 2 hour and from 2: to 31 hours. On
each contour plot, the densities from both the true model and the estimated Wiener-Wiener model
are depicted by using blue solid lines and green dashed lines for them, respectively. Based on these
simulation results, several interesting findings can be drawn.

First, one can see that the bivariate degradation model that combines copula functions and stochas-
tic process models is able to capture the dynamics of degradation process. This can be seen by the
contour plots in two time phases. As shown by the degradation paths, the value of time scale trans-
formation parameter, v, directly determines the shape of degradation path. If v [ 2, the degradation
path indicates a linear trend over time as shown in Figure 6a. In other words, the degradation rate
remains constant over the whole lifetime. However, if v < 2, it demonstrates a concave trend as shown
in Figure Ha, which has a decreasing degradation rate and is going to reach a saturation point eventu-
ally. On the contrary, Figure 7a shows a convex trend that exhibits accelerated deterioration. For a
linear degradation process, its contour plots remain the same regardless of the phases of degradation.
This can be observed from Figures 6b and 6¢ and this is because the parameters of marginal models
do not change with the passage of time. But, for the case of SM %5, the density gradually moves to a
border axis due to the slowdown of degradation process, as shown in Figures 5b and 5c.

One should also notice how the tail dependence is reflected in these figures. For example, since
admitting only upper-tail dependence, the contour lines of Gumbel copula indicates a sharper shape
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Figure 8: Simulated cdfs of Degradation Increments for SM#4.
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in the upper right corner in Figure 5b. The same pattern is present in the lower left corner in Figure
7b for Clayton copula. To fully present such features, in Figures 8-10, we provide both the contour
plots and scatter plots of cdfs of the degradation increments simulated from the three different copula
models. As shown in Figure 8b, the simulated data points by SM%5 clustered around the right upper
corner more compactly, where the pattern exists in the left lower corner as shown in Figure 10b. On
the contrary, due to the symmetric feature of Frank copula, the simulated data points spread over the
whole space, as shown in Figure 9b.

Lastly, and most importantly, it is noticed that if both marginals are decided to be Wiener processes
a priori, the resulted joint density will be inconsistent with the true density. The difference will become
larger and larger along the time if the degradation rate is not constant, because the time scale function
will exaggerate the deficiency of a wrongly chosen model over time. For instance, in Figure 7b, the
contour lines of the true model and the estimated model still overlap at the starting time, but they
will be almost totally separated at the interval of 2: to 31 hours, as shown in Figure 7c. The Wiener-
Wiener model would underestimate the degradation increment for y, by about 61( . Therefore, one
can see that if the bivariate model is misspecified as a Wiener-Wiener combination, serious bias on
the inference of the joint distribution would result. In such case, a misleading prediction of system
reliability will be produced as well.

6. Applications

As we have shown, the proposed framework integrates the copula theory with general system relia-
bility assessment, which allows for a straightforward interpretation of the multivariate model derived.
Through the HMC-based Bayesian approach we proposed, the system reliability can be efficiently quan-
tified. To apply the modeling framework to real examples, we design the following analysis procedure.

Step 1: Dependence Analysis

Given a degradation dataset, a nonparametric dependence analysis is first performed to check the
rank correlation between two PCs. This step should be accompanied by the scatter plot function in
most statistical software. If its rank correlation is high, a bivariate degradation model is needed for
further quantitative analysis. Relevant implementations in R can be found in [54].

Step 2: Degradation Modeling and Parameters Estimation
Here, we build the bivariate degradation model as described in Section 4. Specifically, the two-stage
Bayesian inference method is implemented to infer model parameters and to select the joint model.

Step 3: System Reliability Analysis
Finally, the system reliability analysis, as described in the lower part of Figure 3, can be carried
out.

6.1. LED Degradation

In this example, we make use of the LED lamp dataset drawn from Chaluvadi’s doctoral thesis
[55]. This dataset presents a degradation testing result of LED lamps, of which lighting intensity is
measured every 61 hours under a stress level of 51mA current. This dataset has also been analyzed
by other researchers. For example, Ye et al. [56] and Tang et al. [44] did univariate modeling based
on Wiener process, and Hao et al. [32] constructed a bivariate model using Frank copula with Gamma
process as marginals.

To demonstrate the bivariate stochastic process modeling process, similarly to Hao et al. [32], we
split the LED dataset into two streams as if the first half came from PC1 and the second half from



Table 2: LED Degradation Test Data.

Inspection Time (hrs)

Unit 0 50 100 150 200 250

PC1
1 100 86.6 78.7 76.0 71.6 68.0
2 100 821 714 654 61.7 58.0
3 100 82.7 70.3 64.0 61.3 59.3
4 100 79.8 68.3 623 60.0 59.0
5 100 75.1 66.7 62.8 59.0 54.0
6 100 83.7 740 674 63.0 61.3

PC2
1 100 73.0 65.0 60.7 583 58.0
2 100 86.2 67.6 62.7 60.0 59.7
3 100 81.2 65.0 60.6 59.3 57.3
4 100 66.8 63.3 59.3 57.3 56.5
5 100 66.1 64.2 594 58.0 55.3
6 100 76.5 61.7 61.3 59.7 56.0

PC2. These data are shown in Table 2. A LED is considered to be failed if the PC1 value is below 20
or the PC2 value is below 40, which means w; [ 91 and wy [ 71. In addition, the degradation path
of each PC for every unit is plotted in Figure 11a. Notice that it is necessary to apply a time scale
transformation due to the nonlinear pattern of degradation path.

Step 1: According to the degradation path plot, one can see that the two PCs share a com-
mon change pattern. A dependence check, which computes the concordance between their negative
increments, would further confirm this observation. As a result, the Kendall’s coefficient of 1.6: in-
dicates that there exists a strong dependency between the two PCs. Also, the scatter plot in Figure
11b exhibits a strong upper-tail dependency, as the regression slope becomes more prominent in the
upper-right corner and it is flat for the data points in the lower-left corner.
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Figure 11: Degradation Path and Scatter Plot for LED Degradation Process.



Step 2: The first stage of parameter estimation for each PC is conducted on every MDPs described
in Section 3.1. Their results are shown in Tables 3 and 4. Non-informative priors are utilized. To
accommodate the nonlinear degradation pattern, we take use of the power transformation of ®)t=y+
t7. The low BIC values of Gamma process indicate that this stochastic process model is suitable for

both PCs .
Table 3: Parameters Estimation for Marginal Models of PC1.

PC1
MDP  Parameter mean se mean sd 2.5% 97.5% BIC

Wiener Q 3.493 0.022 0.750 2.974 5.268
Process 15} 1.734 0.009 0.342 1.494 2.519 146.641
¥ 0.446 0.001 0.037 0.371 0.518

Gamma « 3.682 0.029 1.255 1.563 6.508
Process 15} 1.131 0.007 0.299 0.607 1.777 145.055
v 0.459 0.001 0.037 0.391 0.539

IG « 3.398 0.022 0.722 2.124 4.913
Process 15} 11.117 0.178 5.589 2.861 25.563 147.010
v 0.452 0.001 0.037 0.386 0.524

Table 4: Parameters Estimation for Marginal Models of PC2.

PC2
MDP  Parameter mean se mean sd 2.5% 97.5% BIC

Wiener o) 9.350 0.098 3.101  4.744 16.969
Process 6] 5.678 0.052 1.638  3.522  9.709 182.730
vy 0.284 0.002 0.054 0.177 0.391

Gamma o 2.695 0.029 1.111  0.905 5.194
Process o] 0.347 0.002 0.096 0.184 0.559 164.682
vy 0.320 0.001 0.052 0.229 0.434

IG o) 8.854 0.079 2.673 4.335 14.742
Process 6] 17.492 0.368 12,902 2.279 48.242 166.091
¥ 0.301 0.002 0.051 0.215 0.412

Based on the estimation of MDP model parameters, the corresponding cdf of individual PC’s
degradation increments are obtained as ) F}) Ay )tx+H; F2) A yio )t -+ Carrying out the second stage of
statistical inference, the association parameter of Joe copula can be estimated. As shown in Table 5,
this estimated value is 2.9: : . After removing the time scaling effect, this number provides a quantitative
measurement of the two PCs’ dependency. From this table, one can also see that Frank copula does
not fit the data as well as Joe copula, because it includes no tail dependence but the data does show a
prominent upper tail dependence. Meanwhile, Clayton copula is suitable for the lower tail dependence,
thus it leads to the worst fit. Figure 12 demonstrates the contour plots for densities of joint distribution
of the degradation increments between the two PCs. From these plots, one can see that the degradation
rate is diminishing as time goes on.



Table 5: Parameters Estimation for Joint Models.

Joint

Copula Parameter mean se mean  sd 2.5%  97.5% T BIC
Joe ) 1.899 0.010 0.357 1.263 2.652 0.332 -5.632

Frank ) 2.201 0.030 1.167 -0.056 4.628. 0.234 0.944
Gumbel ) 1.443 0.006 0.202 1.096 1.889 0.307 -2.346
Clayton ) 0.131 0.006 0.211 -0.191 0.601 0.061 4.125
£ Density é g4 Density
> 0001 5 0.02
o & Ayqfrom0 hrat.g 50 hrs “ * ° Zy1 from 200 hrs to 250éhrs le
(a) Interval between 0 and 50 hrs. (b) Interval between 200 and 250 hrs.

Figure 12: Contour Plots of Joint Distribution Density of Degradation Increments.

Step 3: Finally, through implementing the procedure of reliability estimation presented in Figure
3, median curves of reliability prediction over the duration of 1 to 4,111 hours for both the marginal
and joint distributions are plotted in Figure 13. As a comparison, the case of independence of two PCs
is also presented. It is noted that the independence assumption would underestimate the product’s
reliability. For instance, at 2,111 hours, the predicted reliability using Joe copula is about 1.3, but it
will be 36( less if the two PCs are assumed to be independent. This result is not a surprise because
Theorem 1 has shown that [ jj\il R;)t+> Ry)t+ Thus, these findings further verify the necessity of
conducting dependence check in the first step. Furthermore, Figure 14 provides the : 6( credible band
for the system reliability curve estimated by using Joe copula.

6.2. Polymeric Material Degradation

In this section, we revisit the motivating example to demonstrate the advantage of the proposed
general bivariate degradation model with the incorporation of covariates.

Step 1: As stated in Section 1.2, the two PCs, benzene ring mass loss and aromatric C-O are
named as PC1 and PC2. Observing that the degradation paths of both PCs share similar patterns,
it is necessary to evaluate their dependency to each other. Since the degradation path is also affected
by some external environmental factors, such as temperature and UV intensity in this example, we
have to evaluate the dependency at the same environmental stress level. We calculate the Kendall’s
coefficient of the degradation increments of both PCs for each test unit and compute the average value
at each stress level. It is found that the Kendall’s 7 remains around 1.69 across all stress levels, as
shown in Figure 15.
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Figure 15: Barchart of Average Kendall’s tau at Each Stress Level.

Step 2: Following the dependence analysis, we fit MDPs to each PC’s degradation dataset. The
Arrhenius relation is chosen to incorporate the degradation acceleration effect brought by temperature
and a power law relation is used to model the effect by UV intensity [16]. Taking the Wiener process
as example, the drift parameter can be written as

22716
ND™A ®)t=4
“8 X)mTEMPO 384.26[ =t

Tables 6 and 7 show the parameters estimation of marginal models for both PCs. It turns out that
Gamma process is the best model for each PC.

The second stage of parameter inference is carried out by considering the four candidate copulas
listed in Section 2.2. The results in Table 8 indicate that Gumbel copula is the best model. Similarly
to the previous example, we provide the contour plot of joint distribution density of degradation
increments in Figure 16. This is done by assuming a stress level of TEMP 30°C and UV Intensity 85%.
It can be seen that the two contour plots do not differ much for two different durations because the

parameter vy is close to 2.



Table 6: Parameters Estimation for Marginal Models of PC1.

PC1
MDP  Parameter mean se mean sd 2.5% 97.5% BIC
Wiener « 480.082 13.260 431.709 162.646 1634.755
Process B 0.245=21 2 0.000 0.017=21 2 0.215=21 2 0.280=21 2
m -37.545=21 2 0.780=21 3 2.602=21 2 -41.938=21 2 -32.173=21 2 -11,808.679
7 30.227=21 2 0.720=21 3  3.802=21 2  22.968=21 ®>  38.242=21 2
~ 121.228=21 2 0.590=21 3  2.478=21 2 116.324=21 ? 126.027=21 2
Gamma « 1220.323 14.889 778.138 247.657 3269.224
Process I} 271.281 14.549=21 2 966.653=21 2 251.713 290.697
™ -21.360=21 2 0.360=21 3 1.707=21 2 -24.456=21 2 -17.730=21 2 -12,299.737
Mo 24.734=21 2 0.260=21 3 1.737=21 2 21.411=21 2 28.087=21 2
93.633=21 2 0.190=21 3 1.256=21 2 01.225=21 2  96.082=21 2
IG « 48.880=21 2 1.286=21 2 41.116=21 2 6.799=21 2 155.859=21 2
Process I3 60.323 3.811 135.520 0.678 364.094
m -13.572=21 2 0.660=21 3 2.051=21 2 -17.343=21 2 -9.337=21 ? -11,555.913
12 19.127=21 2 0.330=21 3 1.654=21 2 16.024=21 2 22.364=21 2
y 85.653=21 2 0.190=21 3 0.963=21 2 83.769=21 2 87.535=21 2
Table 7: Parameters Estimation for Marginal Models of PC2.
PC2
MDP  Parameter mean se mean sd 2.5% 97.5% BIC
Wiener @ 531.736 15.829 480.608 30.187 1775.501
Process B 0.167=21 2 0.000 0.011=21 2  0.146=21 2 0.191=21 2
™ -41.780=21 2 0.088=21 2 2.850=21 % -46.307=21 2 -35.574=21 2 -10,637.895
s 38.013=21 2 0.091=21 2 4.719=21 2 29.106=21 2 47.285=21 2
~ 149.189=21 2 0.056=21 2 2.567=21 %> 144.189=21 % 154.199=21 2
Gamma « 903.878 12.225 646.404 165.343 2653.679
Process 15 199.416 0.114 7.067 185.498 213.338
m -23.848=21 2 0.040=21 2 1.853=21 2 -27.295=21 2 -19.937=21 %2 -11,467.287
2 34.345=21 2 0.029=21 2 1.909=21 2 30.550=21 2 38.002=21 2
109.679=21 2 0.024=21 2 1.535=21 2 106.726=21 2 112.708=21 2
1G « 44.905=21 2 1.021=21 ? 39.051=21 2 6.625=21 2 154.426=21 2
Process 153 38.849 2.034 85.222 0.492 265.431
m -16.242=21 2 0.060=21 2 2.103=21 2 -20.293=21 2 -12.078=21 %2 -10,867.262
o 34.479=21 2 0.032=21 2 1.674=21 2 31.221=21 2 37.774=21 2
v 100.229=21 2 0.021=21 2 1.091=21 2 98.166=21 %2 102.466=21 2
Table 8: Parameters Estimation of Joint Models.
Joint
Copula Parameter mean se mean sd  2.5% 97.5% T BIC
Joe 0 3.290 0.002 0.078 3.138 3.446 0.551 -2,408.710
Frank ) 10.361 0.006 0.249 9.869 10.850 0.675 -2,572.549
Gumbel ) 2.724 0.001 0.050 2.627 2.825 0.633 -3,043.961
Clayton ) 1.256 0.001 0.049 1.161 1.353 0.386 -1,560.568
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Figure 16: Contour Plots of Joint Distribution Density of Degradation Increments
at TEMP 30 °C and UV Intensity 85%.

Step 3: Lastly, we provide the point and interval predictions of reliability for the duration of the
first 611 days. For the polymeric degradation data, we use a threshold w; [ 1.5 and wy [ 1.6
for PC1 and PC2, respectively, and treat it as a serial system. Correspondingly, Figure 17 shows the
reliability curves for both marginal processes and joint models. Again, if the two PCs are assumed to
be independent to each other, the resulting reliability prediction will be below the level when they are
correlated. Specially, we compare the material’s reliability under two different environmental conditions
— TEMP 30 °C and UV Intensity 85% v.s. TEMP 20 °C and UV Intensity 50%. One may regard
these two conditions as one in Phoenix, AZ (where the weather is sunny and hot) and the other one
in Raleigh, NC (where the weather is mild). The polymeric material’s lifetime in Raleigh is expected
to be longer. The median lifetime in Phoenix (see Figure 18a) is about 281 days, while in Raleigh
it will be more than 211 days longer (see Figure 18b). It is also obvious that, due to having more
degradation data available in this example, the : 6( credible band is much narrower here than the
previous example.
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Figure 17: Reliability Curves for Polymeric Degradation Process.
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7. Conclusions

A degrading system may involve multiple components or PCs that apparently have interactions or
share a common failure mechanism. In such case, cares must be taken to consider the PC dependency
when we analyze system reliability. In previous research, the choice of bivariate joint distribution
was often pre-determined, which was unfortunately inappropriate in most cases, especially when the
marginals are subject to different distributions. By introducing copula functions, we are able to provide
a complete theoretical framework to investigate the effect of PC dependency on system reliability.
Within this modeling framework, a flexible class of bivariate stochastic process-based degradation
models are proposed and they include a variety of marginal degradation processes and incorporate
stress covariates. In addition, an efficient Bayesian inference method, HMC, is implemented in this
paper, which is novel for degradation data analysis. The consequences of model misspecification are
thoroughly studied in Section 5.2. The different types of tail dependence of copula functions that
mimic bivariate degradation patterns are discussed too. Two real examples are used to demonstrate
the superiority of our approach.

Beyond the scope of current study, there are several other issues worth of a further investigation.
For instance, it is our interest to investigate the inference method when some random effects accounting
for the unit-to-unit variation are included in the model. Endowing the analysis with a goodness-of-fit
test on multivariate degradation models is intended to be conducted too. This task is not easy; but
tailored test statistics are possible to be built based on several existing test methods about copulas,
such as the Cramér-von Mises statistic [57]. Also, how to model a system with multiple components
in a complex structure or a multi-component system with multiple PCs requires an extensive research.
Moreover, the extension of the current work to a more general setting, such as incorporating both
time-to-failure data and binary pass-fail data, need be further developed.
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Appendix: Proof of Theorem 1

Here, we prove the case of serial system, that is

M
Rj)t+> R,)t+> nlo) Ry )t4 Ro)t+. .., Ry )t++
j=1

For the case of parallel system, it is omitted due to similar steps.

First, the upper bound is intuitive since the system would fail if any component had failed. This
is obvious because of the serial structure and the property of coherent system.

Then, to prove [ jj\il R;)t+< R,)t+ This is equivalent to prove

P)Yi)t—l-< Wi, Yé)t+< Wo, ... ,YM)t+< W+~
P)Y))t+< w1 =P)Ys)t4+< wot= x0= P) Yy ) t+< wyr+

According to Definition 1, a random d-vector, X, is positively associated if the inequality
Elg1) XHg2) X+ ~ Elg1) X +E]g2) X +

holds for all real-value functions ¢g; and g2, which are increasing (in each component) and their expec-
tations exist. Also, a random subvector of X is also positively associated.
Thus, we can treat Y)t+[ |V1)t£Y5)t+4. .., Yy )t+! as a random vector and let

gyt yn ) T w0 wae ()Y Ry 1)t
gQ)QM)t"H—[ I( ’WM))yM)t—H'—

The above inequality leads to

P)Yi)t—l-< w1, Yé)t+< Wo, ... ,YM)t+< W+~
P)Yi)t+< wl,}é)t+< W, ... ,YM 1)t—|—< Wy 1= P)YM)t+< Wpr

By induction, it can be shown that the lower bound in Theorem 1 holds. [

Supplementary Materials

The supplementary materials (a PDF file) include the information of the priors used for all model
parameters, the simulation results, and the diagnostic plots of statistical inference for two examples
presented in this paper.
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