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Abstract

Computer models with both quantitative and qualitative inputs frequently arise
in science, engineering and business. Mixed-input Gaussian process models have been
used for emulating such models. The key in building this emulator is to accurately
estimate the covariance between different categorical levels of the qualitative inputs.
This problem is challenging when the number of categorical levels is large. We propose
a sparse covariance estimation approach to estimating the covariance matrix with a
large number of categorical levels for the mixed-input Gaussian process emulator.
The effectiveness of this approach is illustrated with an application of IO operation
modes in high performance computing systems.

Keywords: Computer experiments, qualitative and quantitative inputs, uncertainty quan-
tification.



1 Introduction

1.1 Motivation

Gaussian process models with both quantitative and qualitative inputs have been widely
used for emulation of computer models in many applications. A key for building such
models is to accurately estimate the covariance structure among different categorical levels
of the qualitative inputs. This problem poses challenges when the number of categorical
levels is large. This work is motivated by a computer experiment of high performance
computing (HPC) systems. This example aims at studying the input/output (I0) perfor-
mance variability of HPC systems under different system configurations. The output of
the experiment is the variability of the IO performance under different configurations. The
inputs are the system configurations, including quantitative inputs like the CPU frequency
and an important qualitative input, the IO operation mode. The IO operation mode con-
tains 13 categorical levels, e.g., Initial write, Fwrite and Random write. Due to the large
number of categorical levels, an unstructured covariance matrix of a mixed-input Gaussian
process emulator is 13 x 13 with 91 parameters to be estimated. This becomes a challenging
estimation problem. Accurately assessing the correlation between each pair of operation
modes is critical for constructing a statistical emulator of the relationship between HPC
performance variability and different system configurations. Therefore, this experiment
requires emulators that can incorporate quantitative inputs as well as qualitative inputs

with a large number of categorical levels.

1.2 Related literature and our contribution

Computer models are used in many fields to simulate real systems (Wu 2015). For ex-
ample, computational fluid dynamic (CFD) models are popular for studying temperature
management of data centers (Qian et al. 2008). Since running an expensive computer
model under all input configurations is time-consuming, the Gaussian process emulator is
often used as a proxy of the computer code for prediction, calibration, sensitivity analysis
and uncertainty propagation purposes. See Sacks et al. (1989), Currin et al. (1991), Fang

et al. (2005), and Santner et al. (2013) for references. The Gaussian process model consists



of a mean function and a covariance function. For computer models with only quantitative
inputs, popular correlation functions include the Gaussian and Matérn. As reported in
recent applications, computer models can contain both quantitative and qualitative inputs.
See, for example, Qian et al. (2008), Han et al. (2009), Zhou et al. (2011), Zhang and Notz
(2015) and Deng et al. (2017). To solve this issue, mixed-input Gaussian process emulators
with both qualitative and quantitative inputs have been proposed by Qian et al. (2008)
and Zhou et al. (2011) to incorporate a covariance model in the form of a product of the
covariance matrix of the qualitative inputs and that of the quantitative inputs. Provided an
accurate estimate of the covariance matrix for the qualitative inputs, the predictive perfor-
mance of the mixed-input Gaussian process emulator is superior to that of an independent
Gaussian process emulator for each categorical level combination. See Qian et al. (2008),
Han et al. (2009), Zhou et al. (2011) and Zhang and Notz (2015). Qualitative inputs in
computer experiments can also be modeled under some specific assumptions. For example,
Gramacy and Taddy (2009) proposed treed Gaussian process, which can divide categorical
input space and fit an independent Gaussian process for each partition. Roustant et al.
(2018) developed group kernels to partition the categorical levels into different groups, and
within each group the covariance between two levels is a constant. The covariance matrices
for the qualitative factors in both Gramacy and Taddy (2009) and Roustant et al. (2018)
are assumed to have some block structures. Zhang et al. (2019) developed a latent variable
approach assuming the qualitative inputs can be mapped to some underlying numerical
latent variables.

Different from the existing literature, we consider mixed-input Gaussian process em-
ulation with a large number of categorical levels. There are two general situations that
have a large number of categorical levels. The first situation comes from combining all
possible level combinations of multiple qualitative inputs. Although each qualitative input
may only contain a small number of levels, the total number of level combinations can be
large. This situation can be handled by modeling the covariance matrix as a product of
multiple smaller covariance matrices associated with each qualitative input. See Qian et al.
(2008) and Zhou et al. (2011) for more details. The second situation, which is the focus

of this work, is a single qualitative input with a large number of levels, as the multiple 10



operation modes we considered in our motivating example. In addition, a large number
of qualitative alternatives appear in simulation optimization for discrete event simulation
(Luo et al. 2015). From a methodological perspective, the major difference of these two sit-
uations lies in modeling and estimation of the Gaussian process covariance matrix. Unlike
the first situation, the covariance matrix for a single qualitative input cannot be directly
separated into several small covariance matrices in modeling. Thus, due to the large num-
ber of parameters, existing methods cannot work in estimating the covariance matrix of
the second situation. In view of this difficulty, we propose a sparse covariance estimation
approach for the mixed-input Gaussian process emulator to accommodate a large number
of categorical levels. The proposed method uses the idea of a sparse estimation of the
covariance matrix to shrink insignificant entries in the covariance matrix to zero. The
method builds upon the majorization-minimization algorithm from Hunter and Li (2005)
and the generalized gradient descent algorithm from Beck and Teboulle (2009) to estimate
the covariance matrix under the L; regularization, and extends these algorithms to the new
application of mixed-input Gaussian process emulation.

The remainder of the paper is organized as follows. Section 2 provides the modeling
framework for computer experiments with both quantitative and qualitative inputs. Section
3 details the proposed approach. Section 5 applies the proposed method to the motivating
example on studying performance variability in HPC systems. Section 4 gives additional

numerical illustrations with synthetic datasets. Section 6 concludes with some discussion.

2 Gaussian process emulators with quantitative and
qualitative inputs

We consider a computer model y(x, z) with quantitative inputs @ = (x1,...,z4) and qual-
itative inputs z = (z1,...,24). Let z1,..., 2 be all possible categorical level combinations
of z. For example, for the case of ¢ = 3 with each qualitative input containing three levels,

k would be 3% = 27. The computer model output y(x, z) is assumed to be a multivariate



stochastic process with & components

y(@), - yk(@), (1)

where y;(x) = y(x, z;) for i = 1,..., k. Following Qian et al. (2008) and Zhou et al. (2011),

we model y;(x) as

yi(x) = filx)" B+ ¢&i(x), fori=1,...,k, (2)

where f;(x)"3 is the mean function with known covariates

fi(x) = {fui(®), ... fralz)}'

and linear coefficients 3 = (54, ..., 3,)". For example, one may express the model for y;(x)
to be y;(x) = B; + &i(x), for i = 1,...,k, where f;(x) is a k-dimensional vector with the
i-th entry loaded by one and the remaining entries filled by zeros. The second term &;(x)

in (2) is a zero-mean Gaussian process with a product covariance structure:
cov(ei(x),ej(x)) = 7 j0(x, '), fori,j =1,... k, (3)

where 7; ; is the covariance parameter quantifying the dependence between y; and y; in
(1), and ¢(x, ') in (3) is a correlation function modeling the dependence between the
quantitative input values & and x’. For the numerical examples in Section 4, we adopt the

following correlation function from Sacks et al. (1989)

o, a') = exp (- Zm ), (4)

where 0 <m < 2, and 6 = (6,,...,0,) are the correlation parameters.

Let T be the k x k covariance matrix of categorical levels with components {7;;,,j =
1,...,k} in (3). To guarantee that the multivariate stochastic process in (1) has a positive
definite covariance structure, T is required to be a positive definite matrix. Different from
the assumptions in Qian et al. (2008) and Zhou et al. (2011), we do not require the diagonal

elements of T to be equal for more flexible modeling. The parameters to be estimated in



our model are 8, @ and T. We adopt the maximum likelihood method to estimate these
parameters and denote the estimators by B, 0 and T'. Since ,é and @ can be estimated
using standard optimization procedures as in Qian et al. (2008) and Zhou et al. (2011),
we focus on how to obtain T'. This problem can be challenging for a large k. First,
T contains k x (k — 1)/2 unknown parameters, which is large even with a moderate k.
Second, T needs to be positive definite. To meet this requirement, Qian et al. (2008) uses
semi-definite programming and Zhou et al. (2011) adopts the hypersphere decomposition
method. Unfortunately, these methods become inaccurate or infeasible when £ is large. To
overcome this difficulty, we propose a sparse covariance estimation approach in Section 3.
The aim of the proposed approach is to shrink the insignificant entries of the covariance

matrix to be zero, and hence reduce the number of parameters to be estimated.

3 A sparse covariance estimation approach for mixed-

input Gaussian process

We develop a sparse covariance estimation approach to estimate the covariance matrix T'
for the categorical levels of computer model inputs. Our proposed approach is an extension
of the sparse covariance estimation approach in Bien and Tibshirani (2011). The connection

between our development and Bien and Tibshirani (2011) will be discussed in Remark 1.

3.1 Regularized likelihood function

Let xq,...,x, denote the design points of the quantitative inputs « for the multivari-
ate process model in (1). For the multivariate process in (1), y;(x;) may not be avail-
able for all 7 = 1,...,n. Hence, we define a vector with all available outputs by y; =
{yi(z},), ... ,yi(:cjni)}T, where {j1,...,jn,} C {1,...,n} are the indices of the associated

design points. Combining all y;’s gives an output vector

y=(y,....y[) (5)



of length N = Zle n;. We would like to point out that in many practical computer
experiments it is unrealistic to assume that all the qualitative levels share the same design
for quantitative inputs. Since computer experiments are expensive to run, the designs for
quantitative inputs of each qualitative level are often chosen to be different to include more
quantitative design points. This assumption was adopted in the development of designs
for computer experiments with mixed inputs in Joseph et al. (2019) and and Deng et al.
(2015).

Let F be an N x p matrix containing the linear covariates of y. According to (2) and

(3), the negative log-likelihood function of y with respect to T is proportional to
T NT AT -1 3
log|AT(T @ ®)A| + (y— FB) [AT(T®®)A]  (y— FP), (6)

where ® denotes the Kronecker product, ® is an N X N matrix based on a correlation
function ¢(x, ') and fixed correlation parameter 8, A is an (nk) x N submatrix from an

identity matrix of size nk associated with the output in (5), and B is

3= {FT [AT(T  ®)A] ™ F}_l F'[ATTe®)A] 'y (7)

Notice that T'® ® represents the covariance matrix when the outputs observed from inputs

x1,...,x, are available at all qualitative levels i = 1,...,k. Therefore, AT(T @ ®)A is

the submatrix of T'® ® representing the covariance matrix of the incomplete outputs in
(5).

To capture the insignificant components in the covariance matrix, we add the L penalty

to the objective function in (6):
9(T) =log |[AT(T ® ®)A| + (y — FB)" [AT(T ® ®)A] ' (y—FB)+ \|PoT|,. (8)

where P is an arbitrary k£ X k& matrix with non-negative elements and o denotes element-
wise multiplication. One choice for P is a matrix with off-diagonal elements being ones.
The L; penalty can shrink the insignificant entries in the covariance matrix to zero, and
only keeping relatively significant entries.

Since (8) is neither concave or convex, it is challenging to solve. We develop an efficient
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approach using the majorization-minimization algorithm from Hunter and Li (2005) and
the generalized gradient descent algorithm from Beck and Teboulle (2009). These two

algorithms are briefly reviewed in the Supplementary Material.

3.2 The proposed estimation approach

We now discuss our proposed approach to minimize the objective function in (8). Some con-
cave/convex properties are desired to meet the requirements of the majorization-minimization
and generalized gradient descent algorithms. The properties are described as follows and

verified in Appendix B.
e The function log |[AT(T ® ®)A| in (8) is concave with regard to T.

e The function log ‘AT(T ® <I>)A‘ can be majorized by its first order Taylor expansion

on an arbitrary k& x k matrix T} as follows
log|AT(T ® ®)A| <log|AT(T) ® ®)A| + tr {B(T) (T — Tp) ® ®]}, (9)

where B(T) = A[AT(T @ ®)A] " A”.

~

e The function (y — F3)T [AT(T @ ®)A] - (y — FB) in (8) is convex with regard to
T.

According to (9), the majorization function of g(T') in (8) is
f1,(T) =log |AT(Ty ® @) A| + tr { B(Ty) (T — Tp)) ® @]}

+(y—FB) [AT(Te®)A] " (y—FB) +\|PoT|. (10)

Note that ¢(T") < fr,(T) for all T', and ¢(Ty) = fr,(Tp). By using the majorization-
minimization method, the optimization problem in (8) is reduced to minimizing fr, (T')

iteratively. Each iteration solves the optimization problem

argming, o L(T) + A||P o T[4, (11)



where
L(T) = tr {B(Ty))(T® ®)} + (y — FB)" [AT(T ® ®)A] ' (y - FB),

and the constraint T' > 0 guarantees that the solution 7" is positive definite.

The first order derivative of L(T) is dL(T)/dT = By — Y ®Y . The (i, )th entry of
the k x k matrix By is tr({B(Ty)};;®), where { B(Ty)},; is the (4, j)th block after dividing
B(T,) into k x k blocks of an n x n submatrix. The (4, j)th entry of the k x n matrix Y
is the (i X n 4 j — n)th entry of the vector AH (T')y of length nk, where H(T) is defined
as in the Supplementary Material. The generalized gradient descent algorithm is applied

o (11). The tth step computes

dL(T) 2

T-Ta+o dT ‘T T
=Ti1

T, = argming, {(2@)—1 +A\|PoT||1}, (12)
where 0, is the step size.

In our implementation, the outer loop uses the majorization-minimization algorithm,
and the inner loop uses the generalized gradient decent algorithm. As in Bien and Tibshi-
rani (2011), the constraint T > 0 of (12) is tightened to T' > §I}, for some ¢ > 0, which can
be computed as the smallest eigenvalue of T;_;. Then, we follow the alternating direction
method of multipliers in Appendix 3 of Bien and Tibshirani (2011) to solve the optimiza-
tion problem in (12). The step size in (12) is selected using the backtracking procedure
(Wright and Nocedal 1999). In our numerical examples, a single outer or inner loop of the

algorithm converges within 100 iterations.

Remark 1. There is a connection between our problem setting and that in Bien and Tibshi-
rani (2011). Our problem setting is equivalent to the problem in Bien and Tibshirani (2011)
when there is no quantitative input and only one qualitative input. Without quantitative
inputs, (2) becomes

yi:ﬁﬁ—ei, forizl,...,k,

and the covariance matrixz of this model is reduced to T'. Therefore, the covariance estima-

tion approach in Bien and Tibshirani (2011) can be applied to this case directly by providing



a sample covariance matriz.

If quantitative inputs are available, our problem can be converted to the sparse covari-
ance estimation problem under a special case that all n design points xq,...,x, of the
quantitative inputs are available for all categorical levels. Under this special case, the ma-
triz A is reduced to an identity matriz of size n X k. And the key terms in (8) are simplified
to

log |AT(T ® ®)A| = klog |®| + nlog |T|

and

(y—FB) [AT(T @ ®)A] ' (y— FB) = to(T'US'U),

where the (i, j)th element of the n x k matriz U is yi(x;) — fi(z;)T 3. Thus, the objective

function in (8) becomes
log |T| + tr(T*n'U @ 'U) + A|PoT|;. (13)

By treatingn™'U "® U as a sample covariance matriz of the qualitative inputs, this prob-
lem now reduces to the sparse covariance estimation problem in Bien and Tibshirani (2011).
However, the algorithms developed for the simplified situation in Bien and Tibshirani (2011)
1s not directly available as a solution to our problem setting. Replacing an identity matrix
by the matriz A increased the complexity of the development and implementation of our
algorithms. In particular, the properties in Section 5.2 need to be verified under this new
problem setting (given in Appendixz B), which leads to a substantial modification in our

estimation procedure.

Remark 2. The penalty parameter X can be chosen by a cross-validation procedure. In our
numerical examples, we conduct two-fold cross-validation to choose the penalty parameter

A from 0.001 to 5.

4 Simulation Study

In our numerical study, we compare the following methods for the prediction performance

of Gaussian process emulators with qualitative and quantitative inputs:
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1. The proposed method with P in (8) is a symmetric matrix with diagonal entries 0, and
off-diagonal entries 1. The penalty parameter X is chosen by two-fold cross-validation

as stated in Remark 2. This method is denoted by RC.

2. The individual Kriging method in Zhou et al. (2011) that fits independent Gaussian
process emulator for each categorical level combination. This method is denoted by

IC.

3. The unconstrained correlation function for the qualitative inputs in Zhou et al. (2011).

This method is denoted by UC.
4. The exchangeable correlation function in Qian et al. (2008) and Zhou et al. (2011).

For the EC approach compared in the case study, we consider two different variations of
this approach: (1) the level combinations of multiple qualitative inputs are combined as a
single qualitative input, denoted by EC; (2) separable exchangeable correlation functions
for each qualitative input, denoted by ECsep. Notice that ECsep is the same as EC if
there is only one categorical factor such as case in Section 5.

We provide a numerical study based on a synthetic test function to further demonstrate
the effectiveness of the proposed approach. Consider the borehole function (Morris et al.
1993) that models the water flow rate through a borehole. As in Fang et al. (2005), the

response is first transformed by logarithm:

2’/T£U1£L'5

, (14)
log(/22) |1+ 2ttt + 21|

y = log

where the ranges and units of the inputs x; ~ x7 are given in Table 1. Additional infor-
mation about the inputs can be found in Morris et al. (1993). As in Zhou et al. (2011),
we treat inputs x5, rg, and z7 as the qualitative inputs. Table 2 specifies the number of
levels for each qualitative input and the number of categorical level combinations for four
different cases. The categorical levels of inputs x5, xg, and x; are chosen as equally spaced
points within their ranges specified in Table 1. For example, the three levels for x5 are:

290, 340, and 390.

11



Table 1: Ranges of the inputs x; ~ x; in the Borehole function

Variable Range Unit | Variable Range Unit
1 63070-115600 m?*/yr T5 290-390 M
T 0.05-0.15 M T 100-50000 M
x3 1120-1680 M X7 9855-12045 m/yr
T4 63.1-116 m?2yr

Table 2: The number of levels of the three qualitative inputs in the Borehole function
Case s Tg Tv k
1 3 3 3|27

2 2 2 10|40
3 2 2 15|60
4 2 2 2080

The datasets are generated as follows. A Latin hypercube design (McKay et al. 1979)
with eight runs and four columns is generated for the quantitative inputs x;—x4. For each
categorical level, we randomly choose four of the eight runs as the input points for the
training dataset. In this way, the input point within each category are not necessarily the
same. The outputs of these input points within each category are calculated using (14).
By combining the samples from all k categorical levels, the sample sizes of the training
datasets are 4 x 27, 4 x 40, 4 x 60 and 4 x 80 in the four cases, respectively. To evaluate
the predictive performances of different approaches, we generate test datasets with a Latin
hypercube design containing 100 runs as the input points of each categorical level.

Using the training datasets, Gaussian process emulators are fitted by RC, IC, UC, EC,
and ECsep, and the correlation function in (4) with m = 1 for the quantitative inputs.
Using the test datasets, we compute the mean and standard deviation of the mean squared
errors (MSE) over all k categorical levels. Different values of the tuning parameter A\ are
used for RC. The results are given in Table 3. As an example, Figure 1 presents the
correlation matrix estimates for k = 27, where (a), (b) and (c) provide the estimates from
UC, RC with A = 0.01, and RC with A = 1, respectively. We observe that the estimated
correlation matrix from UC is much denser than that from RC.

We comment on the results in Table 3. For & = 27, the best result is generated
by UC. The proposed method shows larger advantages than UC when k is large. As

k increases, the performance of IC becomes more and more competitive. The inferior
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performances of EC and ECsep show that the exchangeable correlation structure does not
fit the data generated from the borehole function. Also, the result indicates that inaccurate
estimates of covariance entries in T' (i.e., UC, EC, ECsep) may not necessarily improve
the prediction performance for the Gaussian process with mixed inputs. As mentioned
in Remark 2, the penalty parameter A\ is chosen from two-fold cross-validation with a
candidate set containing 19 different values, and the computation time includes the process
of implementing with different values of A’s. If the value of \ is pre-specified, the computing
time is comparable with UC. The code of this paper is provided via Codeocean https:
//codeocean.com/capsule/4782881/tree.

Table 3: Results of the example in Section 4.1. mean: average MSE over all k categorical
levels. sd: standard deviation of the MSEs over all k categorical levels. time: computational
time in minutes. The computing time of RC includes a cross-validation procedure for
choosing the penalty parameter \.

Case | k RC ()) IC UC EC ECsep
1|27 mean | 0.0241 (A =0.001) 0.0667 0.0363 0.0521 0.0520
sd | 0.0048 0.0779 0.0689 0.0004 0.0005

time | 0.8909 0.0647 0.0028 0.0014 0.0018

2 |40 mean | 0.0243 (A =0.001) 0.0675 0.0317 0.0519 0.0518
sd | 0.0040 0.0691 0.0565 0.0002 0.0003

time | 2.5200 0.0995 0.0032 0.0022 0.0026

3|60 mean | 0.0240(A = 0.004) 0.0727 0.0286 0.0518 0.0517
sd | 0.0035 0.0737 0.0464 0.0002 0.0002

time | 10.562 0.1355 0.0062 0.0047 0.0050

4180 mean | 0.0237(A =0.001) 0.0711 0.0270 0.0517 0.0968
sd | 0.0027 0.0702 0.0402 0.0001 0.0002

time | 25.954 0.2048 0.0115 0.0151 0.0146

5 Application: an example of performance variability
in HPC systems

We consider an example for studying high performance computing (HPC) systems. Cameron
et al. (2019) studied the input/output (I0) performance variability of HPC systems as re-
gards different system configurations, in which the 10zone benchmark (Norcott 2019) is

used to measure 10 performance under various configurations. The output variable in the
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Figure 1: The correlation estimators of the borehole example with k£ = 27: (a) UC; (b) RC
with A = 0.01; (¢) RC with \ = 1.

HPC dataset is the IO throughput variability measure. The input of the HPC dataset con-
tains both quantitative and qualitative variables. We use a subset of the data in Cameron
et al. (2019), which consists of two quantitative variables, the CPU frequency and the num-
ber of threads, and one categorical variable, the IO operation mode. The CPU frequency
has 15 distinct values, which are 1.2,1.4,1.5,...,3.0, and the number of threads has nine
distinct values which are 1,2,4,8,...,256. The 10 operation mode has 13 levels, which
are Initial write, Fwrite, Random write, Pwrite, Rewrite, Randomread, Mixed workload,
Stride read, Reverse read, Re-read, Fread, Pread, and Read. A detailed description for
different modes are in Norcott (2019), and a brief description of the IO operation modes is

provided in Table 4. In total, we have 13 x 15 x 9 = 1755 system configurations.

Table 4: IO Operation Modes in I0Zone for the HPC Example

Mode Description

Initial write An initial test and measures the performance of writing a new file
Rewrite Measures the performance of writing an already existing file
Read Measures the performance of reading an existing file.

Re-read Measures the performance of reading a file which is read recently

Reverse Read
Stride read
Random read

Mixed workload
Random write
Fwrite

Fread

Pwrite
Pread

Measures the performance of reading a file backwards.

Measures the performance of reading a file with a stride behavior
Measures the performance of reading a file with accesses being made
to random locations within the file

Measures the performance of reading and writing a file with
accesses being made to random locations within the file

Measures the performance of writing a file with accesses

being made to random locations within the file.

Measures the performance of writing a file using fwrite() function.
Measures the performance of reading a file using fread() function
Measures the performance of writing a file using pwrite() function.
Measures the performance of writing a file using pread() function.

14




We randomly select eight quantitative input points for each qualitative level. Then
the size of the training dataset is 8 x 13, and the remaining data points are included in
the testing dataset to compute MSEs. Table 5 provides the prediction results of different
approaches. Table 5 indicates that RC with a cross-validation selected penalty parameter

gives the smallest MSE value among all alternative methods.

Table 5: Results of the example in Section 5. mean: average MSE over 13 categorical
levels; sd: standard deviation over 13 categorical levels; time: computing time in minutes.
The computing time of RC includes the cross-validation procedure for choosing the penalty
parameter \.

| [RCOV) IC  UC EC |
mean | 0.0905 (A = 0.12) 0.3299 0.1108 0.1023

sd | 0.0967 0.2826 0.0672 0.0781
time | 152.800 0.0083 0.0019 0.0011

The correlation matrix given by the proposed method RC are depicted in Figure 2. We
discuss some interesting findings. In general, we observe moderate to strong correlations
among most pairs of performance variability of IO operation modes, which could be caused
by the fact that all operations are carried out for the same file size and record size, and are
likely be affected by the cache. The write operations (i.e., Initial write, Fwrite, Random
write, Pwrite, Rewrite) have the strongest correlations as shown in Figure 2. The Initial
write and Fwrite have the largest correlation because essentially both operations need
to write a new file. The read operations (e.g., Stride read, Reverse read, etc.) display
correlations around 0.5. The Mixed workload is a mix of read and write operations and
shows moderate correlation (i.e., around 0.5) to all other modes. Interestingly, read and
write operations tend to be weakly correlated (i.e., around 0.3) because those two types of
operations are quite different.

Existing literature, e.g., Cameron et al. (2019), assumes that the performance variabil-
ities of different operation modes are uncorrelated and thus separate analyses for the data
collected from each operation mode are often used. From a new perspective, our work
studies the correlations among different 10 operation modes. Our results reveal that there
exist correlations and the degree of correlations vary as well. These results shed new light

on the modeling and analysis of performance variability data.
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Figure 2: The correlation matrix from RC (A = 0.12) in Section 5

6 Discussion

We have proposed a new method for emulating computer models with both quantitative
and categorical inputs. Through simulation study and a real application on studying per-
formance variability in HPC systems, this method is shown to be effective in mixed-input
Gaussian process emulator when the number of categorical levels is large. When there are
multiple categorical inputs, the covariance matrix of these categorical inputs from the pro-
posed method is assumed to be completely unstructured, whereas Qian et al. (2008) and
Zhou et al. (2011) both use a fully separable covariance structure for different categorical
inputs. The proposed approach relaxes the separable assumptions. However, a drawback
of the unstructured covariance matrix is the need to estimate a large number of unknown
parameters.

Here are some possible directions for future research. First, our current approach re-

quires that there are observations available for all possible qualitative level combinations,
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which may not be always feasible. Extending our method to more general situations needs
further research. For example, one may develop a composite approach by combining the
covariance matrix from our approach and the separable covariance in Qian et al. (2008) and
Zhou et al. (2011) together to impute the covariance parameters for unobserved qualitative
levels. Second, our adopted product correlation function was successfully used in Qian
et al. (2008) and Zhou et al. (2011). A possible extension is to accommodate non-separable
covariance models, e.g., Fricker et al. (2013). The non-separable covariance structure will
create new challenges in parameter estimation as it will involve many more parameters
than the separate case. Third, designs for computer experiments with qualitative and
quantitative inputs have been studied by Qian and Wu (2009), Qian (2012), and Deng
et al. (2013), among many others. But the link between design and modeling is still not
clear. Omne might be interested in creating new designs that suitable for our proposed
modeling framework. Slicing is still important but another key is to best overlap points
for the different level combinations of the qualitative factors. It is possible to develop a
new sequential design strategy for computer experiments with mixed inputs by building an
interface between design and modeling. This strategy can benefit simulation optimization
applications with a large number of alternatives (Luo et al. 2015). In addition, it would be
valuable to evaluate the covariance matrix estimated under the Lo penalty, as well as the

precision matrix estimated under different penalty options.
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Appendix A Majorization-minimization and general-
ized gradient descent algorithms

We introduce two useful algorithms: majorization-minimization and generalized gradient
descent. The majorization-minimization method Hunter and Li (2005) minimizes a function
g(x) using its majorization function f, (x) given as g(z) < f,(z) for all x and g(zg) =
fuo(xo). Starting with an appropriate initial solution x, this method searches for the
minimum of g(z) by repeatedly solving x; = argmin, f,, , ().

The generalized gradient descent algorithm Beck and Teboulle (2009) solves the opti-
mization problem

min {L(z) + p(z) | x € C}, (15)

where L(z) is a differentiable convex function, p(z) is a non-differentiable convex function,

and C is the feasible region. Given an initial solution zy € C, the algorithm approximates

I

where 9 is the step size. Starting from xg, the algorithm iteratively performs the following

L(zx) by the following quadratic function

dL(x)

dx r=x

dL(x)

L(z) + (. — x0) " o

+ (20) 7| — @o]|? o (20) 71

a:—(:vo—(S

calculation:

dL(x)
dx

T — (xt,l -0

ry = argmin, .. {(26)1

z=:vz1)

+ p(fv)} (16)

until convergence.

Appendix B Verification of concave/convex conditions

Let f(T) =log|A"(T @ ®)A|. The first and second order differential forms of f(T') are

df (T) = tr{B(T)(dT @ ®)} (17)
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and

d’f(T) = —tr{B(T)(dT @ ®)}, (18)

which shows that f(T') is concave. By expressing the first order Taylor expansion of f(T),
we also show that (9) is the majorized function of f(T).

Let o(T) = (y — FB)T{AT(T @ ®)A} (y — FB) and H(T) = {AT(T @ ®)A} "' —
{AT(T @ ®)A} 'F(FT{AT(T @ ®)A}'F)"'FT{AT(T ® ®)A}~!. Then express the
target function as

h(T) =y H(T)y.

The first and second order differential forms of h(T") are
dh(T) = —y H(T)A" (dT @ ®)AH(T)y

and

d*hT) =y H(T)A"(dT @ ®)AH(T)A" (dT ® ®)AH(T)y.

Thus, h(T') is convex.

Appendix C Additional Numerical Results

Assume that the design for the quantitative inputs (x1,...,x,) are the same for all the
qualitative levels. Consider predicting at @ for the jth qualitative level. Assume 6 and 3

are both known. Then the predicted value for y;(x) is
Ji(xo) = fi(x0) ' B+ (T; @ p(x0)) (T ® @)~ (y — FP),

where ¢(xy) = (¢(xo, 1), ..., d(xo,x,))", and T is the j-th column of T. Accord-
ing to the property of the Kronecker product, (T; ® ¢(x)) (T @ ®)"(y — FB) =
vec {@(xo) "®'UT'T;}, where U is the same as defined in (13), and vec(-) denotes

the vectorization of a matrix. Notice that T'T; is a vector with jth entry of 1 and other
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entries of 0. Then UT'T; becomes the j-th column of U, which is

(yij(x1) — fi(21) "B, ... yi(xn) — fi(2) ' B)" £ y; — FB.

Therefore, y;(xo) can be alternatively expressed by
Ji(x0) = fi(@0)" B+ p(a0) ' @} (y; — F;B),

which is the same as the predictor built based on the data from the jth categorical level.
Therefore, if we have the same design for the quantitative inputs over all the qualitative
levels, the data points from the different levels are not contributing to the prediction. This
is the reason why designs for quantitative inputs are often different across the different
qualitative levels. As such, the entire dataset contributes to the estimation of @ and (.
Hence, the difference between the different approaches are very small if the quantitative
input design is the same for all the qualitative levels. We use Case 1 in Table 1 to demon-
strate this phenomenon in Table 6. In this experiment, the design of the quantitative inputs
is the same for all qualitative levels with size n of 4 or 8. The results indicate that the

performance of all the approaches is essentially the same up to five digits.

Table 6: Additional results of case 1 in Section 4.1. mean: average MSE over all k cat-
egorical levels. sd: standard deviation of the MSEs over all k categorical levels. time:
computational time in minutes. The computing time of RC includes a cross-validation
procedure for choosing the penalty parameter .
RC IC ucC EC ECsep
n =4 mean | 0.10987 0.10987 0.10987 0.10987 0.10987
sd | 0.00007 0.00007 0.00008 0.00007 0.00007
n =28 mean | 0.02148 0.02148 0.02148 0.02148 0.02148
sd | 0.00001 0.00001 0.00001 0.00001 0.00001
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