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Abstract

Molecular dynamics simulations frequently employ periodic boundary conditions where the

positions of the periodic images are manipulated in order to apply deformation to the material

sample. For example, Lees–Edwards conditions use moving periodic images to apply simple shear.

Here, we examine the problem of precisely comparing this type of simulation to continuum solid

mechanics. We employ a hypo-elastoplastic mechanical model, and develop a projection method to

enforce quasi-static equilibrium. We introduce a simulation framework that uses a fixed Cartesian

computational grid on a reference domain, and which imposes deformation via a time-dependent

coordinate transformation to the physical domain. As a test case for our method, we consider

the evolution of shear bands in a bulk metallic glass using the shear transformation zone theory

of amorphous plasticity. We examine the growth of shear bands in simple shear and pure shear

conditions as a function of the initial preparation of the bulk metallic glass.

I. INTRODUCTION

Molecular dynamics (MD) simulations, whereby atoms or molecules are individually

simulated according to Newton’s laws [1], are widely used across the physical sciences [2–5].

Open source sofware packages such as LAMMPS [6, 7] and GROMACS [8] have enabled

simulations to be performed with millions of particles on modern parallel computer hardware.

MD simulations provide a detailed view of the material physics and are able to capture

discrete particle-level effects [9, 10]. Despite these advantages, MD simulations are computa-

tionally expensive, and it is usually only possible to simulate microscopic material samples.

Furthermore, since the simulations must resolve rapid interaction timescales between particles,

the applied deformation rates in MD are often orders of magnitude larger than deformation

rates in laboratory tests [11–13].

Because MD simulations simulate microscopic domains, it is difficult to apply deformation

via moving walls, as simulation data may be affected by finite-size effects [14, 15]. Instead,

the standard approach is to apply periodic boundary conditions, but manipulate the periodic

images of the primary simulation domain to achieve different applied deformations. For
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example, in three-dimensional Lees–Edwards boundary conditions, the periodic images have

a horizontal velocity proportional to their z position in order to impose simple shear [16]

(Fig. 1(a)). The Kraynik–Reinelt boundary conditions [17–20], plus a recent generalization

by Dobson [21], use a combination of moving periodic images and domain remapping in order

to simulate different extensional flows.

A complementary approach to MD is to use continuum modeling, which has the ability to

simulate large system sizes and long, physically realistic timescales. However, continuum-scale

theories involve a substantial theoretical hurdle, in that the transition from a particle-level

theory to a continuum theory involves a coarse-graining procedure. The coarse-graining

procedure defines a representative volume element (RVE) [22, 23] throughout which local

deviations of material field values from their average within the RVE are neglected. The

fundamental assumption of every continuum theory is that such an RVE is well-defined, and

that neglecting the discrepancy between the relevant system variables and their mean within

an RVE is well-justified [24, 25].

In effect, coarse-graining reduces the complex many-body system of interacting particulate

constituents to a much lower degree-of-freedom system well-described by a set of nonlinear

partial differential equations. This reduction in complexity is primarily responsible for the

well-behaved scaling with system size in continuum simulations, in that all the classical

techniques of numerical analysis become available for evolving the system over time. However,

the process of coarse-graining to the continuum is difficult in general, and has primarily been

successful when tailored to specific phenomena. The coarse-graining procedure introduces

internal state variables that summarize the many particulate degrees of freedom, and accurate

initial conditions for such internal variables can be difficult to construct. Some equilibrium

systems are amenable to rigorous approaches by explicitly averaging over unwanted degrees

of freedom in the system partition function [26, 27], but these approaches are intractable for

many out-of-equilibrium systems.

To quantitatively explore the effect of coarse-graining MD to the continuum, it is therefore

useful to perform the two types of simulation using the same geometry and conditions.

However, precisely recreating the boundary conditions from MD for use in continuum

simulations poses some numerical challenges. Consider the Lees–Edwards boundary conditions

and suppose that the primary simulation domain is discretized on a Cartesian grid. Because

the periodic images are moving, their grids will generally not align with the primary domain.
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(a) (b)

FIG. 1. (a) Lees–Edwards boundary conditions in three dimensions where the z coordinate points

upward. The system of interest is shown in yellow and outlined in dashed black lines. Periodic

copies of the system above and below are set to move with a specific velocity, imposing a specific

strain rate γ̇ on the system. (b) A graphical depiction of a domain transformation T(t) that maps

a fixed reference domain X to a sheared physical domain x.

This could be handled numerically via interpolation, but grid points near the boundary will

incur different discretization errors. If the continuum model involves an elliptic problem,

then the shifted grids will result in a complex connectivity structure in the associated linear

system, which is less well-suited to some numerical linear algebra techniques.

In this work, we address this problem by developing a continuum solid mechanics simu-

lation that permits MD boundary conditions to be recreated precisely. We use the hypo-

elastoplasticity model [28] in which the deformation rate tensor D is decomposed additively

into a sum of elastic and plastic parts [29]. There are a number of different frameworks for

simulating elastoplastic materials [30], but the hypo-elastoplastic model is well-suited for

problems that involve large plastic deformation. This regime is appropriate for matching to

typical MD simulations, where large total strain may be applied.

Combining the additive decomposition of D with Newton’s second law results in a closed

hyperbolic system of partial differential equations (PDEs) for the velocity v and stress σ,

plus coupling to evolution equations for any internal state variables. Due to the small size

of MD simulations, it is usually a good approximation to say that elastic waves are fast

compared to the simulation timescale, allowing for Newton’s second law to be replaced by

the constraint that the stresses remain in quasi-static equilbrium, ∇ · σ = 0.

The resulting constrained PDE system has a mathematical correspondence to the in-

4



compressible Navier–Stokes equations, where the fluid velocity must satisfy the constraint

that ∇ · v = 0. For incompressible fluids a standard numerical technique is the projection

method of Chorin [31, 32]. By exploiting the mathematical correspondence, a new projection

method for quasi-static hypo-elastoplasticity was recently introduced [33] and extended to

three dimensions [34] (Sec. II).

To match the MD boundary conditions, we introduce a coordinate transformation frame-

work for the quasi-static hypo-elastoplastic system. It is based on an abstract linear mapping

T(t) from a reference domain to the physical domain (Fig. 1(b)). Lees–Edwards conditions

can be implemented in the continuum setting with this methodology by imposing shear

through a transformation, and additionally enforcing periodic boundary conditions in all

directions. Effectively, our method decouples the application of material deformation from

the application of a specific boundary condition.

In addition to Lees–Edwards boundary conditions, the transformation framework is flexible,

and enables simple implementation of otherwise potentially difficult deformation, such as

pure shear. Any applied deformation that can be written down as a linear transformation

of a reference domain can be implemented just by implementing the matrix and its time

derivatives. We show that the projection method for hypo-elastoplasticity can be generalized

to simulate this case by working with transformed velocities and stresses in the reference

domain. The projection step in the method requires solving an elliptic problem for the

velocity, and the resulting linear system has a simple mathematical structure that is well-

suited for solution via numerical linear algebra techniques such as the geometric multigrid

method [35, 36].

The new method is capable of simulating a wide range of elastoplastic materials, but

here we consider the example of a bulk metallic glass (BMG), a new type of alloy where the

atoms have a random and amorphous arrangement, in constrast to most metals [37]. BMGs

have attracted considerable research interest during the past two decades. They have many

favorable properties, such as high strength and wear resistance, that make them attractive

for a variety of applications [38]. However, the amorphous arrangement of atoms makes

the study of dynamic mechanical phenomena—such as deformation and failure—in these

materials exceptionally challenging [39].

To date, a general theory of the microscopic origins of plastic deformation in amorphous

solids has remained elusive. However, several prominent theories capable of making accurate
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qualitative and quantitative predictions have been developed, such as free-volume based theo-

ries [40–43] and the shear transformation zone (STZ) theory [44–48]. Ultimately, free-volume

theories and the STZ theory are flow-defect theories that attempt to connect microscopic

rearrangements of groups of atoms with macroscopic plastic deformation, in rough analogy

to the dislocation-mediated theory of plasticity in crystalline materials [49].

We employ an elastoplastic model of a BMG based on the STZ theory. A key feature

of the model is the effective temperature (Sec. II C), which characterizes the amorphous

particle structure via a continuum field [50–53]. The effective temperature can be measured

indirectly [54], but there is currently no complete method to connect it to the microscopic

particle configuration. This was recently explored by Hinkle et al. [55], who directly compared

continuum and MD simulations, and examined how measurable features of MD such as the

coarse-grained atomic potential energy are connected to the effective temperature. A key

limitation of this study is that the MD simulations use Lees–Edwards conditions, whereas the

deformation was imposed in the continuum simulation using moving parallel plates, meaning

that the two could not be exactly compared. The numerical techniques that we develop here

remove this limitation.

The STZ theory has proven useful for examining the failure properties of BMGs. The

elastoplastic model that we employ has been used to explain the large experimental variations

in notched fracture toughness of BMGs [56]. This was subsequently extended to make

predictions about BMG fracture toughness for a range of parameters [57]. Recent experimental

work suggests that these predictions are broadly correct [58]. BMGs also exhibit shear bands,

a strain-softening instability characterized by the localization of shear strains along a thin

band [59], which can be the precursor to failure [60–62]. In our simulations, we examine how

shear bands nucleate as a function of the initial inhomogeneities in the effective temperature

field.

The paper is organized as follows. In Sec. II, we describe the equations of quasi-static

hypo-elastoplasticity and provide an introduction to the physics of the STZ theory of

amorphous plasticity. In Sec. III, we introduce the coordinate transformation methodology

and develop the transformed projection method. In Sec. IV we provide numerical experiments

demonstrating convergence of the solution of the transformed method to the original quasi-

static method in physically equivalent situations as the grid spacing is decreased. In Sec. V,

we study shear banding in a bulk metallic glass subject to simple shear, Lees–Edwards, and
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pure shear boundary conditions. We highlight differences in results between Lees–Edwards

and simple shear boundary conditions and examine how the shear band formation depends

on the initial effective temperature.

II. MATHEMATICAL PRELIMINARIES

A. Quasi-static hypo-elastoplasticity

We consider an elastoplastic material with Cauchy stress tensor σ(x, t) and velocity field

v(x, t). We denote by L = ∇v the velocity gradient tensor and D = 1
2

(︁
L+ LT

)︁
the rate of

deformation tensor. We adopt the framework of hypo-elastoplasticity, which assumes the

rate of deformation tensor can be additively decomposed into a sum of elastic and plastic

parts, D = Del +Dpl. Writing linear elasticity in rate form yields

Dσ(x, t)

Dt
= C :

(︁
D−Dpl

)︁
(1)

where C is the stiffness tensor. For simplicity, the material is taken to be isotropic and

homogeneous, so that Cijkl = λδijδkl + µ (δikδjl + δilδjk) where λ is Lamé’s first parameter

and µ is the shear modulus. The time derivative in Eq. 1 is the Truesdell derivative [63],

Dσ

Dt
=

dσ

dt
− LTσ − σL+ tr(L)σ, (2)

with d
dt
= ∂

∂t
+ v · ∇ denoting the advective derivative. The velocity field satisfies a continuum

version of Newton’s second law,

ρ
dv

dt
= ∇ · σ, (3)

with ρ the material density. Taken together, Eqs. 1 & 3 form a closed hyperbolic system

that could form the basis of a numerical method. However, an explicit numerical method

used to solve this system will resolve elastic waves. Stable resolution of elastic waves places

a limit on the simulation timestep according to the well-known Courant–Friedrichs–Lewy

(CFL) condition [64]. The CFL condition requires ∆t ≤ h
ce

where ce is a typical elastic wave

speed and h is the grid spacing.

In metals and other materials of interest, the elastic wave speed ce can be large, and the

grid spacing h needed to resolve fine-scale features such as shear bands can be small. The

CFL condition thus poses a prohibitive limit on the timestep for probing realistic timescales
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and system sizes, and the development of alternative simulation approaches which avoid

resolving elastic waves is necessary. It is often appropriate to take the long-timescale and

small-velocity limit, in which the material acceleration is negligible and Eq. 3 can be replaced

by the constraint

∇ · σ = 0, (4)

which states the stresses remain in quasi-static equilibrium, and conveniently avoids the

description of elastic waves. In this quasi-static limit, Eq. 1 depends on the material velocity

field through D, but the evolution equation for the velocity field has been exchanged for the

constraint in Eq. 4. It is thus unclear how to solve Eq. 1 subject to the global constraint in

Eq. 4.

B. Projection method

As noted by Rycroft et al. [33], Eqs. 1 & 3 have a close mathematical correspondence

with the Navier–Stokes equations for incompressible fluid flow. The Navier–Stokes equations

consist of an explicit partial differential equation for the fluid velocity along with a constraint

that the velocity must be divergence-free. Much like Eqs. 1 & 4, the constraint on the velocity

field is obtained from a limiting procedure applied to an explicit partial differential equation

for the pressure, and the equation for the velocity still depends on the pressure after this

limit has been taken.

In this setting, a well-established numerical technique is the projection method of

Chorin [31, 32]. In Chorin’s projection method, the update for the velocity field is split

into two steps. In the first step, an intermediate velocity field is computed which does not

obey the divergence-free constraint. In the second step, a linear system is solved for the

pressure field which simultaneously projects the intermediate velocity field onto the manifold

of divergence-free solutions.

By using the correspondence between quasi-static hypo-elastoplaticity and incompressible

fluid flow, Rycroft et al. [33] developed a new projection method for quasi-static elastoplas-

ticity. Consider taking a timestep of size ∆t, and use superscripts of n and n+ 1 to denote

the simulation fields before and after the step, respectively. To begin, an intermediate stress
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σ∗ is computed by dropping the C : D term in Eq. 1 to obtain

σ∗ − σn

∆t
= (Ln)Tσn + σnLn − tr(Ln)σn − (vn · ∇)σn −C : (Dpl)n. (5)

If the velocity vn+1 were known, and hence if the total deformation rate Dn+1 could be

calculated, then the final stress would be given by

σn+1 − σ∗

∆t
= C : Dn+1. (6)

Taking the divergence of this equation and enforcing that ∇ · σn+1 = 0 yields

∆t∇ · (C : Dn+1) = −∇ · σ∗. (7)

After finite-difference expansion of the definition of Dn+1, Eq. 7 forms a linear system for

the velocity field vn+1 with source term given by the known vector −∇ · σ∗, and it can be

solved via standard techniques of numerical linear algebra. After solution of Eq. 7, σn+1 can

be computed according to Eq. 6, which can be shown to orthogonally project σ∗ onto the

manifold of quasi-static solutions. In this manner, the two-step projection method enables

solving Eq. 1 subject to the global constraint Eq. 4 despite the dependence of Eq. 1 on v.

We refer the reader to papers by Rycroft et al. [33], and Rycroft and Boffi [34] for complete

details on this method.

C. Plasticity model

As our plasticity model for a bulk metallic glass, we use an athermal form of the shear

transformation zone (STZ) theory of amorphous plasticity suitable for studying glassy

materials below the glass transition temperature [47, 65]. The STZ theory postulates that

ephemeral and localized fluctuations of the configurational bath—STZs—occur sporadically

throughout an otherwise elastic material. The STZs may be conceptualized as clusters

of atoms susceptible to shear-induced configurational rearrangements when local stresses

surpass the material yield stress sY . Each such rearrangement leads to a small increment of

plastic strain, and many such rearrangements conspire to bring about macroscopic plastic

deformation.

In the athermal theory used here, thermal fluctuations of the atomic configurations are

neglected, and molecular rearrangements are assumed to be driven entirely by external
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mechanical forces. Thermal theories introduce an additional coupling between the configura-

tional subsystem governing the rearrangements that occur at STZs, and a kinetic/vibrational

subsystem governing the thermal vibrations of atoms in their cage of nearest neighbors [66].

Such thermal theories, with an additional field tracking the thermodynamic temperature

that evolves according to a diffusion equation, could in principle be incorporated into our

framework.

Each rearrangement corresponds to a transition in the configurational energy landscape;

these transitions are usually towards a lower-energy configuration, but there is a small

probability for a reverse transition. Before the application of external shear, the material

sample sits at a local minimum. External shear alters the shape of the energy landscape, and

can make transitions to other states considerably more likely. The density of STZs in space

follows a Boltzmann distribution in an effective disorder temperature denoted by χ [50–53].

χ governs the out-of-equilibrium configurational degrees of freedom of the material and has

many properties of the usual temperature: it is measured in Kelvin, and it can be obtained

as the derivative of a configurational energy with respect to a configurational entropy [39]. χ

is distinct from the thermodynamic temperature T , though it plays the same role for the

configurational subsystem as T does for the kinetic/vibrational subsystem.

We define the deviatoric stress tensor σ0 = σ − 1
3
tr(σ)I. The total rate of plastic

deformation tensor is proportional to the deviatoric stress,Dpl = Dplσ0

s̄
, where s̄2 = 1

2
σ0,ijσ0,ij

is a local scalar measure of the total deviatoric stress. The STZ theory provides the magnitude

of the plastic rate of deformation as

τ0D
pl = e−ez/kBχe−∆/kBT cosh

(︃
Ωϵ0s̄

kBT

)︃(︂
1− sY

s̄

)︂
. (8)

τ0 is a molecular vibration timescale, ez is a typical STZ formation energy, kB is the

Boltzmann constant, T is the thermodynamic temperature, ∆ is a typical energetic barrier

for a transition, Ω is a typical STZ volume, and ϵ0 is a typical local strain. The effective

temperature satisfies a heat equation [53, 65, 67–69]

c0
dχ

dt
=

(︁
Dpl : σ0

)︁
sY

(χ∞ − χ) + l2∇ ·
(︁
Dpl∇χ

)︁
. (9)

The interdependence of Eqs. 8 & 9 enables the development of shear bands through a

positive feedback mechanism, as increasing one of χ or Dpl also leads to an increase in the

other [67, 69].
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III. COORDINATE TRANSFORMATION FRAMEWORK

Let T(t) denote a time-varying mapping from a reference domain X to the physical

domain of interest x such that

x = TX, (10)

as shown in Fig. 1(b). Here, X ∈ [aX , bX ]×[aY , bY ]×[aZ , bZ ]. Capital letters denote quantities

in the reference frame and lower case letters denote quantities in the physical frame. ∇X

and ∇x denote spatial differentiation in the reference and physical frame, respectively. We

emphasize thatX exists in a fixed frame on which the quasi-static hypo-elastoplastic equations

will be solved, and not in the Lagrangian frame of coordinates. To clarify this point, let

R = (X ,Y ,Z) denote a set of fixed Lagrangian coordinates. For an Eulerian frame (x, y, z),

we define the Eulerian displacements,

ui = xi −Ri. (11)

We then define the Eulerian velocities vi =
∂ui

∂t
|R. The same procedure can be performed in

the reference frame. We first define the physical displacements,

u = TX−R. (12)

Taking a time derivative of both sides of Eq. 12 at fixed Lagrangian coordinates R, we arrive

at an expression for the physical velocity,

v =
∂T

∂t
X+TV. (13)

Above, we have identified the transformed velocity V = ∂X
∂t
|R. Equation 13 can be used

to compute the physical velocity v from the transformed velocity V, if V is known. By

inversion, it can also be used as a definition of the transformed velocity,

V = T−1

(︃
v − ∂T

∂t
X

)︃
. (14)

Using the chain rule, spatial derivatives are transformed as

∇x = T−T∇X. (15)

Taking an advective time derivative of Eq. 14, using Eq. 3 for v̇, and transforming physi-

cal spatial derivatives to transformed spatial derivatives, the transformed velocity evolves
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according to the transformed generalization of Newton’s second law,

∂V

∂t
= − (V · ∇X)V +

∂T−1

∂t
TV +T−1

(︃
T−T∇X ·

(︁
TΣTT

)︁
− ∂2T

∂t2
X− ∂T

∂t
V

)︃
. (16)

In Eq. 16, we have rewritten the advective derivative equivalently in the reference frame,

∂
∂t
+ v · ∇x = ∂

∂t
+V · ∇X. The proof of this fact for an arbitrary transformation T(t) is

shown in Appendix A. In Eq. 16, we have also defined the transformed stress tensor via the

contravariant pullback,

Σ = T−1σT−T. (17)

To derive an evolution equation for Σ, we now use the linear elastic relation in Eq. 1. Taking

an advective time derivative of the relation σ = TΣTT and inverting, the transformed

stress then obeys the transformed generalization of the linear elastic constitutive law. After

expansion of the Truesdell rate,

∂Σ

∂t
= − (V · ∇X)Σ− tr(L)Σ+Σ∇XV + (∇XV)TΣ+T−1

(︁
C :

(︁
D−Dpl

)︁)︁
T−T. (18)

In Eq. 18, D = 1
2

(︁
L+ LT

)︁
refers to the physical quantity. L can be computed in terms of

the transformed variables as

L = T−T∂T
T

∂t
+T−T∇XVTT. (19)

Dpl = Dplσ0

s̄
appears in Eq. 18, and its form depends on the plasticity model through the

constant Dpl. As reviewed in Sec. II A, the STZ theory provides an expression given by Eq. 8.

Dpl is defined and must be computed in terms of the physical deviatoric stress σ0. In line

with the definition of Σ, we can apply the contravariant pullback to σ0 and write

T−1σ0T
−T = Σ− 1

3

(︁
T−1 tr

(︁
TΣTT

)︁
T−T

)︁
I. (20)

Using the natural definition Σ0 = Σ− 1
3
tr (Σ) I and solving for σ0, we can rewrite Eq. 20 as

σ0 = TΣ0T
T +

1

3

(︁
T tr (Σ)TT − tr

(︁
TΣTT

)︁)︁
I. (21)

Equation 21 enables the computation of σ0 entirely in terms of transformed quantities.

We compute s̄ by first computing the entire tensor σ0 using Eq. 21 and then compute its

Frobenius norm.
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The equation for the effective temperature must also be transformed, though we do not

define a transformed effective temperature. This can be accomplished by transforming the

derivatives,

c0
∂χ

∂t
= −c0 (V · ∇X)χ+

(︁
Dpl : σ0

)︁
sY

(χ∞ − χ) + l2T−T∇X ·
(︁
DplT−T∇Xχ

)︁
. (22)

For brevity, Dpl, σ0 and Dpl refer to the physical quantities in Eq. 22 and must be computed

in terms of the transformed variables in an implementation. Transformation of the diffusive

term ensures that diffusion occurs in the physical frame despite being implemented in the

reference frame.

Equation 18 demonstrates that our transformation methodology leaves the Truesdell rate

invariant and only affects the deformation rate term C :
(︁
D−Dpl

)︁
. This highlights a benefit

of using the Truesdell rate, as opposed to using alternative rates (e.g. Green–Naghdi or

Jaumann) that employ physical approximations to achieve a simpler form. For example, the

Jaumann stress rate is based upon the approximation that the effect of material stretch is

much smaller than the effect of rotation, so that the Jaumann formula only involves the

material spin rather than the full velocity gradient tensor. If the Jaumann rate is used in

the physical frame it will not perfectly transform into the Jaumann rate in the reference

frame, as neglecting stretch in the physical frame is not equivalent to neglecting stretch in

the reference frame.

The transformed system of equations has connections to the principle of material frame-

indifference [70, 71] which states that “the constitutive laws governing internal interactions

between the parts of the system should not depend on whatever external frame of reference

is used to describe them” [72]. Mathematically this is done by considering a transformation

of the form x = R(t)(X − X0(t)) where X0(t) is a time-dependent vector and R(t) is a

time-dependent rotation [73]. If we restrict our transformation in Eq. 10 to the case when

T(t) is a rotation, then Eq. 18 is identical to Eq. 2, but in terms of transformed variables.

The first four terms of Eq. 18 are always identical, and the final term involving C : (D−Dpl)

is also identical in this case, since the rotation matrices cancel because C is isotropic. Hence

our coordinate transformation is consistent with material frame-indifference.

It is worth considering how the transformed system of equations differs from the original

system. A particular case of interest is simple shear, given the immediate application to

implementation of Lees–Edwards boundary conditions. This physical situation is described
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by the transformation

T =

⎛⎜⎜⎜⎝
1 0 Ubt

0 1 0

0 0 1

⎞⎟⎟⎟⎠ , (23)

with Ub a boundary shear velocity. Restriction to a two-dimensional plane-strain formulation

reveals that the components of Eqs. 16 & 18 retain their original form with untransformed

quantities replaced by transformed quantities, in addition to several new terms proportional

to powers of Ubt.

A. Transformed projection method

We now formulate the projection method of Sec. II B in the reference frame. This method

enables solving for V and Σ subject to the constraint in Eq. 4. In the first step (analogous

to Eq. 5), the C : D term in Eq. 18 is neglected to compute the intermediate transformed

stress Σ∗,

Σ∗ −Σn

∆t
= − (Vn · ∇X)Σ

n − tr(Ln)Σn +Σn (∇XV)n

+ (∇XV)nΣn −
(︁
T−1

)︁n
C :

(︁
Dpl
)︁n (︁

T−T
)︁n

(24)

If the transformed velocity at the next timestep Vn+1 were known, we could compute Ln+1

via Eq. 19, compute Dn+1, and complete the transformed Euler step via

Σn+1 −Σ∗

∆t
=
(︁
T−1

)︁n (︁
C : Dn+1

)︁ (︁
T−T

)︁n
, (25)

which is analogous to Eq. 6. To compute this correction, we need to use the physical

constraint Eq. 4. Enforcing that ∇x · σn+1 = 0 leads to a linear system for v in the physical

domain given by

∆t∇x ·
(︁
C : Dn+1

)︁
= −∇x · σ∗. (26)

Because T−1σ∗T−T = Σ∗ and ∇x = T−T∇X, the right-hand side of Eq. 26 transforms

according to

−∇x · σ∗ = −Tn∇X ·Σ∗. (27)

Similarly, the left-hand side of Eq. 26 becomes

∆t
(︁
T−T

)︁n∇X ·C :

(︃(︁
T−T

)︁n
(∇XV)n+1 (︁TT

)︁n)︃
, (28)
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where we have omitted X-independent terms as they will be eliminated by ∇X. Equations 27

& 28 form a complicated linear system for the transformed velocity Vn+1. The appearance

of the transformation T in front of the gradient operator ∇X ensures that all mixed spatial

derivatives of all components of the velocity appear in each row of Eq. 28. Equation 28 is

more complex than the linear system in the original quasi-static projection method, and it

is dependent on the specific form of T. The components of Eq. 28 in the specific cases of

simple shear and pure shear are shown in App. B and App. C respectively.

The update for the effective temperature is handled through an explicit forward Euler

step,

c0
χn+1 − χn

∆t
= −c0 (V

n · ∇X)χ
n +

(︁
(Dpl)n : σn

0

)︁
sY

(χ∞ − χn)

+ l2(T−T)n∇X ·
(︁
(Dpl)n(T−T)n∇Xχ

n
)︁
. (29)

B. Numerical discretization, parallelization, and multigrid solver

The explicit update for the transformed stress Eq. 24 depends on transformed spatial

derivatives of the transformed velocity through L. Similarly, the source term in the linear

system for the transformed velocity Eq. 27 depends on transformed spatial derivatives of the

transformed stress. We exploit this structure through a staggered grid arrangement in the

reference frame with uniform spacing ∆x = ∆y = ∆z = h. The stress tensor Σ and effective

temperature χ are stored at cell centers and indexed by half-integers, while the velocity V

is stored at cell corners and indexed by integers. Further discussion of the staggered grid

arrangement can be found in [34].

Let (∂f/∂X)i,j,k denote the partial derivative of a field f with respect to X evaluated at

grid point (i, j, k). The staggered centered difference is(︃
∂f

∂X

)︃
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

4h

(︂
fi+1,j,k − fi,j,k + fi+1,j+1,k − fi,j+1,k

+ fi+1,j,k+1 − fi,j,k+1 + fi+1,j+1,k+1 − fi,j+1,k+1

)︂
. (30)

Equation 30 averages four edge-centered centered differences surrounding the cell center and

has a discretization error of size O(h2). The derivative at a cell corner is obtained by the

replacement (i, j, k) → (i− 1
2
, j − 1

2
, k − 1

2
). The diffusive term appearing in the effective
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temperature update in Eq. 29 is computed by expanded the divergence term,

T−T∇X ·
(︁
DplT−T∇Xχ

)︁
=
(︁
∇XD

pl
)︁
·
[︁(︁
T−1T−T

)︁
∇Xχ

]︁
+Dpl

[︁(︁
T−1T−T

)︁
: (∇X∇Xχ)

]︁
. (31)

Equation 31 is computed numerically by assembling the gradient vectors ∇Xχ and ∇XD
pl

at cell centers using the standard centered difference formula,(︃
∂f

∂X

)︃
i,j,k

=
1

2h

(︂
fi+1,j,k − fi−1,j,k

)︂
, (32)

with analogous expressions for the other directions. We also must assemble the Hessian

matrix ∇X∇Xχ using the second derivative stencils(︃
∂2f

∂X2

)︃
i,j,k

=
1

h2

(︂
fi+1,j,k − 2fi,j,k + fi−1,j,k

)︂
, (33)(︃

∂2f

∂X∂Y

)︃
i,j,k

=
1

h2

(︂
fi+1,j+1,k − fi+1,j−1,k − fi−1,j+1,k + fi−1,j−1,k

)︂
. (34)

Analogous expressions for other second derivatives are obtained through Eqs. 33 & 34 by

suitable replacements. The matrix T−1T−T is computed from its definition.

The advective derivative in Eq. 24 must be upwinded for stability; we use the second-order

essentially non-oscillatory (ENO) scheme [74]. With [fXX ]i,j,k denoting the second derivative

with respect to X of the field f at grid point (i, j, k) computed using Eq. 33, the ENO

derivative is defined in the X direction as

(︃
∂f

∂X

)︃
i,j,k

=
1

2h

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−fi+2,j,k + 4fi+1,j,k − 3fi,j,k if Ui,j,k < 0 and

⃓⃓⃓
[fXX ]i,j,k

⃓⃓⃓
>
⃓⃓⃓
[fXX ]i+1,j,k

⃓⃓⃓
,

3fi,j,k − 4fi−1,j,k + fi−2,j,k if Ui,j,k > 0 and
⃓⃓⃓
[fXX ]i,j,k

⃓⃓⃓
>
⃓⃓⃓
[fXX ]i−1,j,k

⃓⃓⃓
,

fi+1,j,k − fi−1,j,k otherwise.

(35)

Above, Ui,j,k is the X component of the transformed velocity at grid point (i, j, k). Equation

35 uses the curvature of f to switch between an upwinded three-point derivative and a

centered difference. Versions of Eq. 35 in the Y and Z coordinates are obtained analogously.

Despite its complexity, after spatial discretization of Eq. 28, the linear system is of the

form Ay = b, and can be solved via standard techniques of numerical linear algebra. b is

given in block form by the source term in Eq. 27, bi = −T∇X ·Σ∗(Xi), where the index i

runs over all grid points. y is also given in block form, so that y contains the stacked values
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of V across all grid points. The matrix A is sparse, and its degree of sparsity depends on the

specific discretization scheme used. In the staggered centered difference scheme described

here, grid point (i, j, k) is only coupled to the 27 grid points in the surrounding 3× 3× 3

cube.

A is thus most effectively reconstructed using submatrices A
(i,j,k)
(k,l,m), which give the coeffi-

cients of velocity values V(k,l,m) appearing in the linear equation for V(i,j,k). Each matrix

A
(i,j,k)
(k,l,m) is symmetric. With this construction, we solve Eq. 28 using a custom MPI-based

parallel geometric multigrid solver; for further details of the solver, and how it interfaces

with the explicit updates, the reader is referred to the non-transformed algorithm description

[34]. The explicit steps for χ and Σ in Eqs. 24 & 29 are also parallelized using MPI and

domain decomposition, with further details in the non-transformed work [34].

A highlight of the transformation methodology is its flexibility and simplicity. Implementa-

tion of new boundary conditions, so-long as they can be specified in terms of a transformation

T(t), is only as difficult as writing the transformation down. The matrices A
(i,j,k)
(k,l,m) do,

however, depend on the form of T(t), and thus they need to be derived on a transformation-

by-transformation basis. Furthermore, through their dependence on T(t), these submatrices

are time-dependent and thus need to be recomputed at each timestep.

For an arbitrary 3×3 transformation with nine matrix elements, the analytical computation

and hand-implementation of theA
(i,j,k)
(k,l,m) matrices is error-prone. To remedy this, we developed

a metaprogramming scheme to auto-generate the relevant code. We used Mathematica to

analytically calculate Eq. 28 in terms of arbitrary matrix elements Tij(t), and subsequently to

replace derivatives by their finite difference equivalents. Collecting coefficients accordingly in

the resulting equation gives 191 non-zero coefficients comprising the 27 submatrices A
(i,j,k)
(k,l,m).

We used Python to write a skeleton file that contained function primitives for 191 C++

functions to compute each of these coefficients individually. We then used the Mathematica

function splice to fill in valid C++ code that calculates the resulting coefficients in each of

these functions. Finally, we again used Python to write C++ code that calls the auto-generated

C++ functions to populate the submatrices. The metaprogramming scheme only needs to be

run once to generate the needed code, and it does not take any meaningful amount of time

to run. In this way, the multigrid system is automatically generated at each timestep, and

new simulation conditions can be immediately constructed by providing the matrix T(t) as

a 3× 3 matrix class implemented in C++.
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TABLE I. Material parameters used in this study, for both linear elasticity and the STZ model

of amorphous plasticity. The Boltzmann constant kB is used to convert energetic values to

temperatures.

Parameter Value

Young’s modulus E 101 GPa

Poisson ratio ν 0.35

Bulk modulus K 122 GPa

Shear modulus µ 37.4 GPa

Density ρ0 6125 kg m−3

Shear wave speed cs 2.47 km s−1

Yield stress sY 0.85 GPa

Molecular vibration timescale τ0 10−13 s

Typical local strain ϵ0 0.3

Effective heat capacity c0 0.4

Typical activation barrier ∆/kB 8000 K

Typical activation volume Ω 300 Å3

Thermodynamic bath temperature T 400 K

Steady state effective temperature χ∞ 900 K

STZ formation energy ez/kB 21000 K

IV. NUMERICAL CONVERGENCE TESTS

In this section, we demonstrate convergence of the transformed projection method to the

non-transformed method in physically equivalent situations. In all simulations, a periodic

domain in X and Y is considered, −L ≤ X < L, −L ≤ Y < L with L = 1 cm. We

consider both periodic and non-periodic boundary conditions in Z, corresponding to domains

Z ∈ [−γL, γL) and Z ∈ [−γL, γL], respectively. γ = 1
2
in all simulations. We measure

time in terms of the natural unit ts = L/cs with cs =
√︁

µ/ρ the material shear wave speed.

Boundary conditions in the non-periodic case are given by

V(X, Y,±γL, t) = (0, 0, 0). (36)
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Elasticity and plasticity parameters are provided in Table I, and for these parameters,

ts = 4.05 µs. All simulations in this section are run with 32 processes on an Ubuntu Linux

computer with dual 14-core 1.70 GHz Intel Xeon E5-2650L v4 processors.

The global three-dimensional grid has spacing h in each direction. The cell-cornered

grid points are indexed according to i = 0, . . . , Q − 1, j = 0, . . . ,M − 1 in the X and

Y directions. In the Z direction, the grid points are indexed according to k = 0, . . . , N

and k = 0, . . . , N − 1 for non-periodic and periodic boundary conditions, respectively.

The cell-centered grid points run according to i = 1
2
, 3
2
, . . . Q− 1

2
, j = 1

2
, 3
2
, . . .M − 1

2
, and

k = 1
2
, 3
2
, . . .M − 1

2
. As described in Sec. III B, Σ and χ are stored at cell centers while

V is stored at cell corners. The additional grid points (i, j, k = N) in the Z direction in

the non-periodic case are ghost points used for enforcing the Dirichlet boundary conditions

V = 0.

The cell-centered grid points on the top boundary (i, j, N+ 1
2
) contain linearly extrapolated

Σ and χ values to ensure that Σ and χ remain free on the top boundary. In the periodic

case, the grid points (i, j, k = N) hold the velocity values V(i,j,0), and the corresponding

cell-centered grid points are used to hold the wrapped values of Σ(i,j, 1
2
) and χ(i,j, 1

2
). At the

simulation boundaries in the X and Y directions, ghost points leaving the simulation domain

are filled with values that wrap around, so that the ghost point corresponding to grid point

(Q, j, k) is filled with the real values from grid point (0, j, k). Similarly, values at points

(i,M, k) are filled using values from (i, 0, k).

A. Qualitative comparison between the transformed and non-transformed meth-

ods

We now demonstrate the qualitative similarity of solutions computed with the transformed

and the standard quasi-static methods. In the following subsection, this comparison is made

quantitatively rigorous. To visualize the results three-dimensionally, we use a custom opacity

function,

O(x) =

⎧⎪⎨⎪⎩
(︂

χ(x)−χbg

χ∞−χbg

)︂
if

χ(x)−χbg

χ∞−χbg
> 3

4
,

exp
(︂
−a
(︂

χ∞−χbg

χ(x)−χbg

)︂η)︂
otherwise,

(37)

where χbg is a background χ value. By choice of a and η, the most physically relevant features

in three-dimensional visualizations of the χ field can be revealed.
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To compare the transformed and non-transformed methods, a physically equivalent

situation is now constructed. We employ non-periodic Dirichlet boundary conditions in the

Z-direction and enforce V(X, Y,±γL) = (0, 0, 0). To impose deformation, we use a shear

transformation T(t) corresponding to

T =

⎛⎜⎜⎜⎝
1 0 Ub

γL
t

0 1 0

0 0 1

⎞⎟⎟⎟⎠ . (38)

Boundary conditions in the non-transformed simulation correspond to shearing between two

parallel plates, v(x, y,±γL) = (Ub, 0, 0). An initial linear velocity gradient is imposed in the

non-transformed frame, so that

v (x, t = 0) =

(︃
UBz

γL
, 0, 0

)︃
. (39)

Equation 39 ensures equivalent initial conditions in both methodologies, and also prevents

the introduction of large gradients in the deformation rate near the boundary. To create

interesting dynamics, an initial condition in χ corresponding to a helix oriented perpendicular

to the direction of shear is considered. This is represented as

δx =
x

L
−

(︄
cos
(︁
6π
(︁
y
L
+ 1
)︁)︁

8
− 1

16

)︄
,

δz =
z

L
−

(︄
cos
(︁
6π
(︁
y
L
+ 1
)︁)︁

8
− 1

16

)︄
,

χ (x, t = 0) = 600 K + (200 K) e−750(δ2x+δ2z). (40)

Equation 40 is written in the non-transformed simulation, but the same initial conditions

are used in the transformed simulation with the substitution x → X. The configuration is

visualized in the reference frame in Fig. 2.

The simulations are conducted on two grids of size 256× 256× 128 with a quasi-static

timestep ∆t = 31.25ts and with a value of Ub = 10−7 L
ts
. Snapshots at three representative

time points are shown in Fig. 3. In Fig. 3 (a,b) at t = 2.88× 105ts, shear band nucleation has

not begun, and there is an increase in the χ field across the entire domain. At t = 4.02× 105

in Fig. 3 (c,d), shear bands have begun to nucleate along the top and bottom planes of the

helices. At t = 6× 105ts in Fig. 3(e,f), the bands have grown sharper, stronger, and span the

system. In all cases, the qualitative agreement is very good.
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FIG. 2. The initial configuration for the transformed to non-transformed comparison. Here, a = 0.3

and η = 1.2 in the opacity function, and χbg = 550 K.

B. Quantitative comparison between the transformed and non-transformed meth-

ods

Having demonstrated the qualitative similarity between the solutions computed by the

transformed and non-transformed methods, we now present a rigorous quantitative compari-

son. We utilize the same simulation geometry, boundary conditions, shear transformation,

and initial conditions as in Sec. IVA. We introduce a norm over simulation fields,

∥f∥(t) =

√︄
1

8γL3

∫︂ γL

−γL

dZ

∫︂ L

−L

dY

∫︂ L

−L

dX|f(X, t)|2, (41)

where the integral in Eq. 41 runs over the entire simulation domain and is numerically

computed using the trapezoid rule. The appearance of | · | in Eq. 41 is interpreted as the

two-norm for vectors, absolute value for scalars, and the Frobenius norm for matrices. With

subscript NT denoting “non-transformed” and subscript T denoting “transformed”, Eq. 41 is

applied to the quantities v(X, t)NT−v(X, t)T, σ(X, t)NT−σ(X, t)T and χ(X, t)NT−χ(X, t)T.

The physical field values are compared across the reference grid, a procedure that involves

two subtleties.

In the transformed simulation, this comparison requires computing σ from Σ and v from

V using Eqs. 17 and 14 respectively at all reference grid points. In the non-transformed

simulation, it is necessary to compute the non-transformed field values at reference grid

points. Because the reference grid maps to a sheared physical grid, these values may not be
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FIG. 3. Snapshots of the effective temperature field χ(x, t) for the (a,c,e) non-transformed and (b,d,f)

transformed simulation . χbg = 550 K in the opacity function in all panels. (a,b) t = 2.88× 105ts,

a = 0.7, η = 1.25. (c,d) t = 4.02× 105ts, a = 0.8, η = 1.35. (e,f) t = 6× 105ts, a = 0.9, η = 1.5.
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defined in the non-transformed simulation. We handle this via the following procedure. The

non-transformed simulation grid point x(X) corresponding to the reference grid point X is

first computed. If x(X) does not lie on the non-transformed grid, adjacent grid points are

linearly interpolated to compute an approximate field value at x. This procedure incurs an

O(h2) error, which is the same order of accuracy as the centered differences used for spatial

discretization in the two methods. As the sizes of the simulation grids are increased, the

discrepancy in solutions will decrease.

To ensure that issues with temporal discretization do not affect the comparison, it is

also necessary to scale the quasi-static timestep as the grid size is decreased. Because the

spatial order of accuracy is O(h2), we keep the ratio ∆t/h2 fixed across all simulations. We

perform comparisons across grids of size N ×N × N
2
with N = 64, 96, 128, 160, 192, and

256. Respectively, these correspond to grid spacings L/32, L/48, L/64, L/80, L/96, and

L/128. The quasi-static timestep is taken to be ∆t = 500ts for the coarsest simulation,

leading to quasi-static timesteps ∆t = 222.14, 125, 80, 55.55, and 31.25 respectively for the

finer simulations. The diffusion length scale in the effective temperature equation is taken to

be zero in all simulations for the purpose of the comparison.

The results for the quantitative comparisons are shown in Fig. 4. In Fig. 4 (top left),

the three L2 norm curves are plotted together for a value of N = 256, where each curve

is normalized by a representative value in order to plot on a comparable dimensionless

scale. The effective temperature norm increases rapidly early on in the simulation, but

then saturates around 10−4. The σ norm stays around machine precision until the onset of

plasticity, when it rapidly increases and then saturates around 10−3. Similarly, the v norm

stays below 10−13 until the onset of plasticity, when it rapidly increases and then saturates

around 10−4. The agreement up to machine precision prior to the onset of plasticity is

expected, and validates the accuracy of the derivation of the equations in the reference frame.

In Fig. 4 (top right), the effective temperature norm curves are shown for all values of

N . Here, there is a steady increase in the discrepancy before the onset of plasticity due

to advection across the grid. After plasticity is activated around t = 1.2 × 105ts, there

is a period of saturation in all curves, followed by a period of increase beginning around

t ≈ 3 × 105ts, where some simulation curves cross and end at roughly equal values. As

expected, the discrepancies generally decrease as the grid spacing is decreased.

In Fig. 4 (bottom left), the velocity norm curves are shown as a function of time for all
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FIG. 4. L2 norm of the χ, v, and σ simulation field differences between the transformed and non-

transformed methods computed using Eq. 41 in a simple shear simulation. (top left) A comparison

of the three different field norms on a grid of size 256×256×128. (top right), (bottom left), (bottom

right) The velocity, effective temperature, and stress norm differences respectively for varying levels

of discretization N = Nx = Ny = 2Nz.

discretization levels. In all cases, the difference between the simulation methods is on the

order of machine precision until the onset of plasticity, when there is a sharp and immediate

jump. The size of the jump decreases with the discretization level as expected.

In Fig. 4 (bottom right), the stress norm curves are shown. These curves display a

combination of the trends in the velocity and effective temperature plots. Before the onset of

plasticity, the error in all simulations is very low - on the order of machine precision. After

the onset of plasticity, there is a sharp jump in all simulations, and the size of the jump

decreases with higher resolution. Past around t ≈ 2× 105ts, the curves begin to cross, all

ending at roughly equivalent values.

To compare the computational efficiency of the two methods, we have reported timing

statistics for all simulations in Tab. II. Displayed are the total time, the total number of

multigrid V-cycles, the total time spent in multigrid V-cycles, and the average time per

V-cycle for the transformed (T) and non-transformed (NT) methods. As is clear from the

table, the transformed method incurs a mild increase in computational expensive. The

average time spent per V-cycle is roughly the same, but the total number of multigrid
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N = 64 N = 96 N = 128 N = 160 N = 192 N = 256

T NT T NT T NT T NT T NT T NT

Total time (hours) 0.0633 0.0343 0.5623 0.2863 2.4283 1.1981 3.3058 1.7890 8.5285 4.5787 33.3239 20.0178

V-cycle time (hours) 0.0452 0.0280 0.4130 0.2434 1.7845 1.0365 2.1976 1.3251 5.7242 3.4398 21.2268 15.2432

# of V-cycles 5544 3603 12481 8106 22181 14402 34658 22502 49913 32404 73164 57600

Time/V-cycle (seconds) 0.0294 0.0280 0.1191 0.1081 0.2896 0.2591 0.2282 0.2120 0.4129 0.3810 1.0444 0.9527

TABLE II. Data describing the total time taken, the total amount of time spent in multigrid

V-cycles, the total number of multigrid V-cycles, and the average time per V-cycle for the two

simulation approaches. “T” specifies the transformed simulation and “NT” the non-transforemd

simulation. The transformed method takes longer than the non-transformed method in general due

to an increased number of multigrid V-cycles required to achieve convergence. The average time

spent per V-cycle is roughly the same in the two approaches. Each simulation uses 32 processes.

V-cycles is higher for the transformed method. This is likely due to the increased complexity

of the linear system required for the stress projection in the transformed method when

compared to the non-transformed method.

V. NUMERICAL EXAMPLES

A. Simple shear and the effect of Lees–Edwards boundary conditions

As a first example application of the transformation method, we consider connecting a

continuum-scale model to typical discrete molecular dynamics simulations. A significant

difference between continuum simulation and molecular dynamics is in the boundary condi-

tions. Molecular dynamics simulations commonly employ Lees–Edwards boundary conditions,

where periodic copies of the system are placed above and below with a prescribed horizontal

velocity. Continuum-scale boundary conditions usually set a shear velocity on the top and

bottom boundaries to achieve the same effect.

Lees–Edwards boundary conditions can be implemented in the continuum through the

use of the coordinate transformation methodology presented here, by combining a shear

transformation T(t) as in Eq. 23 with periodicity in the Z direction. In the following sections,

we present several numerical examples using Lees–Edwards and non-periodic boundary

conditions. Particular attention is paid to differences in shear banding dynamics produced
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by these two choices of boundary conditions.

1. Cylindrical inclusion

We first consider an initial condition corresponding to a cylindrical defect in the material.

Accordingly, the effective temperature field is initially elevated throughout a cylinder of finite

length oriented along the direction of shear,

χ(X, t = 0) =

⎧⎪⎨⎪⎩550 K + (200 K) e
−500

(︂
Z2

L2 +
Y 2

L2

)︂
if X

L
∈
[︁
aX
2
, bX

2

]︁
,

0 otherwise.
(42)

The initial condition is shown in Fig. 5. The diffusion lengthscale is set to l = 3
2
h and

the quasi-static timestep is set to ∆t = 200ts. The grid is of size 256 × 256 × 128. The

simulation is performed to a final value of t = 2× 106ts. To induce shear banding, a shear

transformation of the form Eq. 23 is used with a value of Ub = 10−7L/ts, and both clamped

and Lees–Edwards boundary conditions are considered. The clamped simulation takes 13.851

total hours when run with 32 processes on an Ubuntu Linux computer with dual 10-core

2.20 GHz Intel Xeon E5-2630 v4 processors. 10.452 hours are spent in multigrid V-cycles and

28293 total V-cycles are required. The Lees–Edwards simulation takes 10.082 total hours

when run with 32 processes on an Ubuntu Linux computer with dual 10-core 2.20 GHz Intel

Xeon Silver 4114 processors. The total time spent in multigrid V-cycles is 7.393 hours and

28293 total V-cycles are required.

Results for Lees–Edwards and non-periodic boundary conditions are shown in Fig. 6, on

the right and left respectively. The shear banding dynamics in this case are simple, and

correspond to outward nucleation of a single band from the localized cylinder. At t = 5×105ts

in Fig. 6 (a,b), nucleation of the shear band has begun, and there is some spreading in the χ

field visible at the caps of the cylinder. By t = 1.25× 106ts, a prominent system-spanning

shear band has formed, as displayed in Fig. 6 (c,d). In Fig. 6 (e,f) at t = 2 × 106ts, the

shear band continues to grow stronger and thicker. In this case, the dynamics are virtually

identical for the Lees–Edwards and nonperiodic boundary conditions.
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FIG. 5. The initial conditions for the cylindrical inclusion numerical experiments. χbg = 600 K,

a = 0.3, and η = 1.2 in the opacity function in Eq. 37.

2. A randomly fluctuating effective temperature field

We now consider a randomly distributed initial condition in the effective temperature field

χ(X, t = 0). We first populate the grid and a shell of ghost points with random variables

χζ(X) using the Box–Muller algorithm. With µχ and σχ respectively denoting the desired

mean and standard deviation, we perform the convolution

χ(X) =
σχ

N

∑︂
R∈V ′

e
− ∥X−R∥2

l2c χζ(R) + µχ, N =

√︄∑︂
R∈V

e
−2

∥R∥2
l2c , (43)

where V denotes the set of grid points and V ′ denotes the extended set of grid points and

ghost points. Equation 43 ensures that the effective temperature value at each point is

normally distributed with mean µχ and standard deviation σχ. In practice, the sums in

Eq. 43 are performed with a cutoff length scale specified as a multiplicative factor of the

convolution length scale lc, and the number of ghost points in V ′ is set by the choice of

cutoff length scale. For computational feasibility, we choose a cutoff length of 5lc, so that

the Gaussian kernel is considered to be zero past this point. In the following studies, a value

of lc = 5h is used, leading to an additional 25 ghost points padding the grid for the purpose

of the convolution.

Simulations are performed for mean values µχ = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K

with a fixed value of σχ = 15 K for both non-periodic and Lees–Edwards boundary conditions.

The diffusion length scale is set to l = 3
2
h, and the quasi-static timestep is set to ∆t = 200ts.
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FIG. 6. Snapshots of the effective temperature distribution χ(X, t). Simple shear deformation

is imposed via a domain transformation. The initial condition in χ corresponds to a cylindrical

inclusion as described in Sec. VA1 and shown in Fig. 5. On the left, clamped boundary conditions

in Z are used, while on the right, Lees–Edwards boundary conditions are used. χbg = 600 K in the

opacity function in all subfigures. (a,b) t = 5× 105ts. a = 0.3 and η = 1.2 in the opacity function.

(c,d) t = 1.25× 106ts. a = 0.45 and η = 1.55 in the opacity function. (e,f) t = 2× 106ts. a = 0.55

and η = 1.6 in the opacity function.
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µχ = 450 K µχ = 500 K µχ = 525 K µχ = 550 K µχ = 575 K µχ = 600 K

Total time (hours) 95.2948 89.7239 76.9704 82.7853 71.7865 69.1593

V-cycle time (hours) 65.7853 60.5694 48.6470 53.4612 41.7683 40.4283

# of V-cycles 34846 30663 26628 24991 22649 20735

Time/V-cycle (seconds) 6.7964 7.1111 6.5749 7.7012 6.6390 7.0195

Processor details

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

Dual 10-core

2.20 GHz Intel Xeon

Silver 4114

Dual 14-core

1.70 GHz Intel Xeon

E5-2650L v4

Dual 8-core

2.40 GHz Intel Xeon

E5-2630 v3

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

TABLE III. Data describing the total time, total time spent in multigrid V-cycles, total number

of multigrid V-cycles, average time spent per multigrid V-cycle, and processor details for each

randomly initialized simulation. This data applies to the randomly initialized simulations with

non-periodic boundary conditions and simple shear deformation. The number of required multigrid

V-cycles decreases as the background χ field increases, likely due to more homogeneous dynamics.

Each simulation uses 32 processes.

The simulations are all conducted on a 512 × 512 × 256 cell grid to a final value of t =

1× 106ts. To induce shear banding, a shear transformation of the form Eq. 23 with a value

of Ub = 10−7L/ts is imposed on the domain. Timing details for the non-periodic simulations

are shown in Table III, while timing details for the Lees–Edwards simulations are shown in

Table IV.

The results for this sequence of simulations in the case of non-periodic boundary conditions

are shown in Figs. 7–10. Each figure corresponds to a single snapshot in time, and the mean

increases with the alphabetical labeling. The value of χbg used in the opacity function in

each case is given by µχ − 25 K. The initial conditions for the effective temperature field are

shown in Fig. 7. At t = 0, all simulations look essentially the same. The realization of the

noise in each configuration is identical, and each pane is obtained from the previous by a

constant shift in χ.

By t = 4× 105ts in Fig. 8, the simulations with the two lowest values of µχ exhibit clear

shear bands with curvature in both the X and Y directions. The simulation with µχ = 450 K.

in Fig. 8(a) displays two shear bands that cross each other diagonally near X
L
= 0.5. The

simulation with µχ = 500 K in Fig. 8(b) displays only one of these bands, though the second

has begun to nucleate. This single band is also apparent in Fig. 8(c), but it is significantly

weaker. A third nascent band near Z
L
= 0 may also be observed.

More details are clear at t = 6×105ts in Fig. 9. Figure 9(a) is similar to Fig. 8(a), whereas
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FIG. 7. Snapshots of the effective temperature field at t = 0ts. All simulations use non-periodic

boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.25

and η = 1.3 is used in the opacity function. χbg is set to µχ − 25 K in each pane in the opacity

function. Figures (a)–(f) have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 8. Snapshots of the effective temperature field at t = 4×105ts. All simulations use non-periodic

boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.45

and η = 1.75 is used in the opacity function. χbg is set to µχ − 25 K in each pane in the opacity

function. Figures (a)–(f) have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 9. Snapshots of the effective temperature field at t = 6×105ts. All simulations use non-periodic

boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.45

and η = 1.75 is used in the opacity function. χbg is set to µχ − 25 K in each pane in the opacity

function. Figures (a)–(f) have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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Fig. 9(b) shows further development of the shear bands in Fig. 8(b). Figures 9(c) and (d)

show the development of several flat and thin shear bands centered around Z
L
= 0.

Figure 10 (t = 106ts) displays clear shear banding across all values of µχ, and makes clear

the dependence of shear banding structure on µχ. There is one primary band in Fig. 10(a),

with a split near around X
L
≈ −0.5 not present in Fig. 10(b). Figure 10(b) also displays an

additional thin band near Z
L
≈ 0.0 that has not formed in Fig. 10(a). Figure 10(c) displays

several additional bands near Z
L
= 0 that form a complex branching pattern. Figure 10(d)

resolves more fine-scale structure in the band near Z
L
≈ 0.25 when compared to Figs. 10(a)-(c)

as if a single band has begun to split, and has more bands near lower values of Z
L
. Figs. 10(e)

and (f) show several additional thin bands when compared to the previous panels, but they

are earlier in their formation and less prominently displayed.

Taken together, Figs. 7–10 provide qualitative insight into how macroscopic shear banding

dynamics and structure reflect the underlying effective temperature distribution. In a

simulation with small mean, there are few regions susceptible shear band nucleation, most

clearly displayed in the formation of only a single band in the lowest mean simulation. These

nucleation points must connect to form a band, as indicated by the mild curvature seen in

the bands in Figs. 10(a) and (b). As µχ is increased, additional regions of sufficiently high χ

exist for band nucleation, curvature decreases, and the number of bands increases. This first

presents itself, as seen in Figs. 7(d)–10(d), as an existing band splitting into multiple. The gap

in the split grows with µχ, as seen in Figs. 7(d)-10(d) and Figs. 7(e)-10(e), until it eventually

breaks off into its own band. With high µχ as in Figs. 7(e)-10(e) and Figs. 7(f)-10(f), shear

bands can nucleate in many different locations without curvature. The timescale for shear

band development is also more rapid in simulations with low background χ field.

The results for an identical sequence of simulations in the case of Lees–Edwards boundary

conditions are displayed in Figs. 11–14. The initial conditions are displayed in Fig. 11, which

differ from those in Fig. 7, as the convolution used to generate the initial distribution wraps

around over the boundary in Z to enforce periodicity.

By t = 4 × 105ts in Fig. 12(a), a single vertical shear band has formed, along with an

additional, weaker vertical band and a similar horizontal band. These bands are also visible

in Fig. 12(b) earlier in their development. Vertical shear bands do not typically form in

continuum simulations with non-periodic boundary conditions in Z, but are frequently seen

in MD simulations [75, 76], indicating that the orientation of shear bands could be strongly
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FIG. 10. Snapshots of the effective temperature field at t = 106ts. All simulations use non-periodic

boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.75 and

η = 2 is used in the opacity function. χbg is set to µχ − 25 K in each pane in the opacity function.

Figures (a)–(f) have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 11. Snapshots of the effective temperature field at t = 0ts. All simulations use Lees–Edwards

boundary conditions. For all plots, a value of a = 0.25 and η = 1.3 is used in the opacity

function. χbg is set to µχ − 25 K in each pane in the opacity function. Figures (a)–(f) have

µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 12. Snapshots of the effective temperature field at t = 4× 105ts. All simulations use Lees–

Edwards boundary conditions. For all plots, a value of a = 0.45 and η = 1.75 is used in the

opacity function. χbg is set to µχ − 25 K in each pane in the opacity function. Figures (a)–(f) have

µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 13. Snapshots of the effective temperature field at t = 6× 105ts. All simulations use Lees–

Edwards boundary conditions. For all plots, a value of a = 0.45 and η = 1.75 is used in the

opacity function. χbg is set to µχ − 25 K in each pane in the opacity function. Figures (a)–(f) have

µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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µχ = 450 K µχ = 500 K µχ = 525 K µχ = 550 K µχ = 575 K µχ = 600 K

Total time (hours) 91.4188 93.9238 81.7296 94.3549 72.8395 68.4994

V-cycle time (hours) 63.5750 64.8320 51.2489 62.8451 44.4758 39.9291

# of V-cycles 34915 30467 26658 24697 22256 20495

Time/V-cycle (seconds) 6.5551 7.6606 6.9209 9.1607 7.1941 7.0137

Processor details

Dual 10-core

2.20 GHz Intel Xeon

Silver 4114 v4

Dual 14-core

1.70 GHz Intel Xeon

E5-2650L v4

Dual 8-core

2.40 GHz Intel Xeon

E5-2630 v3

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

Dual 14-core

1.70 GHz Intel Xeon

E5-2650L v4

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

TABLE IV. Data describing the total time, total time spent in multigrid V-cycles, total number of

multigrid V-cycles, average time spent per multigrid V-cycle, and the processor details for each

simulation. This data applies to the randomly initialized simulations with Lees–Edwards boundary

conditions. The number of required multigrid V-cycles decreases as the background χ field increases,

likely due to more homogeneous dynamics. Each simulation uses 32 processes.

related to the specific boundary conditions used.

Further progression is clear at t = 6 × 105ts in Fig. 13. Figure 13(a) is similar to

Fig. 12(a). Figure 13(b) displays significant strengthening of the early-stage bands in

Fig. 12(b). Figs. 13(c) and (d) show the initiation of several shear bands.

Figure 14 shows the results for t = 106ts. Figure 14(a) displays a horizontal band

perpendicular to the vertical band that exhibits significant curvature. Figure 14(b) shows a

similar result, with a thinner vertical band and a thicker, flatter horizontal band. Figure 14(c)

shows similar features, but also displays the development of several additional horizontal

bands extending to the bottom of the simulation domain. Furthermore, the thick horizontal

band in Fig. 14(b) can be seen to split and fracture. In Fig. 14(d), the vertical band has

been almost entirely washed out, and a complex branching pattern of horizontal bands is

seen. Figs. 14(e) and (f) are similar to Fig. 14(d), but they are earlier in their development

and some of the fine-scale features are washed out due to the high background χ field. The

agreement with the non-periodic simulations increases strongly as µχ is increased.

Figure 14 clearly demonstrates the effect of increasing µχ with periodic boundary conditions.

In the simulations with lower µχ, nucleation of vertical shear bands is more likely, and curved

horizontal bands develop later in the simulation than vertical bands. As µχ is increased,

the vertical bands begin to disappear. As in the non-periodic case, the curvature in the

horizontal bands decreases with µχ. As µχ is increased further, the vertical bands disappear

altogether. In this regime, increasing µχ increases the number of horizontal bands, and the
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FIG. 14. Snapshots of the effective temperature field at t = 106ts. All simulations use Lees–

Edwards boundary conditions. For all plots, a value of a = 0.75 and η = 2 is used in the opacity

function. χbg is set to µχ − 25 K in each pane in the opacity function. Figures (a)–(f) have

µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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qualitative agreement with the nonperiodic results is good. These results suggest that, for

higher µχ, the effect of periodicity in the Z direction is less significant.

B. Pure shear

As a second example transformation, we now consider pure shear deformation. In metallic

glasses, experimental evidence indicates that pure shear is the primary failure mode under

compressive stress, and several recent experiments have been conducted probing BMGs under

pure shear conditions [77–80]. Pure shear is particularly interesting due to the simplicity of

its implementation in the transformation methodology. To simulate pure shear on a physical

grid, it would be necessary to impose traction boundary conditions on the top, bottom, and

sides, which poses computational difficulties. Within the transformation framework, pure

shear can be implemented using the transformation

T(t) =

⎛⎜⎜⎜⎝
A(t) 0 0

0 1 0

0 0 1
A(t)

⎞⎟⎟⎟⎠ . (44)

A(t) can be chosen as any monotonically increasing function of time. In the following studies,

we choose A(t) = eξt, where ξ is a simulation parameter that sets the rate of extension and

compression of the x and z axes respectively. For numerical stability, it is important to

choose ξ small, so that large stresses do not cause divergences in the simulation fields. In our

simulations, we choose ξ as a fraction of tf , which effectively sets the strain at the end of the

simulation.

1. Gaussian defects

To gain some physical intuition about shear banding dynamics with pure shear boundary

conditions, we first consider an example initial condition in χ corresponding to localized

defects in the material. It is expected that diagonal shear bands will nucleate outwards from
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the imperfections. We first define the quantities

X1 = L× (−0.3,−0.3, 0.2),

X2 = L× (0.3, 0.3,−0.2),

X3 = L× (−0.1,−0.1, 0.1),

X4 = L× (0.1, 0.1,−0.1),

X5 = L× (0, 0, 0),

δ1 = δ2 = δ5 = 200,

δ3 = δ4 = 150,

and then take the initial condition in χ to be

χ (X, t = 0) = 550 K + (200 K)
5∑︂

i=1

e−δi∥X
L
−Xi

L ∥2

. (45)

Simulations are performed with periodic and non-periodic boundary conditions in Z on

grids of size 256× 256× 128. The X and Y dimensions use periodic boundary conditions

in both cases. The diffusion length scale is set to l = 3h and the quasi-static timestep is

∆t = 200ts. ξ in Eq. 44 is set to be 1
4tf

with tf = 4 × 105ts the total simulation duration,

so that A(tf) = e1/4 ≈ 1.284. Both periodic and non-periodic boundary conditions are

considered. The periodic simulation is run with 32 processes on an Ubuntu Linux computer

with dual 14-core 1.70 GHz Intel Xeon E5-2650L processors. The total time is 4.721 hours,

the total time spent in multigrid V-cycles is 3.283, and the total number of V-cycles is 11596.

The non-periodic simulation is run with 32 processes on an Ubuntu Linux computer with

dual 10-core 2.20 GHz Intel Xeon E5-2630 processors. The total time is 8.832 hours, the

total time spent in multigrid V-cycles is 6.506 hours, and the total number of V-cycles is

11075.

Results for periodic and non-periodic boundary conditions are shown in Figs. 15 and 16

respectively. The initial conditions are shown in Figs. 15(a) and 16(a). In both Figs. 15(b)

and 16(b) at t = 5× 104ts, some spreading in the χ field is seen near the defects. Shortly

thereafter, the dynamics in the nonperiodic and periodic cases begin to differ dramatically.

At t = 8× 104ts in Fig. 15(c), three diagonal bands are seen connecting the defects. The

bands become more pronounced at t = 105ts in Fig 15(d). This continues into t = 2× 105ts
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FIG. 15. Snapshots of the effective temperature distribution χ(X, t) for a quasi-static simulation.

Pure shear deformation is imposed via a domain transformation with an initial condition corre-

sponding to a sequence of blips of elevated χ lying roughly along the superdiagonal of the simulation

domain. This simulation uses periodic boundary conditions in all three directions. χbg = 550 K

in the opacity function for all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b) t = 5× 104ts, a = 0.75,

η = 1.2. (c) t = 8× 104ts, a = 0.75, η = 1.25. (d) t = 105ts, a = 0.75, η − 1.25. (e) t = 2× 105ts,

a = 0.4, η = 1.6. (e) t = 4× 105ts, a = 1.1, η = 2.45.
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in Fig. 15(e), along with the addition of diagonal bands perpendicular to the original bands.

Both bands continue to grow larger and stronger by t = 4t× 105ts in Fig. 15(f).

The deformation dynamics with non-periodic boundary conditions are significantly differ-

ent. By t = 8× 104ts in Fig. 16(c), diagonal bands have started to nucleate off of each defect

in a direction roughly perpendicular to the first bands formed in the periodic simulation. By

t = 105ts in Fig. 16(d), this nucleation has grown more prominent, and an increase in the

background χ field is seen across the simulation. At times t = 2× 105ts and t = 2.5× 105ts

in Figs. 16(e) and 16(f) respectively, the qualitative structure remains the same, but the

background χ field continues to increase. Unlike in the periodic case, true system-spanning

shear bands do not fully form.

2. A randomly fluctuating effective temperature field

In this section, we consider the same sequence of random initializations as in Sec. VA2,

but now subject to pure shear deformation. Simulations are performed across values of

µχ = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K with a fixed value of σχ = 15 K. The

diffusion length scale is set to 3
2
h and the quasi-static timestep is set to ∆t = 200ts. All

simulations are conducted on a 512× 512× 256 cell grid. A pure shear transformation of

the form Eq. 44 is used with A(t) = eξt and a value of ξ = 1
4tf

with tf = 2× 106ts so that

A(tf) = e1/4 ≈ 1.284. Simulations are performed with fully periodic boundary conditions

in all directions; non-periodic simulations produce qualitatively similar differences as in the

case of simple shear. In all figure panels, χbg is set to be µχ − 25 K. Timing data for the

simulations is reported in Table V.

The results are shown in Figs. 17–20, with the initial condition shown in Fig. 17. All

simulations undergo an increase in χ until the formation of diagonal shear bands begins.

Much like the defect simulations seen in the previous section, shear bands nucleate diagonally

at roughly 45° angles to the X–Y plane. As in the simple shear simulations, distributions in

χ with higher mean values have slower dynamics. The structural effect of varying µχ is most

easily seen in Fig. 20. As µχ increases, the number of shear bands vastly increases, forming a

cross-hatched pattern throughout the domain. The cross-hatching becomes more regular and

more finely spaced with higher values of µχ.
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FIG. 16. Snapshots of the effective temperature distribution χ(X, t) for a quasi-static simulation.

Pure shear deformation is imposed via a domain transformation with an initial condition corre-

sponding to a sequence of blips of elevated χ lying roughly along the superdiagonal of the simulation

domain. This simulation uses non-periodic boundary conditions in Z and is periodic in the X and

Y directions. χbg = 550 K in the opacity function in all panels. (a) t = 0ts, a = 0.75, η = 1.2. (b)

t = 5 × 103ts, a = 0.75, η = 1.2. (c) t = 104ts, a = 0.75, η = 1.45. (d) t = 1.5 × 104ts, a = 0.75,

η = 1.45. (e) t = 4× 105ts, a = 1.75, η = 1.75.
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FIG. 17. Snapshots of the effective temperature field at t = 0ts with pure shear transformation

imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of

a = 0.25 and η = 1.3 is used in the opacity function, and χbg is set to µχ − 25 K. Figures (a)–(f)

have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 18. Snapshots of the effective temperature field at t = 3×105ts with a pure shear transformation

imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of

a = 0.55 and η = 1.5 is used in the opacity function, and χbg is set to µχ − 25 K. Figures (a)–(f)

have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 19. Snapshots of the effective temperature field at t = 6×105ts with a pure shear transformation

imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of

a = 0.75 and η = 1.6 is used in the opacity function, and χbg is set to µχ − 25 K. Figures (a)–(f)

have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 20. Snapshots of the effective temperature field at t = 1.5 × 106ts with a pure shear

transformation imposed on the domain. All simulations use periodic boundary conditions. For all

plots, a value of a = 1.35 and η = 1.5 is used in the opacity function, and χbg is set to µχ − 25 K.

Figures (a)–(f) have µχ = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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µχ = 450 K µχ = 500 K µχ = 525 K µχ = 550 K µχ = 575 K µχ = 600 K

Total time (hours) 232.7589 171.3655 159.3944 129.3347 164.1213 206.7765

V-cycle time (hours) 176.7667 125.4595 115.4887 81.0119 114.6882 143.3524

# of V-cycles 66214 63871 62263 59750 57772 55149

Time/V-cycle (seconds) 9.6107 7.0734 6.6774 4.8811 7.1467 9.3577

Processor

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

Dual 10-core

2.20 GHz Intel Xeon

E5-2630 v4

Dual 10-core

2.20 GHz Intel Xeon

Silver 4114 v4

Dual 16-core

2.10 GHz Intel Xeon

E5-2683 v4

Dual 14-core

1.70 GHz Intel Xeon

E5-2650L v4

Dual 14-core

1.70 GHz Intel Xeon

E5-2650L v4

TABLE V. Data describing the total time, total time spent in multigrid V-cycles, total number

of multigrid V-cycles, average time spent per multigrid V-cycle, and processor details for each

simulation. This data applies to the randomly initialized simulations with periodic boundary

conditions and pure shear deformation. The number of required multigrid V-cycles decreases as the

background χ field increases, likely due to more homogeneous dynamics. Each simulation uses 32

processes.

VI. CONCLUSION

In this work, we derived the equations of hypo-elastoplasticity on a fixed reference domain

which can be mapped to a physically deforming material through a time-varying linear

transformation T(t). The difference between this frame and the Lagrangian frame was shown,

and the utility of this frame in implementing complex boundary conditions such as the Lees–

Edwards conditions used in molecular dynamics and pure shear in a fully periodic setting

was demonstrated. The quasi-static projection algorithm was derived in the reference frame

and its convergence to the standard method was shown as the level of discretization increases.

Several numerical examples were considered in the STZ model of amorphous plasticity. In

particular, for a randomly-distributed initial condition in the effective temperature field, the

dependence of shear banding dynamics on the mean of the distribution was discussed under

conditions of simple shear and pure shear. Our work also highlights that the direction of

shear bands (e.g. horizontal versus vertical in simple shear) can be strongly influenced by

boundary conditions.

With the simple implementation of Lees–Edwards conditions afforded by the transfor-

mation method, boundary conditions can now be made equivalent in MD and continuum

modeling. The development of a method to compute a precise matching between atomic

configurations in molecular dynamics and effective temperature distributions in continuum

simulations is a promising direction of future research. The ability to do so would place
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internal state variables in plasticity models (such as the effective temperature in the STZ

model) on a firmer theoretical footing. In addition, hybrid computational approaches could

be developed, where an MD simulation could first be used to compute an initial condition

for a significantly larger scale continuum simulation. This type of approach would combine

the physical accuracy of MD with the capability of continuum simulations to simulate large

system sizes and long times. As an added benefit, our approach enables the study of the effect

of periodic boundary conditions in general, independent of the relevance of these settings to

MD.

So far, our implementations are restricted to cases where the material fills the entire

computational domain, and loading is applied via planar boundary conditions, or via the

coordinate transformation framework. However, the methods presented here could be

generalized to materials with free boundaries, using the level set method [81, 82] to track the

material boundary. Methods to do this have already been implemented in two dimensions [33,

56, 83], and the same methods could be used in principle in three dimensions. However, it

is a challenging computational task, since it requires extensive modifications to the finite-

difference stencils near the material boundary. In particular, since some grid points will lie

outside the material, the geometric multigrid method is no longer well-suited for solving the

projection step, since it relies on a regular arrangement of grid points. It may be necessary to

use algebraic multigrid approaches or Krylov-based linear solvers. Nevertheless this remains

a high priority for future work, since it would open up many new directions, such as studying

three-dimensional cavitation [11, 84], simulating mode III fracture [85], and predicting the

topography of fracture surfaces [86–88].
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Appendix A: Advective derivative calculation

Consider a scalar field ϕ(x, t) = ϕ(TX, t). We can compute the advective derivative of ϕ

as follows using the chain rule,

d

dt
ϕ(TX, t) =

(︃
∂

∂t
+ vT ∂

∂x

)︃
ϕ(TX, t)

=

(︃
∂

∂t
+ vTT−T ∂

∂X

)︃
ϕ(TX, t)

=

(︃
∂X

∂t

)︃T
∂

∂X
ϕ(TX, t) + ϕt(TX, t) + vTT−T ∂

∂X
ϕ(TX, t)

= ϕt(TX, t) +

(︄
vTT−T +

(︃
∂X

∂t

)︃T
)︄

∂

∂X
ϕ(TX, t)

= ϕt(TX, t) +

(︄
vTT−T +

(︃
∂T−1

∂t
TX

)︃T
)︄

∂

∂X
ϕ(TX, t)

= ϕt(TX, t) +VT∇Xϕ(TX, t). (A1)

In the last line, we have used Eq. 14 and the identity ∂T−1

∂t
= −T−1 ∂T

∂t
T−1.

Appendix B: Linear system for simple shear

Let V = (U, V,W )T. For a simple shear transformation as given in Eq. 23, C : D takes

the form

(C : D)11 = λ (∇X ·V) + 2µ
∂U

∂X
+ 2µUbt

∂W

∂X
, (B1)

(C : D)12 = µ

(︃
∂U

∂Y
+ Ubt

∂W

∂Y
+

∂V

∂X

)︃
, (B2)

(C : D)13 = µ

(︃
Ub +

∂U

∂Z
+ Ubt

∂W

∂Z
− Ubt

∂U

∂X
+
(︁
1− U2

b t
2
)︁ ∂W
∂X

)︃
, (B3)

(C : D)22 = λ (∇X ·V) + 2µ
∂V

∂Y
, (B4)

(C : D)23 = µ

(︃
∂V

∂Z
+

∂W

∂Y
− Ubt

∂V

∂X

)︃
, (B5)

(C : D)33 = λ (∇X ·V) + 2µ
∂W

∂Z
− 2Ubµt

∂W

∂X
. (B6)
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The above set of equations leads to the linear system (Eqs. 27 & 28) for the velocity field

−1

∆t
(Tn∇X ·Σ∗)1 =

(︁
U3
b t

3µ+ Ubtµ
)︁ ∂2W

∂X2
+
(︁
λ+ 2µ+ U2

b t
2µ
)︁ ∂2U

∂X2

+
(︁
λ+ µ− 2U2

b t
2µ
)︁ ∂2W

∂X∂Z
− 2Ubtµ

∂2U

∂X∂Z
+ Ubtµ

∂2W

∂Z2
+ Ubtµ

∂2W

∂Y 2

+ µ
∂2U

∂Z2
+ µ

∂2U

∂Y 2
+ (λ+ µ)

∂2V

∂X∂Y
, (B7)

−1

∆t
(Tn∇X ·Σ∗)2 = U2

b t
2µ

∂2V

∂X2
− 2Ubtµ

∂2V

∂X∂Z
+ λ

∂2U

∂X∂Y
+ µ

∂2U

∂X∂Y

+ λ
∂2V

∂Y 2
+ µ

∂2V

∂Z2
+ 2µ

∂2V

∂Y 2
+ µ

∂2V

∂X2
+ λ

∂2W

∂Y ∂Z
+ µ

∂2W

∂Y ∂Z
, (B8)

−1

∆t
(Tn∇X ·Σ∗)3 = (λ+ 2µ)

∂2W

∂Z2
+ (λ+ µ)

∂2V

∂Y ∂Z
+ µ

∂2W

∂Y 2

+ (λ+ µ)
∂2U

∂X∂Z
− Ubt (λ+ 3µ)

∂2W

∂X∂Z
− Ubt (λ+ µ)

∂2V

∂X∂Y

− Ubt (λ+ µ)
∂2U

∂X2
+
(︁
1 + U2

b t
2
)︁
µ
∂2W

∂X2
. (B9)

Discretization of the second-derivative terms in Eqs. B7–B9 using the finite differences in

Sec. III B enables application of the geometric multigrid method to solve for U , V , and W .

Appendix C: Linear system for pure shear

For a pure shear transformation of the form Eq. 44 with A(t) = eξt as in the main text,

C : D takes the form

(C : D)11 = λ∇X ·V + 2µ

(︃
ξ +

∂U

∂X

)︃
(C1)

(C : D)12 = µ

(︃
eξt

∂U

∂Y
+ e−ξt ∂V

∂X

)︃
(C2)

(C : D)13 = µ

(︃
e2ξt

∂U

∂Z
+ e−2ξt∂W

∂X

)︃
(C3)

(C : D)22 = λ∇X ·V + 2µ
∂V

∂Y
(C4)

(C : D)23 = µ

(︃
eξt

∂V

∂Z
+ e−ξt∂W

∂Y

)︃
(C5)

(C : D)33 = λ∇X ·V + 2µ

(︃
∂U

∂X
− ξ

)︃
(C6)
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The above set of equations leads to the linear system (Eqs. 27 & 28) for the velocity field

−1

∆t
(Tn∇X ·Σ∗)1 = µe3ξt

∂2U

∂Z2
+ eξtµ

∂2U

∂Y 2
+ e−ξt (λ+ µ)

∂2W

∂X∂Z

+ e−ξt (λ+ µ)
∂2V

∂X∂Y
+ e−ξt (λ+ µ)

∂2U

∂X2
(C7)

−1

∆t
(Tn∇X ·Σ∗)2 = e2ξtµ

∂2V

∂Z2
+ (λ+ µ)

∂2W

∂Y ∂Z

+ (λ+ 2µ)
∂2V

∂Y 2
+ (λ+ µ)

∂2U

∂X∂Y
+ e−2ξtµ

∂2V

∂X2
(C8)

−1

∆t
(Tn∇X ·Σ∗)3 = eξt (λ+ 2µ)

∂2W

∂Z2
+ eξt (λ+ µ)

∂2V

∂Y ∂Z

+ e−ξtµ
∂2W

∂Y 2
+ eξt (λ+ µ)

∂2U

∂X∂Z
+ e−3ξtµ

∂2W

∂X2
(C9)
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