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Abstract

Molecular dynamics simulations frequently employ periodic boundary conditions where the
positions of the periodic images are manipulated in order to apply deformation to the material
sample. For example, Lees—Edwards conditions use moving periodic images to apply simple shear.
Here, we examine the problem of precisely comparing this type of simulation to continuum solid
mechanics. We employ a hypo-elastoplastic mechanical model, and develop a projection method to
enforce quasi-static equilibrium. We introduce a simulation framework that uses a fixed Cartesian
computational grid on a reference domain, and which imposes deformation via a time-dependent
coordinate transformation to the physical domain. As a test case for our method, we consider
the evolution of shear bands in a bulk metallic glass using the shear transformation zone theory
of amorphous plasticity. We examine the growth of shear bands in simple shear and pure shear

conditions as a function of the initial preparation of the bulk metallic glass.

I. INTRODUCTION

Molecular dynamics (MD) simulations, whereby atoms or molecules are individually
simulated according to Newton’s laws [1], are widely used across the physical sciences [2-5].
Open source sofware packages such as LAMMPS [6, 7] and GROMACS [8] have enabled
simulations to be performed with millions of particles on modern parallel computer hardware.
MD simulations provide a detailed view of the material physics and are able to capture
discrete particle-level effects [9, 10]. Despite these advantages, MD simulations are computa-
tionally expensive, and it is usually only possible to simulate microscopic material samples.
Furthermore, since the simulations must resolve rapid interaction timescales between particles,
the applied deformation rates in MD are often orders of magnitude larger than deformation
rates in laboratory tests [11-13].

Because MD simulations simulate microscopic domains, it is difficult to apply deformation
via moving walls, as simulation data may be affected by finite-size effects [14, 15]. Instead,
the standard approach is to apply periodic boundary conditions, but manipulate the periodic

images of the primary simulation domain to achieve different applied deformations. For
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example, in three-dimensional Lees-Edwards boundary conditions, the periodic images have
a horizontal velocity proportional to their z position in order to impose simple shear [16]
(Fig. 1(a)). The Kraynik—Reinelt boundary conditions [17-20], plus a recent generalization
by Dobson [21], use a combination of moving periodic images and domain remapping in order
to simulate different extensional Hows.

A complementary approach to MD is to use continuum modeling, which has the ability to
simulate large system sizes and long, physically realistic timescales. However, continuum-scale
theories involve a substantial theoretical hurdle, in that the transition from a particle-level
theory to a continuum theory involves a coarse-graining procedure. The coarse-graining
procedure defines a representative volume element (RVE) [22, 23] throughout which local
deviations of material field values from their average within the RVE are neglected. The
fundamental assumption of every continuum theory is that such an RVE is well-defined, and
that neglecting the discrepancy between the relevant system variables and their mean within
an RVE is well-justified [24, 25].

In effect, coarse-graining reduces the complex many-body system of interacting particulate
constituents to a much lower degree-of-freedom system well-described by a set of nonlinear
partial differential equations. This reduction in complexity is primarily responsible for the
well-behaved scaling with system size in continuum simulations, in that all the classical
techniques of numerical analysis become available for evolving the system over time. However,
the process of coarse-graining to the continuum is difficult in general, and has primarily been
successful when tailored to specific phenomena. The coarse-graining procedure introduces
internal state variables that summarize the many particulate degrees of freedom, and accurate
initial conditions for such internal variables can be difficult to construct. Some equilibrium
systems are amenable to rigorous approaches by explicitly averaging over unwanted degrees
of freedom in the system partition function [26, 27], but these approaches are intractable for
many out-of-equilibrium systems.

To quantitatively explore the effect of coarse-graining MD to the continuum, it is therefore
useful to perform the two types of simulation using the same geometry and conditions.
However, precisely recreating the boundary conditions from MD for use in continuum
simulations poses some numerical challenges. Consider the Lees—Edwards boundary conditions
and suppose that the primary simulation domain is discretized on a Cartesian grid. Because

the periodic images are moving, their grids will generally not align with the primary domain.
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FIG. 1. (a) Lees-Edwards boundary conditions in three dimensions where the z coordinate points
upward. The system of interest is shown in yellow and outlined in dashed black lines. Periodic
copies of the system above and below are set to move with a specific velocity, imposing a specific
strain rate 4 on the system. (b) A graphical depiction of a domain transformation T(t) that maps

a fixed reference domain X to a sheared physical domain x.

This could be handled numerically via interpolation, but grid points near the boundary will
incur different discretization errors. If the continuum model involves an elliptic problem,
then the shifted grids will result in a complex connectivity structure in the associated linear

system, which is less well-suited to some numerical linear algebra techniques.

In this work, we address this problem by developing a continuum solid mechanics simu-
lation that permits MD boundary conditions to be recreated precisely. We use the hypo-
elastoplasticity model [28] in which the deformation rate tensor D is decomposed additively
into a sum of elastic and plastic parts [29]. There are a number of different frameworks for
simulating elastoplastic materials [30], but the hypo-elastoplastic model is well-suited for
problems that involve large plastic deformation. This regime is appropriate for matching to

typical MD simulations, where large total strain may be applied.

Combining the additive decomposition of D with Newton’s second law results in a closed
hyperbolic system of partial differential equations (PDEs) for the velocity v and stress o,
plus coupling to evolution equations for any internal state variables. Due to the small size
of MD simulations, it is usually a good approximation to say that elastic waves are fast
compared to the simulation timescale, allowing for Newton’s second law to be replaced by

the constraint that the stresses remain in quasi-static equilbrium, V - o = 0.

The resulting constrained PDE system has a mathematical correspondence to the in-
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compressible Navier—Stokes equations, where the fluid velocity must satisfy the constraint
that V - v = 0. For incompressible fluids a standard numerical technique is the projection
method of Chorin [31, 32]. By exploiting the mathematical correspondence, a new projection
method for quasi-static hypo-elastoplasticity was recently introduced [33] and extended to
three dimensions [34] (Sec. II).

To match the MD boundary conditions, we introduce a coordinate transformation frame-
work for the quasi-static hypo-elastoplastic system. It is based on an abstract linear mapping
T(t) from a reference domain to the physical domain (Fig. 1(b)). Lees—Edwards conditions
can be implemented in the continuum setting with this methodology by imposing shear
through a transformation, and additionally enforcing periodic boundary conditions in all
directions. Effectively, our method decouples the application of material deformation from
the application of a specific boundary condition.

In addition to Lees—Edwards boundary conditions, the transformation framework is flexible,
and enables simple implementation of otherwise potentially difficult deformation, such as
pure shear. Any applied deformation that can be written down as a linear transformation
of a reference domain can be implemented just by implementing the matrix and its time
derivatives. We show that the projection method for hypo-elastoplasticity can be generalized
to simulate this case by working with transformed velocities and stresses in the reference
domain. The projection step in the method requires solving an elliptic problem for the
velocity, and the resulting linear system has a simple mathematical structure that is well-
suited for solution via numerical linear algebra techniques such as the geometric multigrid
method [35, 36].

The new method is capable of simulating a wide range of elastoplastic materials, but
here we consider the example of a bulk metallic glass (BMG), a new type of alloy where the
atoms have a random and amorphous arrangement, in constrast to most metals [37]. BMGs
have attracted considerable research interest during the past two decades. They have many
favorable properties, such as high strength and wear resistance, that make them attractive
for a variety of applications [38]. However, the amorphous arrangement of atoms makes
the study of dynamic mechanical phenomena—such as deformation and failure—in these
materials exceptionally challenging [39].

To date, a general theory of the microscopic origins of plastic deformation in amorphous

solids has remained elusive. However, several prominent theories capable of making accurate



qualitative and quantitative predictions have been developed, such as free-volume based theo-
ries [40-43] and the shear transformation zone (STZ) theory [44-48]. Ultimately, free-volume
theories and the STZ theory are flow-defect theories that attempt to connect microscopic
rearrangements of groups of atoms with macroscopic plastic deformation, in rough analogy
to the dislocation-mediated theory of plasticity in crystalline materials [49].

We employ an elastoplastic model of a BMG based on the STZ theory. A key feature
of the model is the effective temperature (Sec. ITC), which characterizes the amorphous
particle structure via a continuum field [50-53]. The effective temperature can be measured
indirectly [54], but there is currently no complete method to connect it to the microscopic
particle configuration. This was recently explored by Hinkle et al. [55], who directly compared
continuum and MD simulations, and examined how measurable features of MD such as the
coarse-grained atomic potential energy are connected to the effective temperature. A key
limitation of this study is that the MD simulations use Lees—Edwards conditions, whereas the
deformation was imposed in the continuum simulation using moving parallel plates, meaning
that the two could not be exactly compared. The numerical techniques that we develop here
remove this limitation.

The STZ theory has proven useful for examining the failure properties of BMGs. The
elastoplastic model that we employ has been used to explain the large experimental variations
in notched fracture toughness of BMGs [56]. This was subsequently extended to make
predictions about BMG fracture toughness for a range of parameters [57]. Recent experimental
work suggests that these predictions are broadly correct [58]. BMGs also exhibit shear bands,
a strain-softening instability characterized by the localization of shear strains along a thin
band [59], which can be the precursor to failure [60-62]. In our simulations, we examine how
shear bands nucleate as a function of the initial inhomogeneities in the effective temperature
field.

The paper is organized as follows. In Sec. II, we describe the equations of quasi-static
hypo-elastoplasticity and provide an introduction to the physics of the STZ theory of
amorphous plasticity. In Sec. III, we introduce the coordinate transformation methodology
and develop the transformed projection method. In Sec. IV we provide numerical experiments
demonstrating convergence of the solution of the transformed method to the original quasi-
static method in physically equivalent situations as the grid spacing is decreased. In Sec. V,

we study shear banding in a bulk metallic glass subject to simple shear, Lees-Edwards, and



pure shear boundary conditions. We highlight differences in results between Lees-Edwards
and simple shear boundary conditions and examine how the shear band formation depends

on the initial effective temperature.

II. MATHEMATICAL PRELIMINARIES
A. Quasi-static hypo-elastoplasticity

We consider an elastoplastic material with Cauchy stress tensor o (x,t) and velocity field
v(x,t). We denote by L = Vv the velocity gradient tensor and D = % (L + LT) the rate of
deformation tensor. We adopt the framework of hypo-elastoplasticity, which assumes the
rate of deformation tensor can be additively decomposed into a sum of elastic and plastic
parts, D = D + DP!. Writing linear elasticity in rate form yields

Do (x,t)

o =C: (D-D") (1)

where C is the stiffness tensor. For simplicity, the material is taken to be isotropic and
homogeneous, so that Cjjx = A + 1 (801 + 0:19;,) where A is Lamé’s first parameter

and f is the shear modulus. The time derivative in Eq. 1 is the Truesdell derivative [63],

Do do
— =— _-L'oe—-0oL L 2
" 7 o —oL+tr(L)o, (2)

with % = % + v - V denoting the advective derivative. The velocity field satisfies a continuum

version of Newton’s second law,

dv
Pt
with p the material density. Taken together, Eqs. 1 & 3 form a closed hyperbolic system

=V.o, (3)

that could form the basis of a numerical method. However, an explicit numerical method
used to solve this system will resolve elastic waves. Stable resolution of elastic waves places
a limit on the simulation timestep according to the well-known Courant—Friedrichs—Lewy
(CFL) condition [64]. The CFL condition requires At < Ci where ¢, is a typical elastic wave
speed and h is the grid spacing.

In metals and other materials of interest, the elastic wave speed ¢, can be large, and the
grid spacing h needed to resolve fine-scale features such as shear bands can be small. The

CFL condition thus poses a prohibitive limit on the timestep for probing realistic timescales
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and system sizes, and the development of alternative simulation approaches which avoid
resolving elastic waves is necessary. It is often appropriate to take the long-timescale and
small-velocity limit, in which the material acceleration is negligible and Eq. 3 can be replaced

by the constraint

V-o=0, (4)

which states the stresses remain in quasi-static equilibrium, and conveniently avoids the
description of elastic waves. In this quasi-static limit, Eq. 1 depends on the material velocity
field through D, but the evolution equation for the velocity field has been exchanged for the
constraint in Eq. 4. It is thus unclear how to solve Eq. 1 subject to the global constraint in

Eq. 4.

B. Projection method

As noted by Rycroft et al. [33], Egs. 1 & 3 have a close mathematical correspondence
with the Navier—Stokes equations for incompressible fluid flow. The Navier—Stokes equations
consist of an explicit partial differential equation for the fluid velocity along with a constraint
that the velocity must be divergence-free. Much like Eqs. 1 & 4, the constraint on the velocity
field is obtained from a limiting procedure applied to an explicit partial differential equation
for the pressure, and the equation for the velocity still depends on the pressure after this

limit has been taken.

In this setting, a well-established numerical technique is the projection method of
Chorin [31, 32]. In Chorin’s projection method, the update for the velocity field is split
into two steps. In the first step, an intermediate velocity field is computed which does not
obey the divergence-free constraint. In the second step, a linear system is solved for the
pressure field which simultaneously projects the intermediate velocity field onto the manifold

of divergence-free solutions.

By using the correspondence between quasi-static hypo-elastoplaticity and incompressible
fluid flow, Rycroft et al. [33] developed a new projection method for quasi-static elastoplas-
ticity. Consider taking a timestep of size At, and use superscripts of n and n + 1 to denote

the simulation fields before and after the step, respectively. To begin, an intermediate stress



*

o is computed by dropping the C : D term in Eq. 1 to obtain
o' —o"

N (L") To" 4+ o"L" — tr(L")o™ — (v" - V)a" — C : (DP)". (5)

If the velocity v*™! were known, and hence if the total deformation rate D"*! could be
calculated, then the final stress would be given by

*

o.n+1 — o

AN C:D" (6)

Taking the divergence of this equation and enforcing that V - "1 = 0 yields
AtV - (C:D") = -V.o" (7)

After finite-difference expansion of the definition of D"™!, Eq. 7 forms a linear system for
the velocity field v with source term given by the known vector —V - ¢*, and it can be
solved via standard techniques of numerical linear algebra. After solution of Eq. 7, ™! can
be computed according to Eq. 6, which can be shown to orthogonally project o* onto the
manifold of quasi-static solutions. In this manner, the two-step projection method enables
solving Eq. 1 subject to the global constraint Eq. 4 despite the dependence of Eq. 1 on v.
We refer the reader to papers by Rycroft et al. [33], and Rycroft and Boffi [34] for complete
details on this method.

C. Plasticity model

As our plasticity model for a bulk metallic glass, we use an athermal form of the shear
transformation zone (STZ) theory of amorphous plasticity suitable for studying glassy
materials below the glass transition temperature [47, 65]. The STZ theory postulates that
ephemeral and localized fluctuations of the configurational bath—STZs—occur sporadically
throughout an otherwise elastic material. The STZs may be conceptualized as clusters
of atoms susceptible to shear-induced configurational rearrangements when local stresses
surpass the material yield stress sy. Each such rearrangement leads to a small increment of
plastic strain, and many such rearrangements conspire to bring about macroscopic plastic
deformation.

In the athermal theory used here, thermal fluctuations of the atomic configurations are

neglected, and molecular rearrangements are assumed to be driven entirely by external



mechanical forces. Thermal theories introduce an additional coupling between the configura-
tional subsystem governing the rearrangements that occur at STZs, and a kinetic/vibrational
subsystem governing the thermal vibrations of atoms in their cage of nearest neighbors [66].
Such thermal theories, with an additional field tracking the thermodynamic temperature
that evolves according to a diffusion equation, could in principle be incorporated into our
framework.

Each rearrangement corresponds to a transition in the configurational energy landscape;
these transitions are usually towards a lower-energy configuration, but there is a small
probability for a reverse transition. Before the application of external shear, the material
sample sits at a local minimum. External shear alters the shape of the energy landscape, and
can make transitions to other states considerably more likely. The density of STZs in space
follows a Boltzmann distribution in an effective disorder temperature denoted by y [50-53].

x governs the out-of-equilibrium configurational degrees of freedom of the material and has
many properties of the usual temperature: it is measured in Kelvin, and it can be obtained
as the derivative of a configurational energy with respect to a configurational entropy [39]. x
is distinct from the thermodynamic temperature 7', though it plays the same role for the
configurational subsystem as T' does for the kinetic/vibrational subsystem.

We define the deviatoric stress tensor oy = o — %tr(a)I. The total rate of plastic

deformation tensor is proportional to the deviatoric stress, DP! = DP!22 where 52

= 300,ij00,j
is a local scalar measure of the total deviatoric stress. The STZ theory provides the magnitude

of the plastic rate of deformation as

Qens
Tonl — e—¢/kBxo=A/kBT g} (k;(;‘f) (1 . S?Y) ' (8)

To is a molecular vibration timescale, e, is a typical STZ formation energy, kp is the
Boltzmann constant, 7" is the thermodynamic temperature, A is a typical energetic barrier
for a transition, €2 is a typical STZ volume, and ¢, is a typical local strain. The effective
temperature satisfies a heat equation [53, 65, 67-69]

d_X o (Dpl . 0'0)

T (Xoo — X) + I’V - (DP'Vy) . (9)

The interdependence of Eqgs. 8 & 9 enables the development of shear bands through a
positive feedback mechanism, as increasing one of x or DP! also leads to an increase in the

other [67, 69].
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III. COORDINATE TRANSFORMATION FRAMEWORK

Let T(t) denote a time-varying mapping from a reference domain X to the physical

domain of interest x such that

x =TX, (10)

as shown in Fig. 1(b). Here, X € [ax, bx|X[ay, by| X [az, bz]. Capital letters denote quantities
in the reference frame and lower case letters denote quantities in the physical frame. Vx
and Vy denote spatial differentiation in the reference and physical frame, respectively. We
emphasize that X exists in a fixed frame on which the quasi-static hypo-elastoplastic equations
will be solved, and not in the Lagrangian frame of coordinates. To clarify this point, let
R = (X,), Z) denote a set of fixed Lagrangian coordinates. For an Eulerian frame (z,y, z),

we define the Eulerian displacements,

We then define the Eulerian velocities v; = aaqu =- The same procedure can be performed in

the reference frame. We first define the physical displacements,
u=TX-R. (12)

Taking a time derivative of both sides of Eq. 12 at fixed Lagrangian coordinates R, we arrive

at an expression for the physical velocity,

oT
v= 5 X+TV. (13)

Above, we have identified the transformed velocity V = 68—)5‘73. Equation 13 can be used
to compute the physical velocity v from the transformed velocity V, if V is known. By

inversion, it can also be used as a definition of the transformed velocity,

V=T" (v - %—TX) : (14)

Using the chain rule, spatial derivatives are transformed as
V. =T TVx. (15)

Taking an advective time derivative of Eq. 14, using Eq. 3 for v, and transforming physi-

cal spatial derivatives to transformed spatial derivatives, the transformed velocity evolves
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according to the transformed generalization of Newton’s second law,

oV oT!
o~V V0V

T OT
T T ' (T Vg (TE2T") - —X — — (1
V + ( Vx - ( ) e 5 V) (16)

In Eq. 16, we have rewritten the advective derivative equivalently in the reference frame,
% +v-Vx = % + V- Vx. The proof of this fact for an arbitrary transformation T(¢) is
shown in Appendix A. In Eq. 16, we have also defined the transformed stress tensor via the

contravariant pullback,

S=T'oT " (17)

To derive an evolution equation for 3, we now use the linear elastic relation in Eq. 1. Taking
an advective time derivative of the relation & = TXTT and inverting, the transformed
stress then obeys the transformed generalization of the linear elastic constitutive law. After
expansion of the Truesdell rate,

o

= =~ (V-Vx) S - tr(L)S + BVxV + (VxV) 2+ T (C: (D-D"))T"". (18)

In Eq. 18, D = 1 (L + LT) refers to the physical quantity. L can be computed in terms of

the transformed variables as

TT
L= T‘T% + T TVxVT". (19)

DP! = DPIZ0 appears in Eq. 18, and its form depends on the plasticity model through the
constant DP'. As reviewed in Sec. IT A, the STZ theory provides an expression given by Eq. 8.
DP! is defined and must be computed in terms of the physical deviatoric stress o. In line

with the definition of 3, we can apply the contravariant pullback to oy and write
T 'ogT "T=3 - % (T 't (TETT) T ) L (20)
Using the natural definition g = X — %tr (3) I and solving for o, we can rewrite Eq. 20 as
oo =TT + % (Ttr(2)T" — tr (TETT)) L. (21)

Equation 21 enables the computation of oy entirely in terms of transformed quantities.
We compute s by first computing the entire tensor oy using Eq. 21 and then compute its

Frobenius norm.
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The equation for the effective temperature must also be transformed, though we do not

define a transformed effective temperature. This can be accomplished by transforming the

derivatives,
o DP o
coa_zf =—¢(V-Vx)x+ % (Xoo — X) +PT TVx - (DplT_TVXX) . (22)
Yy

For brevity, DP!, oy and DP' refer to the physical quantities in Eq. 22 and must be computed
in terms of the transformed variables in an implementation. Transformation of the diffusive
term ensures that diffusion occurs in the physical frame despite being implemented in the
reference frame.

Equation 18 demonstrates that our transformation methodology leaves the Truesdell rate
invariant and only affects the deformation rate term C : (D — Dpl). This highlights a benefit
of using the Truesdell rate, as opposed to using alternative rates (e.g. Green—Naghdi or
Jaumann) that employ physical approximations to achieve a simpler form. For example, the
Jaumann stress rate is based upon the approximation that the effect of material stretch is
much smaller than the effect of rotation, so that the Jaumann formula only involves the
material spin rather than the full velocity gradient tensor. If the Jaumann rate is used in
the physical frame it will not perfectly transform into the Jaumann rate in the reference
frame, as neglecting stretch in the physical frame is not equivalent to neglecting stretch in
the reference frame.

The transformed system of equations has connections to the principle of material frame-
indifference [70, 71] which states that “the constitutive laws governing internal interactions
between the parts of the system should not depend on whatever external frame of reference
is used to describe them” [72]. Mathematically this is done by considering a transformation
of the form x = R(#)(X — Xo(t)) where X(¢) is a time-dependent vector and R(?) is a
time-dependent rotation [73]. If we restrict our transformation in Eq. 10 to the case when
T(t) is a rotation, then Eq. 18 is identical to Eq. 2, but in terms of transformed variables.
The first four terms of Eq. 18 are always identical, and the final term involving C : (D — D)
is also identical in this case, since the rotation matrices cancel because C is isotropic. Hence
our coordinate transformation is consistent with material frame-indifference.

It is worth considering how the transformed system of equations differs from the original
system. A particular case of interest is simple shear, given the immediate application to

implementation of Lees—Edwards boundary conditions. This physical situation is described
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by the transformation

10 Uyt
T=1]01 0 |, (23)
00 1

with U, a boundary shear velocity. Restriction to a two-dimensional plane-strain formulation
reveals that the components of Eqs. 16 & 18 retain their original form with untransformed
quantities replaced by transformed quantities, in addition to several new terms proportional

to powers of Ut.

A. Transformed projection method

We now formulate the projection method of Sec. II B in the reference frame. This method
enables solving for V and X subject to the constraint in Eq. 4. In the first step (analogous
to Eq. 5), the C : D term in Eq. 18 is neglected to compute the intermediate transformed
stress X,

DI I
T = — (Vn : Vx> X — tr(L")E" + r (va)n
+(VxV)"Z"— (TH)"C: (D™)" (T )" (24)

If the transformed velocity at the next timestep V™! were known, we could compute L™

via Eq. 19, compute D", and complete the transformed Euler step via

ZnJrl — 3 B

~ (T™H)" (C:D"™) (T°")", (25)

which is analogous to Eq. 6. To compute this correction, we need to use the physical
constraint Eq. 4. Enforcing that Vy - ™! = 0 leads to a linear system for v in the physical
domain given by

AtVy - (C: D" = -V, - o™ (26)

Because T 'o*T~T = ¥* and V, = T "Vx, the right-hand side of Eq. 26 transforms
according to

V0" =—T"Vx - 5. (27)

Similarly, the left-hand side of Eq. 26 becomes

At(TT)" V- C ( (T-T)" (Vx V)™ (TT)" ) (28)
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where we have omitted X-independent terms as they will be eliminated by Vx. Equations 27
& 28 form a complicated linear system for the transformed velocity V*™!. The appearance
of the transformation T in front of the gradient operator Vx ensures that all mixed spatial
derivatives of all components of the velocity appear in each row of Eq. 28. Equation 28 is
more complex than the linear system in the original quasi-static projection method, and it
is dependent on the specific form of T. The components of Eq. 28 in the specific cases of
simple shear and pure shear are shown in App. B and App. C respectively.

The update for the effective temperature is handled through an explicit forward Euler

step,
n+l . n Dpl n. gn
co% = — (V" . Vx) X"+ «i—yt)) (Xoo - Xn)
+ (T ")"Vx - (D)Y(TT)"Vxx") . (29)

B. Numerical discretization, parallelization, and multigrid solver

The explicit update for the transformed stress Eq. 24 depends on transformed spatial
derivatives of the transformed velocity through L. Similarly, the source term in the linear
system for the transformed velocity Eq. 27 depends on transformed spatial derivatives of the
transformed stress. We exploit this structure through a staggered grid arrangement in the
reference frame with uniform spacing Az = Ay = Az = h. The stress tensor 3 and effective
temperature y are stored at cell centers and indexed by half-integers, while the velocity V
is stored at cell corners and indexed by integers. Further discussion of the staggered grid
arrangement can be found in [34].

Let (0f/0X); ;x denote the partial derivative of a field f with respect to X evaluated at

grid point (7,7, k). The staggered centered difference is
of 1
<8_X) ~ 4h (fi“:jvk — Jigk + fir1 1k — figrik
i+ 3, g+5 ket
+ firr k1 — Jigrer T firrje1he1 — fi7j+17,€+1>, (30)

Equation 30 averages four edge-centered centered differences surrounding the cell center and
has a discretization error of size O(h?). The derivative at a cell corner is obtained by the

replacement (i, 7, k) — (i — %, | — %, k— %) The diffusive term appearing in the effective
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temperature update in Eq. 29 is computed by expanded the divergence term,
T "Vx - (DT "Vxx) = (VxD”) - [(T'T™T) Vxx]

+DP [(T'TT) : (VxVxx)] - (31)

Equation 31 is computed numerically by assembling the gradient vectors Vxy and Vx DP!

at cell centers using the standard centered difference formula,

af> 1
v = o\ firrgk — fimtgk ) (32)
<8X ik 2h< +1,5,k 1jk>

with analogous expressions for the other directions. We also must assemble the Hessian

matrix VxVxyx using the second derivative stencils

0*f ) 1
— = — | fir16 — 2fijk + ficijk)s (33)
(aX2 i 2 (Forna ) i)
0 f ) 1
= — | fir1 416 — fixr -1k — fic1j+1h + fic1j—1k ) (34)
(axay ik 2 (Forna ) ) j-14)

Analogous expressions for other second derivatives are obtained through Eqgs. 33 & 34 by
suitable replacements. The matrix T~'T~T is computed from its definition.
The advective derivative in Eq. 24 must be upwinded for stability; we use the second-order

essentially non-oscillatory (ENO) scheme [74]. With [fxx], ., denoting the second derivative

ik
with respect to X of the field f at grid point (4,7, k) computed using Eq. 33, the ENO

derivative is defined in the X direction as

)

—fiv2 gk +4fiv1gke — 3fije 1 Uijr <0 and ‘[fxx]id,k > ‘[fXX]HLM
af 1 '
(8_X>”k — ﬁ Sfi,j,k — 4fi—1,j,k + fz‘—2,j,k if Ui,j,k > 0 and ’[fXX]i,j,k

Jivrjk — fic1jk otherwise.

> ‘[fXX]z'—l,j,k ,
(35)

Above, U, ;i is the X component of the transformed velocity at grid point (4, j, k). Equation
35 uses the curvature of f to switch between an upwinded three-point derivative and a
centered difference. Versions of Eq. 35 in the Y and Z coordinates are obtained analogously.
Despite its complexity, after spatial discretization of Eq. 28, the linear system is of the
form Ay = b, and can be solved via standard techniques of numerical linear algebra. b is
given in block form by the source term in Eq. 27, b, = —TVx - ¥*(X;), where the index i

runs over all grid points. y is also given in block form, so that y contains the stacked values
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of V across all grid points. The matrix A is sparse, and its degree of sparsity depends on the
specific discretization scheme used. In the staggered centered difference scheme described
here, grid point (7, j, k) is only coupled to the 27 grid points in the surrounding 3 x 3 x 3
cube.

A is thus most effectively reconstructed using submatrices AE A )) which give the coeffi-
cients of velocity values V) appearing in the linear equation for V; ;). Each matrix
AEZJZZ)L) is symmetric. With this construction, we solve Eq. 28 using a custom MPI-based
parallel geometric multigrid solver; for further details of the solver, and how it interfaces
with the explicit updates, the reader is referred to the non-transformed algorithm description
[34]. The explicit steps for x and ¥ in Egs. 24 & 29 are also parallelized using MPI and
domain decomposition, with further details in the non-transformed work [34].

A highlight of the transformation methodology is its flexibility and simplicity. Implementa-
tion of new boundary conditions, so-long as they can be specified in terms of a transformation
T(t), is only as difficult as writing the transformation down. The matrices AE;J/; do,
however, depend on the form of T(¢), and thus they need to be derived on a transformation-
by-transformation basis. Furthermore, through their dependence on T(t), these submatrices

are time-dependent and thus need to be recomputed at each timestep.

For an arbitrary 3 x 3 transformation with nine matrix elements, the analytical computation

1,5,k)

and hand-implementation of the Al (ki

m) matrices is error-prone. To remedy this, we developed
a metaprogramming scheme to auto-generate the relevant code. We used Mathematica to
analytically calculate Eq. 28 in terms of arbitrary matrix elements 7;;(¢), and subsequently to
replace derivatives by their finite difference equivalents. Collecting coefficients accordingly in
the resulting equation gives 191 non-zero coefficients comprising the 27 submatrices A ,;flf:n).
We used Python to write a skeleton file that contained function primitives for 191 C++
functions to compute each of these coefficients individually. We then used the Mathematica
function splice to fill in valid C++ code that calculates the resulting coefficients in each of
these functions. Finally, we again used Python to write C++ code that calls the auto-generated
C++ functions to populate the submatrices. The metaprogramming scheme only needs to be
run once to generate the needed code, and it does not take any meaningful amount of time
to run. In this way, the multigrid system is automatically generated at each timestep, and

new simulation conditions can be immediately constructed by providing the matrix T(¢) as

a 3 X 3 matrix class implemented in C++.
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TABLE I. Material parameters used in this study, for both linear elasticity and the STZ model
of amorphous plasticity. The Boltzmann constant kp is used to convert energetic values to

temperatures.

Parameter Value
Young’s modulus £ 101 GPa
Poisson ratio v 0.35

Bulk modulus K 122 GPa
Shear modulus p 37.4 GPa
Density po 6125 kg m~3
Shear wave speed c; 2.47 km s~}
Yield stress sy 0.85 GPa
Molecular vibration timescale 10713 s
Typical local strain €g 0.3
Effective heat capacity cg 0.4

Typical activation barrier A/kp 8000 K
Typical activation volume 2 300 A3

Thermodynamic bath temperature 7' 400 K

Steady state effective temperature xo 900 K

STZ formation energy e,/kp

21000 K

IV. NUMERICAL CONVERGENCE TESTS

In this section, we demonstrate convergence of the transformed projection method to the
non-transformed method in physically equivalent situations. In all simulations, a periodic
domain in X and Y is considered, —L < X < L, —L <Y < L with L = 1cm. We
consider both periodic and non-periodic boundary conditions in Z, corresponding to domains
Z € |[=yL,yL) and Z € [—yL,vL], respectively. v = 3 in all simulations. We measure
time in terms of the natural unit ¢, = L/cg with ¢, = \/,u_/p the material shear wave speed.

Boundary conditions in the non-periodic case are given by

V(X,Y,+yL,t) = (0,0,0). (36)
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Elasticity and plasticity parameters are provided in Table I, and for these parameters,
ts = 4.05 ps. All simulations in this section are run with 32 processes on an Ubuntu Linux
computer with dual 14-core 1.70 GHz Intel Xeon E5-2650L v4 processors.

The global three-dimensional grid has spacing h in each direction. The cell-cornered
grid points are indexed according to ¢ = 0,...,Q — 1, 7 = 0,...,M — 1 in the X and
Y directions. In the Z direction, the grid points are indexed according to & = 0,..., N

and £ = 0,...,N — 1 for non-periodic and periodic boundary conditions, respectively.
The cell-centered grid points run according to ¢ = %, %, Q- %, j= %, %, oM — %, and

k= %, %, oM — % As described in Sec. III B, 3 and y are stored at cell centers while
V is stored at cell corners. The additional grid points (i,j,k = N) in the Z direction in
the non-periodic case are ghost points used for enforcing the Dirichlet boundary conditions
VvV =0.

The cell-centered grid points on the top boundary (i, j, N+ %) contain linearly extrapolated
3 and yx values to ensure that ¥ and x remain free on the top boundary. In the periodic
case, the grid points (i, j,k = N) hold the velocity values V; ; ¢, and the corresponding
cell-centered grid points are used to hold the wrapped values of %, . 1 and x(; ; 1. At the
simulation boundaries in the X and Y directions, ghost points leaving the simulation domain
are filled with values that wrap around, so that the ghost point corresponding to grid point

(Q, 4, k) is filled with the real values from grid point (0, j, k). Similarly, values at points
(7, M, k) are filled using values from (7,0, k).

A. Qualitative comparison between the transformed and non-transformed meth-

ods

We now demonstrate the qualitative similarity of solutions computed with the transformed
and the standard quasi-static methods. In the following subsection, this comparison is made

quantitatively rigorous. To visualize the results three-dimensionally, we use a custom opacity

function,
(X(’Q:ng) lf X(X):ng > %7
O(X) — Xoo ~Xbg . Xoo—Xbg (37)
exp <—a ( X0 _Xbg ) ) otherwise,
X (%) —Xbg

where x4, is a background x value. By choice of a and 7, the most physically relevant features

in three-dimensional visualizations of the y field can be revealed.
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To compare the transformed and non-transformed methods, a physically equivalent
situation is now constructed. We employ non-periodic Dirichlet boundary conditions in the
Z-direction and enforce V(X,Y,£vL) = (0,0,0). To impose deformation, we use a shear

transformation T(¢) corresponding to

U

10 St
T=]01 0 |- (38)

00 1

Boundary conditions in the non-transformed simulation correspond to shearing between two
parallel plates, v(x,y, =yL) = (U,,0,0). An initial linear velocity gradient is imposed in the

non-transformed frame, so that
U BR
V(X,tZO): (")/_L’070) . (39)
Equation 39 ensures equivalent initial conditions in both methodologies, and also prevents
the introduction of large gradients in the deformation rate near the boundary. To create
interesting dynamics, an initial condition in x corresponding to a helix oriented perpendicular

to the direction of shear is considered. This is represented as

5T cos(GW(%—l—l))_i
L 8 16 )’
52 cos(67r(%+1))_i
L 8 16 )’
X (x,t = 0) = 600 K + (200 K) ¢~ 70(52+42) (40)

Equation 40 is written in the non-transformed simulation, but the same initial conditions
are used in the transformed simulation with the substitution x — X. The configuration is
visualized in the reference frame in Fig. 2.

The simulations are conducted on two grids of size 256 x 256 x 128 with a quasi-static
timestep At = 31.25t, and with a value of U, = 10_75. Snapshots at three representative
time points are shown in Fig. 3. In Fig. 3 (a,b) at ¢t = 2.88 x 10°t,, shear band nucleation has
not begun, and there is an increase in the y field across the entire domain. At ¢ = 4.02 x 10°
in Fig. 3 (c,d), shear bands have begun to nucleate along the top and bottom planes of the
helices. At t = 6 x 10%t, in Fig. 3(e,f), the bands have grown sharper, stronger, and span the

system. In all cases, the qualitative agreement is very good.
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FIG. 2. The initial configuration for the transformed to non-transformed comparison. Here, a = 0.3

and 1 = 1.2 in the opacity function, and x3, = 550 K.

B. Quantitative comparison between the transformed and non-transformed meth-

ods

Having demonstrated the qualitative similarity between the solutions computed by the
transformed and non-transformed methods, we now present a rigorous quantitative compari-
son. We utilize the same simulation geometry, boundary conditions, shear transformation,

and initial conditions as in Sec. IV A. We introduce a norm over simulation fields,

I£]1(t) = \/8723 /VLdZ/LdY/LdXH(X,t)P, (41)

where the integral in Eq. 41 runs over the entire simulation domain and is numerically

computed using the trapezoid rule. The appearance of |- | in Eq. 41 is interpreted as the
two-norm for vectors, absolute value for scalars, and the Frobenius norm for matrices. With
subscript NT denoting “non-transformed” and subscript T denoting “transformed”, Eq. 41 is
applied to the quantities v(X, t)xt —v(X, t)1, o(X, t)yt— 0o (X, t)1 and x (X, )t — X (X, ).
The physical field values are compared across the reference grid, a procedure that involves
two subtleties.

In the transformed simulation, this comparison requires computing o from ¥ and v from
V using Eqgs. 17 and 14 respectively at all reference grid points. In the non-transformed
simulation, it is necessary to compute the non-transformed field values at reference grid

points. Because the reference grid maps to a sheared physical grid, these values may not be
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600 K 700K 800K 900K

FIG. 3. Snapshots of the effective temperature field x(x, t) for the (a,c,e) non-transformed and (b,d,f)
transformed simulation . x4, = 550 K in the opacity function in all panels. (a,b) t = 2.88 x 10%t,,

a=0.7,17=125 (cd)t=402x10% a=0.8,17=1.35. (e,f) t =6 x 10°5, a = 0.9, n = 1.5.
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defined in the non-transformed simulation. We handle this via the following procedure. The
non-transformed simulation grid point x(X) corresponding to the reference grid point X is
first computed. If x(X) does not lie on the non-transformed grid, adjacent grid points are
linearly interpolated to compute an approximate field value at x. This procedure incurs an
O(h?) error, which is the same order of accuracy as the centered differences used for spatial
discretization in the two methods. As the sizes of the simulation grids are increased, the
discrepancy in solutions will decrease.

To ensure that issues with temporal discretization do not affect the comparison, it is
also necessary to scale the quasi-static timestep as the grid size is decreased. Because the
spatial order of accuracy is O(h?), we keep the ratio At/h* fixed across all simulations. We
perform comparisons across grids of size N x N x % with N = 64, 96, 128, 160, 192, and
256. Respectively, these correspond to grid spacings L/32, L/48, L/64, L/80, L/96, and
L/128. The quasi-static timestep is taken to be At = 500t for the coarsest simulation,
leading to quasi-static timesteps At = 222.14, 125,80, 55.55, and 31.25 respectively for the
finer simulations. The diffusion length scale in the effective temperature equation is taken to
be zero in all simulations for the purpose of the comparison.

The results for the quantitative comparisons are shown in Fig. 4. In Fig. 4 (top left),
the three Ly norm curves are plotted together for a value of N = 256, where each curve
is normalized by a representative value in order to plot on a comparable dimensionless
scale. The effective temperature norm increases rapidly early on in the simulation, but
then saturates around 10~%. The o norm stays around machine precision until the onset of
plasticity, when it rapidly increases and then saturates around 1073, Similarly, the v norm
stays below 1071% until the onset of plasticity, when it rapidly increases and then saturates
around 107%. The agreement up to machine precision prior to the onset of plasticity is
expected, and validates the accuracy of the derivation of the equations in the reference frame.

In Fig. 4 (top right), the effective temperature norm curves are shown for all values of
N. Here, there is a steady increase in the discrepancy before the onset of plasticity due
to advection across the grid. After plasticity is activated around t = 1.2 x 10%¢,, there
is a period of saturation in all curves, followed by a period of increase beginning around
t ~ 3 x 10°t,, where some simulation curves cross and end at roughly equal values. As
expected, the discrepancies generally decrease as the grid spacing is decreased.

In Fig. 4 (bottom left), the velocity norm curves are shown as a function of time for all
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FIG. 4. Ly norm of the y, v, and o simulation field differences between the transformed and non-
transformed methods computed using Eq. 41 in a simple shear simulation. (top left) A comparison
of the three different field norms on a grid of size 256 x 256 x 128. (top right), (bottom left), (bottom
right) The velocity, effective temperature, and stress norm differences respectively for varying levels

of discretization N = N, = N, = 2N.

discretization levels. In all cases, the difference between the simulation methods is on the
order of machine precision until the onset of plasticity, when there is a sharp and immediate
jump. The size of the jump decreases with the discretization level as expected.

In Fig. 4 (bottom right), the stress norm curves are shown. These curves display a
combination of the trends in the velocity and effective temperature plots. Before the onset of
plasticity, the error in all simulations is very low - on the order of machine precision. After
the onset of plasticity, there is a sharp jump in all simulations, and the size of the jump
decreases with higher resolution. Past around t ~ 2 x 10°¢,, the curves begin to cross, all
ending at roughly equivalent values.

To compare the computational efficiency of the two methods, we have reported timing
statistics for all simulations in Tab. II. Displayed are the total time, the total number of
multigrid V-cycles, the total time spent in multigrid V-cycles, and the average time per
V-cycle for the transformed (T) and non-transformed (NT) methods. As is clear from the
table, the transformed method incurs a mild increase in computational expensive. The

average time spent per V-cycle is roughly the same, but the total number of multigrid
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N =64 N =96 N =128 N =160 N =192 N = 256

T NT T NT T NT T NT T NT T NT

Total time (hours) ]0.0633|0.0343|0.5623|0.2863|2.4283|1.1981|3.3058|1.7890(8.5285[4.5787|33.3239|20.0178

V-cycle time (hours) [0.0452]0.0280(0.4130|0.2434(1.7845|1.0365(2.1976|1.3251|5.7242|3.4398|21.2268 |15.2432

# of V-cycles 5544 | 3603 | 12481 | 8106 | 22181 | 14402 | 34658 | 22502 | 49913 | 32404 | 73164 | 57600

Time/V-cycle (seconds)|0.0294]0.0280(0.1191]0.1081|0.2896|0.2591|0.2282{0.2120/0.4129(0.3810| 1.0444 | 0.9527

TABLE II. Data describing the total time taken, the total amount of time spent in multigrid
V-cycles, the total number of multigrid V-cycles, and the average time per V-cycle for the two
simulation approaches. “T” specifies the transformed simulation and “NT” the non-transforemd
simulation. The transformed method takes longer than the non-transformed method in general due
to an increased number of multigrid V-cycles required to achieve convergence. The average time

spent per V-cycle is roughly the same in the two approaches. Each simulation uses 32 processes.

V-cycles is higher for the transformed method. This is likely due to the increased complexity
of the linear system required for the stress projection in the transformed method when

compared to the non-transformed method.

V. NUMERICAL EXAMPLES

A. Simple shear and the effect of Lees—Edwards boundary conditions

As a first example application of the transformation method, we consider connecting a
continuum-scale model to typical discrete molecular dynamics simulations. A significant
difference between continuum simulation and molecular dynamics is in the boundary condi-
tions. Molecular dynamics simulations commonly employ Lees—Edwards boundary conditions,
where periodic copies of the system are placed above and below with a prescribed horizontal
velocity. Continuum-scale boundary conditions usually set a shear velocity on the top and
bottom boundaries to achieve the same effect.

Lees—Edwards boundary conditions can be implemented in the continuum through the
use of the coordinate transformation methodology presented here, by combining a shear
transformation T(t) as in Eq. 23 with periodicity in the Z direction. In the following sections,
we present several numerical examples using Lees-Edwards and non-periodic boundary

conditions. Particular attention is paid to differences in shear banding dynamics produced
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by these two choices of boundary conditions.

1. Cylindrical inclusion

We first consider an initial condition corresponding to a cylindrical defect in the material.
Accordingly, the effective temperature field is initially elevated throughout a cylinder of finite

length oriented along the direction of shear,

2 2
550 K + (200 K) e (7 52) i X ¢ [ax o],
X(X,t=0) = (42)

0 otherwise.

The initial condition is shown in Fig. 5. The diffusion lengthscale is set to [ = %h and
the quasi-static timestep is set to At = 200t,. The grid is of size 256 x 256 x 128. The
simulation is performed to a final value of ¢t = 2 x 10°¢,. To induce shear banding, a shear
transformation of the form Eq. 23 is used with a value of U, = 1077 L/t,, and both clamped
and Lees-Edwards boundary conditions are considered. The clamped simulation takes 13.851
total hours when run with 32 processes on an Ubuntu Linux computer with dual 10-core
2.20 GHz Intel Xeon E5-2630 v4 processors. 10.452 hours are spent in multigrid V-cycles and
28293 total V-cycles are required. The Lees—Edwards simulation takes 10.082 total hours
when run with 32 processes on an Ubuntu Linux computer with dual 10-core 2.20 GHz Intel
Xeon Silver 4114 processors. The total time spent in multigrid V-cycles is 7.393 hours and
28293 total V-cycles are required.

Results for Lees-Edwards and non-periodic boundary conditions are shown in Fig. 6, on
the right and left respectively. The shear banding dynamics in this case are simple, and
correspond to outward nucleation of a single band from the localized cylinder. At ¢ = 5x 10t
in Fig. 6 (a,b), nucleation of the shear band has begun, and there is some spreading in the y
field visible at the caps of the cylinder. By ¢ = 1.25 x 10%,, a prominent system-spanning
shear band has formed, as displayed in Fig. 6 (c,d). In Fig. 6 (e,f) at t = 2 x 10%,, the
shear band continues to grow stronger and thicker. In this case, the dynamics are virtually

identical for the Lees—Edwards and nonperiodic boundary conditions.
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FIG. 5. The initial conditions for the cylindrical inclusion numerical experiments. x;, = 600 K,

a = 0.3, and n = 1.2 in the opacity function in Eq. 37.

2. A randomly fluctuating effective temperature field

We now consider a randomly distributed initial condition in the effective temperature field
X(X,t = 0). We first populate the grid and a shell of ghost points with random variables
X¢(X) using the Box-Muller algorithm. With p, and o, respectively denoting the desired
mean and standard deviation, we perform the convolution

_IX-RJ? _olR|?

g
X(X):WXZe TRy, N= [ e 7, (43)

ReV/ ReV

where V' denotes the set of grid points and V' denotes the extended set of grid points and
ghost points. Equation 43 ensures that the effective temperature value at each point is
normally distributed with mean p, and standard deviation o,. In practice, the sums in
Eq. 43 are performed with a cutoff length scale specified as a multiplicative factor of the
convolution length scale [., and the number of ghost points in V’ is set by the choice of
cutoff length scale. For computational feasibility, we choose a cutoff length of 5., so that
the Gaussian kernel is considered to be zero past this point. In the following studies, a value
of l. = 5h is used, leading to an additional 25 ghost points padding the grid for the purpose
of the convolution.

Simulations are performed for mean values p1,, = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K
with a fixed value of o,, = 15 K for both non-periodic and Lees-Edwards boundary conditions.

The diffusion length scale is set to | = %h, and the quasi-static timestep is set to At = 200¢,.
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FIG. 6. Snapshots of the effective temperature distribution y(X,t). Simple shear deformation
is imposed via a domain transformation. The initial condition in y corresponds to a cylindrical
inclusion as described in Sec. VA1 and shown in Fig. 5. On the left, clamped boundary conditions
in Z are used, while on the right, Lees-Edwards boundary conditions are used. x;, = 600 K in the
opacity function in all subfigures. (a,b) t =5 x 10°t,. a = 0.3 and n = 1.2 in the opacity function.
(c,d) t = 1.25 x 105¢,. a = 0.45 and 5 = 1.55 in the opacity function. (e,f) t = 2 x 10¢,. a = 0.55

and 1 = 1.6 in the opacity function.
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1y = 450 K 1y = 500 K jy =525 K = 550 K fiy =575 K 1y = 600 K
Total time (hours) 95.2948 89.7239 76.9704 82.7853 71.7865 69.1593
V-cycle time (hours) 65.7853 60.5694 48.6470 53.4612 41.7683 40.4283
# of V-cycles 34846 30663 26628 24991 22649 20735
Time/V-cycle (seconds) 6.7964 7.1111 6.5749 7.7012 6.6390 7.0195
Dual 10-core Dual 10-core Dual 10-core Dual 14-core Dual 8-core Dual 10-core
Processor details 2.20 GHz Intel Xeon|2.20 GHz Intel Xeon|2.20 GHz Intel Xeon|1.70 GHz Intel Xeon|2.40 GHz Intel Xeon|2.20 GHz Intel Xeon
E5-2630 v4 E5-2630 v4 Silver 4114 E5-2650L v4 E5-2630 v3 E5-2630 v4

TABLE III. Data describing the total time, total time spent in multigrid V-cycles, total number
of multigrid V-cycles, average time spent per multigrid V-cycle, and processor details for each
randomly initialized simulation. This data applies to the randomly initialized simulations with
non-periodic boundary conditions and simple shear deformation. The number of required multigrid
V-cycles decreases as the background y field increases, likely due to more homogeneous dynamics.

Each simulation uses 32 processes.

The simulations are all conducted on a 512 x 512 x 256 cell grid to a final value of t =
1 x 10%¢,. To induce shear banding, a shear transformation of the form Eq. 23 with a value
of Uy = 107"L/t, is imposed on the domain. Timing details for the non-periodic simulations
are shown in Table III, while timing details for the Lees—Edwards simulations are shown in

Table IV.

The results for this sequence of simulations in the case of non-periodic boundary conditions
are shown in Figs. 7-10. Each figure corresponds to a single snapshot in time, and the mean
increases with the alphabetical labeling. The value of x;, used in the opacity function in
each case is given by p, — 25 K. The initial conditions for the effective temperature field are
shown in Fig. 7. At t = 0, all simulations look essentially the same. The realization of the
noise in each configuration is identical, and each pane is obtained from the previous by a

constant shift in .

By t = 4 x 10°t, in Fig. 8, the simulations with the two lowest values of u, exhibit clear
shear bands with curvature in both the X and Y directions. The simulation with u, = 450 K.
in Fig. 8(a) displays two shear bands that cross each other diagonally near % = 0.5. The
simulation with p, = 500 K in Fig. 8(b) displays only one of these bands, though the second
has begun to nucleate. This single band is also apparent in Fig. 8(c), but it is significantly

weaker. A third nascent band near % = 0 may also be observed.

More details are clear at ¢ = 6 x 10°¢, in Fig. 9. Figure 9(a) is similar to Fig. 8(a), whereas
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FIG. 7. Snapshots of the effective temperature field at ¢ = 0t;. All simulations use non-periodic
boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.25
and 7 = 1.3 is used in the opacity function. xg is set to p, — 25 K in each pane in the opacity

function. Figures (a)—(f) have u, = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 8. Snapshots of the effective temperature field at t = 4 x 10°¢,. All simulations use non-periodic
boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.45
and 7 = 1.75 is used in the opacity function. xy, is set to p, — 25 K in each pane in the opacity
function. Figures (a)—(f) have u, = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 9. Snapshots of the effective temperature field at t = 6 x 10°¢,. All simulations use non-periodic
boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.45
and 7 = 1.75 is used in the opacity function. xy, is set to p, — 25 K in each pane in the opacity
function. Figures (a)—(f) have u, = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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Fig. 9(b) shows further development of the shear bands in Fig. 8(b). Figures 9(c) and (d)
show the development of several flat and thin shear bands centered around % = 0.

Figure 10 (¢ = 10°;) displays clear shear banding across all values of i, and makes clear
the dependence of shear banding structure on f,.. There is one primary band in Fig. 10(a),
with a split near around % ~ —0.5 not present in Fig. 10(b). Figure 10(b) also displays an
additional thin band near Z ~ 0.0 that has not formed in Fig. 10(a). Figure 10(c) displays
several additional bands near % = 0 that form a complex branching pattern. Figure 10(d)
resolves more fine-scale structure in the band near £ ~ 0.25 when compared to Figs. 10(a)-(c)
as if a single band has begun to split, and has more bands near lower values of % Figs. 10(e)
and (f) show several additional thin bands when compared to the previous panels, but they
are earlier in their formation and less prominently displayed.

Taken together, Figs. 7-10 provide qualitative insight into how macroscopic shear banding
dynamics and structure reflect the underlying effective temperature distribution. In a
simulation with small mean, there are few regions susceptible shear band nucleation, most
clearly displayed in the formation of only a single band in the lowest mean simulation. These
nucleation points must connect to form a band, as indicated by the mild curvature seen in
the bands in Figs. 10(a) and (b). As p,, is increased, additional regions of sufficiently high y
exist for band nucleation, curvature decreases, and the number of bands increases. This first
presents itself, as seen in Figs. 7(d)-10(d), as an existing band splitting into multiple. The gap
in the split grows with (i, as seen in Figs. 7(d)-10(d) and Figs. 7(e)-10(e), until it eventually
breaks off into its own band. With high s, as in Figs. 7(e)-10(e) and Figs. 7(f)-10(f), shear
bands can nucleate in many different locations without curvature. The timescale for shear
band development is also more rapid in simulations with low background y field.

The results for an identical sequence of simulations in the case of Lees—Edwards boundary
conditions are displayed in Figs. 11-14. The initial conditions are displayed in Fig. 11, which
differ from those in Fig. 7, as the convolution used to generate the initial distribution wraps
around over the boundary in Z to enforce periodicity.

By t = 4 x 10°, in Fig. 12(a), a single vertical shear band has formed, along with an
additional, weaker vertical band and a similar horizontal band. These bands are also visible
in Fig. 12(b) earlier in their development. Vertical shear bands do not typically form in
continuum simulations with non-periodic boundary conditions in Z, but are frequently seen

in MD simulations [75, 76], indicating that the orientation of shear bands could be strongly
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FIG. 10. Snapshots of the effective temperature field at ¢t = 10%¢,. All simulations use non-periodic
boundary conditions in Z and apply simple shear deformation. For all plots, a value of a = 0.75 and
1 = 2 is used in the opacity function. xi is set to u, — 25 K in each pane in the opacity function.

Figures (a)—(f) have u, = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 11. Snapshots of the effective temperature field at ¢t = 0ts. All simulations use Lees—Edwards
boundary conditions. For all plots, a value of a = 0.25 and n = 1.3 is used in the opacity
function. xpe is set to u, — 25 K in each pane in the opacity function. Figures (a)—(f) have

Hy = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.

35



S i

800K 900K

600 K 700K

FIG. 12. Snapshots of the effective temperature field at ¢t = 4 x 10°¢,. All simulations use Lees—
Edwards boundary conditions. For all plots, a value of a = 0.45 and n = 1.75 is used in the
opacity function. xp, is set to p,, — 25 K in each pane in the opacity function. Figures (a)—(f) have

Hy = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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FIG. 13. Snapshots of the effective temperature field at ¢t = 6 x 10°¢,. All simulations use Lees
Edwards boundary conditions. For all plots, a value of a = 0.45 and n = 1.75 is used in the
opacity function. xp, is set to p,, — 25 K in each pane in the opacity function. Figures (a)—(f) have

Hy = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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1y = 450 K 1y = 500 K jy =525 K = 550 K fiy =575 K 1y = 600 K
Total time (hours) 91.4188 93.9238 81.7296 94.3549 72.8395 68.4994
V-cycle time (hours) 63.5750 64.8320 51.2489 62.8451 44.4758 39.9291
# of V-cycles 34915 30467 26658 24697 22256 20495
Time/V-cycle (seconds) 6.5551 7.6606 6.9209 9.1607 7.1941 7.0137
Dual 10-core Dual 14-core Dual 8-core Dual 10-core Dual 14-core Dual 10-core
Processor details 2.20 GHz Intel Xeon|1.70 GHz Intel Xeon|2.40 GHz Intel Xeon|2.20 GHz Intel Xeon|1.70 GHz Intel Xeon|2.20 GHz Intel Xeon
Silver 4114 v4 E5-2650L v4 E5-2630 v3 E5-2630 v4 E5-2650L v4 E5-2630 v4

TABLE IV. Data describing the total time, total time spent in multigrid V-cycles, total number of
multigrid V-cycles, average time spent per multigrid V-cycle, and the processor details for each
simulation. This data applies to the randomly initialized simulations with Lees—Edwards boundary
conditions. The number of required multigrid V-cycles decreases as the background y field increases,

likely due to more homogeneous dynamics. Each simulation uses 32 processes.

related to the specific boundary conditions used.

Further progression is clear at t = 6 x 105, in Fig. 13. Figure 13(a) is similar to
Fig. 12(a). Figure 13(b) displays significant strengthening of the early-stage bands in
Fig. 12(b). Figs. 13(c) and (d) show the initiation of several shear bands.

Figure 14 shows the results for ¢ = 10%,. Figure 14(a) displays a horizontal band
perpendicular to the vertical band that exhibits significant curvature. Figure 14(b) shows a
similar result, with a thinner vertical band and a thicker, flatter horizontal band. Figure 14(c)
shows similar features, but also displays the development of several additional horizontal
bands extending to the bottom of the simulation domain. Furthermore, the thick horizontal
band in Fig. 14(b) can be seen to split and fracture. In Fig. 14(d), the vertical band has
been almost entirely washed out, and a complex branching pattern of horizontal bands is
seen. Figs. 14(e) and (f) are similar to Fig. 14(d), but they are earlier in their development
and some of the fine-scale features are washed out due to the high background x field. The

agreement with the non-periodic simulations increases strongly as p, is increased.

Figure 14 clearly demonstrates the effect of increasing pi,, with periodic boundary conditions.
In the simulations with lower p,, nucleation of vertical shear bands is more likely, and curved
horizontal bands develop later in the simulation than vertical bands. As p, is increased,
the vertical bands begin to disappear. As in the non-periodic case, the curvature in the
horizontal bands decreases with (. As p, is increased further, the vertical bands disappear

altogether. In this regime, increasing ji,, increases the number of horizontal bands, and the
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FIG. 14. Snapshots of the effective temperature field at ¢ = 10%¢,. All simulations use Lees
Edwards boundary conditions. For all plots, a value of a = 0.75 and n = 2 is used in the opacity
function. xpe is set to u, — 25 K in each pane in the opacity function. Figures (a)—(f) have

Hy = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K respectively.
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qualitative agreement with the nonperiodic results is good. These results suggest that, for

higher s, the effect of periodicity in the Z direction is less significant.

B. Pure shear

As a second example transformation, we now consider pure shear deformation. In metallic
glasses, experimental evidence indicates that pure shear is the primary failure mode under
compressive stress, and several recent experiments have been conducted probing BMGs under
pure shear conditions [77-80]. Pure shear is particularly interesting due to the simplicity of
its implementation in the transformation methodology. To simulate pure shear on a physical
grid, it would be necessary to impose traction boundary conditions on the top, bottom, and
sides, which poses computational difficulties. Within the transformation framework, pure

shear can be implemented using the transformation

0
0 |- (44)
ﬁ
A(t) can be chosen as any monotonically increasing function of time. In the following studies,
we choose A(t) = e, where £ is a simulation parameter that sets the rate of extension and
compression of the x and z axes respectively. For numerical stability, it is important to
choose ¢ small, so that large stresses do not cause divergences in the simulation fields. In our
simulations, we choose £ as a fraction of ¢, which effectively sets the strain at the end of the

simulation.

1.  Gaussian defects

To gain some physical intuition about shear banding dynamics with pure shear boundary
conditions, we first consider an example initial condition in y corresponding to localized

defects in the material. It is expected that diagonal shear bands will nucleate outwards from
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the imperfections. We first define the quantities

0.3,-0.3,0.2),
0.3,0.3,—0.2),

x (=

x

x (—0.1,-0.1,0.1),
x (0.1,0.1,—0.1),

x

0,0,0),
51 :52 :55 - 200,
03 = 94 = 150,

and then take the initial condition in x to be

xX_X;?
L L

5
X (Xt =0) =550 K+ (200 K)> e . (45)
=1

Simulations are performed with periodic and non-periodic boundary conditions in Z on
grids of size 256 x 256 x 128. The X and Y dimensions use periodic boundary conditions
in both cases. The diffusion length scale is set to [ = 3h and the quasi-static timestep is
At = 200t,. £ in Eq. 44 is set to be ﬁ with ¢, = 4 x 10°t4 the total simulation duration,
so that A(ty) = e'/* ~ 1.284. Both periodic and non-periodic boundary conditions are
considered. The periodic simulation is run with 32 processes on an Ubuntu Linux computer
with dual 14-core 1.70 GHz Intel Xeon E5-2650L processors. The total time is 4.721 hours,
the total time spent in multigrid V-cycles is 3.283, and the total number of V-cycles is 11596.
The non-periodic simulation is run with 32 processes on an Ubuntu Linux computer with
dual 10-core 2.20 GHz Intel Xeon E5-2630 processors. The total time is 8.832 hours, the
total time spent in multigrid V-cycles is 6.506 hours, and the total number of V-cycles is
11075.

Results for periodic and non-periodic boundary conditions are shown in Figs. 15 and 16
respectively. The initial conditions are shown in Figs. 15(a) and 16(a). In both Figs. 15(b)
and 16(b) at t = 5 x 10%,, some spreading in the y field is seen near the defects. Shortly
thereafter, the dynamics in the nonperiodic and periodic cases begin to differ dramatically.

At t = 8 x 10%, in Fig. 15(c), three diagonal bands are seen connecting the defects. The

bands become more pronounced at ¢ = 105, in Fig 15(d). This continues into ¢ = 2 x 10°¢
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FIG. 15. Snapshots of the effective temperature distribution x(X,t) for a quasi-static simulation.
Pure shear deformation is imposed via a domain transformation with an initial condition corre-
sponding to a sequence of blips of elevated x lying roughly along the superdiagonal of the simulation
domain. This simulation uses periodic boundary conditions in all three directions. x3g = 550 K
in the opacity function for all panels. (a) t = Ot,;, a = 0.75, n = 1.2. (b) t = 5 x 10%*t,, a = 0.75,
n=12. (c) t=8x 10%;,, a =0.75, 7 = 1.25. (d) t = 10%5, a = 0.75, n — 1.25. (e) t = 2 x 10°¢,

a=04,n=16. (e) t =4 x 10%,, a = 1.1, n = 2.45.
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in Fig. 15(e), along with the addition of diagonal bands perpendicular to the original bands.
Both bands continue to grow larger and stronger by ¢t = 4t x 10°t, in Fig. 15(f).

The deformation dynamics with non-periodic boundary conditions are significantly differ-
ent. By t = 8 x 10%, in Fig. 16(c), diagonal bands have started to nucleate off of each defect
in a direction roughly perpendicular to the first bands formed in the periodic simulation. By
t = 10°t, in Fig. 16(d), this nucleation has grown more prominent, and an increase in the
background Y field is seen across the simulation. At times t = 2 x 105, and t = 2.5 x 10,
in Figs. 16(e) and 16(f) respectively, the qualitative structure remains the same, but the
background y field continues to increase. Unlike in the periodic case, true system-spanning

shear bands do not fully form.

2. A randomly fluctuating effective temperature field

In this section, we consider the same sequence of random initializations as in Sec. V A 2,
but now subject to pure shear deformation. Simulations are performed across values of
1y = 450 K, 500 K, 525 K, 550 K, 575 K, and 600 K with a fixed value of o, = 15 K. The
diffusion length scale is set to %h and the quasi-static timestep is set to At = 200t,. All
simulations are conducted on a 512 x 512 x 256 cell grid. A pure shear transformation of
the form Eq. 44 is used with A(t) = €% and a value of £ = ﬁ with ¢, = 2 x 10% so that
A(ty) = et/* =~ 1.284. Simulations are performed with fully periodic boundary conditions
in all directions; non-periodic simulations produce qualitatively similar differences as in the

case of simple shear. In all figure panels, x4 is set to be p,, — 25 K. Timing data for the

simulations is reported in Table V.

The results are shown in Figs. 17-20, with the initial condition shown in Fig. 17. All
simulations undergo an increase in x until the formation of diagonal shear bands begins.
Much like the defect simulations seen in the previous section, shear bands nucleate diagonally
at roughly 45° angles to the X-Y plane. As in the simple shear simulations, distributions in
x with higher mean values have slower dynamics. The structural effect of varying j,, is most
easily seen in Fig. 20. As p, increases, the number of shear bands vastly increases, forming a
cross-hatched pattern throughout the domain. The cross-hatching becomes more regular and

more finely spaced with higher values of p,.
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600 K 700K 800K 900K

FIG. 16. Snapshots of the effective temperature distribution x(X,t) for a quasi-static simulation.
Pure shear deformation is imposed via a domain transformation with an initial condition corre-
sponding to a sequence of blips of elevated x lying roughly along the superdiagonal of the simulation
domain. This simulation uses non-periodic boundary conditions in Z and is periodic in the X and
Y directions. X3, = 550 K in the opacity function in all panels. (a) t = 0t;, a = 0.75, n = 1.2. (b)
t =5x 103, a=0.75, 1= 1.2. (¢c) t = 10%,, a = 0.75, n = 1.45. (d) t = 1.5 x 10%;, a = 0.75,

n=145. (e) t =4 x 10%,, a = 1.75, n = 1.75.
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FIG. 17. Snapshots of the effective temperature field at t = 0t; with pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of
a = 0.25 and 7 = 1.3 is used in the opacity function, and xu, is set to p, — 25 K. Figures (a)—(f)
have 1, = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 18. Snapshots of the effective temperature field at t = 3x 10%¢, with a pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of
a = 0.55 and 7 = 1.5 is used in the opacity function, and xu, is set to p, — 25 K. Figures (a)—(f)
have 1, = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 19. Snapshots of the effective temperature field at t = 6x 10°¢, with a pure shear transformation
imposed on the domain. All simulations use periodic boundary conditions. For all plots, a value of
a =0.75 and 7 = 1.6 is used in the opacity function, and xy, is set to p, — 25 K. Figures (a)—(f)
have u, = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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FIG. 20. Snapshots of the effective temperature field at ¢ = 1.5 x 10°¢, with a pure shear
transformation imposed on the domain. All simulations use periodic boundary conditions. For all
plots, a value of a = 1.35 and = 1.5 is used in the opacity function, and xy, is set to p, — 25 K.

Figures (a)—(f) have u, = 450 K, 500 K, 525 K, 550 K, 575 K, 600 K respectively.
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iy = 450 K iy = 500 K py =525 K iy = 550 K fy =575 K iy = 600 K

Total time (hours) 232.7589 171.3655 159.3944 129.3347 164.1213 206.7765

V-cycle time (hours) 176.7667 125.4595 115.4887 81.0119 114.6882 143.3524
# of V-cycles 66214 63871 62263 59750 57772 55149
Time/V-cycle (seconds) 9.6107 7.0734 6.6774 4.8811 7.1467 9.3577
Dual 10-core Dual 10-core Dual 10-core Dual 16-core Dual 14-core Dual 14-core

Processor 2.20 GHz Intel Xeon |2.20 GHz Intel Xeon|2.20 GHz Intel Xeon|2.10 GHz Intel Xeon|1.70 GHz Intel Xeon|1.70 GHz Intel Xeon

E5-2630 v4 E5-2630 v4 Silver 4114 v4 E5-2683 v4 E5-2650L v4 E5-2650L v4

TABLE V. Data describing the total time, total time spent in multigrid V-cycles, total number
of multigrid V-cycles, average time spent per multigrid V-cycle, and processor details for each
simulation. This data applies to the randomly initialized simulations with periodic boundary
conditions and pure shear deformation. The number of required multigrid V-cycles decreases as the
background y field increases, likely due to more homogeneous dynamics. Each simulation uses 32

processes.

VI. CONCLUSION

In this work, we derived the equations of hypo-elastoplasticity on a fixed reference domain
which can be mapped to a physically deforming material through a time-varying linear
transformation T(¢). The difference between this frame and the Lagrangian frame was shown,
and the utility of this frame in implementing complex boundary conditions such as the Lees—
Edwards conditions used in molecular dynamics and pure shear in a fully periodic setting
was demonstrated. The quasi-static projection algorithm was derived in the reference frame
and its convergence to the standard method was shown as the level of discretization increases.
Several numerical examples were considered in the STZ model of amorphous plasticity. In
particular, for a randomly-distributed initial condition in the effective temperature field, the
dependence of shear banding dynamics on the mean of the distribution was discussed under
conditions of simple shear and pure shear. Our work also highlights that the direction of
shear bands (e.g. horizontal versus vertical in simple shear) can be strongly influenced by
boundary conditions.

With the simple implementation of Lees-Edwards conditions afforded by the transfor-
mation method, boundary conditions can now be made equivalent in MD and continuum
modeling. The development of a method to compute a precise matching between atomic
configurations in molecular dynamics and effective temperature distributions in continuum

simulations is a promising direction of future research. The ability to do so would place
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internal state variables in plasticity models (such as the effective temperature in the STZ
model) on a firmer theoretical footing. In addition, hybrid computational approaches could
be developed, where an MD simulation could first be used to compute an initial condition
for a significantly larger scale continuum simulation. This type of approach would combine
the physical accuracy of MD with the capability of continuum simulations to simulate large
system sizes and long times. As an added benefit, our approach enables the study of the effect

of periodic boundary conditions in general, independent of the relevance of these settings to

MD.

So far, our implementations are restricted to cases where the material fills the entire
computational domain, and loading is applied via planar boundary conditions, or via the
coordinate transformation framework. However, the methods presented here could be
generalized to materials with free boundaries, using the level set method [81, 82] to track the
material boundary. Methods to do this have already been implemented in two dimensions [33,
56, 83], and the same methods could be used in principle in three dimensions. However, it
is a challenging computational task, since it requires extensive modifications to the finite-
difference stencils near the material boundary. In particular, since some grid points will lie
outside the material, the geometric multigrid method is no longer well-suited for solving the
projection step, since it relies on a regular arrangement of grid points. It may be necessary to
use algebraic multigrid approaches or Krylov-based linear solvers. Nevertheless this remains
a high priority for future work, since it would open up many new directions, such as studying
three-dimensional cavitation [11, 84], simulating mode III fracture [85], and predicting the

topography of fracture surfaces [86-88].

20



Appendix A: Advective derivative calculation

Consider a scalar field ¢(x, t)

as follows using the chain rule,

v 83) &(TX, t)
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=) =

—1
= ¢(TX, t) + (vTT‘T + (a"gt
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Appendix B: Linear system for simple shear

Let V= (U, V,W)"
the form
oU ow
oU ow oV
(C:D), = (a—Y + Ubta—y 8_X> ;

ov
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0X

)

= ¢(TX,t). We can compute the advective derivative of ¢

. For a simple shear transformation as given in Eq. 23, C : D takes



The above set of equations leads to the linear system (Eqgs. 27 & 28) for the velocity field
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Discretization of the second-derivative terms in Eqs. B7-B9 using the finite differences in

Sec. III B enables application of the geometric multigrid method to solve for U, V', and W.

Appendix C: Linear system for pure shear

For a pure shear transformation of the form Eq. 44 with A(t) = € as in the main text,

C : D takes the form

(C:D),, =AVx-V+2u (5 + gg) (C1)
(C:D),, = u( Efgg + _gtng() (C2)
(C:D)yy = p <e%tg—g + —%th;) (C3)
(C:D),, =AVx -V + QMg—l‘i (C4)
(C:D)yy=p <e§tg—‘; + e—ftg—?j) (C5)
(C:D)yy =AVx -V +2u (g—g — g) (C6)



The above set of equations leads to the linear system (Eqgs. 27 & 28) for the velocity field
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