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Abstract

In many modern imaging applications the desire to reconstruct high resolution
images, coupled with the abundance of data from acquisition using ultra-fast
detectors, have led to new challenges in image reconstruction. A main chal-
lenge is that the resulting linear inverse problems are massive. The size of the
forward model matrix exceeds the storage capabilities of computer memory, or
the observational dataset is enormous and not available all at once. Row-action
methods that iterate over samples of rows can be used to approximate the solu-
tion while avoiding memory and data availability constraints. However, their
overall convergence can be slow. In this paper, we introduce a sampled limited
memory row-actionmethod for linear least squares problems, where an approx-
imation of the global curvature of the underlying least squares problem is used
to speed up the initial convergence and to improve the accuracy of iterates. We
show that this limited memory method is a generalization of the damped block
Kaczmarz method, and we prove linear convergence of the expectation of the
iterates and of the error norm up to a convergence horizon. Numerical exper-
iments demonstrate the bene!ts of these sampled limited memory row-action
methods for massive 2D and 3D inverse problems in tomography applications.
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1. Introduction

Recent advancements in imaging technology have led to many new challenging mathematical
problems for image reconstruction.One problem that has gained signi!cant interest, especially
in the age of big data, is that of image reconstructionwhen the number of unknown parameters
is huge (i.e., images with very high spatial resolution) and the size of the observation dataset is
massive and possibly growing [1, 2]. In streaming data problems, not only is it undesirable to
wait until all data have been collected to obtain a reconstruction, but also partial reconstructions
may be needed to inform the data acquisition process (e.g., for optimal experimental design or
model calibration).

We consider linear inverse problems of the form

b = Axtrue + ε, (1)

where xtrue ∈ Rn is the desired solution, A ∈ Rm×n models the forward process, b ∈ Rm con-
tains observed measurements, and ε ∈ Rm represents additive noise. We investigate sampled
limited memory row-action methods to approximate a solution to the corresponding mas-
sive least squares (LS) problem, minx‖Ax− b‖22. For A with full column rank, the goal is
to approximate the unique solution,

xLS = argmin
x

‖Ax− b‖22 = (A%A)−1A%b. (2)

The LS problem is ubiquitous and core to computational mathematics and statistics. How-
ever, for massive problems where both the number of unknown parameters n and the size of
the observational dataset m are massive or dynamically growing, standard techniques based
on matrix factorization or iterative methods based on full matrix-vector multiplications (e.g.,
Krylov subspace methods [3] or randomized methods [4, 5]) are not feasible. Problems of
such nature appear more frequently and are plentiful, for instance in classi!cation problems
[6], data mining [7–9], 3D molecular structure determination [10, 11], and super-resolution
imaging [12, 13].

Row-action methods such as the Kaczmarz method have emerged as an attractive alterna-
tive due to their scalability, simplicity, and quick initial convergence [14–21]. Furthermore,
for ill-posed inverse problems such as in tomography reconstruction, row-action methods are
widely used and exhibit regularizing properties [22, 23]. They are commonly known as alge-
braic reconstruction techniques [24–28]. Basically, row-action methods are iterative methods
where each iteration only requires a sample of rows of A and b, thus circumventing issues
with memory or data access. The most widely-known row-action methods are the Kaczmarz
and block Kaczmarz methods [24], where only one row or one block of rows of A and b are
required at each iteration. Various extensions have been proposed to include random sampling
and damping parameters (e.g., [22, 29]), and many authors have studied the convergence prop-
erties of these methods [18–21, 30]. The literature on Kaczmarz-type methods is vast, and we
refer the interested reader to overviews such as [31, 32] and references therein. In section 2
we provide some connections to previous works in this area, but !rst we present the problem
setup.

To mathematically describe the sampling process, let {Wk} be an independent and identi-
cally distributed (i.i.d.) sequence of m× ! random matrices uniformly distributed on the set{
W(1), . . . , W(M)

}
, where W(i) are such that EWkWk

% = βI for some β > 0. Then, at the

kth iteration we denote Ak = W%
k A and bk = W%

k b. In this paper, we focus on a row-action
method called sampled limitedmemory for LS (TMJN-4), where given an arbitrary initial guess
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x0 ∈ Rn, the kth TMJN-4 iterate is de!ned as

xk = xk−1 − BkA
%
k (Akxk−1 − bk) , (3)

with

Bk =
(
α−1
k Ck +M%

k Mk

)−1
and Mk = [A%

k−r, . . . , A
%
k ]

%. (4)

Here {Ck} is a sequence of matrices such that Bk is positive de!nite, {αk} is sequence of
damping parameters, and the parameter r ∈ N0 is a ‘memory parameter’ where we de!neAk−r

with negative index as an empty matrix. Hence, Mk increases in size within the !rst r itera-
tions, and the global curvature of the problem is approximated using previous samples of the
data.

Various choices for W can be used, e.g., see [33]. Notice that when the realizations of W
are sparse matrices, only information from a few rows of A is extracted at each iteration, and
Ak contains partial information of A. A straightforward choice ofW, which we consider here,
is where Wk is chosen such that Ak contains ! selected rows of A where β = 1/M. With this
sampling scheme, the TMJN-4 method is a generalization of the damped block Kaczmarz
method, which is obtained when Ck = I and r = 0. The TMJN-4 method can also be inter-
preted as a stochastic approximation method [34]. Using the properties ofW described above,
one can show that the LS problem in (2) is equivalent to the following stochastic optimization
problem,

argmin
x

E‖W% (Ax− b) ‖22. (5)

Stochastic approximation methods for (5) may have the form xk = xk−1 − Bk∇ fWk
(xk−1),

where fWk
(x) = ‖Wk

% (Ax− b) ‖22 and {Bk} is some sequence of positive semi-de!nitematri-
ces. For the particular choice of Bk de!ned in (4), we see that the TMJN-4 method is a
stochastic approximation method. Furthermore, since samples of rows of A are used at each
iteration, randomized row-action methods can be characterized as stochastic approximation
methods applied to (5).

Although our proposed TMJN-4 method can be interpreted as both a row-action and a
stochastic approximationmethod, the main distinction of TMJN-4 compared to existing meth-
ods to approximate (2) is that TMJN-4 exhibits favorable initial and asymptotic convergence
properties for constant and vanishing step sizes, respectively. Kaczmarz methods have fast ini-
tial convergence,but for inconsistent systems iterates converge asymptotically to aweighted LS
solution rather than the desired LS solution [17]. On the other hand, stochastic gradientmethods
(where Bk = αkI) are guaranteed to converge asymptotically to the LS solution but can have
erratic initial convergence. We show linear convergence of the expectation of TMJN-4 iter-
ates, and we prove linear convergence of the expected squared error norm up to a ‘convergence
horizon’ for constant damping parameter. Furthermore, it can be shown that TMJN-4 iterates
with decaying damping parameter converge asymptotically to the LS solution [33, 35]. The
power of the TMJN-4 method is revealed in our numerical examples, where we demonstrate
the performanceof theTMJN-4method formassive and streaming tomographic reconstruction
problems.

An outline of the paper is as follows. In section 2, we give an overview of previous work
on row-action methods and make connections to and distinctions from existing methods. In
section 3, we provide convergence results for TMJN-4 iterates. Numerical results are pre-
sented in section 4, where we compare the performance of TMJN-4 to existing methods, and
conclusions are provided in section 5.
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2. Previous works on row-action methods

Different choices of Bk in (3) yield different well-known row-action methods. The most
computationally simple choice is Bk = αkI, which gives the standard stochastic gradient
method,

xk = xk−1 − αkA
%
k (Akxk−1 − bk) .

Under mild conditions, the stochastic gradient method converges to the LS solution [33, 35],
but convergence can be very slow and depends heavily on the choice of the step size αk

[36, 37].We remark thatαk has different interpretations depending on the scienti!c community.
It is often referred to as the learning rate in machine learning, the step size in classical opti-
mization, and the relaxation parameter in algebraic reconstruction techniques for tomography.
Notice that for TMJN-4 iterates, the damping parameter plays the role of the step size.

Stochastic Newton or stochastic quasi-Newtonmethods have also been proposed to acceler-

ate convergence [6, 33, 38, 39]. For the stochastic Newtonmethod,we can letBk = αk

(
A%

k Ak

)†

in (3), and we get the block Kaczmarz method,

xk = xk−1 − αk

(
A%

k Ak

)†
A%

k (Akxk−1 − bk)

= xk−1 − αkA
†
k (Akxk−1 − bk) ,

(6)

where we have used the property that
(
A%

k Ak

)†
Ak

% = A
†
k. Thus, we see that the block Kacz-

marz method is nothing more than a stochastic Newton method. Note that for αk = 1, we get
the standard block Kaczmarz method, and linear convergence to within a convergence horizon
has been shown in [19, 40]. For a decaying αk, the block Kaczmarz method converges to the
solution of a weighted LS problem, rather than to the desired LS solution [26].

For the special case where W is a uniform random vector on the columns of the identity
matrix, each iteration only requires one row of A. More precisely, let ai ∈ R1×n denote the ith
row of A and let τ be a random variable with uniform distribution on the set {1, . . . ,m}, then
Wk

%A = aτ (k). In this case, stochastic Newton iterates in (6) are identical to the randomized
Kaczmarz method,

xk = xk−1 − αk
aτ (k)xk−1 − bτ (k)

‖a%τ (k)‖22
a%τ (k), (7)

which has been studied extensively, see e.g., [17, 21, 25–27, 41–45].
The Kaczmarz method was introduced for cyclic control (i.e., τ (k) = ((k− 1) mod m)+ 1)

and αk = 1, where for an invertible matrix A, it was !rst shown in 1937 that the iterates con-
verge to the unique solution [46]. Extensions of the Kaczmarz method to rectangular systems
have been considered. Tanabe showed convergence for consistent systems in 1971 [44], and
Herman provided results for Kaczmarz methods with relaxation parameters αk '= 1 [47]. Var-
ious theoretical convergence properties of the Kaczmarz algorithm have been investigated for
inconsistent systems. For a decaying step size (strong underrelaxation), iterateswill converge to
a weighted LS solution x̃ = argminx‖D−1 (Ax− b) ‖22 where D ∈ Rm×m is a diagonal matrix
with diagonal elements di = ‖ai‖22, see [26]. Extended Kaczmarz methods for inconsistent
systems have also been proposed and investigated [48, 49].

A randomized Kaczmarz method developed for consistent overdetermined systems was
shown to have an expected linear convergence rate that depends on the condition number of
A [20, 21]. For a constant step size, these iterates will converge linearly to the weighted LS
solution to within what is known as a convergence horizon, which accounts for the variance in
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the iterates [17, 18]. It is worth noting that a special case of TMJN-4whereWk
%A = aτ (k) and

Ck = aτ (k)C
−1aτ (k)

% C− αkMk
%Mk for any symmetric positive de!nite matrix C can be inter-

preted as a randomized Kaczmarz method with a mismatched adjoint, for which expected
convergence up to a convergence horizon was shown in [50].

To address problems that arise when some rows have small norm (i.e., a small denominator
in (7)), Andersen and Hansen [22] in 2014 considered a variant of the Kaczmarz method to
include a damping term. They showed a connection to proximal gradientmethods and provided
convergence properties under cyclic control. When the blocks Ak are ill-conditioned, comput-
ing the search direction in (6) can become numerically unstable and a similar idea can be used.
A damping term can be introduced in the sample Hessian, which leads to the damped block
Kaczmarz method,

xk = xk−1 −
(
α−1
k I+ A%

k Ak

)−1
A%

k (Akxk−1 − bk) . (8)

Notice that including the damping parameter eliminates the need for a step size parameter,
although one could still be included.

To speed up convergence, stochastic quasi-Newton methods use the current and any pre-

vious samples of A to produce a matrix Bk that approximates the global curvature
(
A%A

)−1
.

For general convex optimization, stochastic quasi-Newton methods that use an LBFGS type
update have been introduced and analyzed [39, 51, 52]. These methods have been investigated
for nonlinear problems; however, for linear problems better approximations can be obtained
by exploiting the fact that the Hessian is constant. One row-action method for linear problems
is the randomized recursive LS method where the kth iterate, which is given by

xk = xk−1 −

(
k∑

i=1

A%
i Ai

)†

A%
k (Akxk−1 − bk) , (9)

is the minimum norm solution of

min
x

∥∥∥∥∥∥∥




A1

...
Ak



 x−




b1
...
bk





∥∥∥∥∥∥∥

2

2

. (10)

This equivalency is shown in appendix A and implies that after sampling allM blocks exactly
once, we get xM = xLS. The disadvantage is that the randomized recursive LS algorithm
is not computationally feasible for very large problems because of the large linear solve
required at each iteration and the cost to store

∑k
i=1 A

%
i Ai, see [13, 53, 54]. Notice that if

Ck =
∑k−r−1

i=1 A%
i Ai and αk = 1 in (3), we recover the randomized recursive LS algorithm.

Thus, the TMJN-4 iterates (3) can be interpreted as a limited memory variant of the recursive
LS algorithm. On the other hand, if Ck = α−1

k In the TMJN-4 method can be interpreted as a
generalization of the damped block Kaczmarz method.

It should be noted that other methods exist for solving very large LS problems, but many
have limitations that prohibit their use for massive or streaming data problems. For example,
for problems where m is small enough to allow storage of an m× m matrix, the Sher-
man–Woodbury identity can be used to get the exact solution [55]. In our problems, m and
n are on the order of hundreds of millions. Randomized methods such as Blendenpik [4] and
LSRN [56] are effective for cases wherem ( n or n ( m, (assuming matrixA has a large gap
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in the singular values). Nevertheless, these methods require full matrix-vector-multiplications
and do not work for streaming problems.

Next, for a speci!c choice of Wk, we make a connection to the sampled limited mem-
ory Tikhonov (TMJN5JL) method described in [13] to approximate a Tikhonov regularized
solution,

xtik = argmin
x

‖Ax− b‖22 + λ2‖Lx‖22 =
∥∥∥∥

[
A

λL

]
x−

[
b

0

]∥∥∥∥
2

2

, (11)

where λ ∈ R+ is the regularization parameter and the regularization matrix L ∈ Rn×n is
invertible5. In particular, let Wk be de!ned as in section 1 and de!ne random variable

W̃k =




Wk 0m×n

0n×!
1√
M
I



 ,

where W̃k has the property thatEW̃kW̃
%
k = 1

M
I. Then,TMJN-4 applied to (11) withCk = L%L

gives iterates,

xk = xk−1 −
((

α−1
k +

rλ2

M

)
L%L+M%

k Mk

)−1(
A%

k (Akxk−1 − bk)+
λ2

M
L%Lxk−1

)
, (12)

which are equivalent to TMJN5JL iterates with a !xed regularization parameter. The signif-
icance of this equivalence is that the analysis and results that we present in the next section
can be extended to the Tikhonov problem. It should be noted that a good choice of λ may not
be known in advance and must be estimated. Methods to update the Tikhonov regularization
parameter within the TMJN5JL method have been studied in [13], but a theoretical analysis
for such cases remains a topic of ongoing research.

3. Convergence properties of TMJN-4

In this section we analyze the convergence properties of the TMJN-4 method. In particular,
we will show that it exhibits favorable initial convergence properties without the memory bur-
den of having to save all previous samples (e.g., as in randomized recursive LS [13, 58]). This
is possible because TMJN-4 iterates can utilize previous samples to better approximate the
Hessian A%A. We show that for a !xed damping parameter α > 0, memory level r = 0, and
Ck = I, TMJN-4 iterates exhibit linear convergence of the expectation of the iterates and lin-
ear convergence of the L2-error up to a convergence horizon. This type of analysis is essential
for understanding stochastic approximation methods [16, 18, 19, 21, 54], and it may reveal
potential trade-offs between solution accuracy and speed of convergence based on the damp-
ing parameter. For example, such analyses have been proved for the Kaczmarz method (for
vanishing step size) and for the block Kaczmarz method (for step size one) [16, 18, 19, 21],
but to the best of our knowledge results have not been proved for the damped block Kaczmarz
method. For clarity of presentation, all proofs have been relegated to appendix B.

The followingde!nitionswill be used throughout the paper.Wewill use the functionsλmin(·)
and λmax(·) that provide the smallest and largest eigenvalues of a matrix, and write

5 This assumption is not required [57] but is used here for notational simplicity.
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Amin = min
k

{
λmin(A

%W(i)
(
W(i)

)%
A) > 0

}
and Amax = max

k
λmax(A

%W(i)
(
W(i)

)%
A),

where the minimum is across all of the M different realizations of Wk that lead to a positive
minimum eigenvalue, while the maximum is across all of theM realizations. For a !xed α > 0
we de!ne the matrices

Bk(α) = α
(
I+ αA%

k Ak

)−1
and B = EBk(α)A

%
k Ak = I− EBk(α)/α.

For simplicity we will often write Bk instead of Bk(α). It is clear that B is symmetric posi-
tive semi-de!nite. In fact, it is positive de!nite with ‖B‖2 < 1 when A has full column-rank
(see lemma B.1), in which case we de!ne

x̂ = argmin
x

‖Bx− EBkA
%
k bk‖22 = B−1

EBkA
%
k bk. (13)

Note that all of the expectations in this paper are understood to be with respect to the joint
distribution of the sequence {Wk} conditional on the noise.

Theorem 3.1. Let A ∈ Rm×n have full column-rank. For arbitrary initial vector x0 ∈ Rn

and damping parameter α > 0, de!ne

xk = xk−1 − Bk(α)A
%
k (Akxk−1 − bk)

Then:

(a) E xk → x̂, or more precisely,

‖E xk − x̂‖2 ! ρk‖x0 − x̂‖2,

where ρ = ‖EBk(α)/α‖2 < 1.

(b) The L2-error around x̂ can be bounded by

E‖xk − x̂‖22 ! (1− 2c)k ‖x0 − x̂‖22 + α2c−1σ2, (14)

where 0 < 1− 2c < 1, with c = λmin (B) /(1+ αAmax) and σ = E‖A%
k (Akx̂− bk)‖2.

The!rst part of the theorem shows that as k→∞, xk is an asymptotically unbiased estimator
of x̂ with a linear convergence rate. The second part shows linear convergence of the L2-error
up to a convergence horizon. For the case where α→ 0, the constant in the !rst term of (14)
approaches one, indicating a slowing linear convergence rate, while the second term in (14)
goes to zero, i.e., the convergence horizon gets smaller. This is because α2/λmin (B)→ 0 as
α→ 0, since λmin (B) > 0 as shown in lemma B.1. In general the value for σ will depend on
various factors including the amount of noise in b, the de!nition of the blocks Ak and bk, and
the value of α.

Having shown that xk converges to x̂ in L2 as k→∞ and α→ 0, the next question is how
much x̂ differs from the LS solution xLS. To answer this question we let PA = A(A%A)−1A%

andQA = I− PA be, respectively, the orthogonal projections onto the column space of A and
its orthogonal complement. We then have the following equivalent de!nition of x̂:

7
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Figure 1. Illustration of the convergence horizon for TMJN-4. The gray dotted line con-
tains the iterates xk and the convergence horizon is denoted by the blue disk. By theorem
3.1, the TMJN-4 iterates converge to within a convergence horizon of x̂. xLS is provided
for comparison with x̂ (see lemma 3.2).

x̂ = argmin
x

‖EBkA
%
k Ak (x− xLS)− EBkA

%
k W

%
k QAb)‖22

= xLS + B−1 (EBkA
%
k W

%
k )QAb. (15)

In particular, x̂ = xLS when b belongs to the column space of A, and in this case, it is easy to
see that the constant σ = 0 in (14). The following result provides a bound for ‖x̂− xLS‖2.

Lemma 3.2. If A ∈ Rm×n has full column-rank, then

‖x̂− xLS‖2 ! α
M(1+ αAmin)Amax

(1+ αAmax)Amin
C ‖QAb‖2,

where C = E ‖A%
k Wk‖2 + ‖(A%A)−1‖2 ‖A‖2 E ‖A%

k Ak‖2.

It is important to notice the relationship between the damping parameter α and the upper
bound in lemma 3.2. The bound is smaller for smaller values of α, which makes sense in light
of the asymptotic property that xk → xLS a.s. for a decaying damping parameter α (see [33]).
However, there is a trade-off between the convergence rate and the precision of iterates (i.e.,
the bias) that depends on α: as α→ 0, we get more accurate approximations, i.e., x̂→ xLS in
L2. On the other hand, for larger α the convergence is faster at the cost of a larger convergence
horizon.

In summary, we have shown that with a !xed damping parameter, the TMJN-4 iterates will
converge in L2 linearly to within a horizon of x̂, and the expected value of the iterates converges
to x̂. A pictorial illustration of this convergence behavior is provided in !gure 1.

This trade-off between quick initial convergence that comes with using a constant damping
parameter at the cost of solution accuracy has been observed in related stochastic optimization
methods in the literature, see e.g., [22, 59]. For row-action methods theoretical results sup-
porting the observed quick initial convergence behavior can be found in [30]. It has also been
observed that more accurate solutions can be obtained using a decaying damping parameter,
but then convergence can be quite slow (sub-linear) [60, 61]. Thus, it is often practical to use a
constant damping parameter to obtain quick initial convergence and then switch to a decaying
parameter to obtain higher accuracy. It may be desirable to provide convergence results for
more general sequences {Ck}. However, our proofs rely on various properties of the sequence

8
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Bk which are ful!lled for Ck = I (see lemma B.1). Determining a wider class of sequences is
a topic of future work.

4. Numerical results

In this section we !rst illustrate the convergence behavior of our proposed TMJN-4method in
a small simulation study. The goal of the !rst experiment is to illustrate how different memory
levels and damping parameters affect the convergence of TMJN-4. We also compare TMJN-4
to existing row-actionmethods and provide a numerical investigation into the sensitivity toward
the damping parameter/step size. Then we discuss some of the computational considerations
when solving massive problems and investigate the performance of our method on very large
tomographic reconstruction problems.

4.1. An illustrative example

In the !rst numerical experimentwe use a smaller example to illustrate some of the key features
of the TMJN-4 method. We let A ∈ R1000×100 have random entries from a standard normal
distribution. We further assume that xtrue = [1, . . . , 1]% and the simulated observations b are
generated as in (1) where ε is white noise with noise level 1%; that is, ‖ε‖2/‖Axtrue‖2 = 0.01.
ThematrixA is assumed to be sampled inM = 100 blocks, each with block size ! = 10, which

corresponds to sampling matricesW(i) =
[
0100×10(i−1), I, 0100×10(100−i)

]%
.

First we illustrate the convergence behavior investigated in theorem 3.1 for different con-
stant damping parameters α. In !gure 2 we provide relative reconstruction errors computed as
‖xk − x̂‖2/‖x̂‖2 for various damping factors fromα = 0.001 to α = 10 on a log–log scale. We
repeatedly run TMJN-4 with random sampling for 100 epochs and with memory level r = 0.
We observe that larger values of α have favorable initial convergence, but then stabilize at a
larger relative error. On the other hand, smaller values of α have a slower initial convergence,
but to a smaller relative error. This illustrates the trade-off between fast initial convergence and
solution accuracy, as discussed in section 3. Furthermore, for variousαwe provide the relative
difference between x̂ and xLS in !gure 3. We notice that for small α the relative difference is
within machine precision while slowly increasing for α > 10−1.

Next, we investigate how the initial convergence is affected by the choice of the memory
parameter r. Here, we !x α = 1 and choose memory levels r = 0, 2, 4, 6, and 8. We run our
TMJN-4 method for 20 iterations and provide the median relative reconstruction errors for
100 repeated runs in !gure 4. The errors are computed with respect to the LS solution, i.e.,
‖xk − xLS‖2/‖xLS‖2. We empirically observe that with higher memory levels we get faster
initial convergence.

We also provide a comparison of TMJN-4with r = 0 to other row-action methods, includ-
ing the sampled or batch gradient TH method and the online limited memory BFGS PMCGHT
method [52] with memory level 10 (i.e., storing the 10 previously computed sampled gradi-
ent vectors). In particular, we are interested in the sensitivity of the algorithms with respect to
the step size. For different constant step sizes/damping factors from α = 10−5 to α = 103, we
computed the reconstruction error norm at k = 100 (i.e., corresponding to one epoch) relative
to x̂. Although reconstruction errors could be computed relative to xLS, we note that the relative
error between xLS and x̂ is negligible (see !gure 3). In !gure 5 we provide the median relative
reconstruction error norms along with the 5–95th percentiles after repeating the experiment
100 times. Notice that the plot is on a log–log scale. We observe that the TH method has just
a tiny ‘window’ of α’s for which results have small relative reconstruction errors. The win-
dow for PMCGHT is larger and is centered around step size α = 1, which is expected, see [62].

9
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Figure 2. Comparison of median reconstruction errors, over 100 runs and relative to x̂,
for different (!xed) damping parameters α in TMJN-4 on a log–log scale.

Figure 3. Relative difference between the weighted LS solution x̂ and the desired LS
solution xLS for various α.

However, compared to TH and PMCGHT, the TMJN-4 method provides good reconstructions
for a much wider range of damping factors, which is a very attractive property of the TMJN-4
method.

4.2. Computational considerations

Recall that the TMJN-4method can be interpreted as a row-actionmethod, which by construc-
tion alleviates many of the computational bottlenecks (i.e., data access and memory require-
ments per iteration are signi!cantly reduced). However, for many realistic problems where n is
on the order of millions or billions (e.g., in tomography), the computational cost of each itera-
tion can still be large. We remark that a noteworthy distinction of our numerical investigations

10
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Figure 4. Comparison of median reconstruction errors, over 100 runs and relative to
xLS, for different memory levels in TMJN-4 with α = 1.

Figure 5. Comparison of median reconstruction errors along with the 5–95th percentiles
over 100 runs and relative to x̂ for different (!xed) step sizes in TMJN-4, sampled gra-
dient, and online limited memory BFGS. All results correspond to accessing one epoch
of the data.

compared to previously published works on row-action methods, such as [19, 21, 22], is that
we consider very large imaging problems with hundreds of millions of unknowns and focus
on the initial convergence (one epoch) rather than the ‘asymptotic’ convergence (hundreds of
epochs) behavior. Next we address some considerationswith respect to computational cost and
comparisons with other methods.

The TMJN-4 iterates can be written as xk = xk−1 − sk, where

sk =
(
α−1
k Ck +M%

k Mk

)−1
A%

k (Akxk−1 − bk) ,

whereMk = [Ak−r
% , . . . ,Ak

%]%. Thus, each iteration consists of two main steps,

(a) Accessing model block Ak and corresponding data bk, and

(b) Computing the update step sk.

11
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The computational costs for the !rst step are often overlooked, but since data are usu-
ally stored on a hard-drive, data access can be time-consuming. Furthermore, depending on
the application, constructing the corresponding matrix block Ak can also be computationally
expensive. In data-streaming problems one may not have control over when and which blocks
of data become available at any given time.

For the second step and for symmetric Ck, solving for sk can be done ef!ciently by !rst
noticing that sk is the solution to the LS problem,

sk = argmin
s

∥∥∥∥∥∥∥∥∥∥∥∥





Ak−r

...
Ak−1

Ak

1
√
αk

Lk




s−





0
...
0

Akxk−1 − bk
0





∥∥∥∥∥∥∥∥∥∥∥∥

2

2

, (16)

where Ck = Lk
%Lk. Hence, any ef!cient LS solver that exploits the structure in (16) can be

used to compute sk. Here, we utilize LSQR for damped LS, see [63], where a very ef!cient
implementation is available if Lk = I. It is worth mentioning that another LS reformulation
can be made to solve for xk directly, where the right-hand side becomes dense and will depend
on αk and Lk. That is,

xk = argmin
x

∥∥∥∥∥∥∥∥∥∥∥∥





Ak−r

...
Ak−1

Ak

1
√
αk

Lk




x−





Ak−rxk−1

...
Ak−1xk−1

bk
1

√
αk

Lkxk−1





∥∥∥∥∥∥∥∥∥∥∥∥

2

2

. (17)

Next, we remark further on the choice of αk. For the TH method—as illustrated in
!gure 5—an acceptable constant step size αk is hard to come by and is often chosen such
that αk , 1. For PMCGHT we choose the ‘natural’ constant step size αk = 1, with a possi-
ble exception at the early iterations. Since PMCGHT is equivalent to TH in the !rst iteration,
PMCGHTmay suffer from large step sizes while building up its memory. To compensate for this
we can ramp up the value of αk in early iterations, e.g., αk =

kα
r+1 for the !rst r + 1 iterations

for !xed α where r is the memory parameter.
Inmany structured problems and in particular for tomographyproblems—where each block

matrix corresponds to a single projection image (i.e., one angle)—Ak is extremely sparse with
the number of non-zero elements in Ak on the order of n. Note that in some cases, matrix Ak

does not even need to be constructed, but function evaluations can be used within iterative
methods [64]. Hence, for extremely large-scale problems where memory storage becomes an
issue,TMJN-4 can take advantage of any sparsity or structure. In contrast, thePMCGHTmethod
requires storing two vectors of length n for each memory level, and these vectors are likely
dense so the storage becomes cumbersome for large n.

4.3. Large-scale tomographic reconstruction

Next we present two numerical experiments that demonstrate the performance of TMJN-4 for
solvingmassive tomography reconstructionproblems. Tomographyhas becomevery important
in many applications, including medical imaging, seismic imaging, and atmospheric imaging

12
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Figure 6. Two-dimensional tomography problem with missing wedge of 60◦. True
image of a walnut slice is provided in (a) and the observed sinogram in (b) corresponds
to angles between −60◦ and +60◦ at 0.3 degree steps.

[25, 42]. The goal in computerized tomography is to reconstruct the interior of an object given
observed, exterior measurements. However, recent advances in detector technology have led to
faster scan speeds and the collection of massive amounts of data. Furthermore, in dynamic or
streaming data scenarios (e.g., in microCT reconstruction), partial reconstructions are needed
to inform the data acquisition process. The TMJN-4 method can be used to address both of
these problems. The !rst example we consider is a very large, limited angle 2D tomography
reconstruction problem that is underdetermined, and the second example is a 3D streaming
reconstruction problem that is ultimately overdetermined.

For ill-posed problems such as tomography, semiconvergence of iterative methods is a con-
cern whereby early iterates converge quickly to a good approximation of the solution but later
iterates become contaminated with errors. Iterative regularization techniques (i.e., early ter-
mination of the iterative process) are often used to obtain a reasonable solution [57]. For
row-action methods applied to tomography problems, semi convergence properties have been
investigated [23], but due to notoriously slow convergence (after fast initial convergence), the
ill effects of semiconvergence tend to appear only after multiple epochs of the data. Thus, we
do not include additional regularization in the following results.

4.3.1. Two-dimensional limited-angle tomography. First we consider a parallel-beam x-ray
tomography example, where the true image represents a cross-section of a walnut. In [65] the
authors provide an image reconstruction computed from 1200 projections using !ltered back
projection. Our ‘ground truth’ image provided in !gure 6(a) is a cleaned image of the !ltered

back projection reconstruction. For this problem, xtrue ∈ R22962 , and we simulate observations
by taking 400 projections at angles between −60◦ and +60◦ at 0.3 degree steps, with 2296
rays for each angle. This can be interpreted as a missing data problem where we have a miss-

ing wedge of 60◦. In this example, A ∈ R400·2296×22962 . The observed sinogram provided in
!gure 6(b)was generated as in (1) with noise level 0.01.

13
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Figure 7. Relative reconstruction error norms at each iteration of TH, PMCGHT, and
TMJN-4.

Figure 8. Image reconstructions for TH, PMCGHT and TMJN-4, along with true image
and with subimages provided below. The area of the subimage is denoted by the enclosed
dotted region on the true image.

Here W%A is random cyclic uniformly chosen from 400 blocks of size 2296× 22962.
We apply the TMJN-4 method with memory level r = 2 and ramped-up damping parameter
with α = 1. Relative reconstruction errors computed as ‖xk − xtrue‖2/‖xtrue‖2 are provided in
!gure 7. We provide comparisons to the THmethod with step size αk = 10−5 and the PMCGHT
methodwithmemory level 20 and ramped-up step size withα = 1.We found that bothmethods
required a small initial step size to prevent reconstruction errors from getting very large.

Image reconstructions and subimages, along with the true image, are provided in !gure 8.
We observe that after one epoch of the data, theTMJN-4 reconstruction contains sharper details
and fewer artifacts than the TH and PMCGHT reconstructions. As described in section 4.2, it
is dif!cult to provide a fair comparison of methods, especially in terms of the memory level
and the step length. Careful tuning of the step length for TH and obfgs can lead to reconstruc-
tions that are similar in quality to the TMJN-4 reconstruction, but that is very time consuming
especially for these massive problems. Also, as observed in section 4.1, there may be only a
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Figure 9. For the 3D tomography example, we provide orthogonal slices of the true
image phantom (left) along with four of the observed projection images (right).

Figure 10. Relative reconstruction errors per iteration of TH, PMCGHT, and TMJN-4
for the 3D tomography example.

small window of good values. If good parameters are known in advance,PMCGHT can produce
good solutions, but if they are not known a priori, then poor results, or even divergence of the
relative reconstruction errors, were often observed.

4.3.2. Three-dimensional streaming tomography. Next we demonstrate the power of
TMJN-4 for three-dimensional tomography reconstruction. For very large problems where
data access is a computational bottleneck and for problems where data is being streamed and
partial reconstructions are needed, row-action methods are the only feasible option. Here we
show that sampled limited memory methods can be a good alternative.

In this problem setup, the true image is a 511× 511× 511 modi!ed 3D Shepp–Logan
phantom.We generate 1000 projection images of size 511× 511 taken from randomdirections,
which are samples from the uniform distribution over the unit sphere. The raytracing matrix
A is of size 261 121 000× 133 432 831 and is certainly never constructed, but matrix blocks
are generated using a modi!cation of the tomobox code [66] which represents parallel beam
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Figure 11. For the 3D tomographic reconstruction problem, we provide x, y, and z slices
of absolute error images for TH, PMCGHT, and TMJN-4 reconstructions after one epoch
of the data. The relative reconstruction error norm for each slice is provided in the bottom
right corner of each image.

tomography.White noise was added to the projection images such that the noise level over all
projection images is 0.001. Orthogonal slices of the true 3D phantom, along with four of the
observed, projection images are provided in !gure 9.

We run the TMJN-4 method with r = 0 and damping factor αk = 1. After one epoch of
the data (i.e., the cost of accessing all data once), we compare the TMJN-4 reconstruction to
the stochastic gradient and online LBFGS reconstructions. For TH, we use step length αk =

0.0001, and for PMCGHT, we use αk = 1 and memory level 10. Relative reconstruction error
norms per iteration are provided in !gure 10. Notice that even in early iterations, where only
a small fraction of the data has been accessed, TMJN-4 reconstructions have smaller relative
reconstruction errors than TH and PMCGHT.

We computed absolute error images, which correspond to absolute values of the difference
between the reconstruction and the true image, and we provide three slices (in the x, y, and
z direction) for TH, PMCGHT, and TMJN-4 in !gure 11. The absolute errors are provided in
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inverted color map so that black corresponds to large errors. All images use the same color
map. We observe that absolute error images for TH are signi!cantly worse than those from
PMCGHT and TMJN-4 reconstructions, with absolute error images for TMJN-4 having fewer
artifacts.

5. Conclusions

In this paper, we investigate sampled limited memory methods for solving massive inverse
problems, such as those that arise in modern 2D and 3D tomography applications. Limited
memory row-action methods are relevant in scenarios where fullmatrix-vector-multiplications
with coef!cient matrix A are not possible or too computationally expensive. This includes
problems where A is so large that it does not !t in computer memory and problems where
the data is being streamed. The main theoretical contribution is that, contrary to existing row-
action and stochastic approximation methods, the TMJN-4 method has both favorable initial
and asymptotic convergence properties. Additional bene!ts of TMJN-4 include faster initial
convergence due to the use of information from previous iterates and convergence for a wider
range of step length or damping parameters. We provide theoretical convergence results, and
numerical examples from massive tomography reconstruction problems show the potential
impact of these methods.

Acknowledgments

We gratefully acknowledge support by the National Science Foundation under grants NSF
DMS 1723048 (L Tenorio), NSF DMS 1723005 (M Chung, J Chung) and NSF DMS 1654175
(J Chung). J Chung and M Chung would also like to acknowledge the Alexander von Hum-
boldt Foundation for their generous support. The authors would like to thank the anonymous
reviewers for pointing out important connections in the literature.

Appendix A. Randomized recursive LS method

In this section, we show that the kth iterate of the randomized recursive LS method de!ned
in (9) is the minimum norm solution of LS problem in (10). We prove this by induction. For
k = 1 and with x0 = 0, (9) yields x1 = A

†
1b1. Now let us assume that

xk−1 =

(
k−1∑

i=1

A%
i Ai

)†



A1

...
Ak−1





% 


b1
...

bk−1



 , (A.1)

then from (9), we get

xk = xk−1 −

(
k∑

i=1

A%
i Ai

)†

A%
k (Akxk−1 − bk)

=

(
k∑

i=1

A%
i Ai

)† [( k∑

i=1

A%
i Ai

)

xk−1 − A%
k (Akxk−1 − bk)

]

(A.2)
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where we are using the fact that xk−1 =

(∑k
i=1 A

%
i Ai

)† (∑k
i=1A

%
i Ai

)
xk−1 since

xk−1 ∈ R
(∑k−1

i=1 A
%
i Ai

)
⊆ R

(∑k
i=1 A

%
i Ai

)
. A similar argument can be used to

show that
(∑k−1

i=1 A
%
i Ai

)(∑k−1
i=1 A

%
i Ai

)†




A1

...
Ak−1





% 


b1
...

bk−1



 =




A1

...
Ak−1





% 


b1
...

bk−1



 since




A1

...
Ak−1





% 


b1
...

bk−1



 ∈ R
(∑k−1

i=1 A
%
i Ai

)
, and we arrive at

xk =

(
k∑

i=1

A%
i Ai

)† [( k−1∑

i=1

A%
i Ai

)

xk−1 + A%
k bk

]

=

(
k∑

i=1

A%
i Ai

)†



A1

...
Ak





% 


b1
...
bk



 .

Appendix B. Proofs for section 3

We continue to use the notation and assumptions from sections 1 and 3.

Lemma B.1. If A ∈ Rm×n has full column-rank, then for any !xed α > 0:

(a) ‖EBk/α‖2 < 1 with upper bound

‖EBk/α‖2 !
Mo

M
+

M −Mo

M(1+ αAmin)
< 1,

where Mo is the number of eigenvalues λmin(A
%W(i)(W(i))%A) equal to zero over the M

differentW(i),

(b) B is symmetric positive de!nite,

(c) ‖BkA
%
k Ak‖2 ! αAmax/(1+ αAmax), and

(d) 0 < αAmin/[M(1+ αAmin)] ! λmin(B) ! λmax(B) < (1+ αAmax)/2.

Proof.

(a) For simplicity we use the notation Ãi = (W(i))%A. By Jensen’s inequality

‖EBk/α‖2 = ‖E (I+ αA%
k Ak)

−1‖2 ! E ‖(I+ αA%
k Ak)

−1‖2 ! 1.

The last inequality becomes an equality only if ‖(I+ αA%
k Ak)

−1‖2 = 1 a.s., in which case

λmax(A
%
k Ak) = 0 across all realizations of Wk. That is, ‖(I+ α Ã%

i Ãi)
−1‖2 = 1 for all i.

Furthermore, an eigenvector v for the largest eigenvalue λ = 1 of E (I+ αA%
k Ak)

−1 is

also an eigenvector of all (I+ α Ã%
i Ãi)

−1 with eigenvalue 1. That is, Ã%
i Ãi v = 0 for all i.

This is not possible because EA%
k Ak = β A%A. Hence, ‖Bk/α‖2 < 1. This implies

that Mo < M and the upper bound in (a) follows again from ‖EBk/α‖2 !
E ‖(I+ αA%

k Ak)
−1‖2.

(b) It is clear thatB is symmetric positive semi-de!nite becauseB = I− EBk/α. It is positive
de!nite by (a).

(c) The upper bound follows from the identity BkA
%
k Ak = I− (I+ αA%

k Ak)
−1.
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(d) From (c),

λmax(B) !
αAmax

1+ αAmax
<

1+ αAmax

2
.

The lower bound follows from (a):

λmin(B) " 1− E ‖Bk/α‖2 " 1−
Mo

M
−

M −Mo

M(1+ αAmin)

=

(
M −Mo

M

)
αAmin

1+ αAmin
"

αAmin

M(1+ αAmin)
.

#

Proof of theorem 3.1. We use (Fk) to denote the natural !ltration induced by the sequence
{Wk}: Fk = σ(W j, j ! k).

(a) Using the recursion for xk, we obtain

E
[
xk − x̂| Fk−1

]
= xk−1 − x̂− E

[
BkA

%
k (Akxk−1 − bk) | Fk−1

]

= xk−1 − x̂− B
(
xk−1 − B−1

EBkA
%
k bk

)

= (I− B)
(
xk−1 − x̂

)
= (EBk/α)

(
xk−1 − x̂

)
,

and therefore

E xk − x̂ = (EBk/α)(E xk−1 − x̂) = (EBk/α)
k(x0 − x̂),

where the last equality comes from the fact that Ak are i.i.d. Using lemma B.1(a) we get

‖Exk − x̂‖2 ! ‖EBk/α‖k2‖x0 − x̂‖2 → 0.

Thus, E xk → x̂ linearly.

(b) Next we show that xk converges linearly to a convergence horizon of x̂. The recursion of
xk leads to

‖xk − x̂‖22 = ‖xk−1 − x̂‖22 − 2
(
xk−1 − x̂

)%
BkA

%
k (Akxk−1 − bk)+ ‖BkA

%
k (Akxk−1 − bk)‖22.

We !nd an upper bound for the last term using lemma B.1(a):

‖BkA
%
k (Akxk−1 − bk)‖22 = ‖BkA

%
k Ak(xk−1 − x̂)+ BkA

%
k (Akx̂− bk)‖22

! 2‖BkA
%
k Ak(xk−1 − x̂)‖22 + 2‖BkA

%
k (Akx̂− bk)‖22

! 2‖BkA
%
k Ak(xk−1 − x̂)‖22 + 2α2‖A%

k (Akx̂− bk)‖22,

and by lemma B.1(c)

‖BkA
%
k Ak(xk−1 − x̂)‖22 !

αAmax

1+ αAmax
(xk−1 − x̂)%BkA

%
k Ak(xk−1 − x̂).

The last two bounds yield
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‖xk − x̂‖22 ! ‖xk−1 − x̂‖22 − 2
(
xk−1 − x̂

)%
BkA

%
k (Akxk−1 − bk)

+
2αAmax

1+ αAmax

(
xk−1 − x̂

)%
BkA

%
k Ak

(
xk−1 − x̂

)
+ 2α2‖A%

k (Akx̂− bk)‖22,

whose conditional expectation and lemma B.1(d) give us

E
[
‖xk − x̂‖22 | Fk−1

]
!‖xk−1 − x̂‖22 − 2

(
xk−1 − x̂

)%
B
(
xk−1 − x̂

)

+
2αAmax

1+ αAmax

(
xk−1 − x̂

)%
B
(
xk−1 − x̂

)
+ 2α2

E‖A%
k (Akx̂− bk)‖22

=‖xk−1 − x̂‖22 −
2

1+ αAmax

(
xk−1 − x̂

)%
B
(
xk−1 − x̂

)

+ 2α2
E‖A%

k (Akx̂− bk)‖22

! (1− 2c) ‖xk−1 − x̂‖22 + 2α2
E‖A%

k (Akx̂− bk)‖22,

where c = λmin (B) /(1+ αAmax). Then, the expected squared normof the error can be bounded
using the fact that 0 < 1− 2c < 1 by lemma B.1(d)

E‖xk − x̂‖22 ! (1− 2c)kE‖x0 − x̂‖22 + 2α2
E‖A%

k (Akx̂− bk)‖22
k−1∑

i=0

(1− 2c)i

! (1− 2c)k‖x0 − x̂‖22 + α2c−1
E‖A%

k (Akx̂− bk)‖22.

#

Proof of lemma 3.2. By (15), x̂− xLS = B−1CQAb, where

C = EBkA
%
k W

%
k .

Since QA projects onto the orthogonal complement of the column space of A, we have

B−1CQA = (B−1C− (A%A)−1A%)QA,

and also using lemma B.1(c)

‖B−1C− (A%A)−1A%‖2 = ‖B−1
E (Bk − αI)A%

k W
%
k + αB−1

EA%
k W

%
k − (A%A)−1A%‖2

! ‖B−1‖2‖EαBkA
%
k AkA

%
k W

%
k ‖2 + ‖αβB−1A% − (A%A)−1A%‖2

!
α2Amax ‖B−1‖2
1+ αAmax

E ‖A%
k W

%
k ‖2 + ‖αβB−1 − (A%A)−1‖2 ‖A‖2.

Furthermore,

‖αβB−1 −
(
A%A

)−1‖2 ! ‖B−1‖2‖αβA%A− B‖2‖
(
A%A

)−1‖2

and

‖αβA%A− B‖2 = ‖E(αI− Bk)A
%
k Ak‖2 !

α2Amax

1+ αAmax
E‖A%

k Ak‖2.
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Using the upper bound for ‖B−1‖ from lemma B.1(d) we can now write

‖B−1C− (A%A)−1A%‖2 !
α2Amax

1+ αAmax
‖B−1‖2 C !

αAmax

1+ αAmax

M(1 + αAmin)

Amin
C

where C = E ‖A%
k Wk‖2 + ‖(A%A)−1‖2 ‖A‖2 E ‖A%

k Ak‖2. The upper bound !nally follows
from

‖x̂− xLS‖2 = ‖B−1CQAb‖2 ! ‖B−1C− (A%A)−1A%‖2 ‖QAb‖2.
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