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Abstract

In many modern imaging applications the desire to reconstruct high resolution
images, coupled with the abundance of data from acquisition using ultra-fast
detectors, have led to new challenges in image reconstruction. A main chal-
lenge is that the resulting linear inverse problems are massive. The size of the
forward model matrix exceeds the storage capabilities of computer memory, or
the observational dataset is enormous and not available all at once. Row-action
methods that iterate over samples of rows can be used to approximate the solu-
tion while avoiding memory and data availability constraints. However, their
overall convergence can be slow. In this paper, we introduce a sampled limited
memory row-action method for linear least squares problems, where an approx-
imation of the global curvature of the underlying least squares problem is used
to speed up the initial convergence and to improve the accuracy of iterates. We
show that this limited memory method is a generalization of the damped block
Kaczmarz method, and we prove linear convergence of the expectation of the
iterates and of the error norm up to a convergence horizon. Numerical exper-
iments demonstrate the benefits of these sampled limited memory row-action
methods for massive 2D and 3D inverse problems in tomography applications.
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1. Introduction

Recent advancements in imaging technology have led to many new challenging mathematical
problems for image reconstruction. One problem that has gained significant interest, especially
in the age of big data, is that of image reconstruction when the number of unknown parameters
is huge (i.e., images with very high spatial resolution) and the size of the observation dataset is
massive and possibly growing [1, 2]. In streaming data problems, not only is it undesirable to
wait until all data have been collected to obtain a reconstruction, but also partial reconstructions
may be needed to inform the data acquisition process (e.g., for optimal experimental design or
model calibration).
We consider linear inverse problems of the form

b:AXlrue+€v (1)

where X € R” is the desired solution, A € R™*" models the forward process, b € R™ con-
tains observed measurements, and € € R” represents additive noise. We investigate sampled
limited memory row-action methods to approximate a solution to the corresponding mas-
sive least squares (LS) problem, miny|[Ax — b||3. For A with full column rank, the goal is
to approximate the unique solution,

XLs = argmin |[Ax — b||3 = (ATA)'ATb. )

The LS problem is ubiquitous and core to computational mathematics and statistics. How-
ever, for massive problems where both the number of unknown parameters n and the size of
the observational dataset m are massive or dynamically growing, standard techniques based
on matrix factorization or iterative methods based on full matrix-vector multiplications (e.g.,
Krylov subspace methods [3] or randomized methods [4, 5]) are not feasible. Problems of
such nature appear more frequently and are plentiful, for instance in classification problems
[6], data mining [7-9], 3D molecular structure determination [10, 11], and super-resolution
imaging [12, 13].

Row-action methods such as the Kaczmarz method have emerged as an attractive alterna-
tive due to their scalability, simplicity, and quick initial convergence [14—21]. Furthermore,
for ill-posed inverse problems such as in tomography reconstruction, row-action methods are
widely used and exhibit regularizing properties [22, 23]. They are commonly known as alge-
braic reconstruction techniques [24—28]. Basically, row-action methods are iterative methods
where each iteration only requires a sample of rows of A and b, thus circumventing issues
with memory or data access. The most widely-known row-action methods are the Kaczmarz
and block Kaczmarz methods [24], where only one row or one block of rows of A and b are
required at each iteration. Various extensions have been proposed to include random sampling
and damping parameters (e.g., [22, 29]), and many authors have studied the convergence prop-
erties of these methods [18-21, 30]. The literature on Kaczmarz-type methods is vast, and we
refer the interested reader to overviews such as [31, 32] and references therein. In section 2
we provide some connections to previous works in this area, but first we present the problem
setup.

To mathematically describe the sampling process, let {W;} be an independent and identi-
cally distributed (i.i.d.) sequence of m x ¢ random matrices uniformly distributed on the set
{W(l), R W(M)}, where W@ are such that EW,W, | = SI for some [ > 0. Then, at the
kth iteration we denote Ay = W, A and b, = W, b. In this paper, we focus on a row-action
method called sampled limited memory for LS (s1imLS), where given an arbitrary initial guess
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Xo € R”, the kth s1imLS iterate is defined as

X = X1 — BrA; (Agxi—1 — by, (3)
with

By = (0 'Co+M/My) ' and My =1[A],, ..., A1 (4)

Here {C,} is a sequence of matrices such that By is positive definite, {4} is sequence of
damping parameters, and the parameter » € Ny is a ‘memory parameter’ where we define A;_,
with negative index as an empty matrix. Hence, My increases in size within the first r itera-
tions, and the global curvature of the problem is approximated using previous samples of the
data.

Various choices for W can be used, e.g., see [33]. Notice that when the realizations of W
are sparse matrices, only information from a few rows of A is extracted at each iteration, and
Ay contains partial information of A. A straightforward choice of W, which we consider here,
is where Wy is chosen such that A, contains ¢ selected rows of A where § = 1/M. With this
sampling scheme, the s1imLS method is a generalization of the damped block Kaczmarz
method, which is obtained when C;, = I and r = 0. The s1imLS method can also be inter-
preted as a stochastic approximation method [34]. Using the properties of W described above,
one can show that the LS problem in (2) is equivalent to the following stochastic optimization
problem,

argmin E|W' (Ax — b) 3. 5)

Stochastic approximation methods for (5) may have the form x; = x;_| — BV fw, (Xx—1),
where fw, (x) = |[W;' (Ax — b) ||3 and {By } is some sequence of positive semi-definite matri-
ces. For the particular choice of By defined in (4), we see that the s1imLS method is a
stochastic approximation method. Furthermore, since samples of rows of A are used at each
iteration, randomized row-action methods can be characterized as stochastic approximation
methods applied to (5).

Although our proposed s1imLS method can be interpreted as both a row-action and a
stochastic approximation method, the main distinction of s1imLS compared to existing meth-
ods to approximate (2) is that s1imLS exhibits favorable initial and asymptotic convergence
properties for constant and vanishing step sizes, respectively. Kaczmarz methods have fast ini-
tial convergence, but for inconsistent systems iterates converge asymptotically to a weighted LS
solution rather than the desired LS solution [17]. On the other hand, stochastic gradient methods
(where B, = oyI) are guaranteed to converge asymptotically to the LS solution but can have
erratic initial convergence. We show linear convergence of the expectation of s1imLS iter-
ates, and we prove linear convergence of the expected squared error norm up to a ‘convergence
horizon’ for constant damping parameter. Furthermore, it can be shown that s1imLS iterates
with decaying damping parameter converge asymptotically to the LS solution [33, 35]. The
power of the s1imLS method is revealed in our numerical examples, where we demonstrate
the performance of the s1 imLS method for massive and streaming tomographic reconstruction
problems.

An outline of the paper is as follows. In section 2, we give an overview of previous work
on row-action methods and make connections to and distinctions from existing methods. In
section 3, we provide convergence results for s1imLS iterates. Numerical results are pre-
sented in section 4, where we compare the performance of s1imLS to existing methods, and
conclusions are provided in section 5.



Inverse Problems 36 (2020) 054001 J Chung et al

2. Previous works on row-action methods

Different choices of By in (3) yield different well-known row-action methods. The most
computationally simple choice is By = a4, which gives the standard stochastic gradient
method,

Xe = X1 — Ay (Agxe_ — by

Under mild conditions, the stochastic gradient method converges to the LS solution [33, 35],
but convergence can be very slow and depends heavily on the choice of the step size oy
[36,37]. We remark that o has different interpretations depending on the scientific community.
It is often referred to as the learning rate in machine learning, the step size in classical opti-
mization, and the relaxation parameter in algebraic reconstruction techniques for tomography.
Notice that for s1imLS iterates, the damping parameter plays the role of the step size.

Stochastic Newton or stochastic quasi-Newton methods have also been proposed to acceler-
ate convergence [6, 33, 38, 39]. For the stochastic Newton method, we can let By = oy (A,(TAk)T
in (3), and we get the block Kaczmarz method,

X = X1 — O (AkTAk)TAkT (Arxi—1 — by) 6)

=X — @kA;t (Agxi—1 — b)),
where we have used the property that (AkTAk)TAkT = A,TC. Thus, we see that the block Kacz-
marz method is nothing more than a stochastic Newton method. Note that for o = 1, we get
the standard block Kaczmarz method, and linear convergence to within a convergence horizon
has been shown in [19, 40]. For a decaying oy, the block Kaczmarz method converges to the
solution of a weighted LS problem, rather than to the desired LS solution [26].

For the special case where W is a uniform random vector on the columns of the identity
matrix, each iteration only requires one row of A. More precisely, let a; € R denote the ith
row of A and let 7 be a random variable with uniform distribution on the set {1, ..., m}, then
W, TA = a-. In this case, stochastic Newton iterates in (6) are identical to the randomized
Kaczmarz method,

X1 — br
%aj(k), (7)
||aT<k)||2

which has been studied extensively, see e.g., [17, 21, 25-27, 41-45].

The Kaczmarz method was introduced for cyclic control (i.e., 7(k) = ((k — 1) mod m) + 1)
and oy = 1, where for an invertible matrix A, it was first shown in 1937 that the iterates con-
verge to the unique solution [46]. Extensions of the Kaczmarz method to rectangular systems
have been considered. Tanabe showed convergence for consistent systems in 1971 [44], and
Herman provided results for Kaczmarz methods with relaxation parameters oy # 1 [47]. Var-
ious theoretical convergence properties of the Kaczmarz algorithm have been investigated for
inconsistent systems. For a decaying step size (strong underrelaxation), iterates will converge to
a weighted LS solution X = arg min,||D~' (Ax — b) ||3 where D € R"™*" is a diagonal matrix
with diagonal elements d; = ||a;] %, see [26]. Extended Kaczmarz methods for inconsistent
systems have also been proposed and investigated [48, 49].

A randomized Kaczmarz method developed for consistent overdetermined systems was
shown to have an expected linear convergence rate that depends on the condition number of
A [20, 21]. For a constant step size, these iterates will converge linearly to the weighted LS
solution to within what is known as a convergence horizon, which accounts for the variance in

X = Xk—1 — O
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the iterates [17, 18]. It is worth noting that a special case of s1imLS where WA = a, ) and
C, = aT(k)C’laTT(k)C — oM My, for any symmetric positive definite matrix C can be inter-
preted as a randomized Kaczmarz method with a mismatched adjoint, for which expected
convergence up to a convergence horizon was shown in [50].

To address problems that arise when some rows have small norm (i.e., a small denominator
in (7)), Andersen and Hansen [22] in 2014 considered a variant of the Kaczmarz method to
include a damping term. They showed a connection to proximal gradient methods and provided
convergence properties under cyclic control. When the blocks Ay are ill-conditioned, comput-
ing the search direction in (6) can become numerically unstable and a similar idea can be used.
A damping term can be introduced in the sample Hessian, which leads to the damped block
Kaczmarz method,

_ —1
Xy = Xj—1 — (Oék lI + A;Ak) AZ (Aka_l — bk) . (8)

Notice that including the damping parameter eliminates the need for a step size parameter,
although one could still be included.
To speed up convergence, stochastic quasi-Newton methods use the current and any pre-

vious samples of A to produce a matrix By that approximates the global curvature (ATA) -
For general convex optimization, stochastic quasi-Newton methods that use an LBFGS type
update have been introduced and analyzed [39, 51, 52]. These methods have been investigated
for nonlinear problems; however, for linear problems better approximations can be obtained
by exploiting the fact that the Hessian is constant. One row-action method for linear problems
is the randomized recursive LS method where the kth iterate, which is given by

k i
X = Xp1 — (Z A,TAi> Al (Axi_1 — by, )
i=1
is the minimum norm solution of

N b ]|
min|| | 1| x— | . (10)

Ay be |,
This equivalency is shown in appendix A and implies that after sampling all M blocks exactly
once, we get Xy = Xrs. The disadvantage is that the randomized recursive LS algorithm
is not computationally feasible for very large problems because of the large linear solve
required at each iteration and the cost to store ZLI AiTA,-, see [13, 53, 54]. Notice that if
C, = Zf;ffl A,TA,- and a4 = 1 in (3), we recover the randomized recursive LS algorithm.
Thus, the s1imLS iterates (3) can be interpreted as a limited memory variant of the recursive
LS algorithm. On the other hand, if C; = ak’lln the s1imLS method can be interpreted as a
generalization of the damped block Kaczmarz method.

It should be noted that other methods exist for solving very large LS problems, but many
have limitations that prohibit their use for massive or streaming data problems. For example,
for problems where m is small enough to allow storage of an m X m matrix, the Sher-
man—Woodbury identity can be used to get the exact solution [55]. In our problems, m and
n are on the order of hundreds of millions. Randomized methods such as Blendenpik [4] and
LSRN [56] are effective for cases where m >> n or n > m, (assuming matrix A has a large gap
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in the singular values). Nevertheless, these methods require full matrix-vector-multiplications
and do not work for streaming problems.

Next, for a specific choice of Wy, we make a connection to the sampled limited mem-
ory Tikhonov (s1imTik) method described in [13] to approximate a Tikhonov regularized
solution,

2

. (In

2

; A b
xgk = argmin_ [|Ax = b|3 + N|[Lx|3 = H L\L} T { 0}

where A € RT is the regularization parameter and the regularization matrix L € R™" is
invertible’. In particular, let Wy be defined as in section 1 and define random variable

~ Wk 0m><n
= 1
Wk 0n x WI ’

where W, has the property that EW, W, = 1. Then, s1imLS applied to (11) with C; = LL
gives iterates,

A2 - A2
Xp = Xp1 — ((akl + rﬁ) L'L + MkTMk) (A/j (Arxp—1 —bp) + MLTka1> , (12)

which are equivalent to s1imT1ik iterates with a fixed regularization parameter. The signif-
icance of this equivalence is that the analysis and results that we present in the next section
can be extended to the Tikhonov problem. It should be noted that a good choice of A may not
be known in advance and must be estimated. Methods to update the Tikhonov regularization
parameter within the s1imTik method have been studied in [13], but a theoretical analysis
for such cases remains a topic of ongoing research.

3. Convergence properties of s1imLS

In this section we analyze the convergence properties of the s1imLS method. In particular,
we will show that it exhibits favorable initial convergence properties without the memory bur-
den of having to save all previous samples (e.g., as in randomized recursive LS [13, 58]). This
is possible because s1imLS iterates can utilize previous samples to better approximate the
Hessian AT A. We show that for a fixed damping parameter o > 0, memory level r = 0, and
Ci =1, s1imLsS iterates exhibit linear convergence of the expectation of the iterates and lin-
ear convergence of the L>-error up to a convergence horizon. This type of analysis is essential
for understanding stochastic approximation methods [16, 18, 19, 21, 54], and it may reveal
potential trade-offs between solution accuracy and speed of convergence based on the damp-
ing parameter. For example, such analyses have been proved for the Kaczmarz method (for
vanishing step size) and for the block Kaczmarz method (for step size one) [16, 18, 19, 21],
but to the best of our knowledge results have not been proved for the damped block Kaczmarz
method. For clarity of presentation, all proofs have been relegated to appendix B.

The following definitions will be used throughout the paper. We will use the functions Ay, (+)
and Apax(+) that provide the smallest and largest eigenvalues of a matrix, and write

3 This assumption is not required [57] but is used here for notational simplicity.
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Anin = min { Anin(ATWO (W) '8) > 0f - and - A = max A& WO (WO) " 4),

where the minimum is across all of the M different realizations of W, that lead to a positive
minimum eigenvalue, while the maximum is across all of the M realizations. For a fixed v > 0
we define the matrices

Bi(o) = a(I+aAA,)" and B =EBua)A]Ac =I—EBi(a)/a.
For simplicity we will often write By instead of By(«). It is clear that B is symmetric posi-

tive semi-definite. In fact, it is positive definite with ||B|, < 1 when A has full column-rank
(see lemma B.1), in which case we define

X = argmin |[Bx — EB;A, by |5 = B~ 'EBA/ by. (13)
X

Note that all of the expectations in this paper are understood to be with respect to the joint
distribution of the sequence {W;} conditional on the noise.

Theorem 3.1. Let A € R™*" have full column-rank. For arbitrary initial vector X, € R"
and damping parameter o > 0, define

Xe = X1 — Br(@) A} (Agxe_ — by)

Then:

(a) Ex; — X, or more precisely,

IEx — X[|2 < p[Jx0 — X

25

where p = ||[EBy(o)/ a2 < 1.
(b) The L*-error around X can be bounded by

Elx — X3 < (1 —20)" [[xo = X[5 + a’c ™', (14)

where 0 < 1 —2¢ < 1, with ¢ = Amin (B) /(1 + @A) and o = E|A] (AiX — by)| 2.

The first part of the theorem shows that as k — 00, X; is an asymptotically unbiased estimator
of X with a linear convergence rate. The second part shows linear convergence of the L2-error
up to a convergence horizon. For the case where o — 0, the constant in the first term of (14)
approaches one, indicating a slowing linear convergence rate, while the second term in (14)
goes to zero, i.e., the convergence horizon gets smaller. This is because a? /Ay, (B) — 0 as
a — 0, since A\pip (B) > 0 as shown in lemma B.1. In general the value for ¢ will depend on
various factors including the amount of noise in b, the definition of the blocks A and by, and
the value of a.

Having shown that x; converges to X in L? as k — co and a — 0, the next question is how
much X differs from the LS solution x;s. To answer this question we let Py = AATA) AT
and Qa = I — P, be, respectively, the orthogonal projections onto the column space of A and
its orthogonal complement. We then have the following equivalent definition of X:

7
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Figure 1. Illustration of the convergence horizon for s1imLS. The gray dotted line con-
tains the iterates x; and the convergence horizon is denoted by the blue disk. By theorem
3.1, the s1imLS iterates converge to within a convergence horizon of X. x s is provided
for comparison with X (see lemma 3.2).

X = argmin |[EBA] A; (x — x5) — EB:A; W, Q,b)|3
X
=xis + B~ (EBA] W, ) Q,b. (15)

In particular, X = x5 when b belongs to the column space of A, and in this case, it is easy to
see that the constant o = 0 in (14). The following result provides a bound for ||X — x5 ||>.

Lemma 3.2. IfA € R™" has full column-rank, then

M(l + aAmin)Amax

C | Q4bl.
(1+aAmax)Amin H A ”2

X —xs][2 <

where C = E |A{Will> + | (A"A) [l |All. E|A] Al

It is important to notice the relationship between the damping parameter « and the upper
bound in lemma 3.2. The bound is smaller for smaller values of o, which makes sense in light
of the asymptotic property that x; — X1 g a.s. for a decaying damping parameter « (see [33]).
However, there is a trade-off between the convergence rate and the precision of iterates (i.e.,
the bias) that depends on a: as o — 0, we get more accurate approximations, i.e., X — Xrg in
L?. On the other hand, for larger « the convergence is faster at the cost of a larger convergence
horizon.

In summary, we have shown that with a fixed damping parameter, the s1imLS iterates will
converge in L? linearly to within a horizon of X, and the expected value of the iterates converges
to X. A pictorial illustration of this convergence behavior is provided in figure 1.

This trade-off between quick initial convergence that comes with using a constant damping
parameter at the cost of solution accuracy has been observed in related stochastic optimization
methods in the literature, see e.g., [22, 59]. For row-action methods theoretical results sup-
porting the observed quick initial convergence behavior can be found in [30]. It has also been
observed that more accurate solutions can be obtained using a decaying damping parameter,
but then convergence can be quite slow (sub-linear) [60, 61]. Thus, it is often practical to use a
constant damping parameter to obtain quick initial convergence and then switch to a decaying
parameter to obtain higher accuracy. It may be desirable to provide convergence results for
more general sequences {Cy }. However, our proofs rely on various properties of the sequence

8



Inverse Problems 36 (2020) 054001 J Chung et al

By which are fulfilled for C; = I (see lemma B.1). Determining a wider class of sequences is
a topic of future work.

4. Numerical results

In this section we first illustrate the convergence behavior of our proposed s1imLS method in
a small simulation study. The goal of the first experiment is to illustrate how different memory
levels and damping parameters affect the convergence of s1imLS. We also compare s1imLS
to existing row-action methods and provide a numerical investigation into the sensitivity toward
the damping parameter/step size. Then we discuss some of the computational considerations
when solving massive problems and investigate the performance of our method on very large
tomographic reconstruction problems.

4.1. An illustrative example

In the first numerical experiment we use a smaller example to illustrate some of the key features
of the s1imLS method. We let A € R'%0%190 haye random entries from a standard normal
distribution. We further assume that Xy = [1,...,1]" and the simulated observations b are
generated as in (1) where € is white noise with noise level 1%; that is, ||€||2/||AXyel]2 = 0.01.
The matrix A is assumed to be sampled in M = 100 blocks, each with block size ¢ = 10, which
corresponds to sampling matrices W = [0100x 10G—1)» L, 0100 10(100—)] T

First we illustrate the convergence behavior investigated in theorem 3.1 for different con-
stant damping parameters «. In figure 2 we provide relative reconstruction errors computed as
|Ixx — X||2/||X]|2 for various damping factors from oz = 0.001 to & = 10 on a log—log scale. We
repeatedly run s1imLS with random sampling for 100 epochs and with memory level r = 0.
We observe that larger values of « have favorable initial convergence, but then stabilize at a
larger relative error. On the other hand, smaller values of « have a slower initial convergence,
but to a smaller relative error. This illustrates the trade-off between fast initial convergence and
solution accuracy, as discussed in section 3. Furthermore, for various o we provide the relative
difference between X and x5 in figure 3. We notice that for small « the relative difference is
within machine precision while slowly increasing for v > 107",

Next, we investigate how the initial convergence is affected by the choice of the memory
parameter r. Here, we fix & = 1 and choose memory levels r = 0,2, 4,6, and 8. We run our
s1imLS method for 20 iterations and provide the median relative reconstruction errors for
100 repeated runs in figure 4. The errors are computed with respect to the LS solution, i.e.,
I — XLs||2/]|XLs||2- We empirically observe that with higher memory levels we get faster
initial convergence.

We also provide a comparison of s1imLS with r = 0 to other row-action methods, includ-
ing the sampled or batch gradient sg method and the online limited memory BFGS olbfgs
method [52] with memory level 10 (i.e., storing the 10 previously computed sampled gradi-
ent vectors). In particular, we are interested in the sensitivity of the algorithms with respect to
the step size. For different constant step sizes/damping factors from o = 107> to o = 10°, we
computed the reconstruction error norm at k = 100 (i.e., corresponding to one epoch) relative
to X. Although reconstruction errors could be computed relative to X s, we note that the relative
error between x.g and X is negligible (see figure 3). In figure 5 we provide the median relative
reconstruction error norms along with the 5-95th percentiles after repeating the experiment
100 times. Notice that the plot is on a log—log scale. We observe that the sg method has just
a tiny ‘window’ of ’s for which results have small relative reconstruction errors. The win-
dow for olbfgs is larger and is centered around step size & = 1, which is expected, see [62].

9
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Figure 2. Comparison of median reconstruction errors, over 100 runs and relative to X,
for different (fixed) damping parameters v in s1imLS on a log—log scale.
10-11
o 12
= 10
=
=
=101
»
|
%
— 10
-15 ‘ ‘ ! !
10
10 10”2 10° 10
@

Figure 3. Relative difference between the weighted LS solution X and the desired LS

solution x; g for various «.

However, compared to sg and olbfgs, the s1imLS method provides good reconstructions
for a much wider range of damping factors, which is a very attractive property of the s1imLS

method.

4.2. Computational considerations

Recall that the s1imLS method can be interpreted as a row-action method, which by construc-
tion alleviates many of the computational bottlenecks (i.e., data access and memory require-
ments per iteration are significantly reduced). However, for many realistic problems where n is
on the order of millions or billions (e.g., in tomography), the computational cost of each itera-
tion can still be large. We remark that a noteworthy distinction of our numerical investigations

10
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Figure 4. Comparison of median reconstruction errors, over 100 runs and relative to
xLs, for different memory levels in s1imLS with o = 1.
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Figure 5. Comparison of median reconstruction errors along with the 5-95th percentiles
over 100 runs and relative to X for different (fixed) step sizes in s1imLS, sampled gra-
dient, and online limited memory BFGS. All results correspond to accessing one epoch
of the data.

compared to previously published works on row-action methods, such as [19, 21, 22], is that
we consider very large imaging problems with hundreds of millions of unknowns and focus
on the initial convergence (one epoch) rather than the ‘asymptotic’ convergence (hundreds of
epochs) behavior. Next we address some considerations with respect to computational cost and
comparisons with other methods.

The s1imLS iterates can be written as X; = X;_| — S, where

_ -1
S = (Oék ICk =+ M;Mk) A/;r (Aka,l — bk) s

where M; = [A{,,...,A/J]". Thus, each iteration consists of two main steps,

(a) Accessing model block Ay and corresponding data by, and
(b) Computing the update step si.

1



Inverse Problems 36 (2020) 054001 J Chung et al

The computational costs for the first step are often overlooked, but since data are usu-
ally stored on a hard-drive, data access can be time-consuming. Furthermore, depending on
the application, constructing the corresponding matrix block A; can also be computationally
expensive. In data-streaming problems one may not have control over when and which blocks
of data become available at any given time.

For the second step and for symmetric Cy, solving for s; can be done efficiently by first
noticing that s is the solution to the LS problem,

Akfr 0
S = argmin A1 | g— 0 , (16)
’ 1A g Arxi—1 — by
—1Ix 0

v/ O P

where C; = L{ L. Hence, any efficient LS solver that exploits the structure in (16) can be
used to compute s;. Here, we utilize LSQR for damped LS, see [63], where a very efficient
implementation is available if Ly = I. It is worth mentioning that another LS reformulation
can be made to solve for x; directly, where the right-hand side becomes dense and will depend
on «y and L. That is,

A, A Xy
x; = argmin || | A1 | x— | Ar1Xe . (17)
X Ay by
! L ! L
pp— pp— X —
\/Oé—k k \/a—k k&k—1 )

Next, we remark further on the choice of ay. For the sg method—as illustrated in
figure 5—an acceptable constant step size oy is hard to come by and is often chosen such
that o < 1. For olbfgs we choose the ‘natural’ constant step size oy = 1, with a possi-
ble exception at the early iterations. Since olbfgs is equivalent to sg in the first iteration,
olbfgs may suffer from large step sizes while building up its memory. To compensate for this
we can ramp up the value of oy in early iterations, e.g., agx = r’fT“l for the first r + 1 iterations
for fixed o where r is the memory parameter.

In many structured problems and in particular for tomography problems—where each block
matrix corresponds to a single projection image (i.e., one angle)—Ay is extremely sparse with
the number of non-zero elements in A, on the order of n. Note that in some cases, matrix Ay
does not even need to be constructed, but function evaluations can be used within iterative
methods [64]. Hence, for extremely large-scale problems where memory storage becomes an
issue, s1imLS can take advantage of any sparsity or structure. In contrast, the o1bf gs method
requires storing two vectors of length n for each memory level, and these vectors are likely
dense so the storage becomes cumbersome for large 7.

4.3. Large-scale tomographic reconstruction

Next we present two numerical experiments that demonstrate the performance of s1imLS for
solving massive tomography reconstruction problems. Tomography has become very important
in many applications, including medical imaging, seismic imaging, and atmospheric imaging

12
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(a) (b)

Figure 6. Two-dimensional tomography problem with missing wedge of 60°. True
image of a walnut slice is provided in (a) and the observed sinogram in (b) corresponds
to angles between —60° and +60° at 0.3 degree steps.

[25, 42]. The goal in computerized tomography is to reconstruct the interior of an object given
observed, exterior measurements. However, recent advances in detector technology have led to
faster scan speeds and the collection of massive amounts of data. Furthermore, in dynamic or
streaming data scenarios (e.g., in microCT reconstruction), partial reconstructions are needed
to inform the data acquisition process. The s1imLS method can be used to address both of
these problems. The first example we consider is a very large, limited angle 2D tomography
reconstruction problem that is underdetermined, and the second example is a 3D streaming
reconstruction problem that is ultimately overdetermined.

For ill-posed problems such as tomography, semiconvergence of iterative methods is a con-
cern whereby early iterates converge quickly to a good approximation of the solution but later
iterates become contaminated with errors. Iterative regularization techniques (i.e., early ter-
mination of the iterative process) are often used to obtain a reasonable solution [57]. For
row-action methods applied to tomography problems, semi convergence properties have been
investigated [23], but due to notoriously slow convergence (after fast initial convergence), the
ill effects of semiconvergence tend to appear only after multiple epochs of the data. Thus, we
do not include additional regularization in the following results.

4.3.1. Two-dimensional limited-angle tomography. First we consider a parallel-beam x-ray
tomography example, where the true image represents a cross-section of a walnut. In [65] the
authors provide an image reconstruction computed from 1200 projections using filtered back
projection. Our ‘ground truth’ image provided in figure 6(a) is a cleaned image of the filtered
back projection reconstruction. For this problem, Xye € RZZ%Z, and we simulate observations
by taking 400 projections at angles between —60° and 4-60° at 0.3 degree steps, with 2296
rays for each angle. This can be interpreted as a missing data problem where we have a miss-
ing wedge of 60°. In this example, A € R400:2296x2296” The observed sinogram provided in
figure 6(b)was generated as in (1) with noise level 0.01.

13
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Figure 7. Relative reconstruction error norms at each iteration of sg, olbfgs, and
slimLS.

olbfgs slimLS

Figure 8. Image reconstructions for sg, olbfgs and s1imLS, along with true image
and with subimages provided below. The area of the subimage is denoted by the enclosed
dotted region on the true image.

Here WTA is random cyclic uniformly chosen from 400 blocks of size 2296 x 2296°.
We apply the s1imLS method with memory level » = 2 and ramped-up damping parameter
with a = 1. Relative reconstruction errors computed as ||X; — Xyuel|2/ || Xurue ||2 are provided in
figure 7. We provide comparisons to the sg method with step size o = 1073 and the o1bfgs
method with memory level 20 and ramped-up step size with « = 1. We found that both methods
required a small initial step size to prevent reconstruction errors from getting very large.

Image reconstructions and subimages, along with the true image, are provided in figure 8.
We observe that after one epoch of the data, the s1imLS reconstruction contains sharper details
and fewer artifacts than the sg and o1lbfgs reconstructions. As described in section 4.2, it
is difficult to provide a fair comparison of methods, especially in terms of the memory level
and the step length. Careful tuning of the step length for sg and obfgs can lead to reconstruc-
tions that are similar in quality to the s1imLS reconstruction, but that is very time consuming
especially for these massive problems. Also, as observed in section 4.1, there may be only a

14
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Figure 9. For the 3D tomography example, we provide orthogonal slices of the true
image phantom (left) along with four of the observed projection images (right).
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Figure 10. Relative reconstruction errors per iteration of sg, olbfgs, and s1imLS
for the 3D tomography example.

small window of good values. If good parameters are known in advance, o1bfgs can produce
good solutions, but if they are not known a priori, then poor results, or even divergence of the
relative reconstruction errors, were often observed.

4.3.2. Three-dimensional streaming tomography. Next we demonstrate the power of
s1imLS for three-dimensional tomography reconstruction. For very large problems where
data access is a computational bottleneck and for problems where data is being streamed and
partial reconstructions are needed, row-action methods are the only feasible option. Here we
show that sampled limited memory methods can be a good alternative.

In this problem setup, the true image is a 511 x 511 x 511 modified 3D Shepp—Logan
phantom. We generate 1000 projectionimages of size 511 x 511 taken from random directions,
which are samples from the uniform distribution over the unit sphere. The raytracing matrix
A is of size 261 121000 x 133432831 and is certainly never constructed, but matrix blocks
are generated using a modification of the tomobox code [66] which represents parallel beam

15
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Figure 11. For the 3D tomographic reconstruction problem, we provide x, y, and z slices
of absolute error images for sg, olbfgs, and s1imLS reconstructions after one epoch
of the data. The relative reconstruction error norm for each slice is provided in the bottom
right corner of each image.

tomography. White noise was added to the projection images such that the noise level over all
projection images is 0.001. Orthogonal slices of the true 3D phantom, along with four of the
observed, projection images are provided in figure 9.

We run the s1imLS method with » = 0 and damping factor a; = 1. After one epoch of
the data (i.e., the cost of accessing all data once), we compare the s1imLS reconstruction to
the stochastic gradient and online LBFGS reconstructions. For sg, we use step length oy =
0.0001, and for olbfgs, we use o = | and memory level 10. Relative reconstruction error
norms per iteration are provided in figure 10. Notice that even in early iterations, where only
a small fraction of the data has been accessed, s1imLS reconstructions have smaller relative
reconstruction errors than sg and olbfgs.

We computed absolute error images, which correspond to absolute values of the difference
between the reconstruction and the true image, and we provide three slices (in the x, y, and
z direction) for sg, olbfgs, and s1imLS in figure 11. The absolute errors are provided in

16
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inverted color map so that black corresponds to large errors. All images use the same color
map. We observe that absolute error images for sg are significantly worse than those from
olbfgs and s1imLS reconstructions, with absolute error images for s1imLS having fewer
artifacts.

5. Conclusions

In this paper, we investigate sampled limited memory methods for solving massive inverse
problems, such as those that arise in modern 2D and 3D tomography applications. Limited
memory row-action methods are relevant in scenarios where fui/l matrix-vector-multiplications
with coefficient matrix A are not possible or too computationally expensive. This includes
problems where A is so large that it does not fit in computer memory and problems where
the data is being streamed. The main theoretical contribution is that, contrary to existing row-
action and stochastic approximation methods, the s11imLS method has both favorable initial
and asymptotic convergence properties. Additional benefits of s1imLS include faster initial
convergence due to the use of information from previous iterates and convergence for a wider
range of step length or damping parameters. We provide theoretical convergence results, and
numerical examples from massive tomography reconstruction problems show the potential
impact of these methods.
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Appendix A. Randomized recursive LS method
In this section, we show that the kth iterate of the randomized recursive LS method defined

in (9) is the minimum norm solution of LS problem in (10). We prove this by induction. For
k = 1 and with xo = 0, (9) yields x; = A];bl. Now let us assume that

.
k—1 1' Al bl
X | = (Z AjA,) : C s (A.1)

=l Ay by

then from (9), we get

k T
Xp =X — (Z A,-TAl) A (Agx—1 —by)

i=1

. i
o
i=1

k
(Z AI-TA[> Xi—1 — AL (AgXe—1 — by) (A.2)

i=1
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:
where we are using the fact that x, ;| = (ZLIA?A,) (ZleAiTA,-) X1 since

Xi_1 ER(Zf:ll AI-TA,») QR(ZL]A,TA,»). A similar argument can be used to
T T

Ay b, Ay b,
show that  (Hf A A) (2] A,TA,-)T : =1 . | since
Ari by Ap b1
Al oy
: : eER (Zf;ll AiTA,), and we arrive at
Ay by

k 1A by
- <ZA?Af> ANk
i=1

Ak by

B t
X = (Z AIA,-)
i=1

k—1
(Z AlTA,) Xi—1 + A]jbk
i=1

Appendix B. Proofs for section 3

We continue to use the notation and assumptions from sections 1 and 3.

Lemma B.1. IfA € R™ " has full column-rank, then for any fixed o > 0:
(a) |EBy/all, < 1 with upper bound

M° M — M°
[EBy/all < — +

— <1,
M M + aAnin)

where M° is the number of eigenvalues Amin(ATWOW(@E)TA) equal to zero over the M
different W,

(b) B is symmetric positive definite,

(©) |IBeA; Arllz < @Amax /(1 + 0Amay), and

(d) 0 < aApin/[M(1 4 aAmin)] < Anin(B) < Anax(B) < (1 4 @Amax) /2.

Proof.

(a) For simplicity we use the notation A= (W)TA. By Jensen’s inequality
IEBi/all> = [EA+aAJA) |2 <E[[d+a A[A) [ < 1.

The last inequality becomes an equality only if ||(I + oA A;)~!||> = 1 a.s., in which case
Amax(A{ Ar) = 0 across all realizations of Wy. That is, ||(T + agfg,-)*l I, =1 for all i.
Furthermore, an eigenvector v for the largest eigenvalue A = 1 of E (I + aAkTAk)*1 is
also an eigenvector of all (1 + v A A;)~! with eigenvalue 1. That is, A A; v = 0 for all i.
This is not possible because EA] A, = BATA. Hence, ||By/cll, < 1. This implies
that M° <M and the upper bound in (a) follows again from |EB;/c|, <
E I+ aAl A) 2

(b) Itisclear that B is symmetric positive semi-definite because B = I — E B /a. Itis positive
definite by (a).

(¢) The upper bound follows from the identity BkA,jAk =I-(I+« A,jAk)’l.
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(d) From (c¢),

aAmaX I+ aAmax

/\mxB g
(B) 1 + @A max 2

The lower bound follows from (a):
M MM
M M + aAmin)
(M*MO) OéAmin > aAmin
M 1+aAmin - M(l+aAmin).

Amin(B) = 1- ]E”Bk/aHz 21

O

Proof of theorem 3.1. We use (F;) to denote the natural filtration induced by the sequence
{Wk}I ]:k = U(Wj, j< k)

(a) Using the recursion for x;, we obtain
E[x¢ —X| Fic1 | = %1 — X — E [BiA] (Aexi1 — by) | Fii
=x;_1 —X— B (x}_1 —B'EB;Aby)
=(I-B) (x—1 —X) = EBi/a) (xe1 —X),
and therefore
Exi — X = (EBi/)Ex —X) = EB; /) (xo - X),
where the last equality comes from the fact that A; are i.i.d. Using lemma B.1(a) we get
IEx — X2 < |EBi/al5]x0 — X2 — 0.

Thus, E x; — X linearly.
(b) Next we show that x; converges linearly to a convergence horizon of X. The recursion of
x; leads to

% — X3 = [|xe—1 — X[|3 — 2(xs-1 — i\)TBkAkT(Aka—l —by) + [ BeA{ (Arxi—1 — b3
We find an upper bound for the last term using lemma B.1(a):
IBeA; (Aexi—1 — b3 = || BrA; Ax(xk—1 — X) + ByA[ (AX — by)|[3
< 2/|BiAy Ax(xe-1 = D3 + 2{[BieAy (A — b3

<2|BrA] Ar(xi 1 — D)3 + 207 ||A (AX — by)|J3,

and by lemma B.1(c)

aAmax

BA Au(xp ) —X)|Ip g —m
[BeA; Ax(xk-1 —X)||3 It ad,

(Xk—1 — X)) BrA, Ap(xp-1 — X).

The last two bounds yield
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- - T
l[xc = X[I3 < %1 — XI5 = 2(x1 —X) BiA] (Aexe1 — by)

20A max

~\ T ~ ~
T T o (%1 %) B Ay (i) =) + 207 |A¢ AK — b,

whose conditional expectation and lemma B.1(d) give us

E “|Xk —i“% | }—](,1] < ||Xk,1 —3(\”% — Z(Xk,I —/)E)TB (kal —/)Z)
2 A max ~ ~ ~
T ad 0o %) B (5~ %)+ 20°E AL AR - b
~ 2 T ~
=[x —X|3 — m(xk—l —X) B (%1 —X)

+20°E|A] (AX = b3

<1 —=2¢) [xi1 — X|3 + 2°E|| A} (AX — by)|J3,

where ¢ = Amin (B) /(1 + aAmax). Then, the expected squared norm of the error can be bounded
using the fact that 0 < 1 — 2¢ < 1 by lemma B.1(d)

k—1
Ellx — X3 < (1 = 20'E||xo — X3 + 2°E[ A{ (AX — b3 Y _ (1 — 2
i=0

< (1 =20 Ix0 — X||3 + 2c'E[| A (AX — by)|J3.

Proof of lemma 3.2. By (15),X — x.s = B"'CQ,b, where
C=EBA/W,.
Since Q4 projects onto the orthogonal complement of the column space of A, we have
B'CQy = (B 'C—(ATA) 'AT)Q,,
and also using lemma B.1(c)
IB'C—(ATA) 'AT |, = [B'E®B; — aDA{ W, + aB 'EA/ W, — (ATA) AT,
< BT [o[E aBrA AxA Wi [l2 + [[afBT'AT — (ATA) AT

OézAmax B71 - B
< CAmc Bl ) AW 4 BB - ATA)Y 2 AL

h 1+ aAmax
Furthermore,
_ -1 _ ~1
JaBB — (ATA) [l < B~ aBATA — B[] (ATA) [
and
T T O Amax T
[aBA"A = B> = [[E(al — BOA; Ayl < ———=—E[|A; Acll2.
1 4+ aAmax
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Using the upper bound for ||B~!|| from lemma B.1(d) we can now write

2
" Amax

OlAmax M(l + aAmin) C
1 4+ aAmax

B—lc_ ATA _IA-r <
| A'A) A2 < 1+ 0Amx Amin

[B~'[]2C <

where C = E||A] W|l2 + [[(ATA)"!||2 |A|2E ||A] At||. The upper bound finally follows
from

1% = xvs/l2 = [BT'CQubll2 < [B™'C — (ATA) AT [ Q4b]lo-
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