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Abstract
In this paper we investigate iterative methods that are based on sampling of 
the data for computing Tikhonov-regularized solutions. We focus on very 
large inverse problems where access to the entire data set is not possible all-
at-once (e.g. for problems with streaming or massive datasets). Row-access 
methods provide an ideal framework for solving such problems since they 
only require access to ‘blocks’ of the data at any given time. However, when 
using these iterative sampling methods to solve inverse problems, the main 
challenges include a proper choice of the regularization parameter, appropriate 
sampling strategies, and a convergence analysis. To address these challenges, 
we describe a family of sampled iterative methods that can incorporate data 
as they become available (e.g. randomly sampled). We consider two sampled 
iterative methods where the iterates can be characterized as solutions to a 
sequence of approximate Tikhonov problems. The !rst method requires the 
regularization parameter to be !xed a priori and converges asymptotically to 
an unregularized solution for randomly sampled data. This is undesirable for 
inverse problems. Thus, we focus on the second method where the main bene!ts 
are that the regularization parameter can be updated during the iterative process 
and the iterates converge asymptotically to a Tikhonov-regularized solution. 
We describe adaptive approaches to update the regularization parameter that 
are based on sampled residuals, and we provide a limited-memory variant for 
larger problems. Numerical examples, including a large-scale super-resolution 
imaging example, demonstrate the potential for these methods.
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1. Introduction

With faster scan speeds on recently-developed imaging devices and new applications to comp-
uter vision and machine learning, datasets are becoming so large that the entire dataset can not 
be accessed ‘all-at-once’ [34]. Furthermore, in automated pipelines, data is being streamed 
and a major challenge is to obtain immediate feedback (e.g. a partial reconstruction) to inform 
the data acquisition process [43]. For these and other scenarios, existing methods that require 
all-at-once access to the data are not feasible. Instead, we consider randomized or sampling 
methods where only ‘blocks’ of the data are required at a given time.

In this paper, we focus on linear inverse problems of the form,

b = Axtrue + ε,

where xtrue ∈ Rn  contains the desired, unknown parameters, A ∈ Rm×n models the data acqui-
sition process, b ∈ Rm contains the observed data (which may be streaming), and ε ∈ Rm 
represents noise or errors in the data. We assume that the random vector ε has mean zero and 
a !nite second moment. In the generic setup, the goal of the inverse problem is to estimate 
xtrue, given a model A and observations b. Typically, the matrix A represents a discrete, linear 
version of a given model stemming, for instance, from a discretized PDE network, integral 
equation, or regression model [26, 37]. For the problems of interest, m and n may be so large 
that accessing and/or storing all rows of A at once is infeasible.

In this work we consider ill-posed inverse problems where regularization is required to 
compute reasonable solutions. Here, we focus on solving the Tikhonov-regularized problem,

min
x

f (x) = ‖Ax− b‖22 + λ ‖Lx‖22 , (1)

where λ > 0 is the regularization parameter, and for simplicity we assume that L has full col-
umn rank. When all of b and A are available or can be accessed at once (e.g. via matrix-vector 
multiplication with A), the Tikhonov solution,

x(λ) = (A!A+ λL!L)−1A!b, (2)

can be computed using a plethora of existing iterative methods (e.g. Krylov or other optim-
ization methods [25, 30]). Note that x(0) is the unregularized solution, which is de!ned if A 
has full column rank.

To solve (1) we consider sampled iterative methods of the form,

xk = xk−1 − Bkgk(xk−1), k ∈ N, (3)

where x0 is an initial iterate, gk(xk−1) is a vector (carrying gradient information of the least 
squares problem), and the matrix Bk ∈ Rn×n is updated at each iteration (carrying curvature 
information of the least squares problem). A learning rate or line search parameter is not 
required in this case and is set to its ‘natural’ value of 1 [10]. Speci!c choices for Bk and gk  
will be described in section 2, with connections to other known stochastic approximation 
methods described in section 2.3.

In this work we focus on sampled methods that do not require all-at-once access to A, 
but we note that if all of A is available, then iterated Tikhonov regularization methods for 
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linear problems [11, 20, 24] can be formulated as (3) where B−1
k = A"A+ λkL"L and 

gk(xk−1) = A"(Axk−1 − b). Furthermore, we note that iterative methods of the form (3) typi-
cally stem from nonlinear optimization problems where Bk is an approximation to the inverse 
Hessian and gk  is the gradient at the current iterate xk−1 [39]. Such methods take only one step 
to converge for the linear problem (e.g. take x0 = 0, B−1

1 = A"A+ λL"L, and g1 = A!b). 
However, this is not possible if m and n are too large for the computer memory or if the data 
is not available all-at-once (e.g. in streaming problems). Furthermore, determining a suitable 
choice of λ can be computationally infeasible in such settings, and the information available, 
i.e. Bk and gk , may be subject to noise. Thus, we consider nonlinear methods of the form (3) 
for Tikhonov regularization with massive data, where the main bene!ts are that (i) the data is 
sampled (e.g. randomly) or streamed, (ii) the regularization parameter can be adapted, and (iii) 
the methods converge asymptotically and in one epoch to a Tikhonov-regularized solution. 
Sophisticated regularization parameter selection methods are well-established if the full sys-
tem is available (for example, see [31, 45]); however, the ability to update the regularization 
parameter within iterative methods of the form (3) while also ensuring convergence of iterates 
to a regularized solution is, to the best of our knowledge, an unresolved problem.

1.1. Problem formulation

In the following, we describe a mathematical formulation of the problem that allows us to 
solve (1) in situations where samples of A and b become available over time. Such scenarios 
are common in medical imaging, e.g. in tomography where data is being processed as it is 
being collected [3], and in astronomy, e.g. in super-resolution imaging where a  high-resolution 
image is constructed from low-resolution images that are being video streamed [28].

Formally, at the kth iteration, we assume that a set of rows of A and corresponding ele-
ments of b become available, which we denote by W!

k A and W!
k b respectively. Here the 

matrix Wk ∈ Rm×! is a sampling matrix, which selects rows of A and b. For a !xed M ∈ N 
we assume that matrices {Wi}Mi=1 satisfy the following properties:

 (i)  for each i ∈ {1, . . . ,M}, Wi ∈ Rm×!, where ! = m
M

5 and
 (ii)  the sum 

∑M
i=1 WiW!

i = Im.

The !rst assumption implies that the size of W!
i A is smaller than the size of A, and thus 

computationally manageable. The second assumption guarantees that all rows of A are given 
equal weight; however, importance sampling could be included and results in a weighted least 
squares problem.

Notice that if Wk  is sparse with only a few non-zero elements in a subset of the m col-
umns, W!

k A extracts only rows of A where Wk  has nonzero entries. These methods are com-
monly known as row-action methods [3, 21], where Kaczmarz-type methods are a prominent 
subclass of row-action methods [29, 48]. A notable difference of our methods compared to 
other approaches is that the matrices Bk accumulate information from the previous iterates. 
Randomized or sketching methods are also related in that a single realization of Wk  is used to 
project a large system onto a lower dimensional subspace [17, 44]. However, these methods 
typically require access to all of the data at once.

5 To avoid a notational distraction, we assume all matrices Wi are of the same dimension and !M = m; hence, 
! ∈ N. However a generalization with different matrix sizes Wi ∈ Rm×!i is straightforward.
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1.2. Overview and outline

In this paper, we describe iterative sampling methods for solving Tikhonov-regularized prob-
lems, where the main distinction from existing methods such as hybrid Krylov methods 
and iterated Tikhonov methods is that we do not require all-at-once access to the forward 
model. The main contributions include the characterization of iterates as solutions to partial 
or full Tikhonov problems and asymptotic convergence results. In terms of methodology, we 
highlight the sampled Tikhonov method where the regularization parameter can be updated 
during the iterative process such that after each epoch of data, the iterates are Tikhonov-
regularized solutions. Additionally, the sampled Tikhonov method converges asymptotically 
to a Tikhonov-regularized solution. Other developments include methods for updating the 
regularization parameter using sampled data and limited-memory variants for problems with 
many unknowns.

The paper is organized as follows. In section  2 we describe two iterative methods for 
Tikhonov regularization with sampling. Various theoretical results are provided, including 
asymptotic convergence results. In section 3 we describe sampled regularization parameter 
selection methods that can be used to update the regularization parameter. Numerical illustra-
tions are provided throughout, and a limited-memory variant of these methods is described in 
section 4, along with results for a large-scale imaging problem. Conclusions and future work 
are discussed in section 5.

2. Iterative sampling methods for Tikhonov regularization

Iterative sampling methods for Tikhonov regularization can be used to solve massive lin-
ear inverse problems. We investigate two methods. Let y0, x0 ∈ Rn be initial iterates and 
let Wi ∈ Rm×!, i = 1, . . . , k  be arbitrary matrices. For notational convenience, we denote 
Ai = W!

i A and bi = W!
i b. Assuming a !xed regularization parameter λ, the !rst method 

that we consider is regularized recursive least squares (rrls)6, which is de!ned as

yk = yk−1 − BkA"
k (Akyk−1 − bk), k ∈ N, (4)

where Bk =
(
λL!L+

∑k
i=1 A!

i Ai

)
−1. If Wi is the ith column of the identity matrix, rrls 

is an extension of the recursive least squares algorithm [7] that includes a Tikhonov term. 
Since it may be dif!cult to know a good regularization parameter in advance, we propose a 
sampled Tikhonov (sTik) method, where the iterates are de!ned as

xk = xk−1 − Bk
(
A"

k (Akxk−1 − bk) + ΛkL"Lxk−1
)
, k ∈ N, (5)

where Bk =
(∑k

i=1 ΛiL!L+
∑k

i=1 A!
i Ai

)
−1 and scalar 

∑k
i=1 Λi > 0. Compared to rrls, 

the main advantages of the sTik method are that the regularization parameter can be updated 
during the iterative process and that in a sampled framework, the sTik iterates converge 
asymptotically to a Tikhonov solution whereas the rrls iterates converge asymptotically 
to an unregularized solution. Of course, selecting a good regularization parameter can be 
dif!cult, especially for problems with a small range of good values. In any case, for inverse 
problems it is desirable that the numerical method for solution computation converges to a 
regularized solution.

6 This should not be confused with the residual-reducing LS (RRLS) algorithm referenced in [41].
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In this section, we begin by showing that for arbitrary matrices Wi, both rrls and sTik 
iterates can be recast as solutions to regularized least squares problems. See appendix A for 
proofs for all theorems from section 2.

Theorem 2.1. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and 
Wi ∈ Rm×!, i = 1, . . . , k  be an arbitrary sequence of matrices.

 (i)  For λ > 0 and an arbitrary initial guess y0 ∈ Rn, the rrls iterate (4) with 

Bk =
(
λL!L+

∑k
i=1 A!

i Ai

)
−1 is the solution of the least squares problem

min
x

∥∥[W1, . . . ,Wk]
!(Ax− b)

∥∥2
2 + λ ‖L(x− y0)‖22 . (6)

 (ii)  For λk =
∑k

i=1 Λi > 0 for any k and an arbitrary initial guess x0 ∈ Rn, the sTik iter-

ate (5) with Bk =
(∑k

i=1 ΛiL!L+
∑k

i=1 A!
i Ai

)
−1 is the solution of the least squares 

problem

min
x

∥∥[W1, . . . ,Wk]
!(Ax− b)

∥∥2
2 + λk ‖Lx‖22 . (7)

The above results are true for any arbitrary sequence of matrices {Wk}. Next, we consider 
a !xed set of matrices, as described in the introduction, and allow random sampling from this 
set. To be precise, de!ne Wτ(k) to be a random variable at the kth iteration, where τ(k) is a 
random variable that indicates a sampling strategy. For example, if we let τ(k) be a uniform 
random variable on the set {1, . . . ,M}, then we would be sampling with replacement. In sec-
tion 2.1 we prove asymptotic convergence of rrls and sTik iterates using this sampling 

strategy. We then focus on random cyclic sampling, where for each j ∈ N, {τ(k)}( j+1)M
jM+1  is a 

random permutation on the set {1, . . . ,M}. Note, cyclic sampling, where τ(k) = kmodM , is 
a special case of random cyclic sampling. We note that, until all blocks have been sampled, 
random cyclic sampling is just sampling without replacement. For random cyclic sampling, 
we characterize iterates after each epoch and prove asymptotic convergence of rrls and 
sTik iterates in section 2.2. An illustrative example comparing the behavior of the solu-
tions is provided in section 2.4. For notational simplicity we denote Aτ(k) = W!

τ(k)A and 
bτ(k) = W!

τ(k)b.
Notice that for both random sampling and random cyclic sampling, we have the following 

property,

EWτ(k)W!
τ(k) =

1
M
Im =

!

m
Im. (8)

There are many choices for {Wi}, see e.g. [14, 33, 35], but a simple choice is a block column 
partition of a permutation matrix. For the choice of {Wi} we will consider, Aτ(k) is just a 
prede!ned block of rows of A.

2.1. Random sampling

Next we investigate the asymptotic convergence of rrls and sTik iterates for the case of 
uniform random sampling. This is also referred to as sampling with replacement.

Theorem 2.2. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and de-
!ne x(λ) as in (2). Let {Wi}Mi=1 be a set of real valued m× ! matrices with the property that 
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∑M
i=1 WiW!

i = Im, and let τ(k) be a uniform random variable on the set {1, . . .M}.

 (i)  Let λ > 0, y0 ∈ Rn be arbitrary, and de!ne the sequence {yk} as

yk = yk−1 − BkA"
τ(k)(Aτ(k)yk−1 − bτ(k)), k ∈ N, (9)

  where Bk =
(
λL!L+

∑k
i=1 A!

τ(i)Aτ(i)

)
−1. If A has full column rank, then yk

a.s.−→ x(0).
 (ii)  Let 

∑k
i=1 Λi > 0 for all k, and λ = limk→∞

M
k
∑k

i=1 Λi > 0 be !nite. Let x0 ∈ Rn be 
arbitrary, and de!ne the sequence {xk} as

xk = xk−1 − Bk

(
A"

τ(k)(Aτ(k)xk−1 − bτ(k)) + ΛkL"Lxk−1

)
, (10)

  where Bk =
(∑k

i=1 ΛiL!L+
∑k

i=1 A!
τ(i)Aτ(i)

)
−1. Then xk

a.s.−→ x(λ).

The signi!cance of theorem 2.2 is that the rrls iterates converge asymptotically to the 
unregularized least squares solution, (A!A)−1A!b, which is undesirable for ill-posed inverse 
problems. On the other hand, the sTik iterates converge asymptotically to a Tikhonov-
regularized solution. Note that for a given λ, convergence to x (λ) is ensured by setting 
Λk = λ/M . A more realistic scenario would be to adapt Λk  as data become available, since 
the desired regularization parameter is typically not known before the data is received. Hence, 
parameter selection strategies for selecting Λk  are addressed in section 3.

2.2. Random cyclic sampling

Next we investigate rrls and sTik with random cyclic sampling. In addition to proving 
asymptotic convergence in this case, we can also describe the iterates as Tikhonov solutions 
after each epoch, where an epoch is de!ned as a sweep through all the data.

Theorem 2.3. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and 
{Wi}Mi=1 be a set of real valued m× ! matrices with the property that 

∑M
i=1 WiW!

i = Im, and 

let τ(k) be a random variable such that for j ∈ N, {τ(k)}( j+1)M
jM+1  is a random permutation on 

the set {1, . . . ,M}.

 (i)  If λ > 0, y0 = 0, and the sequence {yk} is de!ned as (9) with 

Bk =
(
λL!L+

∑k
i=1 A!

τ(i)Aτ(i)

)
−1, then the iterate at the j th epoch is yjM = x

(
1
j λ
)
.

 (ii)  Let {Λk} be an in!nite sequence with the property that λk =
∑k

i=1 Λi > 0. If x0 is arbitrary 

and the sequence {xk} is de!ned as (10) with Bk =
(∑k

i=1 ΛiL!L+
∑k

i=1 A!
τ(i)Aτ(i)

)
−1, 

then the iterate at the j th epoch is xjM = x
(

1
j λjM

)
.

Notice that at every epoch, the effective regularization parameter for rrls, i.e. λ/j, is 
reduced. Also, if A has full column rank, we have limj→∞ yjM = x(0). On the other hand, 
the sTik iterates converge to a Tikhonov-regularized solution, since at each epoch j   =  k/M 
and we have xjM = xk = x

(M
k λk

)
 and Mk λk > 0. In section 2.4 we illustrate the convergence 

behavior of the rrls and sTik iterates, but !rst we make some connections to existing 
optimization methods.

J T Slagel et alInverse Problems 35 (2019) 114008
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2.3. Connections to stochastic approximation methods

There is a connection between the iterative methods with sampling presented in section 2 
and stochastic approximation methods that becomes apparent if the Tikhonov problem (1) is 
recast as a stochastic optimization problem. For simplicity, consider random sampling (i.e. 
with replacement), where τ(k) is a uniform random variable on the set {1, . . . ,M}. Then if we 

de!ne fτ(k)(x) =
∥∥∥W!

τ(k) (Ax− b)
∥∥∥
2

2
+ λ

M ‖Lx‖22, it is easy to show that

E fτ(k) ∝ f ,

and therefore

argmin
x

E fτ(k)(x) = argmin
x

f (x). (11)

Stochastic approximation methods represent one class of methods that can be used to compute 
solutions to the expectation minimization problem on the left of (11) [47]. For the Tikhonov 
problem, a stochastic approximation method has the form,

xk+1 = xk − Bk∇fτ(k) (xk) , (12)

where ∇fτ(k) (xk) = A!
τ(k)

(
Aτ(k)xk − bτ(k)

)
+ λ

MLxk  is the sample gradient for the Tikhonov 

problem. Different choices of Bk can be used in (12). If Bk =
(

kλ
M L!L+

∑k
i=1 A!

τ(i)Aτ(i)

)
−1, 

then all of the previously computed global curvature information is encoded in Bk and we 
recover the sTik method with Λi =

λ
M. Theorem 2.2 (ii) shows that these iterates will conv-

erge asymptotically to the minimizer of (11), but storage can get costly. Another option is to 
take Bk = In, which corresponds to the stochastic gradient method [8]. For faster convergence 
closer to the minimizer, there are various methods in the stochastic optimization literature that 
can be used to approximate the global curvature information ∇2f (xk) [9, 32]. For example, a 
stochastic LBFGS method stores a small set of vectors, rather than matrix Bk, and can perform 
multiplications in an ef!cient manner [12, 36].

We are most interested in the Tikhonov problem (1), but we note that there exists methods 
for the case where λ = 0 that have connections to stochastic optimization methods. Using the 
same reformulation as above, a stochastic approximation method would have the form (12). 
If we take Bk =

(
∇2fτ(k)

) †, then we get the randomized block Kaczmarz method [3, 38, 48]. 
Notice that the curvature information comes only from the current sample. On the other hand, 
if Bk is chosen to contain all previous curvature information, we get the rrls iterates,

yk = yk−1 −
(
λL"L+

k∑

i=1

A"
τ(i)Aτ(i)

)−1

A"
τ(k)(Aτ(k)yk−1 − bτ(k)), (13)

where λL!L is included to ensure invertibility and is often replaced with λIn . The concern 
for inverse problems is that the iterates in (13) converge to the unregularized problem, see, 
theorem 2.2 (i). The connection between recursive least squares and stochastic approximation 
methods was noted in [32], and the approximation can be interpreted as a regularized stochas-
tic approximation method that was considered, e.g. in [10, 14].

2.4. An illustration

In the following illustration, we use a small toy example to highlight the convergence behav-
ior of rrls and sTik iterates. We investigate both random sampling and random cyclic 
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sampling, and we demonstrate convergence by plotting solutions after multiple epochs of the 
data. The example we use is a Tikhonov problem of the form (1), where

A =

[
1 δA
0 1

]
∈ R10×2, b = Axtrue + δb, and xtrue = 1.

The vectors δA and δb are realizations from the normal distributions N (0, 0.005 I9) and 
N (0, 0.1 I10) respectively, and 1 is the vector of ones of appropriate length. We further choose 
L = I2 and !x λ = 0.2 for the rrls iterates yk . For sTik iterates xk , we choose the param-
eters Λk  such that the regularization is constant at each epoch, i.e. 10k

∑k
i=1 Λi = 0.2. With this 

setup we have x(0) = [1.0869,−1.3799]! and x(λ) = [1.0698,−0.0271]!. We let Wτ(i) be 
the τ(i)th column of the identity matrix, and set x0 = y0 = 0.

In !gure 1, we provide two illustrations. In the left panel, we provide the true solution xtrue, 
the unregularized solution x(0), the Tikhonov solution x(λ), and the rrls iterates after each 
epoch. The rrls iterates with random sampling with replacement are denoted by yrk , and the 
rrls iterates with random cyclic sampling are denoted by yck . Notice that by theorem 2.3, yck  
at each epoch is a Tikhonov solution, i.e. after the j th epoch ycjM = x

(
1
j λ
)
. Thus, we get a set 

of Tikhonov solutions with vanishing regularization parameters, and these iterates asymptoti-
cally converge to the unregularized solution. For rrls with random sampling, we run 1000 
simulations and provide one sample path, along with the mean (dotted line) and region of the 
95th percentile shaded in grey. We note that the mean of {yrk} is almost identical to the ran-
dom cyclic sequence {yck} (red line) suggesting that the random sequence {yrk} is an unbiased 
estimator of the deterministic sequence {yck} (at each epoch). In the right panel of !gure 1, 
we provide the sTik iterates with random sampling, which are denoted by xrk . Again, we run 
1000 simulations and provide one simulation along with the shaded percentiles. It is evident 
that with more epochs, the iterates approach the desired Tikhonov solution. To aid with visual 
scaling, the axis for the right !gure corresponds to the dotted rectangular box in the left !gure. 
The sTik iterates with random cyclic sampling are omitted since xcjM = x(λ) (i.e. we get the 
Tikhonov solution after each epoch).

We observe that for random sampling, both rrls and sTik iterates contain undesir-
able uncertainties in the estimates. Although rrls iterates provide approximations to the 
Tikhonov solution, the main disadvantages are that the regularization parameter cannot be 
updated during the process and the iterates converge asymptotically to the unregularized solu-
tion. Hence, we disregard the rrls method and focus on sTik with random cyclic sampling, 
where λ can be updated via Λk .

3. Sampled regularization parameter selection methods

The ability to update the regularization parameter without sacri!cing favorable convergence 
properties makes the sTik method appealing for massive inverse problems. However, sam-
pled regularization parameter selection methods must be developed to enable proper updates 
Λk . Adapting regularization parameters during an iterative processes is not a new concept; 
however, much of the previous work in this area utilize projected systems, see e.g. [31, 45], or 
are specialized to applications such as denoising [27]. Another common approach is to con-
sider the unregularized problem and to terminate the iterative process before noise contami-
nates the solution. This phenomenon is called semiconvergence, and selecting a good stopping 
iteration can be very dif!cult. There have been investigations into semiconvergence behavior 
of iterative methods such as Kaczmarz, e.g. [19].

J T Slagel et alInverse Problems 35 (2019) 114008
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Unfortunately, standard regularization parameter selection methods are not feasible in this 
setting because many of them require access to the full residual vector, r(λ) = Ax(λ)− b, 
which is not available. In this section, we investigate variants of existing regularization param-
eter selection methods [4, 6, 49] that are based on the sample residual. In the following we 
assume that at the kth iteration, Λi for i = 1, . . . , k − 1 have been computed. Then the goal is 
to determine an appropriate update parameter Λk . From theorems 2.1 and 2.3, the kth sTik 
iterate can be represented as

xk(λ) = Ck(λ)b, where

Ck(λ) =

((
λ+

k−1∑

i=1

Λi

)
L"L+

k∑

i=1

A"Wτ(i)W"
τ(i)A

)−1 k∑

i=1

A"Wτ(i)W"
τ(i).

 (14)
Similar to standard regularization parameter selection methods, we assume that 

ε ∼ N (0,σ2I). For methods that require estimates of σ2, there are various ways that one can 
obtain such an estimate, see e.g. [16, 49].

3.1. Sampled discrepancy principle

The basic idea of the sampled discrepancy principle (sDP) is that at the kth iteration, the 
goal is to select the parameter Λk  so that the sum of squared residuals for the current sample 

Figure 1. Illustration of convergence behaviors of rrls and sTik iterates. Shown in 
the left panel are the true solution xtrue, the unregularized solution x(0), the Tikhonov 
solution x(λ), and rrls iterates after multiple epochs. Both rrls with random 
sampling iterates {yrk} and rrls with random cyclic sampling iterates {yck} converge 
asymptotically to the unregularized solution. In the right panel, we provide sTik with 
random sampling iterates {xrk} and con!dence bounds. These iterates stay close to the 
Tikhonov solution. The axis for the right !gure corresponds to the rectangular box in 
the left !gure. The concentric gray circles represent the 95% con!dence interval for 
these iterates after subsequent epochs.
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∥∥∥W!
τ(k)(Axk − b)

∥∥∥
2

2
 is equal to E

∥∥∥W!
τ(k)ε

∥∥∥
2

2
. Using properties of conditional expectation, we 

!nd

E
∥∥∥W!

τ(k) (Axtrue − b)
∥∥∥
2

2
=E

∥∥∥W!
τ(k)ε

∥∥∥
2

2

=EE
[
ε!Wτ(k)W!

τ(k)ε | ε
]

=σ2tr
(
EWτ(k)W!

τ(k)

)

=σ2",

where tr(·) corresponds to the matrix trace function. Thus, at the kth iteration and for a given 
realization, we select λ such that

∥∥∥W!
τ(k) (Axk(λ)− b)

∥∥∥
2

2
≈ γσ2$,

where γ > 1 is a predetermined real number. For the sampled methods, we select λk  that 
solves the optimization problem,

min
λ

(
‖W!

τ(k) (Axk(λ)− b) ‖22 − γσ2$
)2

, (15)

where γ = 4 as suggested in [26, 49] and σ2 is the true noise variance.

3.2. Sampled unbiased predictive risk estimator

Next, we describe a method to select Λk  based on a sampled unbiased predictive risk estimator 
(sUPRE). The basic idea is to !nd Λk  to minimize the sampled predictive risk,

E
∥∥∥W!

τ(k)(Axk(λ)− Axtrue)
∥∥∥
2

2
,

which is equivalent to

E
∥∥∥W!

τ(k) (Axk(λ)− b)
∥∥∥
2

2
+ 2σ2 E tr

(
Wτ(k)W!

τ(k)ACk(λ)
)
− σ2#.

See appendix B.1 for details of the derivation. Then, similar to the approach used in the stan-
dard UPRE derivation, the parameter Λk  is selected by !nding a minimizer of the unbiased 
estimator for the sampled predictive risk,

Uk(λ) =
∥∥∥W!

τ(k) (Axk(λ)− b)
∥∥∥
2

2
+ 2σ2tr

(
W!

τ(k)ACk(λ)Wτ(k)

)
− σ2#, (16)

for a given realization.

3.3. Sampled generalized cross validation

Lastly, we describe the sampled generalized cross validation (sGCV) method for selecting Λk  
and point the interested reader to appendix B.2 for details of the derivation. The basic idea is to 
use a ‘leave-one-out’ cross validation approach to !nd a value of Λk , but the main differences 
compared to the standard GCV method are that at the kth iteration, we only have access to the 
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sample residual and the iterates only correspond to Tikhonov solutions with only partial data. 
The parameter λk  is selected by !nding a minimizer of the sGCV function,

Gk(λ) =
"
∥∥∥W!

τ(k)(Axk(λ)− b)
∥∥∥
2

2

tr
(
I" −W!

τ(k)ACk(λ)Wτ(k)

)2 =
"
∥∥∥W!

τ(k)(Axk(λ)− b)
∥∥∥
2

2(
"− tr

(
W!

τ(k)ACk(λ)Wτ(k)

))2 .

 

(17)

3.4. Example 2

In this example we investigate the behavior of the previously discussed sampled regu-
larization parameter update strategies, i.e. sDP, sUPRE, and sGCV, for multiple ill-
posed inverse problems from the Matlab matrix gallery and from Hansens’ regularization 
tools toolbox [1, 2]. For simplicity, we set m  =  n  =  100 and use the true solutions xtrue 
that are provided by the toolbox. If no true solution is provided, we set xtrue = 1. We let 
L = I100, and set ε ∼ N (0, 0.01 I100). Sampling matrices Wj ∈ R100×10 are given as 
Wj = [010( j−1)×10; I10; 010(10−j)×10] for j = 1, . . . , 10, such that A and b are sampled in 10 
consecutive blocks. Here, we sample W in a random cyclic fashion and let σ2 be the true noise 
variance for sDP and sUPRE.

We !rst consider the prolate example where A is an ill-conditioned Toeplitz matrix 
from Matlab’s matrix gallery. In !gure 2 we illustrate the asymptotic behavior of the sampled 
parameter selection strategies by plotting the number of epochs against the value of λ for 
sDP, sUPRE, and sGCV. For comparison, we provide the regularization parameter for the full 
problem corresponding to DP, UPRE, and GCV. DP and UPRE use the true noise variance, 
and γ  is as above for DP. For comparison, we also provide the optimal parameter λopt for the 
full problem, which is the parameter that minimizes the two-norm of the error between the 
reconstruction and the true solution. This last approach is not possible in practice. We observe 
that with more iterations, the sampled regularization parameter selection methods tend to ‘sta-
bilize’ in that after some point, they do not change much. The sDP regularization parameter 
stabilizes near the DP parameter for the full problem, but both sUPRE and sGCV stabilize 
closer to the optimal regularization parameter.

While we observe similar results for other test problems (results not shown), the sampled 
regularization parameters may not necessarily be close to the corresponding parameter for 
the full system. Nevertheless, the sampled regularization parameter selection methods often 
lead to appropriate reconstructions xk(λ) after a moderate number of iterations. Next, we 
investigate the relative reconstruction error ‖xk(λ)− xtrue‖2 / ‖xtrue‖2 of sampled regulariza-
tion methods after one epoch (corresponding to k  =  10). Figure 3 illustrates results from four 
test problems (prolate, baart, shaw, and gravity). First note that by theorem 2.3, all 
solutions are Tikhonov solutions for a λ determined by the method, hence all relative recon-
struction errors lie on a curve of relative errors for Tikhonov solutions. We note that the above 
regularization parameter selection methods (including the standard DP, UPRE, and GCV) can 
only provide empirical estimations. However, we observe that in terms of relative reconstruc-
tion errors, our sampled regularization parameter selection methods perform reasonably well 
on the test problems.

As we have shown, our sampled regularization parameter selection methods can be used 
to update the regularization parameter in the sTik method, where the main bene!t is the 
favorable convergence property. In the next section, we turn our attention to problems where 
it may be infeasible to construct or work with the n× n matrix Bk. Although reduced models 
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Figure 2. ‘Asymptotic’ behavior of the sampled regularization parameter selection 
methods for the prolate example. Corresponding regularization parameters 
computed using the full data are provided as horizontal lines for comparison.

Figure 3. Relative reconstruction errors of the sampled and full regularization methods 
for four test problems prolate, baart, shaw, and gravity. All solutions lie on 
the solid line, which corresponds to relative errors for Tikhonov solutions. Note that the 
UPRE and GCV estimation in the prolate and baart test problem underperform 
signi!cantly and are therefore omitted. The relative errors for λsUPRE and λDP coincide 
in the shaw example.
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or subspace projection methods may be used to reduce the number of unknowns, obtaining a 
realistic basis for the solution may be dif!cult.

4. Numerical results

In this section, we address some of the computational concerns and demonstrate our methods 
on a large imaging problem. First, we reformulate the updates as solutions to least squares 
problems so that iterative methods can be used to compute approximations ef!ciently. In addi-
tion to being computationally feasible, these methods can take advantage of the adaptive regu-
larization parameter selection methods described in section 3.

These methods are based on the sTik method. In particular, we consider a sampled gra-

dient (sg) method where the iterates are de!ned as (5) where Bk =
(∑k

i=1 ΛiL!L+ In
)

−1 

and a sampled block Kaczmarz (sbK) method where the iterates are de!ned as (5) with 

Bk =
(∑k

i=1 ΛiL!L+ A!
k Ak

)
−1. Notice that this corresponds to including only the current 

block Ak. We also consider a limited-memory version of sTik called slimTik, which we 
describe below. First notice that the kth sTik iterate is given by xk = xk−1 − sk where

Figure 4. Comparison of relative reconstruction errors for sg, sbK, slimTik, and 
sTik iterates for gravity using various sampled regularization parameter selection 
methods for the !rst 10 iterations, i.e. one epoch. We compare sDP, sUPRE, and sGCV. 
The horizontal black line is the relative error corresponding to the optimal regularization 
parameter for the full problem, which is not feasible to obtain in practice.
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sk = argmin
s

∥∥∥∥∥∥∥∥∥∥∥∥∥





A1
...

Ak−1

Ak√∑k
i=1 ΛiL





s−





0
...
0

Akxk−1 − bk
Λk√∑k
i=1 Λi

Lxk−1





∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

With this reformulation, we must solve a least squares problem with matrix 
[
A!

1 · · · A!
k
]!

, which grows with each iteration. Thus, we select a memory parameter 

r ∈ N0 and de!ne Mk =
[
A!

k−r · · · A!
k−1

]! ∈ Rr!×n and Ak−r = 0 for non-positive inte-

gers k  −  r. Then slimTik iterates are given as xk = xk−1 − s̃k where

s̃k = argmin
s

∥∥∥∥∥∥∥





Mk

Ak√∑k
i=1 ΛiL



 s−




0

Akxk−1 − bk
Λk√∑k
i=1 Λi

Lxk−1





∥∥∥∥∥∥∥

2

2

. (18)

In the case where r  =  0, slimTik and sbK iterates are identical. First, we investigate the 
performance of sg, sbK, and slimTik while taking advantage of the regularization param-
eter update described in section 3. We use the gravity example from regularization tools, 

Figure 5. Super-resolution imaging example. On the left is the true high-resolution 
image, and on the right are three sample low-resolution images. The red-box corresponds 
to sub-images shown in !gure 7.

J T Slagel et alInverse Problems 35 (2019) 114008



15

where A ∈ R1000×1000, L = I1000, and the noise level de!ned as ‖ε‖2 / ‖Axtrue‖2 is 0.01. The 
samples consist of 10 blocks, each comprised of 100 consecutive rows of A. The initial guess 
for the regularization parameter is chosen to be 0.1 (the optimal overall regularization param-
eter in this example is approximately 0.0196), and we iterate for one epoch.

In !gure 4 we provide the relative reconstruction errors per iteration for sg, sbK, slim-
Tik, and sTik. Overall, we notice a correspondence between the amount of curvature infor-
mation used to approximate the Hessian and an improvement in the relative reconstruction 
error. Including more curvature results in greater computational costs and storage require-
ments, e.g. sTik may be infeasible for very large problems, but the number of row accesses 
is the same for each method. In terms of regularization parameter selection methods, sGCV 
performs better than sUPRE and sDP for this example. The relative reconstruction error corre-
sponding to the best overall Tikhonov solution is provided as the horizontal line. Although 
the results are not shown here, we note that without regularization, the relative reconstruction 
errors will become very large for all of these methods due to semiconvergence.

Having demonstrated that regularization parameter update methods can be incorporated 
in a variety of stochastic optimization methods, we investigate the performance of these lim-
ited-memory methods for super-resolution image reconstruction. The basic goal of super-
resolution imaging is to reconstruct an n× n high-resolution image represented by a vector 
xtrue ∈ Rn2 given M low-resolution images of size !× ! represented by b1 · · · , bM , where 
bi ∈ R!2 . The forward model for each low-resolution image is given as

Figure 6. Relative reconstruction errors for the super-resolution imaging example for 
one epoch. We note that sUPRE and sGCV produce good reconstructions. Additionally, 
slimTik produces a smaller relative reconstruction error, since it is using more 
curvature information.
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bi = RSixtrue + εi,

where R ∈ R!2×n2 is a restriction matrix, Si ∈ Rn2×n2 represents an af!ne transformation 
that may account for shifts, rotations, and scalar multiplications, and εi ∼ N

(
0!2 ,σ2I!2

)
. To 

reconstruct a high-resolution image, we solve the Tikhonov problem,

min
x

∥∥∥∥∥∥∥





RS1
...

RSM



 x−





b1
...
bM





∥∥∥∥∥∥∥

2

2

+ λ ‖Lx‖22 .

For cases where the low-resolution images are being streamed or where the number of low-
resolution images is very large, standard iterative methods may not be feasible. Furthermore, 
it can be very challenging to determine a good choice of λ prior to solution computation  
[15, 28, 42].

For our example, we have 30 images of size 128× 128, and we wish to reconstruct a high-
resolution image of size 2048× 2048. In !gure 5, we provide the true high-resolution image 
of the moon [13] and three of the low-resolution images. Here, Ai = RSi ∈ R1282×20482. Due 
to the inherent partitioning of the problem, we take W!

i ∈ R1282×30·1282 to be a matrix such 
that W!

i A = Ai; these Wi matrices are never computed. For the simulated low-resolution 
images, Gaussian white noise is added such that the noise level for each image is 0.01 and 

Figure 7. Sub-images of the reconstructed images for the super-resolution imaging 
example. Reconstructions correspond to sg, sbK, and slimTik with regularization 
parameter updates computed using sDP, sUPRE, and sGCV. For comparison, we 
provide reconstructions corresponding to no regularization, i.e. λ = 0.
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take L = I20482. Notice that the size of the matrix A is 491 520× 4194 304, and holding A in 
computer memory is impractical despite its sparse structure.

We compare the performances of sg, sbK, and slimTik, including our sampled regu-
larization parameter update methods sDP, sUPRE, and sGCV. The true noise variance is used 
for sDP and sUPRE, and the memory parameter for slimTik is r  =  2. Each iteration of sbK 
and slimTik requires a linear solve, which can be handled ef!ciently by reformulating the 
problem as a least squares problem as in equation (18), and using standard techniques such as 
LSQR [40, 41]. These iterative methods can also be used to update the regularization param-
eter. Furthermore, we use the Hutchison trace estimator to ef!ciently evaluate the trace term 
in sGCV and sUPRE, see (16) and (17). More speci!cally, rather than compute 1282 linear 
solves, we note that if v is a random variable such that E vv! = I1282 , then

tr
(
W!

τ(k)ACk(λ)Wτ(k)

)
= Ev!W!

τ(k)ACk(λ)Wτ(k)v.

Here we use the Rademacher distribution where the entries of v are vi = ±1 with equal prob-
ability. We use a single realization of v to approximate the trace, hence resulting in just one 
linear solve [5, 23, 46].

Relative reconstruction errors are provided in !gure 6, and sub-images of the reconstruc-
tions are provided in !gure 7. We observe that, in general, sDP errors are more erratic than 
sUPRE and sGCV errors. Notice that for sUPRE and sGCV, sbK produces higher reconstruc-
tion errors compared to sg, which may be attributed to insuf!cient global curvature informa-
tion. Furthermore, we observe that slimTik reconstructions contain more details than sg 
and sbK reconstructions.

5. Conclusions

In this work we describe iterative sampled Tikhonov methods for solving inverse problems 
for which it is not feasible to access the data all-at-once. Such methods are necessary when 
handling data sets that do not !t in memory and also can naturally handle streaming data 
problems.

We investigate two iterative methods, rrls and sTik, and show that under various sam-
pling schemes, rrls iterates converge asymptotically to the unregularized solution while 
sTik iterates converge to a Tikhonov-regularized solution. Although the sampling mech-
anisms we discuss do not play a role in the asymptotic convergence, they do allow for interest-
ing interpretations. In particular, for random cyclic sampling we can characterize the iterates 
as Tikhonov solutions after every epoch, providing insight into the path that the iterates take 
towards the solution. For iterative methods where the regularization parameter can be updated 
during the iterative process (e.g. sTik), we describe sampled variants of existing regulariza-
tion parameter selection methods to update the parameter. Using a number of well-known 
data sets, we show empirically that sampled Tikhonov methods with automatic regularization 
parameter updates can be competitive. For very large inverse problems, we describe a limited-
memory version of sTik, and we demonstrate the ef!cacy of the limited-memory approach 
on a standard benchmark dataset as well as on a streaming super-resolution image reconstruc-
tion problem.

Future directions of research include developing an asymptotic analysis of slimTik and 
a non-asymptotic analysis of the general sampling algorithms. This would involve bound-
ing the mean square error at a !xed iteration k, which may help to explain the quick initial 
convergence seen in the numerical experiments. Another open question is how to accelerate 

J T Slagel et alInverse Problems 35 (2019) 114008



18

convergence by selecting Wτ  to sample important parts of the problem, e.g. using sketch-
ing matrices [17, 18]. Finally, extensions to nonlinear inverse problems would require more 
advanced convergence analyses and further algorithmic developments, e.g. incorporating 
adaptive regularization parameter selection within stochastic LBFGS [12, 36].
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Appendix A. Proofs for section 2

Proof of theorem 2.1. For (ii), note that the solution of the least squares problem (7) is 
given by

x(λk) = Bk

k∑

i=1

A!
i bi.

Noticing the relationship B−1
k = B−1

k−1 + A"
k Ak + ΛkL"L, we get the following equivalencies 

for the sTik iterates

xk = xk−1 − Bk
(
A"

k (Akxk−1 − bk) + ΛkL"Lxk−1
)

= Bk
(
B−1
k xk−1 − A"

k Akxk−1 + A"
k bk − ΛkL"Lxk−1

)

= Bk
(
B−1
k−1xk−1 + A"

k bk
)
= Bk

k∑

i=1

A"
i bi = x(λk).

A similar proof can be made for (i). □ 

Proof of theorem 2.2. 

 (i)  From theorem 2.1 for any k ∈ N we have

yk =

(
λL!L+

k∑

i=1

A!Wτ(i)W!
τ(i)A

)−1 ( k∑

i=1

A!Wτ(i)W!
τ(i)b+ λL!Ly0

)

=

(
λL!L+

∑k
i=1 A!Wτ(i)W!

τ(i)A
k

)−1 (∑k
i=1 A!Wτ(i)W!

τ(i)b+ λL!Ly0
k

)
.

  Using the fact that EWτ(i)W!
τ(i) =

"
m Im  (see equation (8)), by the law of large numbers 

and Slutsky’s theorem for a.s. convergence [49]
∑k

i=1 A!Wτ(i)W!
τ(i)b+ λL!Ly0

k
a.s.−→ "

m
A!b,

  and
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(
λL!L+

∑k
i=1 A!Wτ(i)W!

τ(i)A
k

)−1
a.s.−→ m

"

(
A!A

)−1

  and therefore

yk
a.s.−→

(
A!A

)−1 A!b = x(0).

 (ii)  In a similar fashion, for any k ∈ N we have

xk =

(∑k
i=1 ΛiL!L+ A!Wτ(i)W!

τ(i)A
k

)−1 (∑k
i=1 A!Wτ(i)W!

τ(i)b
k

)
.

  Using the fact that EWτ(i)W!
τ(i) =

"
m Im  and limk→∞

∑k
i=1 ΛiL!L

k = !
mλL

#L, we have
∑k

i=1 A!WiW!
i b

k
a.s.−→ !

m
A!b

  and

(∑k
i=1 ΛiL!L+ A!WiW!

i A
k

)−1
a.s.−→ m

!

(
A!A+ λL!L

)−1
,

  and thus we conclude that

xk
a.s.−→

(
A!A+ λL!L

)−1 A!b = x(λ).
 □ 

Proof of theorem 2.3. Notice that for random cyclic sampling schemes and for any itera-
tion jM, 

∑ jM
i=1 A

!Wτ(i)W!
τ(i)A = jA!A and 

∑ jM
i=1 A

!Wτ(i)W!
τ(i)b = jA!b are determinis-

tic. Hence

yjM = j
(
λL!L+ jA!A

)−1 A!b =

(
λ

j
L!L+ A!A

)−1

A!b = x
(
1
j
λ

)

and

xjM = j
(
λjML!L+ jA!A

)−1 A!b =

(
λjM

j
L!L+ A!A

)−1

A!b = x
(
1
j
λjM

)
.

 
□

Appendix B. Derivations for sampled UPRE and sampled GCV

In this section, we provide derivations for (16) and (17). To estimate the overall regulariza-
tion parameter λ at the kth iteration we are just required to update Λk  since the estimate λ is 
uniquely determined by the preceding Λi’s, i = 1, . . . , k − 1 and Λk . Hence, for ease of nota-
tion we will drop the iteration count on λ.
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B.1. Derivation of the sampled UPRE

The basic idea is to !nd Λk  by minimizing an estimate of the predictive error. Let the sampled 
predictive error be given by

P(λ) =
∥∥∥W!

τ(k)(Axk(λ)− Axtrue)
∥∥∥
2

2
.

Using the notation from (14), the expected sampled predictive error, EP(λ), can be written as

E
∥∥∥W!

τ(k) (ACk(λ)− Im)Axtrue
∥∥∥
2

2
+ σ2E tr

(
Ck(λ)

!A!Wτ(k)W!
τ(k)ACk(λ)

)
,

 (B.1)
where the mixed term vanishes due to independence of Wτ(1), . . .Wτ(k) and ε and since 
Eε = 0. Similar to the derivation for standard UPRE, the predictive error is not computable 
in practice since xtrue is not available. Thus, we perform a similar calculation for the expected 
sampled residual norm,

E
∥∥∥W!

τ(k) (Axk(λ)− b)
∥∥∥
2

2
= E

∥∥∥W!
τ(k)(ACk(λ)− Im)b

∥∥∥
2

2

= E
∥∥∥W!

τ(k)(ACk(λ)− Im)Axtrue
∥∥∥
2

2
+ E

∥∥∥W!
τ(k)(ACk(λ)− Im)ε

∥∥∥
2

2
.

 (B.2)
Next, notice that using the trace lemma for symmetric matrices [6], the second term in (B.2) 
can be written as

σ2
(
E tr

(
Ck(λ)

!A!Wτ(k)W!
τ(k)ACk(λ)

)
− 2E tr

(
Wτ(k)W!

τ(k)ACk(λ)
)
+ #

)
.

 (B.3)
Combining (B.1) with (B.2) and (B.3), we get

EP(λ) = E
∥∥∥W!

τ(k) (Axk(λ)− b)
∥∥∥
2

2
+ 2σ2 E tr

(
Wτ(k)W!

τ(k)ACk(λ)
)
− σ2#.

Finally for a given realization, we get an estimator for the predictive risk

Uk(λ) =
∥∥∥W!

τ(k) (Axk(λ)− b)
∥∥∥
2

2
+ 2σ2tr

(
W!

τ(k)ACk(λ)Wτ(k)

)
− σ2#,

which is equivalent to (16).

B.2. Derivation of the sampled GCV

We derive the sampled generalized cross validation function, following a similar derivation 
of the cross validation and generalized cross validation function found in [22]. For notational 
simplicity, we denote Aτ(i) = W!

τ(i)A and bτ(i) = W!
τ(i)b. Then, notice that the kth iterate of 

sTik, which is given by xk(λ) = Ck(λ)b is the solution to the following problem,

min
x

∥∥Aτ(k)x− bτ(k)
∥∥2
2 + λ ‖Lx‖22 +

∥∥∥∥∥∥∥





Aτ(1)
...

Aτ(k−1)



 x−





bτ(1)
...

bτ(k−1)





∥∥∥∥∥∥∥

2

2

.

To derive sampled GCV, at the kth iterate, de!ne,
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Ej = I! − e!j ej.

Here ej is the j th column of the identity matrix. Our goal is to !nd x[ j](λ), which is the solu-
tion to

min
x

∥∥Ej
(
Aτ(k)x− bτ(k)

)∥∥2
2 + λ ‖Lx‖22 +

∥∥∥∥∥∥∥





Aτ(1)
...

Aτ(k−1)



 x−





bτ(1)
...

bτ(k−1)





∥∥∥∥∥∥∥

2

2

.

Then, the sampled cross-validation estimate for λ minimizes the average error,

Vk(λ) =
1
"

!∑

j=1

(
e!j bτ(k) − e!j Aτ(k)x[ j](λ)

)2
.

Using the normal equations and the fact that E!
j Ej = Ej, an explicit expression for x[ j](λ) is 

given as

x[ j](λ) =

(
A!

τ(k)E
!
j EjAτ(k) + λL!L+

k−1∑

i=1

A!
τ(i)Aτ(i)

)−1 (
A!

τ(k)E
!
j Ejbτ(k) +

k−1∑

i=1

A!
τ(i)bτ(i)

)

=
(
Bk(λ)

−1 − A!
τ(i)eje

!
j Aτ(i)

)−1
(

k∑

i=1

A!
τ(i)bτ(i) − A!

τ(k)eje
!
j bτ(k)

)
,

where Bk(λ) =
(
λL!L+

∑k
i=1 A!

τ(i)Aτ(i)

)
−1. Next de!ning tjj = e!j Aτ(k)Bk(λ)A!

τ(k)ej  
and using the Sherman–Morrison–Woodbury formula, we get
(
Bk(λ)

−1 − A"
τ(i)eje

"
j Aτ(i)

)−1
=

1
1− tjj

(
(1− tjj)Bk(λ) + Bk(λ)A"

τ(k)eje
"
j Aτ(k)Bk(λ)

)

and after some algebraic manipulations, we arrive at

e!j Aτ(k)x[ j](λ) =
1

1− tjj

(
e!j Aτ(k)Ck(λ)b− tjje!j bτ(k)

)
.

Thus,

e!j bτ(k) − e!j Aτ(k)x[ j](λ) =
1

1− tjj
e!j

(
bτ(k) − Aτ(k)xk(λ)

)
,

and we can write the sampled cross-validation function as

Vk(λ) =
1
"

∥∥Dk(λ)(bτ(k) − Aτ(k)xk(λ))
∥∥2
2 ,

where Dk(λ) = diag
(

1
1−t11

, . . . , 1
1−t!!

)
. The extension from the sampled cross-validation to 

the sampled generalized cross validation function is analogous to the generalization process 
from cross-validation to GCV provided in [22].
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