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CrossMark
Abstract
In this paper we investigate iterative methods that are based on sampling of
the data for computing Tikhonov-regularized solutions. We focus on very
large inverse problems where access to the entire data set is not possible all-
at-once (e.g. for problems with streaming or massive datasets). Row-access
methods provide an ideal framework for solving such problems since they
only require access to ‘blocks’ of the data at any given time. However, when
using these iterative sampling methods to solve inverse problems, the main
challenges include a proper choice of the regularization parameter, appropriate
sampling strategies, and a convergence analysis. To address these challenges,
we describe a family of sampled iterative methods that can incorporate data
as they become available (e.g. randomly sampled). We consider two sampled
iterative methods where the iterates can be characterized as solutions to a
sequence of approximate Tikhonov problems. The first method requires the
regularization parameter to be fixed a priori and converges asymptotically to
an unregularized solution for randomly sampled data. This is undesirable for
inverse problems. Thus, we focus on the second method where the main benefits
are that the regularization parameter can be updated during the iterative process
and the iterates converge asymptotically to a Tikhonov-regularized solution.
We describe adaptive approaches to update the regularization parameter that
are based on sampled residuals, and we provide a limited-memory variant for
larger problems. Numerical examples, including a large-scale super-resolution
imaging example, demonstrate the potential for these methods.
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1. Introduction

With faster scan speeds on recently-developed imaging devices and new applications to comp-
uter vision and machine learning, datasets are becoming so large that the entire dataset can not
be accessed ‘all-at-once’ [34]. Furthermore, in automated pipelines, data is being streamed
and a major challenge is to obtain immediate feedback (e.g. a partial reconstruction) to inform
the data acquisition process [43]. For these and other scenarios, existing methods that require
all-at-once access to the data are not feasible. Instead, we consider randomized or sampling
methods where only ‘blocks’ of the data are required at a given time.
In this paper, we focus on linear inverse problems of the form,

b = Axye + €,

where Xy € R” contains the desired, unknown parameters, A € R™*" models the data acqui-
sition process, b € R” contains the observed data (which may be streaming), and € € R™
represents noise or errors in the data. We assume that the random vector € has mean zero and
a finite second moment. In the generic setup, the goal of the inverse problem is to estimate
Xue, glven a model A and observations b. Typically, the matrix A represents a discrete, linear
version of a given model stemming, for instance, from a discretized PDE network, integral
equation, or regression model [26, 37]. For the problems of interest, m and n may be so large
that accessing and/or storing all rows of A at once is infeasible.

In this work we consider ill-posed inverse problems where regularization is required to
compute reasonable solutions. Here, we focus on solving the Tikhonov-regularized problem,

minf(x) = ||Ax — |3 + A |Lx|3. M

where A > 0 is the regularization parameter, and for simplicity we assume that L has full col-
umn rank. When all of b and A are available or can be accessed at once (e.g. via matrix-vector
multiplication with A), the Tikhonov solution,

x(A) = (ATA+ALTL)'ATb, ()

can be computed using a plethora of existing iterative methods (e.g. Krylov or other optim-
ization methods [25, 30]). Note that x(0) is the unregularized solution, which is defined if A
has full column rank.

To solve (1) we consider sampled iterative methods of the form,

X = Xp—1 — Bkgk(xk—l)» keN, 3)

where X is an initial iterate, g, (x¢—1) is a vector (carrying gradient information of the least
squares problem), and the matrix B, € R"*” is updated at each iteration (carrying curvature
information of the least squares problem). A learning rate or line search parameter is not
required in this case and is set to its ‘natural’ value of 1 [10]. Specific choices for By and g,
will be described in section 2, with connections to other known stochastic approximation
methods described in section 2.3.

In this work we focus on sampled methods that do not require all-at-once access to A,
but we note that if all of A is available, then iterated Tikhonov regularization methods for
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linear problems [11, 20, 24] can be formulated as (3) where B,:l =ATA+ NLTL and
g.(x,_1) = AT (Ax;_; — b). Furthermore, we note that iterative methods of the form (3) typi-
cally stem from nonlinear optimization problems where By is an approximation to the inverse
Hessian and g, is the gradient at the current iterate Xx—1 [39]. Such methods take only one step
to converge for the linear problem (e.g. take X = 0, By = ATA + ALTL, and g, = ATb).
However, this is not possible if m and n are too large for the computer memory or if the data
is not available all-at-once (e.g. in streaming problems). Furthermore, determining a suitable
choice of A can be computationally infeasible in such settings, and the information available,
i.e. By and g;, may be subject to noise. Thus, we consider nonlinear methods of the form (3)
for Tikhonov regularization with massive data, where the main benefits are that (i) the data is
sampled (e.g. randomly) or streamed, (ii) the regularization parameter can be adapted, and (iii)
the methods converge asymptotically and in one epoch to a Tikhonov-regularized solution.
Sophisticated regularization parameter selection methods are well-established if the full sys-
tem is available (for example, see [31, 45]); however, the ability to update the regularization
parameter within iterative methods of the form (3) while also ensuring convergence of iterates
to a regularized solution is, to the best of our knowledge, an unresolved problem.

1.1. Problem formulation

In the following, we describe a mathematical formulation of the problem that allows us to
solve (1) in situations where samples of A and b become available over time. Such scenarios
are common in medical imaging, e.g. in tomography where data is being processed as it is
being collected [3], and in astronomy, e.g. in super-resolution imaging where a high-resolution
image is constructed from low-resolution images that are being video streamed [28].

Formally, at the kth iteration, we assume that a set of rows of A and corresponding ele-
ments of b become available, which we denote by W,—IA and W,;rb respectively. Here the
matrix Wy € R"*¢ is a sampling matrix, which selects rows of A and b. For a fixed M € N
we assume that matrices {W;}¥, satisfy the following properties:

(i) foreachi € {1,...,M}, W; € R™¢ where ¢ = % and
(ii) the sum 37 W,W] = L,.

The first assumption implies that the size of W;r A is smaller than the size of A, and thus
computationally manageable. The second assumption guarantees that all rows of A are given
equal weight; however, importance sampling could be included and results in a weighted least
squares problem.

Notice that if Wy is sparse with only a few non-zero elements in a subset of the m col-
umns, WkTA extracts only rows of A where W, has nonzero entries. These methods are com-
monly known as row-action methods [3, 21], where Kaczmarz-type methods are a prominent
subclass of row-action methods [29, 48]. A notable difference of our methods compared to
other approaches is that the matrices B, accumulate information from the previous iterates.
Randomized or sketching methods are also related in that a single realization of Wy is used to
project a large system onto a lower dimensional subspace [17, 44]. However, these methods
typically require access to all of the data at once.

3 To avoid a notational distraction, we assume all matrices W; are of the same dimension and M = m; hence,
¢ € N. However a generalization with different matrix sizes W; € R"*% is straightforward.
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1.2. Overview and outline

In this paper, we describe iterative sampling methods for solving Tikhonov-regularized prob-
lems, where the main distinction from existing methods such as hybrid Krylov methods
and iterated Tikhonov methods is that we do not require all-at-once access to the forward
model. The main contributions include the characterization of iterates as solutions to partial
or full Tikhonov problems and asymptotic convergence results. In terms of methodology, we
highlight the sampled Tikhonov method where the regularization parameter can be updated
during the iterative process such that after each epoch of data, the iterates are Tikhonov-
regularized solutions. Additionally, the sampled Tikhonov method converges asymptotically
to a Tikhonov-regularized solution. Other developments include methods for updating the
regularization parameter using sampled data and limited-memory variants for problems with
many unknowns.

The paper is organized as follows. In section 2 we describe two iterative methods for
Tikhonov regularization with sampling. Various theoretical results are provided, including
asymptotic convergence results. In section 3 we describe sampled regularization parameter
selection methods that can be used to update the regularization parameter. Numerical illustra-
tions are provided throughout, and a limited-memory variant of these methods is described in
section 4, along with results for a large-scale imaging problem. Conclusions and future work
are discussed in section 5.

2. lterative sampling methods for Tikhonov regularization

Iterative sampling methods for Tikhonov regularization can be used to solve massive lin-
ear inverse problems. We investigate two methods. Let y,, Xo € R" be initial iterates and
let W; € R"*¢_ j=1,...,k be arbitrary matrices. For notational convenience, we denote
A, = W,TA and b; = W,Tb. Assuming a fixed regularization parameter A, the first method
that we consider is regularized recursive least squares (rr1s)®, which is defined as

Vi = Vi1 — BiA] (Agyior —by), k€N, 4)

where B; = ()\LTL + Zf:] AiTAi) —L If W; is the ith column of the identity matrix, rrls

is an extension of the recursive least squares algorithm [7] that includes a Tikhonov term.
Since it may be difficult to know a good regularization parameter in advance, we propose a
sampled Tikhonov (sT1k) method, where the iterates are defined as

Xy = Xp—1 — Bk (A;—(Akxk_l — bk) + AkLTLXk_l) N k S N, (5)

where By = (Zle ALTL+ Y0, AlTAi) ~1and scalar Y%, A; > 0. Compared to rrls,

the main advantages of the sT1ik method are that the regularization parameter can be updated
during the iterative process and that in a sampled framework, the sTik iterates converge
asymptotically to a Tikhonov solution whereas the rrls iterates converge asymptotically
to an unregularized solution. Of course, selecting a good regularization parameter can be
difficult, especially for problems with a small range of good values. In any case, for inverse
problems it is desirable that the numerical method for solution computation converges to a
regularized solution.

6 This should not be confused with the residual-reducing LS (RRLS) algorithm referenced in [41].
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In this section, we begin by showing that for arbitrary matrices W;, both rrls and sTik
iterates can be recast as solutions to regularized least squares problems. See appendix A for
proofs for all theorems from section 2.

Theorem 2.1. Let A € R™*" and b € R™. Let L € R*™" have full column rank and
W, € R"™%¢ i = 1,...,k be an arbitrary sequence of matrices.

(i) For A >0 and an arbitrary initial guess y, € R", the rrls iterate (4) with
B, = (/\LTL + Zf:l Al-TA,-) ~Lis the solution of the least squares problem
. 2 2
min [|[Wi...... Wi T(Ax — b)[3 + A [LGx - yo) 5. ®)
(ii) For A\ = Zle A; > 0 for any k and an arbitrary initial guess Xo € R", the sTik iter-

ate (5) with By, = (ZLI ALTL + Zf;l Al-TAi) ~Lis the solution of the least squares

problem
. 2
min [[Wi.....Wi] T (Ax = b)[[; + Ac ILx]5 - 7)

The above results are true for any arbitrary sequence of matrices {W,}. Next, we consider
a fixed set of matrices, as described in the introduction, and allow random sampling from this
set. To be precise, define W, to be a random variable at the kth iteration, where 7(k) is a
random variable that indicates a sampling strategy. For example, if we let 7(k) be a uniform

random variable on the set {1, ..., M}, then we would be sampling with replacement. In sec-
tion 2.1 we prove asymptotic convergence of rrls and sTik iterates using this sampling
(+DM .

strategy. We then focus on random cyclic sampling, where for each j € N, {7 (k) }jM T isa
random permutation on the set {1, ..., M}. Note, cyclic sampling, where 7(k) = kmod M, is
a special case of random cyclic sampling. We note that, until all blocks have been sampled,
random cyclic sampling is just sampling without replacement. For random cyclic sampling,
we characterize iterates after each epoch and prove asymptotic convergence of rrls and
sTik iterates in section 2.2. An illustrative example comparing the behavior of the solu-
tions is provided in section 2.4. For notational simplicity we denote A, ) = WTT(k)A and
by = Wj(k)h

Notice that for both random sampling and random cyclic sampling, we have the following

property,
1 ¢
EW, W], = = (8)

There are many choices for {W;}, see e.g. [14, 33, 35], but a simple choice is a block column
partition of a permutation matrix. For the choice of {W;} we will consider, A, is just a
predefined block of rows of A.

2.1. Random sampling

Next we investigate the asymptotic convergence of rrls and sTik iterates for the case of
uniform random sampling. This is also referred to as sampling with replacement.

Theorem 2.2. Let A € R™" and b € R™. Let L € R**" have full column rank and de-
fine X(X\) as in (2). Let {W;}*.| be a set of real valued m x { matrices with the property that
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Z?il W,W. =1, and let 7(k) be a uniform random variable on the set {1,...M}.
(i) Let A >0,y, € R"be arbitrary, and define the sequence {y,} as

Ve = Yie1 — BiA L (Aryiot —bry), keEN, )

where kBk = (ALTL+ Zf;l Aj(i)AT(i)) “LIfA haksfull column rank, then'y, == x(0).
(ii) Let Y, Aj > 0 for all k, and X = limy oo % >oioy Ai > 0 be finite. Let xg € R" be

arbitrary, and define the sequence {X;} as

X = X1 — By (A;r(k) (ArXe—1 — bry) + AkLTLXk—l) , (10)

where By = (Zle ALTL+ Y0, AI(,-)Ar(i)) ~L Then x; =2 x(\).

The significance of theorem 2.2 is that the rrls iterates converge asymptotically to the
unregularized least squares solution, (ATA) —!ATh, which is undesirable for ill-posed inverse
problems. On the other hand, the sTik iterates converge asymptotically to a Tikhonov-
regularized solution. Note that for a given A, convergence to x () is ensured by setting
A = A/M. A more realistic scenario would be to adapt A, as data become available, since
the desired regularization parameter is typically not known before the data is received. Hence,
parameter selection strategies for selecting Ay are addressed in section 3.

2.2. Random cyclic sampling

Next we investigate rrls and sTik with random cyclic sampling. In addition to proving
asymptotic convergence in this case, we can also describe the iterates as Tikhonov solutions
after each epoch, where an epoch is defined as a sweep through all the data.

Theorem 2.3. Let A € R™" and b € R™. Let L € R**" have full column rank and
{W I be a set of real valued m x € matrices with the property that Zf‘il WW, =1, and
let (k) be a random variable such that for j € N, {T(k)}}A’,,ill)M is a random permutation on
the set {1,...,M}.

(A)If A>0, y,=0, and the sequence {y,} is defined as (9) with

B, = ()\LTL + Zf:] AI(i)Ar(i)) ~1, then the iterate at the jth epoch is Yy =X (]l)\)

(ii) Let { Ay} be an infinite sequence with the property that A\, = Zf;, A; > 0.Ifxq is arbitrary
and the sequence {x; } is defined as (10) with By, = (Zle ALTL + Zle AI(i)AT(,-)) -

then the iterate at the jth epoch is Xy = X (,I")‘J‘M .

Notice that at every epoch, the effective regularization parameter for rrls, i.e. A/j, is
reduced. Also, if A has full column rank, we have lim;_, Yim = x(0). On the other hand,
the sTik iterates converge to a Tikhonov-regularized solution, since at each epoch j = k/M
and we have X; = x; =X (%)\k) and %/\k > 0. In section 2.4 we illustrate the convergence
behavior of the rrls and sTik iterates, but first we make some connections to existing
optimization methods.
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2.3. Connections to stochastic approximation methods

There is a connection between the iterative methods with sampling presented in section 2
and stochastic approximation methods that becomes apparent if the Tikhonov problem (1) is
recast as a stochastic optimization problem. For simplicity, consider random sampling (i.e.
with replacement), where 7(k) is a uniform random variable on the set {1, ..., M}. Then if we

2
define fr ) (x) = ’WI(k) (Ax — b)H2 + % ||Lx\|§, it is easy to show that
Efrw < f,

and therefore
argmin Ef, ) (x) = argmin f(x). (11

Stochastic approximation methods represent one class of methods that can be used to compute
solutions to the expectation minimization problem on the left of (11) [47]. For the Tikhonov
problem, a stochastic approximation method has the form,

Xir1 = Xk — Be Ve (%) (12)

where Vf, ) (Xk) = Aj(k) (AT(k)xk — bT(k)) + %ka is the sample gradient for the Tikhonov

problem. Different choices of By can be used in (12). If B, = (%LTL + YL AT i)AT(,-)) -1
then all of the previously computed global curvature information is encoded in By and we
recover the sTik method with A; = % Theorem 2.2 (ii) shows that these iterates will conv-
erge asymptotically to the minimizer of (11), but storage can get costly. Another option is to
take By, = I,,, which corresponds to the stochastic gradient method [8]. For faster convergence
closer to the minimizer, there are various methods in the stochastic optimization literature that
can be used to approximate the global curvature information V2f (x;) [9, 32]. For example, a
stochastic LBFGS method stores a small set of vectors, rather than matrix By, and can perform
multiplications in an efficient manner [12, 36].

We are most interested in the Tikhonov problem (1), but we note that there exists methods
for the case where A = 0 that have connections to stochastic optimization methods. Using the
same reformulation as above, a stochastic approximation method would have the form (12).
If we take B, = (szT(k)) f, then we get the randomized block Kaczmarz method [3, 38, 48].
Notice that the curvature information comes only from the current sample. On the other hand,
if By is chosen to contain all previous curvature information, we get the rr1s iterates,

‘ —1
Yk = Yi—1 — (ALTL + ZAI(I')AT([)> AlpyAr¥ir —brg),  (13)
i=1

where AL "L is included to ensure invertibility and is often replaced with AL,. The concern
for inverse problems is that the iterates in (13) converge to the unregularized problem, see,
theorem 2.2 (i). The connection between recursive least squares and stochastic approximation
methods was noted in [32], and the approximation can be interpreted as a regularized stochas-
tic approximation method that was considered, e.g. in [10, 14].

2.4. An illustration

In the following illustration, we use a small toy example to highlight the convergence behav-
ior of rrls and sTik iterates. We investigate both random sampling and random cyclic
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sampling, and we demonstrate convergence by plotting solutions after multiple epochs of the
data. The example we use is a Tikhonov problem of the form (1), where

A= Ll) ‘ﬂ ER2 b=Axpe+0p  and Xy = L.
The vectors 4 and ) are realizations from the normal distributions A/(0,0.005 1) and
N(0,0.119) respectively, and 1 is the vector of ones of appropriate length. We further choose
L =1, and fix A = 0.2 for the rrls iterates y,. For sT1ik iterates X;, we choose the param-
eters A such that the regularization is constant at each epoch, i.e. % Zi;l A; = 0.2. With this
setup we have x(0) = [1.0869, —1.3799] " and x(\) = [1.0698, —0.0271]". We let W ;) be
the 7(i)th column of the identity matrix, and set xo = yo = 0.

In figure 1, we provide two illustrations. In the left panel, we provide the true solution Xy,
the unregularized solution x(0), the Tikhonov solution x(\), and the rr1s iterates after each
epoch. The rrls iterates with random sampling with replacement are denoted by y;, and the
rrls iterates with random cyclic sampling are denoted by y;. Notice that by theorem 2.3, y;

at each epoch is a Tikhonov solution, i.e. after the jth epoch yj, = x (Jl)\) Thus, we get a set

of Tikhonov solutions with vanishing regularization parameters, and these iterates asymptoti-
cally converge to the unregularized solution. For rr1s with random sampling, we run 1000
simulations and provide one sample path, along with the mean (dotted line) and region of the
95th percentile shaded in grey. We note that the mean of {y; } is almost identical to the ran-
dom cyclic sequence {y;} (red line) suggesting that the random sequence {y} } is an unbiased
estimator of the deterministic sequence {y§} (at each epoch). In the right panel of figure 1,
we provide the sT1ik iterates with random sampling, which are denoted by x}.. Again, we run
1000 simulations and provide one simulation along with the shaded percentiles. It is evident
that with more epochs, the iterates approach the desired Tikhonov solution. To aid with visual
scaling, the axis for the right figure corresponds to the dotted rectangular box in the left figure.
The sTik iterates with random cyclic sampling are omitted since Xj, = x(\) (i.e. we get the
Tikhonov solution after each epoch).

We observe that for random sampling, both rrls and sTik iterates contain undesir-
able uncertainties in the estimates. Although rrls iterates provide approximations to the
Tikhonov solution, the main disadvantages are that the regularization parameter cannot be
updated during the process and the iterates converge asymptotically to the unregularized solu-
tion. Hence, we disregard the rr1s method and focus on sT ik with random cyclic sampling,
where A can be updated via Ay.

3. Sampled regularization parameter selection methods

The ability to update the regularization parameter without sacrificing favorable convergence
properties makes the sT1ik method appealing for massive inverse problems. However, sam-
pled regularization parameter selection methods must be developed to enable proper updates
Ay. Adapting regularization parameters during an iterative processes is not a new concept;
however, much of the previous work in this area utilize projected systems, see e.g. [31, 45], or
are specialized to applications such as denoising [27]. Another common approach is to con-
sider the unregularized problem and to terminate the iterative process before noise contami-
nates the solution. This phenomenon is called semiconvergence, and selecting a good stopping
iteration can be very difficult. There have been investigations into semiconvergence behavior
of iterative methods such as Kaczmarz, e.g. [19].
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Figure 1. Illustration of convergence behaviors of rr1ls and sTik iterates. Shown in
the left panel are the true solution Xy, the unregularized solution x(0), the Tikhonov
solution x(A), and rrls iterates after multiple epochs. Both rrls with random
sampling iterates {y}} and rrls with random cyclic sampling iterates {y{} converge
asymptotically to the unregularized solution. In the right panel, we provide sT1ik with
random sampling iterates {x}} and confidence bounds. These iterates stay close to the
Tikhonov solution. The axis for the right figure corresponds to the rectangular box in
the left figure. The concentric gray circles represent the 95% confidence interval for
these iterates after subsequent epochs.

Unfortunately, standard regularization parameter selection methods are not feasible in this
setting because many of them require access to the full residual vector, r(\) = Ax(\) — b,
which is not available. In this section, we investigate variants of existing regularization param-
eter selection methods [4, 6, 49] that are based on the sample residual. In the following we
assume that at the kth iteration, A; fori = 1,...,k — 1 have been computed. Then the goal is
to determine an appropriate update parameter A;. From theorems 2.1 and 2.3, the kth sTik
iterate can be represented as

x;(A) = Ci(A)b,  where

k-1 k -1y
T T T T T
Ci(\) = <<>\ +y Ai) L'L+) A WT(,»)WT(,-)A) STATW. W],

i=1 i=1 i=1

(14)

Similar to standard regularization parameter selection methods, we assume that

€ ~ N(0, 021). For methods that require estimates of o2, there are various ways that one can

obtain such an estimate, see e.g. [16, 49].

3.1. Sampled discrepancy principle

The basic idea of the sampled discrepancy principle (sDP) is that at the kth iteration, the
goal is to select the parameter A; so that the sum of squared residuals for the current sample
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2 2
HWI(,() (Ax, —b) H2 isequal to E HWI(")EHZ' Using properties of conditional expectation, we
find
T 2 TP
B |[Wro (A =), =B [Wiye],
=EE [GTWT(k)WI(k)G | Ei|
=otr (E W.,.(k)Wj(k))
=g/,

where tr(+) corresponds to the matrix trace function. Thus, at the kth iteration and for a given
realization, we select A such that

[Woe (s - b)Hz ~ 7o,

where v > 11is a predetermined real number. For the sampled methods, we select ) that
solves the optimization problem,

2
min (W] (Ax(3) = b) [} = 70%) (15)

where v = 4 as suggested in [26, 49] and o2 is the true noise variance.

3.2. Sampled unbiased predictive risk estimator

Next, we describe a method to select Ay based on a sampled unbiased predictive risk estimator
(sUPRE). The basic idea is to find Ay to minimize the sampled predictive risk,

2

il

E ij(k) (Axi(\) — AxXque)

which is equivalent to
E W] (Ax() - H +20* B (W, W]y ACK(N) ) — 0°C.

See appendix B.1 for details of the derivation. Then, similar to the approach used in the stan-
dard UPRE derivation, the parameter Ay is selected by finding a minimizer of the unbiased
estimator for the sampled predictive risk,

Uil —"WT(k) (Axi()) — H +20% (W] AW, ) ) — 0 (16)

for a given realization.

3.3. Sampled generalized cross validation

Lastly, we describe the sampled generalized cross validation (sGCV) method for selecting A
and point the interested reader to appendix B.2 for details of the derivation. The basic idea is to
use a ‘leave-one-out’ cross validation approach to find a value of Ay, but the main differences
compared to the standard GCV method are that at the kth iteration, we only have access to the
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sample residual and the iterates only correspond to Tikhonov solutions with only partial data.
The parameter ) is selected by finding a minimizer of the sGCV function,

2 2
B eij(k)(Axk(A)—b)Hz B éHWTT(k)(Axk()\)—b)HZ

tr (Iz - WI(k)ACk()\)WT(k))2 (é —tr (Wj(k)ACk()\)WT(k)))z

Gr(A) amn

3.4. Example 2

In this example we investigate the behavior of the previously discussed sampled regu-
larization parameter update strategies, i.e. sDP, sUPRE, and sGCV, for multiple ill-
posed inverse problems from the Matlab matrix gallery and from Hansens’ regularization
tools toolbox [1, 2]. For simplicity, we set m =n = 100 and use the true solutions Xy
that are provided by the toolbox. If no true solution is provided, we set Xy, = 1. We let
L =I,00, and set € ~N(0,0.01Lp9). Sampling matrices W; € R!%%10 are given as
W; = [010(j—1)x105 1105 O10(10—j) x 10] for j = 1,...,10, such that A and b are sampled in 10
consecutive blocks. Here, we sample W in a random cyclic fashion and let o2 be the true noise
variance for sDP and sUPRE.

We first consider the prolate example where A is an ill-conditioned Toeplitz matrix
from Matlab’s matrix gallery. In figure 2 we illustrate the asymptotic behavior of the sampled
parameter selection strategies by plotting the number of epochs against the value of A for
sDP, sUPRE, and sGCV. For comparison, we provide the regularization parameter for the full
problem corresponding to DP, UPRE, and GCV. DP and UPRE use the true noise variance,
and + is as above for DP. For comparison, we also provide the optimal parameter A, for the
full problem, which is the parameter that minimizes the two-norm of the error between the
reconstruction and the true solution. This last approach is not possible in practice. We observe
that with more iterations, the sampled regularization parameter selection methods tend to ‘sta-
bilize’ in that after some point, they do not change much. The sDP regularization parameter
stabilizes near the DP parameter for the full problem, but both sSUPRE and sGCV stabilize
closer to the optimal regularization parameter.

While we observe similar results for other test problems (results not shown), the sampled
regularization parameters may not necessarily be close to the corresponding parameter for
the full system. Nevertheless, the sampled regularization parameter selection methods often
lead to appropriate reconstructions Xx(\) after a moderate number of iterations. Next, we
investigate the relative reconstruction error ||Xg(A) — Xiuelly / ||Xtruell, of sampled regulariza-
tion methods after one epoch (corresponding to k = 10). Figure 3 illustrates results from four
test problems (prolate, baart, shaw, and gravity). First note that by theorem 2.3, all
solutions are Tikhonov solutions for a A determined by the method, hence all relative recon-
struction errors lie on a curve of relative errors for Tikhonov solutions. We note that the above
regularization parameter selection methods (including the standard DP, UPRE, and GCV) can
only provide empirical estimations. However, we observe that in terms of relative reconstruc-
tion errors, our sampled regularization parameter selection methods perform reasonably well
on the test problems.

As we have shown, our sampled regularization parameter selection methods can be used
to update the regularization parameter in the sTik method, where the main benefit is the
favorable convergence property. In the next section, we turn our attention to problems where
it may be infeasible to construct or work with the n X n matrix By. Although reduced models

"
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Figure 2. ‘Asymptotic’ behavior of the sampled regularization parameter selection
methods for the prolate example. Corresponding regularization parameters
computed using the full data are provided as horizontal lines for comparison.
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Figure 3. Relative reconstruction errors of the sampled and full regularization methods
for four test problems prolate, baart, shaw, and gravity. All solutions lie on
the solid line, which corresponds to relative errors for Tikhonov solutions. Note that the
UPRE and GCV estimation in the prolate and baart test problem underperform
significantly and are therefore omitted. The relative errors for Asupre and App coincide
in the shaw example.
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Figure 4. Comparison of relative reconstruction errors for sg, sbK, s1imTik, and
sTik iterates for gravity using various sampled regularization parameter selection
methods for the first 10 iterations, i.e. one epoch. We compare sDP, sUPRE, and sGCV.
The horizontal black line is the relative error corresponding to the optimal regularization
parameter for the full problem, which is not feasible to obtain in practice.

or subspace projection methods may be used to reduce the number of unknowns, obtaining a
realistic basis for the solution may be difficult.

4. Numerical results

In this section, we address some of the computational concerns and demonstrate our methods
on a large imaging problem. First, we reformulate the updates as solutions to least squares
problems so that iterative methods can be used to compute approximations efficiently. In addi-
tion to being computationally feasible, these methods can take advantage of the adaptive regu-
larization parameter selection methods described in section 3.

These methods are based on the sTik method. In particular, we consider a sampled gra-

dient (sg) method where the iterates are defined as (5) where B, = (Zle ALTL + I,,) -1
and a sampled block Kaczmarz (sbK) method where the iterates are defined as (5) with
B, = (Ele ALTL 4+ A,;'—Ak) ~!. Notice that this corresponds to including only the current

block A;. We also consider a limited-memory version of sTik called s1imTik, which we
describe below. First notice that the kth sT1ik iterate is given by Xk = Xk—1 — Sk where
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Figure 5. Super-resolution imaging example. On the left is the true high-resolution
image, and on the right are three sample low-resolution images. The red-box corresponds
to sub-images shown in figure 7.

Ay 0
Sx = arg min A s — 0
i A Aixi—1 — by
/ Ay
L Z;{:l AiL_ LV 2im A LXk_l_ 2

With this reformulation, we must solve a least squares problem with matrix

T . . . .
[A;r e A,;r] , which grows with each iteration. Thus, we select a memory parameter
T s
r € Noand define My = [A, -+ A,] €R*"and Ay, = 0 for non-positive inte-
gers k — r. Then s1imT1k iterates are given as X; = X¢—| — S; where
2
M; 0
Sx = arg min Ax s— | AcXe—1 — by . (18)

A
S k Ok Ix 1
\ iz AL T (N

In the case where »r =0, s1imTik and sbK iterates are identical. First, we investigate the
performance of sg, sbK, and s1imT1k while taking advantage of the regularization param-
eter update described in section 3. We use the gravity example from regularization tools,
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Figure 6. Relative reconstruction errors for the super-resolution imaging example for
one epoch. We note that sUPRE and sGCV produce good reconstructions. Additionally,
slimTik produces a smaller relative reconstruction error, since it is using more
curvature information.

where A € R!000x1000 7, — 7,4, and the noise level defined as |||, / ||AXque |, is 0.01. The
samples consist of 10 blocks, each comprised of 100 consecutive rows of A. The initial guess
for the regularization parameter is chosen to be 0.1 (the optimal overall regularization param-
eter in this example is approximately 0.0196), and we iterate for one epoch.

In figure 4 we provide the relative reconstruction errors per iteration for sg, sbK, slim-
Tik, and sTik. Overall, we notice a correspondence between the amount of curvature infor-
mation used to approximate the Hessian and an improvement in the relative reconstruction
error. Including more curvature results in greater computational costs and storage require-
ments, e.g. sTik may be infeasible for very large problems, but the number of row accesses
is the same for each method. In terms of regularization parameter selection methods, sGCV
performs better than sUPRE and sDP for this example. The relative reconstruction error corre-
sponding to the best overall Tikhonov solution is provided as the horizontal line. Although
the results are not shown here, we note that without regularization, the relative reconstruction
errors will become very large for all of these methods due to semiconvergence.

Having demonstrated that regularization parameter update methods can be incorporated
in a variety of stochastic optimization methods, we investigate the performance of these lim-
ited-memory methods for super-resolution image reconstruction. The basic goal of super-
resolution imaging is to reconstruct an n x n high-resolution image represented by a vector
Xrue € R given M low-resolution images of size ¢ x ¢ represented by by - - - , by, where
b; € R . The forward model for each low-resolution image is given as
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Figure 7. Sub-images of the reconstructed images for the super-resolution imaging
example. Reconstructions correspond to sg, sbkK, and s1imTik with regularization
parameter updates computed using sDP, sUPRE, and sGCV. For comparison, we
provide reconstructions corresponding to no regularization, i.e. A = 0.

b; = RSiXre + €;,

where R € RE*7 is a restriction matrix, S; € R xn” represents an affine transformation
that may account for shifts, rotations, and scalar multiplications, and €; ~ N (052, O'Zlgz). To
reconstruct a high-resolution image, we solve the Tikhonov problem,

RS, b 111

. . . 2
min S + A[[Lx]3.

RSy by 2

For cases where the low-resolution images are being streamed or where the number of low-
resolution images is very large, standard iterative methods may not be feasible. Furthermore,
it can be very challenging to determine a good choice of A prior to solution computation
[15, 28, 42].

For our example, we have 30 images of size 128 x 128, and we wish to reconstruct a high-
resolution image of size 2048 x 2048. In figure 5, we provide the true high-resolution image
of the moon [13] and three of the low-resolution images. Here, A; = RS; € R128°x2048* Dy
to the inherent partitioning of the problem, we take W, € R128"%30:128 6 be a matrix such
that WiTA = A;; these W; matrices are never computed. For the simulated low-resolution
images, Gaussian white noise is added such that the noise level for each image is 0.01 and
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take L. = In,q2. Notice that the size of the matrix A is 491 520 x 4194 304, and holding A in
computer memory is impractical despite its sparse structure.

We compare the performances of sg, sbK, and s1imTik, including our sampled regu-
larization parameter update methods sDP, sUPRE, and sGCV. The true noise variance is used
for sDP and sUPRE, and the memory parameter for s1imTik is r = 2. Each iteration of sbK
and s1imTik requires a linear solve, which can be handled efficiently by reformulating the
problem as a least squares problem as in equation (18), and using standard techniques such as
LSQR [40, 41]. These iterative methods can also be used to update the regularization param-
eter. Furthermore, we use the Hutchison trace estimator to efficiently evaluate the trace term
in sGCV and sUPRE, see (16) and (17). More specifically, rather than compute 1282 linear
solves, we note that if v is a random variable such that Evv' = I,,g, then

tr(WTT(k)ACk()\)WT(k)) = EvI W] ACL(\) W, (V.

Here we use the Rademacher distribution where the entries of v are v; = 41 with equal prob-
ability. We use a single realization of v to approximate the trace, hence resulting in just one
linear solve [5, 23, 46].

Relative reconstruction errors are provided in figure 6, and sub-images of the reconstruc-
tions are provided in figure 7. We observe that, in general, SDP errors are more erratic than
sUPRE and sGCYV errors. Notice that for sUPRE and sGCV, sbK produces higher reconstruc-
tion errors compared to sg, which may be attributed to insufficient global curvature informa-
tion. Furthermore, we observe that s1imT1k reconstructions contain more details than sg
and sbK reconstructions.

5. Conclusions

In this work we describe iterative sampled Tikhonov methods for solving inverse problems
for which it is not feasible to access the data all-at-once. Such methods are necessary when
handling data sets that do not fit in memory and also can naturally handle streaming data
problems.

We investigate two iterative methods, rr1s and sTik, and show that under various sam-
pling schemes, rrls iterates converge asymptotically to the unregularized solution while
sTik iterates converge to a Tikhonov-regularized solution. Although the sampling mech-
anisms we discuss do not play a role in the asymptotic convergence, they do allow for interest-
ing interpretations. In particular, for random cyclic sampling we can characterize the iterates
as Tikhonov solutions after every epoch, providing insight into the path that the iterates take
towards the solution. For iterative methods where the regularization parameter can be updated
during the iterative process (e.g. sT1ik), we describe sampled variants of existing regulariza-
tion parameter selection methods to update the parameter. Using a number of well-known
data sets, we show empirically that sampled Tikhonov methods with automatic regularization
parameter updates can be competitive. For very large inverse problems, we describe a limited-
memory version of sT1ik, and we demonstrate the efficacy of the limited-memory approach
on a standard benchmark dataset as well as on a streaming super-resolution image reconstruc-
tion problem.

Future directions of research include developing an asymptotic analysis of s1imTik and
a non-asymptotic analysis of the general sampling algorithms. This would involve bound-
ing the mean square error at a fixed iteration k, which may help to explain the quick initial
convergence seen in the numerical experiments. Another open question is how to accelerate
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convergence by selecting W, to sample important parts of the problem, e.g. using sketch-
ing matrices [17, 18]. Finally, extensions to nonlinear inverse problems would require more
advanced convergence analyses and further algorithmic developments, e.g. incorporating
adaptive regularization parameter selection within stochastic LBFGS [12, 36].
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Appendix A. Proofs for section 2

Proof of theorem 2.1. For (ii), note that the solution of the least squares problem (7) is
given by

k
i=1

Noticing the relationship Bk_1 = Bl:_ll + A} Ay + A(LTL, we get the following equivalencies
for the sT1ik iterates

Xy = Xp—1 — Bk (A]:r (Aka_l - bk) + AkLTLXk_l)

=By (By 'xi—1 — A Apx_ + A/ b — A\ LTLx;_)
k
=B (B x—1 + Al b) =B Y ATb =x(\o).

i=1
A similar proof can be made for (i). O

Proof of theorem 2.2.

(i) From theorem 2.1 for any k € N we have

k A
i = (ALTL +y ATWT(i)WI(i)A> (Z AW, W] b+ )\LTLy())

i=1 i=1

—1
(ALTL +30, ATW W], ) (Zfl ATW W], b+ ALTLYO)
k k ’

Using the fact that E WT(I-)WI(I.) = élm (see equation (8)), by the law of large numbers
and Slutsky’s theorem for a.s. convergence [49]

kAT T T
fLATW, W b+ AL Ly,
Dict <>k(> 0 "EATb,
m

and
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—1
(ALTL +35 ATWT(,»)WI(i)A> as, M
k ¢

and therefore
v (ATA) T ATb = x(0).

(ii) In a similar fashion, for any k € N we have

. (ZflAiLTL+ATWT(z’>WI@A)] (ZflATWT@WI@b)
k — .
k k

K oaqT
Using the fact that IEWT(i)WI(i) = élm and limy_ oo w — ﬁ)\LTL, we have

k T T
i A [ i a.s.
Zz:l Wlwt b RN ﬁATb
k m

and

-1
as. M T Ty !
> =3 (ATA+AL'L)

( S ALTL + ATW,W/A
k

and thus we conclude that

X2 (ATA+ ALTL) T ATh = x(\). -
Proof of theorem 2.3. Notice that for random cyclic sampling schemes and for any itera-
tion jM, S ATWT(,-)WTT([.)A =jATA and Y7 ATWT(,-)WTT(I.)b = jATb are determinis-
tic. Hence

—1
yim =j(ALTL +J'ATA)*1 ATb = (iLTL + ATA) ATb=x (1,\)
J J

and

- A - 1
i = (AL L+jATA) " ATb = (;—,MLTL + ATA) ATb=x (fAjM) . O

Appendix B. Derivations for sampled UPRE and sampled GCV

In this section, we provide derivations for (16) and (17). To estimate the overall regulariza-
tion parameter A at the kth iteration we are just required to update A; since the estimate A is
uniquely determined by the preceding A;’s, i = 1,...,k — 1 and A;. Hence, for ease of nota-
tion we will drop the iteration count on A.
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B.1. Derivation of the sampled UPRE
The basic idea is to find A; by minimizing an estimate of the predictive error. Let the sampled
predictive error be given by

2
A) = ij(k) (AXk(A) — AXire) 5

Using the notation from (14), the expected sampled predictive error, E P(\), can be written as
E ij(k) (AC(\) — Iy) Axque j +o%E tr(ck(A)TATw,(k)wI(k)Ack(A)) ,
B.1)
where the mixed term vanishes due to independence of W.(y,... W () and € and since
Ee = 0. Similar to the derivation for standard UPRE, the predictive error is not computable
in practice since Xy is not available. Thus, we perform a similar calculation for the expected
sampled residual norm,

2 2
E ij(k) (Axc(\) fb)Hz - EHWI(k) ACk()\ _1, sz

=FE HWI(,() (ACL(A) — L) AXqrye

+ E me ACK(\) — ,,,)eH
Next, notice that using the trace lemma for symmetric matrices [6], the second term in (B.2)
can be written as

o (Bur(Ce0) TATW oy W] ACH(N) ) — 2B tr( Wy W] AC(V)) + ¢)).
(B.3)
Combining (B.1) with (B.2) and (B.3), we get

EP(A) = E||W]) (Axc()) - H + 202 Etr(Wo gy W) ACK(N) ) — 0%

Finally for a given realization, we get an estimator for the predictive risk
Ue(\) = me Axi() — H +20 tr(WT(k)ACk()\)WT(k)) — o,

which is equivalent to (16).

B.2. Derivation of the sampled GCV

We derive the sampled generalized cross validation function, following a similar derivation
of the cross validation and generalized cross validation function found in [22]. For notational

simplicity, we denote A, ;) = WI( pAand b, = WTT( »b. Then, notice that the kth iterate of
sT1ik, which is given by x;(A\) = Cy(A)b is the solution to the following problem,
Ar(1) b-1)
mxin||AT<k>X*br(k)||§+A||LX||§+ o x|
Ar—) brg—1d 1l
To derive sampled GCV, at the kth iterate, define,

20
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Ej = Ie — ejTej.
Here e; is the jth column of the identity matrix. Our goal is to find x[;;(A), which is the solu-
tion to
Arq) b-(1)
. 2 2 . .
min || (A7 X — br)|[; + MILx]l; + o x—|
Az (k-1) b1l 1l,

Then, the sampled cross-validation estimate for A minimizes the average error,

4
1 2
= ZZ ¢ bry — ¢ Arx(; (V)"

Using the normal equations and the fact that EjTEj = E;, an explicit expression for x;;(}) is
given as

k=1 -1 k=1
T T T T T T T
X[]]()\) = (A-r(k)Ej EjAT(k) + AL L+ ZAT(i)AT(i)> (A-,—(k)Ej Ejb‘r(k) + ZAT(i)bq—(i)>

i=1 i=1

- T el T T el
= (Bk(A) LA e AT(,-)) (Z Arp)bri) — Arpei€; bf(k)) ’
i=1

where By(\) = ()\LTL +3 AI(Z.)AT(,-)) ~1L Next defining #; = ejTAT(k)Bk()\)A:(k)ej
and using the Sherman—-Morrison—Woodbury formula, we get
- -1 1
(Bk(,\) 1 Aj@eje]AT(,.)) -— ((1 — 1;)B(N) + Bk(A)AI(k)ejejTAT(k)Bk(A))
i

and after some algebraic manipulations, we arrive at

1
¢ Arwx(j(A) = T—1 (& Ar CeN)b — t¢; bry))

Thus,
1
¢ bry — ¢ Arx(j(N) = 7€ (bray — Arxe(N))
J]

and we can write the sampled cross-validation function as

Vi(A) = - HDk()‘ 1) — Ar X)) z

where Dy () = dlag(

the sampled generalized cross validation function is analogous to the generalization process
from cross-validation to GCV provided in [22].

R l“) The extension from the sampled cross-validation to

21
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