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Abstract. In this paper we develop flexible Krylov methods for efficiently computing regularized
solutions to large-scale linear inverse problems with an ¢o fit-to-data term and an ¢, penalization
term, for p > 1. First we approximate the p-norm penalization term as a sequence of 2-norm penaliza-
tion terms using adaptive regularization matrices in an iterative reweighted norm fashion, and then
we exploit flexible preconditioning techniques to efficiently incorporate the weight updates. To han-
dle general (nonsquare) £p-regularized least-squares problems, we introduce a flexible Golub—Kahan
approach and exploit it within a Krylov—Tikhonov hybrid framework. Furthermore, we show that
both the flexible Golub—Kahan and the flexible Arnoldi approaches for p = 1 can be used to efficiently
compute solutions that are sparse with respect to some transformations. The key benefits of our ap-
proach compared to existing optimization methods for ¢, regularization are that inner-outer iteration
schemes are replaced by efficient projection methods on linear subspaces of increasing dimension and
that expensive regularization parameter selection techniques can be avoided. Theoretical insights
are provided, and numerical results from image deblurring and tomographic reconstruction illustrate
the benefits of this approach, compared to well-established methods.
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1. Introduction. Inverse problems are prevalent in many important applica-
tions, ranging from biomedical to geophysical imaging, and solutions must be com-
puted reliably and efficiently. In this work we consider discretized linear inverse
problems of the form

(1) b= Axtrue + €,

where b € R™ is the observed data, A € R™*" is the ill-conditioned matrix that
models the forward process, Xiue € R™ is the desired solution, and e € R™ is the
noise or perturbation affecting the observation. Due to the ill-posedness of the under-
lying problem, in order to recover a meaningful approximation of X¢ue in (1), some
regularization is applied, i.e., problem (1) is replaced by a closely related one that
is stable with respect to the corrupted data [18]. In this paper, we are interested in
regularized problems of the form

(2) min || Ax — b|[2 + A [ ¥x]

where ||| p for p > 1is the vectorial p-norm, A > 0 is a regularization parameter,
and ¥ € R™ ™ ig a nonsingular matrix. For p = 2 and ¥ = I, (2) is the standard
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Tikhonov regularization problem, and many efficient techniques including hybrid it-
erative methods have been proposed (see, e.g., [5, 11, 22, 28]). However, optimization
problems (2) for p # 2 can be significantly more challenging. For example, for p = 1,
the so-called ¢;-regularized problem suffers from nondifferentiability at the origin;
moreover, in some situations, one may wish to consider 0 < p < 1, which results
in a nonconvex optimization problem (see, e.g., [20, 24, 25]). In this paper, we will
develop methods to compute an approximate solution to (2) for the case p > 1, where
a unique solution exists. Henceforth, we will refer to problem (2) with ¥ =1 as the
“¢,-regularized” problem; problem (2) with ¥ # I will be dubbed the “transformed
¢p-regularized” problem. Typically the transformed ¢,-regularized problem arises in
cases where sparsity in some frequency domain (e.g., in a wavelet domain) is desired.
Depending on the application, a sparsity transform may be included in both the fit-
to-data and the regularization term. This was considered in [32], where the resulting
minimization problem was solved with an inner-outer iteration scheme.

Most of the previously developed methods for £, minimization utilize nonlinear
optimization schemes or iteratively reweighted optimization schemes, which can get
very expensive due to inner-outer iterations [1, 16, 31, 32, 41]. Other popular ap-
proaches such as the split Bregman method [14], separable approximations [42], and
accelerations of the iterative shrinkage thresholding algorithms [2] are fast alterna-
tives, but a main disadvantage is that the regularization parameter must be selected
a priori, which can be a difficult task. Krylov methods, on the other hand, have nice
convergence and regularization properties, so there have been recent efforts to exploit
Krylov methods to solve the /,-regularized problem, possibly without resorting to
inner-outer iterations. For example, [20, 24| considered generalized Krylov methods
for £, — ¢, minimization, and Krylov methods based on the flexible Arnoldi algorithm
were considered in [10, 35, 36]. Our proposed methods are mostly related to the lat-
ter approaches, which compute approximate solutions to the £,-regularized problem
when A is square. Below we outline the main distinctions and contributions of our
work.

In this paper, we propose new iterative hybrid methods based on a flexible Golub—
Kahan decomposition to solve £,-regularized problems (2), where flexible precondi-
tioning techniques are used to build appropriate solution subspaces. In particular,
we describe two methods, namely, flexible LSQR and flexible LSMR, and show how
Tikhonov regularization can be used to solve the projected problem, where the prop-
erties of the matrices associated with the flexible Golub—Kahan decomposition are
exploited for efficient regularization parameter selection (in a hybrid fashion). We
underline that methods based on the flexible Golub—Kahan algorithm can be imple-
mented without explicitly constructing the matrix A, i.e., by treating A and AT as
linear operators acting on vectors. Furthermore, we describe a way to incorporate
regularization terms expressed as the p-norm of the transformed solution within the
flexible schemes (based on both the Arnoldi and the Golub-Kahan decompositions),
i.e., to deal with the transformed ¢,-regularized problem.

One of the first major contributions, compared to [10], is that our methods can
be used to solve problems with general (e.g., nonsquare) coefficient matrix A. Sec-
ond, we provide theoretical results that show optimality properties for the flexible
approaches, and we prove that in exact arithmetic flexible LSMR, iterates are the
same as flexible GMRES iterates on the normal equations. Third, contrary to clas-
sical Krylov—Tikhonov methods [11], which can handle penalization terms evaluated
in the 2-norm, the new methods can approximate penalization terms evaluated in
the sparsity-inducing 1-norm and can include an invertible sparsity transformation,
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which generalizes the flexible Arnoldi decomposition proposed in [10], as well as the
flexible Golub-Kahan decomposition derived in this paper. Numerical comparisons
to well-established ¢, regularization methods reveal that the proposed strategies pro-
vide an easy-to-use approach for computing reconstructions with similar properties,
but with two significant benefits: first, the regularization parameters can be selected
automatically thanks to the hybrid framework; second, information from the current
solution is incorporated via the regularization into the solution process as soon as it
becomes available, with potentially great computational savings compared to methods
involving inner-outer iterations.

The paper is organized as follows. In section 2 we review the ideas underlying the
IRN approach for £, regularization and briefly review the flexible Arnoldi-Tikhonov
approach. In section 3 we derive the flexible Golub—Kahan decomposition, leading
to the introduction of the new flexible LSQR and flexible LSMR, algorithms; hybrid
approaches based on flexible LSQR and flexible LSMR are addressed, with a par-
ticular emphasis on the choice of regularization term and regularization parameter.
Optimality properties for the new solvers and links to existing solvers are provided. In
section 4 we describe how a sparsity transform can be handled within hybrid schemes
based on the flexible Arnoldi and Golub—Kahan algorithms, and we investigate how
the solution subspaces are modified by incorporating reweightings and sparsity trans-
forms. Numerical results are presented in section 5, and conclusions and future work
are provided in section 6.

2. Background on iteratively reweighted and flexible methods for £,
regularization. A well-established strategy for solving the ¢,-regularized problem is
the IRN algorithm [16, 32]. This approach requires solving a sequence of reweighted,
penalized least-squares problems where the weights change at each iteration. When
dealing with large systems, each least-squares problem is solved by an iterative method,
so that an inner-outer iteration scheme is naturally established. In the following we
use the acronym IRN to indicate a wide class of algorithms that leverage (outer)
reweighing together with an (inner) iterative scheme. IRN methods are also closely
related to iteratively reweighted least squares (IRLS) methods [4, Chapter 4]. Since
IRN methods can get very costly, another common approach is to use iterative shrink-
age thresholding algorithms [2], where an iterative two-step process is used.

Many of these methods assume that a good value of the regularization parameter
is available a priori, but oftentimes this is not the case. And although there have been
some recent works on selecting regularization parameters for ¢; regularization, e.g.,
[13], these can still be quite costly for very large problems. Selecting regularization
parameters for £,-regularized problems remains a tricky, yet crucial, task. For the
special case where p = 2, significant works on hybrid methods have enabled successful
simultaneous estimation of the regularization parameter and computation of large-
scale reconstructions (see, e.g., [22, 31]). In these hybrid frameworks, the problem is
projected onto Krylov subspaces of increasing size, and the task of choosing a suitable
value of the regularization parameter is reduced to solving the smaller, projected
problem. However, such approaches have not been fully investigated for general /,,-
regularized problems. The flexible hybrid framework for ¢,-regularized problems that
we describe in section 3 incorporates simultaneous parameter selection and is based
on the IRN reformulation.

As described in [32], the first step toward an IRN approach is to define a sequence
of appropriate regularization operators to break the ¢,-regularized problem into a
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sequence of 2-norm problems,

3) min [|Ax — I3 + A [LGOX]S .
where
4) L(x) = ding ( (|2l )izt -

Here x; is the ith entry of vector x. We remark that, when p < 2, care is needed
when defining (4), because division by 0 may occur if z; = 0 for some i = 1,...,n.
To fix this potential issue, small thresholds 71,73 > 0 are set, and the matrix in (4) is
redefined as

(5) L(x)=diag((frumn"%)gzl,._.,n),whereffum):{'“’“*' i 273,

o if |z < 7.

Note that taking 72 < 71 enforces additional sparsity in fr(|z;|). In the case
p = 1, the IRN approach reduces the £;-regularized problem (2) to a sequence of
least-squares problems involving a weighted 2-norm. That is,

2
lIx[l; = L)

where L(x) = diag(1/+/ f-(|x|)), f+(-) is defined in (5), and the square root and
absolute value operations are applied componentwise. We remark that problem (3)
can be equivalently reformulated as

(6) min [ AL() 7' = b|; + A[%]]3

where X = L(x)x. This transformation into standard form is computationally conve-
nient, as it only amounts to the inversion of a diagonal matrix.

For realistic scenarios, problems (3) and (6) are intrinsically nonlinear. In order to
avoid nonlinearities, we follow the common practice of approximating the matrix L(x)
by the matrix Ly = L(xg), where X, is an approximation of the solution obtained at
the (kK — 1)st outer iteration. Then at the kth outer iteration, we solve the Tikhonov
problem,

(7) min [|Ax — b3 + A||Lx|l3 -

The IRN method proposed in [32] prescribes to apply the conjugate gradient (CG)
method to solve the normal equations corresponding to (7), i.e.,

(8) (ATA4+AL]Ly)x=ATb, Li=L(xz).

Also preconditioned CG (PCG) can be applied at the kth outer iteration of IRN to
solve the normal equations associated to a preconditioned version of (7), i.e.,

(9) (LyTATAL '+ ADx =L "A™b, L;'x=x, L;=L(xz).

We refer to this approach as the preconditioned IRN (PIRN) method, which is sim-
ilar in essence to the inner-outer scheme proposed in [1] to handle total variation
regularization. We emphasize that the term “preconditioned” is used in a somewhat
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unconventional way: the “preconditioners” considered here are not aimed at accel-
erating the convergence of the iterative solvers but rather at enforcing some specific
regularity into the associated solution subspace. Transformed f,-regularized prob-
lems can be suitably expressed in this framework too, as we will explain in section 4.
We stress once more that, in the IRN framework, the matrix L = Ly changes at each
outer iteration, resulting in a sequence of least-squares problems to be solved. A more
efficient alternative that is applied directly to problem (6) and that exploits flexible
preconditioning to bypass inner-outer iterative schemes is summarized below.

Generalized Arnoldi—Tikhonov approaches. For completeness, we provide a brief
overview of the generalized Arnoldi-Tikhonov (GAT) approach [10] to solve problem
(6), or equivalently problem (3), for A € R™*™ and for changing preconditioners
L(xx) = Lg. Consider the flexibly preconditioned Arnoldi algorithm, in which, at the
kth iteration, we have

(10) AZy, =V Hy,
where Hj, € RE+Dxk is ypper Hessenberg, \A/'k_H = [V1 ... Vikg1] contains or-
thonormal columns with v, = b/ ||b||,, and Zk = [LflVl L,;le] e Rk,

Here and in the following, we assume an initial guess xg = 0; extensions to include
xg # 0 are trivial and follow standard derivations. Also, throughout the paper, we
assume that all of the algorithms are breakdown-free, i.e., the dimension of the kth
solution subspace is k. We also note that, if the preconditioner is fixed for all itera-
tions (L; = L, i =1,...,k), then Z;, = L='V}, and decomposition (10) reduces to the
one associated with the standard right-preconditioned GMRES method. The GAT
method computes approximate solutions of the form x;, = Z;y, where

~ 2
(11) 91 = arg min |y — [bll, 1| + Ally3.
y

where e; € R¥*1 is the first column of the identity matrix of order k + 1. For A = 0,
we have the flexible GMRES (FGMRES) method [34]. The main advantages of this
approach are that only one solution subspace needs to be generated (versus multiple
solves in IRN), one matrix-vector multiplication with A is required at each iteration
(versus one with A and one with AT in CGLS), and a suitable value of the regular-
ization parameter and an appropriate value of the threshold for the stopping criterion
are determined automatically by exploiting the hybrid framework. In [10], the GAT
method and its variants were used to efficiently compute approximate solutions to
{1-regularized problems, but a limitation is that this method only works for square
problems. A naive extension of the GAT method to general least-squares problems by
applying the flexible Arnoldi algorithm to the normal equations is not recommended,
due to the squaring of the condition number of the coefficient matrix and the lack
of a computationally convenient way to estimate the residual norm for the original
problem (1). Although flexible versions of the so-called AB-GMRES and BA-GMRES
methods [26] may be devised, in the following section we exploit a new computational
tool from numerical linear algebra, namely, the flexible Golub-Kahan method. In
this way, we avoid the normal equations and work directly with the residual from the
original least-squares problem, which can be helpful in determining the regularization
parameter and stopping criteria.

3. Flexible Golub—Kahan hybrid methods. In this section, we describe hy-
brid approaches based on the flexible Golub—Kahan process for computing an approxi-
mate solution to the Tikhonov problem (7), where Ly may change at each iteration. As
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discussed in section 2, problem (7) approximates regularized problem (3). Similarly
to the GAT method, the flexible Golub—Kahan hybrid methods follow an iterative
two-step process. First we generate a basis for the solution by exploiting a flexible
preconditioning framework to take into account a changing regularizer, and second,
we compute an approximate solution to the inverse problem by solving an optimiza-
tion problem in the projected subspace (where regularization can be done efficiently
and with automatic regularization parameter selection for the projected problem).
These iterative approaches are ideal for problems where A and AT can be accessed
only by matrix-vector multiplication, where only a few basis vectors are required to
obtain a good solution, and where a suitable value of the regularization parameter is
not known a priori.

3.1. Incorporating weights: A flexible Golub—Kahan decomposition. In
order to incorporate a changing preconditioner, we use a flexible variant of the Golub—
Kahan bidiagonalization (GKB) algorithm to generate a basis for the solution. We
call this the flexible Golub—Kahan (FGK) process and mention that it is closely related
to the inexact Lanczos process [37, 40]. Given A, b and changing preconditioners Ly,
the kth iteration of the FGK iterative process generates vectors zy, vy, and ugy1 such
that

(12) AZ, =Ui 1My and ATUk_H = Vi1 Try,
where
o 7, = [Zl Zk] = [Lflvl L;lvk] € RnXk,

My, = [my jli=1,.. k+13j=1,...k € R*E+DxE js upper Hessenberg,

)

[ ]
o Thi1 = [tijlij=1. k1 € REFUXERD §s ypper triangular,
[ ]

Ugsi=[ur ... ugy1] €R™E+D hag orthonormal columns with u; = b/ ||b|,,
and
o Vi = [vl ... vk+1] € R™*(*+1) hag orthonormal columns.

Compared to standard GKB [15], the key differences are that we now have an
upper Hessenberg and an upper triangular matrix, instead of one bidiagonal matrix.
Also, we must keep track of an additional set of vectors, namely, the basis vectors
in Zy. Furthermore, since there is no bidiagonal structure to exploit, the additional
computational requirement is orthogonalization with all previous vectors. However,
these additional requirements are negligible if & < max{m,n}. Moreover, as for
standard GKB, the computational cost per iteration is dominated by a matrix-vector
product with A and one with AT. We remark that, if Ly = L, (12) reduces to the
right-preconditioned GKB. The FGK process is summarized in Algorithm 3.1.

Algorithm 3.1 Flexible Golub—Kahan Process.
1: Initialize uy = b/f;, where $; = ||b]|
2: fori=1,...,k do

_ AT — wT C_ .

3 w=A'u,tj;=w'vjforj=1,...,i-1
i=1
4 o w=w=3 vy, b = Wl vi = w/ti
-1

5 Z; = Li Vi .
6: w=Az;,m;;=w u;forj=1,...,7
oW =w = my g, i = (W Wi = w/migg
8: end for

Notice that the column vectors of Zy no longer span a Krylov subspace in a
traditional sense, but they do provide a basis for the solution subspace. In section
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5 we provide some qualitative observations regarding the basis vectors. For now,
consider the fit-to-data term ||Ax — b||§ and consider solutions in the column space
of Zj, denoted by R(Zy,). Using the relationships in (12), the residual can be written
as

AZpy —b = Upyp1(Myy — Brer).

We define the flexible LSQR (FLSQR) and flexible LSMR (FLSMR) iterates as
Xk = Zkyk, where

(13) yi, = arg min |[Myy — Bre
y
and
(14) yr = argmin [Ty 1 Myy — 51t1,161||§ ;
y

respectively. These definitions are analogous to the mathematical definitions of the
LSQR and LSMR iterates in [8, 29, 30]. The FLSMR formulation exploits the follow-
ing relationships:

AT(AZky - b) = Vk+1(Tk+1Mky — tlylﬂlel) and ATb = Vk+151t1,1e1 .

We have the following optimality properties for FLSQR and FLSMR, which are
analogous to the ones enjoyed by the standard counterparts of these methods and by
FGMRES [34].

PROPOSITION 3.1. The FLSQR iterate X, obtained at the kth step minimizes the
residual norm ||Axy, — bll, over R(Zy), and the FLSMR iterate x;, obtained at the
kth step minimizes ||AT(Axy — b)H2 over R(Zy,).

We note that T 1My is a (k + 1) x k upper Hessenberg matrix and that the
solution subspace generated by the FGK process is the same as the one generated by
the flexible Arnoldi algorithm applied to the normal equations. More precisely, the
following equivalence theorem holds.

THEOREM 3.2. Let A € R™*™ m > n (full column rank), b € R™, xo = 0, and
take the preconditioners L;,i = 1,2,... k. Then, in exact arithmetic, the kth iterate of
FLSMR applied to miny ||[Ax —b||2 is the same as the kth iterate of FGMRES applied
to the normal equations

(15) ATAx=ATb.

Proof. After k iterations of FGMRES applied to (15), we have a matrix Zy, =
[Li'v: ... L;'9;] € R"** an upper Hessenberg matrix H, € RE+DxE and a
matrix Vi1 € R™**+D with orthonormal columns and Ve, = ATb/ |ATb],,
which satisfy the relationship

(16) ATAZ, =V, Hy.

The projected problem is given by

(17) min AT Ax — ATb|[} = min [Fy — [ATb, e
xER(Z1,) y 2
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——LSQR

—FLSQR
--—-FLSMR

—FLSQR
44444444 FLSQR-I
- - FLSQR-R

Relative Error
relative error

20 40 60 80 100 120 140 20 40 60 80 100 120 140
Iteration iterations

(a) (b)

FIG. 1. heat test problem from [17]. (a) Relative error norm, ||Xi — Xtruells / || Xtruello, for
LSQR, LSMR, FLSQR, and FLSMR. The semiconvergence behavior is evident for all of the methods.
(b) Relative error norms for FLSQR-I and FLSQR-R with optimal regularization parameters, along
with relative error norms for FLSQR provided for comparison.

so the kth iterate of FGMRES is given by
)/Ek = zkﬁ;i HATbH2€1 5

where ITI;rC = (ITIICTI/-\IIC)*II/-\IICT is the pseudoinverse. In exact arithmetic the solution sub-
spaces generated by FGMRES and FGK in Algorithm 3.1 are the same and coincide
with

1~ 1~ RPN
span{L; "Vi,Ly Vo,...,L_ "V},

so that Zj, = Zy. (This is immediate from factorizations (12) and (16).) The opti-
mality condition for FGMRES (see Proposition 2.1 in [34]) and FLSMR (see Propo-
sition 3.1) guarantee that the kth iterate of FLSMR and FGMRES both correspond
to the solution of (17). ad

3.2. Solving the regularized problem: Flexible hybrid algorithms. As
explained in section 3.1, the FGK process can be used to build a solution subspace
that can efficiently incorporate changing preconditioners, and one can solve the pro-
jected problems (13) and (14), which correspond to the FLSQR and FLSMR methods,
respectively. However, it is well-known that, for inverse problems, iterative meth-
ods exhibit a semiconvergent behavior, where the relative reconstruction error norm
1%k — Xtruells / |X¢rue||, decreases initially but at some point increases due to ampli-
fication of noise [18]. This phenomenon, which is common for most ill-posed inverse
problems, occurs also for flexible methods, as can be seen in Figure 1(a).

Hybrid methods, where regularization is included on the projected problem, have
been proposed to suppress the relative reconstruction error norms, i.e., to mitigate
semiconvergence. The first hybrid approach that we propose is analogous to the GAT
algorithm (see (11)), where we include a standard regularization term in (13), so that

(18) yi = arg min [Myy — Brex 3 + A |1y [
y
Henceforth, we define FLSQR-T iterates as x; = Zyyx, where yy is defined in (18).

Let Z;, = QiR be the thin QR factorization of Zj, where Ry € R*** is upper
triangular and Qi € R™** contains orthonormal columns. This is inexpensive to
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compute if k is not too large. Then we also consider a hybrid method called FLSQR-
R, in which iterates are constructed as x; = Zyy, where

(19) yi = argmin |[My — Bre1 |2 + A Ry |2 .
y

The FLSQR-R method exhibits some desirable properties, especially for inverse prob-
lems. First, the FLSQR-R iterate can be interpreted as a best approximation in a
subspace, in that x; solves

20 min [|Ax — bz + X |x]|2 .

(20) Lmin A~ b} A

Hence, the regularization parameter A, which specifies the amount of regularization
for the projected problem (19), corresponds to the amount of regularization for the

constrained, full-dimensional problem (20). Second, using the following reformulation
of the FLSQR-R subproblem (19),

. _ 2 _
W) = arg min ||MkRk lw— ﬂ1e1H2 + A HWH? . Yr =Ry ‘Wi,
w

we can show that the singular values of the coefficient matrix MkRgl provide good
approximations to the singular values of A. Indeed, we can see this by considering the
following relations (where decomposition (12) and properties of the matrices appearing
therein are extensively used):

R, 'M,M;R;' =R, "M/ U}, U M;R;"
=R, "Z]ATAZ, R’
= Q ATAQ;.

Since the eigenvalues are just the squares of the singular values, we see that as k
increases, the singular values of MkR,;1 provide better approximations to the singular
values of A.

Hybrid LSMR variants, namely, the FLSMR-I and FLSMR-R methods, can be
defined analogously. Then, using Theorem 3.2, we can see that in exact arithmetic and
for a fixed regularization parameter, the FLSMR-I iterates are the same as the GAT
iterates applied to a Tikhonov problem with the fit-to-data term HATAX — ATbH;
However, the benefit of the FGK approaches versus GAT on the normal equations is
that FGK produces residual norms for the original problem, which can be important
for tools such as the discrepancy principle for parameter selection and for stopping
criteria.

Unless otherwise stated, the parameter choice methods considered here are based
on the discrepancy principle: in particular, we either prescribe the discrepancy prin-
ciple to be satisfied at each iteration, or we apply the “secant update” variant pre-
scribing suitable updates of the regularization parameter at each iteration. More
specifically, we determine an appropriate combination of regularization parameters
(i.e., the number of performed iterations k and the Tikhonov parameter A > 0) such
that

(21) b — Axplla < nllellz,

where xj, solves (20) and depends on both k and A, and n > 1 is a safety factor.
See [10] and [11] for a detailed description of these regularization parameter selection
and stopping criteria strategies.
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F1G. 2. heat test problem from [17]. This plot compares the singular values of A to the singular
values of My, from FLSQR and FLSQR-I and to the singular values of Mlezl from FLSQR-R for
iterations k between 20 and 420 in increments of 100.

An dllustration. The goals of this illustration are (i) to demonstrate the higher
quality of the solutions obtained by applying flexible methods (due to a better basis
for the solution subspace), (ii) to motivate the need for a hybrid approach (by showing
semiconvergence behavior of FLSQR and FLSMR), and (iii) to show that the singular
values of the original problem can be approximated well by using FLSQR-R. More
thorough numerical results and comparisons will be presented in section 5.

For this illustration, we use the heat example from Regularization Tools [17],
where A has size 512 x 512, having a sparse true solution (50% of its entries are zero,
so that ¥ =T and p = 1 in (2)). White noise is added to the observed signal at
noise level 1074, i.e., |le|l2/||AX¢ruel|2 = 107%. In Figure 1(a), we provide relative re-
construction error norms per iteration for LSQR, LSMR, FLSQR, and FLSMR. The
delayed semiconvergence of LSMR versus LSQR was noted in [5] and is also slightly
visible for FLSMR versus FLSQR. The more pronounced feature that we see here is
that the flexible variants converge faster but also exhibit stronger semiconvergence
in that the relative error norms increase faster. Thus, there is a greater need for
additional regularization. In Figure 1(b), we show that the hybrid methods FLSQR-I
and FLSQR-R (here with the optimal regularization parameters, i.e., the ones that
minimize the relative error norm at each iteration) can mitigate the semiconvergence
behavior. Comparisons with different parameter selection methods can be found in
section 5. We note that, for this particular test problem, flexible preconditioning
speeds up the convergence of the iterative method. However, for our problems of
interest (e.g., ¢p-regularized problems), flexible preconditioning is mainly used to im-
prove the solution subspace. Thus, the particular choice of regularization for the
projected problem is not so critical and is mostly required for supressing the errors.

Another important tool for the analysis of a regularization method is the approx-
imation of the singular values of A. For the standard GKB algorithm, it is well-known
that the singular values of the bidiagonal matrix approximate the singular values of A
[33]. However, these results do not directly extend to the FGK process. In Figure 2,
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we display the singular values of A with a dashed line, which is partially covered by the
FLSQR-R curve (continuous asterisked line). Then, for & = 20 to k = 420 in intervals
of 100, we provide the singular values of upper Hessenberg matrix My for FLSQR
(continuous circled line) and FLSQR-I (continuous squared line), and the singular
values of Mlezl for FLSQR-R. Note that, in the flexible methods, the previous iter-
ate xx_1, which may include regularization, changes the preconditioner and hence the
FGK matrices. It is evident that singular values of Mlezl from FLSQR-R provide
better approximations to the singular values of A than those of My, from FLSQR and
FLSQR-I. Furthermore, with more iterations, smaller singular values of A are being
approximated, which motivates the need for regularization of the projected problem.

4. Flexible methods for the transformed problem. As mentioned in sec-
tion 1, the goal in many applications is to compute solutions that are sparse with
respect to some transformation (e.g., in a frequency domain). In this section, we
focus on flexible Arnoldi and flexible Golub—Kahan hybrid methods for solving the
transformed £,-regularized problem (2), where ¥ # I. Although any invertible trans-
form matrix can be used here, we will focus on wavelet transforms mainly for two
reasons. First, it is well-known that many images can be sparsely represented in the
wavelet domain. Indeed, wavelet-based iterative methods have been widely considered
for linear inverse problems (see, e.g., [6, 7, 23, 39]). Second, when taking orthonormal
wavelet transforms, computations involving 2-norms of transformed quantities or in-
verse transforms can be easily performed. The specific strategy used to incorporate a
wavelet transform into the flexible iterative solvers depends on the properties of the
linear system at hand (which, eventually, depends on the properties of the inverse
problem to be regularized) and, for all the methods, the regularization parameter can
be automatically estimated.

Let ¥ € R™*™ be an orthogonal matrix. Then, problem (2) is equivalent to

- ~ 2
(22) min H‘I’A‘I’71\11X - ‘Ile2 + A ex[? .

Moreover, after some variable transformations, (22) can be written as

(23) min [Hs — d|f3 + A||s|?, where H=WA¥ ' s=¥x, d=Ub,
S

which is an £,-regularized problem. The choice of W is problem-dependent and solver-
dependent. For instance, when considering image deblurring problems where both x
and b are images of the same size described by pixel values, it is natural to take
¥ = W to be an orthogonal wavelet transform; this formulation was considered in [3].
If the GAT method is applied to problem (23) with p = 1 and variable precondi-
tioner L(s;) = Ly, then the subspace S = span{Lflﬂ,L;lVg,...,L;le} with
vi = d/||d||, is generated for the kth approximation of the transformed solution s.
This subspace enforces sparsity in the wavelet domain for the wavelet coefficients s of
the original image x. The solution subspace for the latter is given by U8, so that
it is evident that first sparsity is enforced in the wavelet domain, and then the sparse
wavelet coefficients are transformed back into the original pixel domain. However, for
situations where one has no intuition regarding the sparsity properties of b, one can
simply take ¥ = I. Analogously, if solvers based on the FGK process are applied to
solve the same problem, then the solution subspace is given by

¥ "span {L; 'Ovy,... L 'Wv,}  withv; = ATb/||ATb],.
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Notice that the choice of W is irrelevant for flexible methods based on FGK, since
~T ~ ~T ~
Hd=9A'0U Ub=UA'b, HH=UA'® GAT = TGATAT .

An illustration. The goal of this illustration is to show that the solution space
generated by the flexible Arnoldi algorithm applied to problem (23) is more suitable
than the one generated by its standard counterpart. We consider a one-dimensional
(1D) signal x with 64 entries, generated in such a way that only 8 of its 1-level Haar
wavelet coefficients s are nonzero. The signal is corrupted by Gaussian blur with vari-
ance 2.25 and band 5, and white noise of level 1072 is added. The exact and corrupted
signals are displayed in Figure 3(a), and their wavelet coefficients are displayed in Fig-
ure 3(b). We choose A = 0 in (23) so that the solution subspace does not depend on
the specific parameter choice strategy that one may wish to consider. The threshold
71 in (5) is set to 0.2, while 75 = 1071*. Figure 3(c) displays the best reconstructions
obtained by the FGMRES (11th iteration) and the GMRES (30th iteration) methods.
One can clearly see that the FGMRES solution is of much higher quality than the
GMRES one, and that the wavelet coefficients of the FGMRES solution are much
sparser than the GMRES ones (see Figure 3(d)). The good performance of FGMRES
for this example can be explained by looking at some of the basis vectors for the
solution space, displayed in Figure 3(e)—(h). Indeed, the preconditioned basis vectors
for the signal x have a piecewise-constant behavior, while the unpreconditioned ones
display spurious oscillations; correspondingly, the preconditioned basis vectors for the
wavelet coefficients s have a clear sparsity pattern, which is not reproduced by the
unpreconditioned ones. Therefore, the FGMRES solution is better than the GMRES
one as it is obtained by combining better basis vectors for the solution subspace. We
remark that the basis vectors generated from the FGK process have similar properties,
and thus are omitted. Also, a similar behavior of the preconditioned basis vectors can
be observed in the more challenging experiments presented in section 5.

5. Numerical results. In this section, we provide three experiments to demon-
strate the performance of the flexible Krylov hybrid methods on various test problems
from image processing. The first two experiments are examples from image deblur-
ring, where enforcing sparsity on the image and sparsity on the wavelet coefficients
are investigated separately. The third experiment is concerned with tomographic
reconstruction from undersampled data, where sparsity is imposed on the wavelet
coefficients. All images are of size 256 x 256 pixels. For all of the experiments, the
thresholds in (5) are 71 = 1071% 75 = 10716 (machine precision). All experiments
are performed in MATLAB 2017a and use codes available in the Restore Tools [27]
and AIR Tools II [19] software packages. MATLAB implementations of our methods,
which should be used jointly with the IR Tools software package [9], are available at
https://github.com/silviagazzola.

Ezxperiment 1. In this experiment, we consider an image deblurring example from
atmospheric imaging, with the true image, the point spread function (PSF), and the
observed blurred image provided in Figure 4. For this problem, Gaussian white noise
is added to the blurred image, such that the noise level is 5 - 1072,

For the reconstructions, we assume reflexive boundary conditions and solve the
{1-regularized problem with ¥ = I, which is appropriate because the desired image
is quite sparse. (Approximately 50% of its pixels are numerically zero.) First we
provide a comparison of various Golub—Kahan-based methods. In Figure 5, we provide
relative error norms per iteration for the flexible methods described in section 3,
namely, FLSQR, FLSQR-I, and FLSQR-R with automatic regularization parameter
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The first row shows the exact and

The second row shows the best reconstructions obtained by GMRES (dash-dot

Fic. 3. 1D signal deblurring and denotising problem. The right column displays the 1D Haar

wavelet coefficients of the signals displayed in the left columns.
lines) and FGMRES (solid lines). The third and fourth row show the second and fourth basis

vectors computed by GMRES (dash-dot lines) and FGMRES (solid lines), respectively.

corrupted signals.
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true PSF observed

FiG. 4. Ezperiment 1: Image deblurring example. Here we show the true image, the PSF, and
the observed blurred and noisy image. The size of the images is 256 X 256 pizels.
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0 1 1
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F1a. 5. Experiment 1: Comparison of relative reconstruction error norms. The regularization
parameter X\ is selected automatically using the secant update method (discrepancy principle) for
FLSQR-I and FLSQR-R; X\ = 0 is set for FLSQR and LSQR. Automatically determined stopping
iterations for the hybrid approaches are denoted by the diamond and star.

selection using the secant update discrepancy principle (with safety factor n = 1.01
in (21)). In all experiments with the discrepancy principle, we use the true noise
level but remark that estimates could be used [38]. Relative reconstruction error
norms for LSQR are provided for comparison. Similarly to the observations made in
section 3, the flexible methods exhibit faster convergence to more accurate solutions
than the standard LSQR approach. Furthermore, we see that the flexible hybrid
methods are able to stabilize the semiconvergent behavior by selecting an appropriate
regularization parameter and stopping criterion (e.g., based on the secant update
strategy or discrepancy principle).

In Figure 6, we provide the basis vectors (displayed as images) for the FLSQR-R
and the LSQR solution subspaces for k = 10,20,100. Note that basis vectors for
FLSQR-R correspond to the FGK vectors, while the LSQR ones correspond to the
standard GKB vectors. It is evident that the basis images for the flexible method can
better capture the flat regions of the image. Also, for large k, the FLSQR-R basis
image is less affected by the noise amplification that is present in the LSQR basis
image. Thus, we expect that, by constructing a better solution basis (i.e., one that
is less affected by noise and that captures the sparsity properties of the image), the
flexible methods can be successful for sparse image reconstruction. This behavior can
be experimentally observed also at higher noise levels.
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k=10 k=100

FLSQR-R

LSQR

Fi1Gc. 6. Ezperiment 1: Basis tmages for FLSQR-R and LSQR for k = 10,20,100. These are
solution vectors (i.e., zy, for FLSQR-R) that have been reshaped into images.
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Fi1c. 7. Exzperiment 1: Relative reconstruction error norms for different parameter choice meth-
ods. FLSQR-R and FLSQR-R dp use the secant update and the classical discrepancy principle,
respectively, and thus require an estimate of the noise level. FLSQR-R opt corresponds to select-
ing the optimal regularization parameter at each iteration, which is not necessarily the overall best
parameter because of flexibility.

Next, we investigate some parameter choice methods. In Figure 7, we provide
relative reconstruction error norms for FLSQR-R and FLSQR-R dp. Both methods
use the discrepancy principle to obtain the regularization parameter, which requires
prior knowledge of the noise level. More precisely, FLSQR-R utilizes the secant update
parameter choice method described in [10], and FLSQR-R dp enforces the discrepancy
principle to be satisfied at each iteration. Relative error norms for FLSQR-R opt
correspond to selecting the regularization parameter at each iteration that minimizes
the error norm of the current iterate minus the true solution. It is worth noting that,
since the basis vectors are generated with respect to the current solution (because of
flexibility), this approach does not necessarily produce the best overall regularization
parameter for the problem.

Finally, we compare the FLSQR-R method to other methods for solving the ¢;-
regularized problem. In Figure 8, we provide relative reconstruction error norms for
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Fi1G. 8. Ezperiment 1: Relative reconstruction error norms are provided to compare the FGK
methods to some existing methods. It is important to note that the PIRN, FISTA, and SpaRSA

reqularization parameter is selected using our FLSQR-R approach.

true true (wavelet) observed

‘

Fic. 9. Ezxperiment 2: Image deblurring example. Here we show the true image, the wavelet
coefficients of the true image, and the observed image.

GAT [10], PIRN, FISTA [2], and SpaRSA [42]. Since the regularization parameter
for PIRN, FISTA, and SpaRSA must be selected prior to execution, we use the reg-
ularization parameter that is selected by FLSQR-R when the stopping criterion is
satisfied (for this problem, A = 1.1-107°). We note that FISTA, SpaRSA, and PIRN
compute reconstructions with similar or slightly better accuracy than FLSQR-R, but
the two main advantages of the hybrid approaches are that the regularization param-
eter can be selected automatically, and the reconstruction can be obtained in fewer
iterations. The main cost per iteration for all of these methods is one matrix-vector
multiplication with A and one with AT.

Ezxperiment 2. In this experiment, we investigate the transformed ¢;-regularized
problem for an image deblurring example. For this problem, we use the cameraman
image shown in Figure 9, where out of focus blur (i.e., associated to a circular PSF
of radius 4 pixels) and Gaussian white noise with noise level 0.01 are considered.
Although a wide range of transformations ¥ can be employed, for simplicity we use
a 2D Haar wavelet decomposition with 3 levels. For this example, the image itself is
not sparse (only 27 pixels are numerically zero). However, slightly more that 10% of
the pixels of the transformed true image (also provided in Figure 9) are numerically
zero, and thus it is appropriate to consider the transformed #;-regularized problem.

First we investigate the Golub—Kahan-based methods. In Figure 10, we provide
the relative reconstruction error norms for FLSQR, FLSQR-I, and FLSQR-R, where
LSQR on the original problem is provided for comparison. Although the flexible
methods take a few more iterations, they provide slightly smaller relative reconstruc-
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Fic. 10. Ezperiment 2: Relative reconstruction error norms for Golub—Kahan-based approaches.
The regularization parameter A is selected automatically using the discrepancy principle for FLSQR-1
and FLSQR-R; A =0 1is set for FLSQR and LSQR.

LSQR FLSQR FLSQR-I FLSQR-R
(0.0877, # 14) (0.0770, # 50) (0.0800, # 48) (0.0756, # 57)

Fic. 11. Experiment 2: Reconstructed subimages corresponding to the smallest relative re-
construction error norm for Golub—Kahan-based methods, along with absolute error subimages
|Xk — Xtrue| in inverted colormap (where white corresponds to small absolute error component).
Relative reconstruction error norms and corresponding iteration numbers are reported in the titles.

tion errors compared to the standard solvers and the reconstructions are improved,
as evident in the displayed images. Subimages of the best reconstructions computed
by Golub—Kahan-based methods are provided in Figure 11, along with the absolute
error subimages |Xy — Xtrue|, for some values of k. The smallest relative error norm
and the iteration number (preceded by #) are reported in brackets. We observe that
although the relative error norms are comparable, the flexible methods better capture
the flat regions of the image.

Next we compare FLSQR-R to the GAT method applied to the transformed prob-
lem, as well as to FISTA on the transformed problem. Relative reconstruction error
norms are provided in Figure 12. Here, the automatically computed regularization
parameter (i.e., the one selected by FLSQR-R upon fulfillment of the discrepancy
principle) is 7.46 - 1075, but it seems too small for FISTA. Thus, we also provide in
FISTA opt the results for FISTA with the optimal regularization parameter 0.1, which
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Fic. 12. Ezxperiment 2: Relative reconstruction error norms are provided to compare the FGK
methods to some existing methods. FISTA uses the reqularization parameter selected by FLSQR-R,
and FISTA opt uses a regularization parameter that was found empirically using the true image.

is determined by searching over 10 logarithmically equispaced values between 1073
and 1, and selecting the one delivering the smallest final relative reconstruction error
norm. We observe that for a good choice of the regularization parameter, FISTA
reconstructions are similar to ours; however, for poor choices of the regularization
parameter, FISTA reconstructions are either too blocky or contaminated with noise.
The behavior of GAT is due to a poor automatically chosen regularization parameter.

Ezxperiment 3. We consider a sparse X-ray tomographic reconstruction example
with undersampled data. The goal of this experiment is to assess the performance
of the new solvers based on the FGK decomposition for solving the transformed ¢;-
regularized problem (2), where A is underdetermined and ¥ represents a 2D Haar
wavelet transform with four levels. In [21] it is empirically shown that the compressive
sensing theory applies when performing standard structured undersampling patterns
and when solving either the ¢; or the total variation regularized problems. The test
problem considered here takes a vectorization of the well-known Shepp-Logan phan-
tom as the exact solution Xi,ue; only roughly 40% of the pixels of the transformed
exact solution ¥x;., are numerically nonzero. A fairly underdetermined sparse ma-
trix A of size 32580 x 65536 (i.e., roughly 50% undersampling) is generated using
the paralleltomo function from AIR Tools II [19], which models a 2D equidistant
parallel-beam scanning geometry, with the following parameters:

N = 256, theta = 0:2:179, p = round(sqrt(2)*N), d = sqrt(2)*N.

Here N? is the number of pixels of the phantom, p is the number of pixels of the
detector, the source-detector pair is rotated at angles of projection theta, and 4 is
the distance between the first and the last ray. Note that, with such undersampling
and sparsity, and according to [21], recovery should be experimentally guaranteed.
Gaussian white noise of level 1072 is added to the exact data.

Figure 13 displays the history of the relative error norms associated with different
purely iterative regularization methods (i.e., with A = 0 in (23)): since we are dealing
with a rectangular matrix, only LSQR and LSMR together with their flexible versions
are considered. We can clearly see the benefits of introducing flexibility into the
solution subspaces: indeed, a greater accuracy is achieved by the flexible methods
(with a computational cost comparable to the standard solvers), together with a less
pronounced semiconvergence. (This is particularly true for FLSMR, in accordance
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F1a. 13. Experiment 3: History of the relative error norms, considering purely iterative Golub—
Kahan-based methods.
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Fia. 14. Ezxperiment 3: History of the relative error norms, comparing the FLSQR-I method
to FISTA, SpaRSA, IRN, and PIRN.

with the observations in [5].) The only potential drawback is the doubling of the
storage requirements for FGK compared to GKB, but this is not a serious concern if
the required number of iterations k is relatively small (as it is for all of the presented
test problems).

Figure 14 displays the history of the relative error norms when the FLSQR-I dp
method is employed (with the regularization parameter chosen at each iteration by
the discrepancy principle) and compares it to other solvers for (23). In particular, we
compare with FISTA, SpaRSA, IRN, and PIRN. As already remarked, all of these
well-established solvers require the regularization parameter A to be set at the begin-
ning of the iterative process: for this experiment we choose A = 3.6 - 10~!, which is
the value computed by the classical discrepancy principle at the end of the FLSQR-I
dp iterations (when also some stabilization occurred in the iteration-dependent values
of the regularization parameter). We can clearly see that SpaRSA does not perform
well for this problem, and a more accurate tuning of the regularization parameter
may improve its reconstruction. FISTA requires more iterations than FLSQR-I dp
to compute reconstructions of similar quality. The reconstruction performances of
both SpaRSA and FISTA depend heavily on the choice of the regularization param-
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exact FLSQR-I dp FISTA
(0.1626, # 28) (0.1722, # 150)

SpaRSA IRN PIRN
(0.8829, # 150) (0.2200, # 60) (0.1155, # 150)

Fic. 15. Ezperiment 3: Reconstructed subimages of best quality for various solvers. Small-
est attained relative reconstruction error norms (up to 150 iterations) and corresponding iteration
numbers (preceeded by #) are reported.

eter. Of the considered methods, the PIRN method results in the smallest relative
reconstruction error norms, but it requires more iterations than FLSQR-I dp to reach
an optimal accuracy. The quality of the reconstruction does not significantly improve
when additional PIRN or IRN iterations are performed. We do not show the behavior
of the FLSQR-R, FLSMR-I, and FLSMR-R hybrid methods as they are very similar
to the FLSQR-I method for this problem.

Figure 15 shows the best reconstructions computed by each method considered
in Figure 14. The best relative error and the iteration number (preceded by #) are
reported in brackets. Again, we remark that the computational cost for each iteration
of these methods is dominated by a matrix-vector product with A and one with A T.

6. Conclusions and future work. In this paper, we describe flexible hy-
brid iterative methods for computing approximate solutions to the (transformed)
¢,-regularized problem, for p > 1. To handle general (nonsquare) ¢,-regularized
least-squares problems, we introduce a flexible Golub—Kahan approach and exploit
it within a Krylov—Tikhonov hybrid framework. Theoretical results show that the
iterates correspond to solutions of a full-dimensional Tikhonov problem that has been
projected onto flexible Krylov subspaces of increasing dimensions. We describe var-
ious extensions for effectively computing solutions that are sparse with respect to
some invertible transformation. Our proposed methods are efficient in that they can
access A and AT as function evaluations and they avoid inner-outer schemes, and
automatic in that parameters such as regularization parameters and stopping itera-
tions can be naturally selected within a hybrid framework. Numerical results validate
these observations.
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Future work includes extensions to problems where W is not invertible, and also to
nonlinear regularization functionals (e.g., total variation) and nonconvex problems.
Developing theoretical convergence results for flexible methods requires additional
investigation and would also apply to other solvers based on flexible precondition-
ing, e.g., [10, 12]. Furthermore, by incorporating multilevel decompositions, these
flexible hybrid methods can be exploited in a multiparameter regularization frame-
work, where a different sparsity regularization parameter is incorporated for each
level.
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