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Asymmetry between Activators 
and Deactivators in Functional 
Protein Networks
Ammar Tareen1,4, Ned S. Wingreen2,3 ✉ & Ranjan Mukhopadhyay1 ✉

Are “turn-on” and “turn-off” functions in protein-protein interaction networks exact opposites of 
each other? To answer this question, we implement a minimal model for the evolution of functional 
protein-interaction networks using a sequence-based mutational algorithm, and apply the model to 
study neutral drift in networks that yield oscillatory dynamics. We study the roles of activators and 
deactivators, two core components of oscillatory protein interaction networks, and find a striking 
asymmetry in the roles of activating and deactivating proteins, where activating proteins tend to be 
synergistic and deactivating proteins tend to be competitive.

Biological oscillators are ubiquitous1–3 and they are often quite complex with many interacting components4,5. 
How has evolution arrived at such complex networks6 where oscillations arise from interactions among a large 
number of components? A reasonable hypothesis is that complex bio-oscillators evolved from simpler core oscil-
latory modules. While biological oscillators often involve both genetic and protein components, it has been sug-
gested that in many systems the protein circuit acts as the core oscillator7. With this in mind, we focus here on 
oscillatory protein networks, where oscillations emerge from the interplay between positive and negative feed-
back loops. A central biologically motivated question is what are the evolutionary design principles of oscillatory 
protein networks, and how does complexity evolve in such systems?

The regulation of function in protein interaction networks is often achieved by post-translational modifica-
tions of component proteins. A common example is phosphorylation and dephosphorylation8,9. In most cases, an 
activating protein (e.g. a kinase) covalently modifies a target to activate it, and a deactivating protein (e.g. a phos-
phatase) reverses this change. However, despite this symmetry at the molecular level, at the network level activa-
tion and deactivation have distinct roles, and so it is natural to ask if there is an asymmetry in the way activators 
and deactivators are organized in protein networks. Recent studies have highlighted the asymmetry between 
auto-activation and auto-deactivation in oscillatory networks. In their computational work, Castillo-Hair et al.10, 
employing Michaelis-Menten kinetics and considering different network architectures, noted that auto-activation 
is responsible for producing the most robust oscillators. Additional works have explored the robustness of bio-
logical oscillators to network topology changes11 and found that auto-activation arises as an important and com-
mon motif for functions other than oscillations, such as multi-stability12–14. Moreover, in the context of protein 
network organization, Smoly et al.15 performed quantitative analyses of large-scale “omics” datasets from yeast, 
fly, plant, mouse, and humans and uncovered an asymmetric balance between kinases and phosphatases - each 
organism contained many different kinases, and these were balanced by a small set of highly abundant phos-
phatases. Motivated by this study, we ask whether an asymmetry in protein organization can arise from the intrin-
sically different roles that activators and deactivators play in protein-interaction networks.

Evolutionary Model
To address this question, we adopt a physically-based protein-protein interaction model that allows us to map 
from sequence space to interactions and consequently to the oscillatory dynamics of enzymes, in order to study 
the evolution of oscillatory networks16,17. The model bridges multiple timescales, in particular, the short timescale 
of the dynamics of active enzyme concentrations and the much longer timescale of network evolution. As in the 
original network model16, we include cooperativity by assuming that activation or deactivation of a target (itself 
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either an activator or a deactivator) requires h independent binding/modification events, with partially modified 
intermediates being short lived. This yields the following chemical processes for the two classes of proteins,
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where a represents activators, D represents deactivators, and an asterisk indicates the active form. Note that in our 
model activators and deactivators act both as enzymes and as targets for the action of other enzymes. The corre-
sponding chemical kinetic equations can be approximated as (see Supplementary Material for details):
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where m and n are the number of distinct types of activators and deactivators respectively, α and β represent back-
ground activation and deactivation rates respectively, and h represents the degree of cooperativity. We assume that 
the total concentration of each species is constant, e.g. for activators, + =A A A[ ] [ ] [ ]j j j ,total

⁎ .
The chemical rate constants kij are generally expected to be determined by protein-protein interaction 

strengths, which in turn are governed by amino-acid-residue interactions at specific molecular interfaces. As in 
Zulfikar et al.16, we assume protein interaction interfaces with the dominant contribution coming from hydro-
phobic interactions. For simplicity, as in previous work16, we associate a pair of interaction interfaces, an in-face 
and an out-face, with each protein, where a binary sequence, σ→in,out, of hydrophobic residues (1s) and hydrophilic 
residues (0s) are attributed to each interface. Interaction energy between a protein’s out-face (denoted by index i) 
and its target’s in-face (denoted by index j) is given by ε σ σ= → ⋅ →Eij

i j
out in, where ε is the effective interaction energy 

between two hydrophobic residues and all energies are expressed in units of the thermal energy k TB . The reaction 
rate is then given by:
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where E0 indicates a threshold energy. Equation 3 represents two types of interactions, activation or deactivation, 
depending on the protein species involved, indexed by i j{ , }. For example, kA ,D1 1

 represents the reaction rate rep-
resenting Activator-1 activating Deactivator-1, similarly kD ,D2 1

 represents the reaction rate representing the 
Deactivator-2 deactivating Deactivator-1, and so on. Auto-activations and auto-deactivations are also allowed, 
e.g., kA ,A1 1

, kD ,D2 2
. Thus, our model represents a fully connected network architecture where every protein is 

allowed to interact with every other protein, including itself. This formulation provides a precise relationship 
between protein interface sequence (directly determined by the genome) and chemical rate constants. In the rate 
equations, α β= = 1 represent background activation and deactivation rates and set the unit of time. Other 
parameters are chosen to provide a large range for the rate constants kij as a function of sequence and to keep the 
background rates small compared to the largest rate constant values. In our work, we set =k 100

4, ε = .0 2, coop-
erativity =h 2, =E 50 , sequence length representing an interface to be 25. Cooperativity is introduced to allow 
oscillations in relatively simple biomolecular networks. A schematic depicting this sequence-function relation-
ship is shown in Fig. 1b.

For our evolutionary algorithm, we assume only point mutations, where in we replace a randomly cho-
sen hydrophobic residue by a hydrophilic residue, or vice versa, at each evolutionary time step. Mutations are 
accepted if and only if they yield oscillatory network dynamics. Thus, our evolutionary scheme corresponds to 
assuming a population sufficiently small such that each new mutation is either fixed or entirely lost18,19 and repre-
sents a model of constrained neutral evolution (See Supplementary Material, section II, https://doi.org/10.1103/
PhysRevE.97.040401).

Activation and Deactivation Asymmetry
We start with a 1-activator 1-deactivator oscillatory network (the smallest network in our model that can gener-
ate oscillations) and duplicate it to generate a 2-activator 2-deactivator network (2A–2D), which is subsequently 
allowed to evolve20. Figure 1 shows a schematic of such a 4-node network after 104 accepted mutations. The 
widths of the edges are proportional to the interaction strengths. As the network evolves, do certain interactions 
become stronger, fluctuate, or disappear, and why?

To answer these questions, we evolve the system over long evolutionary times (millions of accepted muta-
tions), and consider the distributions of activation and deactivation asymmetries in rate constants, defined as.
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Activation Asymmetry is a measure of the difference in activation of a single deactivator by two activating 
proteins. Similarly, Deactivation Asymmetry measures the difference in deactivation of a single activator by 
two deactivating proteins. We expect these variables to be distributed differently if there is indeed an asymme-
try present between activators and deactivators. Figure 2 shows distributions of Activation and Deactivation 
Asymmetries for a 2A–2D network, constructed from 2 million accepted mutations (We find that autocorrelation 
times of the rate constants are of the order of a few thousand accepted mutations; by evolving the system over 
millions of accepted mutations we ensure that we explore the space of rate constants sufficiently and not only over 
correlated samples, e.g. see Supplementary Fig. S1).

We indeed find a striking difference in the two distributions, with clear bimodality in the distribution of 
the Deactivation Asymmetry in contrast to the broad distribution in Activation Asymmetry. For activators, the 
difference between the two distributions signifies that the effect of both activators is comparable when acting on 
Deactivator-1. For deactivators acting on Activator-1, one of the two deactivators plays little to no role whereas 
the other deactivator deactivates dominantly. For example, if Deactivator-1 is deactivating Activator-1 with high 
strength, i.e. a higher rate constant, then the strength of deactivation of Deactivator-2 acting on Activator-1 is 

Figure 1.  (a) Schematic representation of a 2-activator 2-deactivator protein interaction network. Nodes 
represent proteins while edges represent interactions with other proteins. This network is fully connected, i.e., 
every protein interacts with every other protein via activation or deactivation. Arrows represent activation while 
bars represent deactivation. Edge width is proportional to the strength of interaction. This network represents 
the state of a 2-activator 2-deactivator system after 104 accepted mutations; this system was initially obtained by 
duplication of a 1-activator 1-deactivator network. (b) Amino-acid sequence to rate constant map depicting 
how 0s and 1s in the binary sequences interact to determine binding energies Eij. A 1:1 interaction produces an 
interaction energy equal to ε. All other interactions contribute zero interaction energy.
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relatively much smaller. In the rest of this paper, we will develop the ideas required to understand the origin of 
this difference.

As a first step toward understanding the difference in these distributions, we examine the dynamics of evo-
lution. To this end, it is helpful to introduce the concept of protein essentiality: we define a protein as being 
essential if its removal from the network causes oscillations to stop. As the network evolves, we observe periods 
of time when only Activator-1 is always essential, while Activator-2 flip-flops in essentiality, and periods where 
Activator-2 remains essential while Activator-1 flip-flops. The same is true for deactivators (see Fig. 3a). It was 
argued in16 that these long evolutionary periods reflect the division of sequence space into regions or phases sep-
arated by geometric bottlenecks (in sequence space). We define the “phase” associated with a protein in terms of 
time periods during which it always stays essential. Given a time when Activator-2 is inessential, we identify the 
system as being in Activator Phase 1. As the system evolves, at an evolutionary time step when Activator-1 first 
becomes inessential, we infer that the system has entered Activator Phase 2, and so on. Figure 3(b,c) show that 
time series plots of Activation and Deactivaction Asymmetry correlate well with the protein phases. Typically, 
the magnitude of a rate constant for a protein acting on a target is higher if the protein is in its associated phase. 
Since both activators and deactivators display similar transitions between their respective phases, why is there a 
difference in the asymmetry distribution between activators and deactivators?

To better understand the difference in asymmetry distributions for activators versus deactivators, we intro-
duce the concepts of dominant and subdominant proteins: in Activator Phase 1, we say Activator-1 is the domi-
nant protein while Activator-2, which flip-flops in essentiality, is subdominant, with a similar definition for 
deactivators. Is there a relationship between whether a deactivator is dominant or subdominant and the strength 
of its associated chemical rate constants kD,A? For instance, in Fig. 1a, Deactivator-1 is dominant and its associated 
rate constants for suppressing the activators, kD,A, are also significantly stronger than those for the subdominant 
Deactivator-2. The distributions of kA,D and kD,A in dominant and subdominant phases depicted in Fig. 3(d,e) 
provide support for the conjecture that the chemical rate constants, kA,D or kD,A, associated with the subdominant 
activator or deactivator are suppressed in comparison to the dominant activator or deactivator. Notice however, 
that while the distributions for the dominant and subdominant activators differ only modestly, the distributions 
for the dominant versus subdominant deactivators are strikingly different.

Based on the results in Fig. 3(d,e), we can now understand the bimodality in Deactivation Asymmetry 
depicted in Fig. 2 in terms of the pronounced suppression of kD,A for the subdominant deactivator. Notice that this 
suppression arises naturally from neutral drift without any direct evolutionary selection pressure. To gain an 
intuitive understanding of this suppression, consider the following. An oscillatory cycle begins with low levels of 
activators and deactivators. Due to self-activation, the concentrations of activators in their active state start to rise, 
with the dominant activator typically leading the subdominant activator. The rising levels of activators cause the 
active deactivator concentrations to rise as well, with the dominant deactivator typically leading the subdominant 
deactivator. As the active level of the dominant deactivator rises, it starts to suppress both activators, leading to 
the peak and subsequent drop in active activator concentrations. This dynamics, necessary for sustained oscilla-
tions, is highly sensitive to the rate constants kD,A. Our hypothesis is that it is easier to generate sustained oscilla-
tions if the deactivation of the activators is strongly coupled to the active level of the leading (dominant) 
deactivator and only weakly coupled to the lagging (subdominant) deactivator. To check this, we carried out the 

Figure 2.  Distributions of (a) Activation Asymmetry and (b) Deactivation Asymmetry, constructed from 
3 million accepted mutations for a 2-activator 2-deactivator network. Note that both distributions represent 
asymmetries in rate constants as defined in Eq. 4.

https://doi.org/10.1038/s41598-020-66699-y
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following test: we let a 2A–2D network evolve for 1000 accepted mutations and replaced kD ,A1 1
 and kD ,A2 1

 by their 
average value (and the same for A2) and determined if the network continued to oscillate upon making this 
change. These results were then compared to the case where we replaced kA ,D1 1

 and kA ,D2 1
 by their average value 

(and the same for D2). For the deactivators acting on activators, only .19 1% of these average-value substitutions 
resulted in oscillations. On the other hand, for activators acting on deactivators, .65 6% of the average-value sub-
stitutions resulted in oscillators. These results imply that our network is able to yield oscillations relatively easily 
when the rates kA ,D1 1

 and kA ,D2 1
 are comparable (similarly true for activation of D2), but has difficulty producing 

oscillations when the rates kD ,A1 1
 and kD ,A2 1

 are comparable (similarly true for deactivation of A2). However, this 
test reveals only part of the picture, as replacement by the average reduces the effect of the larger rate constant and 
increases the effect of the smaller. Is it one or both of these changes that matter?

We answered this question by carrying out the same test as before but this time replacing the larger and the 
smaller kD,A by their average separately, and determining whether the network continued to oscillate. For activa-
tors acting on deactivators, replacing the smaller kA,D by the average resulted in .61 0% oscillators, and replacing 
the larger kA,D by the average resulted in .38 4% oscillators. For deactivators acting on activators, replacing the 
smaller kD,A by the average resulted in .21 6% oscillators, and replacing the larger kD,A by the average resulted in 

Figure 3.  (a) Evolutionary traces of deactivator essentiality: on the y-axis, +1 indicates only Deactivator-1 is 
essential, −1 indicates only Deactivator-2 is essential, while 0 indicates both are essential (Since we find that 
states where both activators are individually inessential are very rare, approximately 0:001% of the total number 
of oscillatory states, we ignore such states for the purposes of the figure). We notice regions where Deactivator-1 
remains essential and Deactivator-2 flip-flops in essentiality, which we designate as Deactivator-1 phase. In 
blue, +1 indicates Deactivator-1 phase and −1 indicates Deactivator-2 phase. (b) Activation Asymmetry 
and activator phases: in red, +1 indicates Activator-1 phase, −1 indicates Activator-2 phase, the line in gray 
shows Activation Asymmetry. (c) Deactivation Asymmetry: in blue, +1 indicates Deactivator-1 phase, −1 
indicates Deactivator-2 phase, the line in gray shows Dectivation Asymmetry. Both Activation and Deactivation 
Asymmetry correlate strongly with their respective phases. (d) Distributions of average kA,D for A1 dominant 
and subdominant. (e) Distributions of average kD,A for D1 dominant and subdominant.
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only .2 50% oscillators. These results imply that either lowering kD,A for the dominant deactivator or increasing 
kD,A for the subdominant deactivator results in far fewer oscillators, with the effect being particularly pronounced 
in the case of the weakening dominant deactivator. By contrast, changing kA,D for either the dominant or subdom-
inant activator has a less pronounced effect on oscillations. These results are summarized in Fig. 5.

Synergy and competition.  This brings us to a further distinction in the relationship between activators 
versus that between deactivators. Activator-1, for example, can activate Activator-2, which in turn further acti-
vates Activator-1, so that they act synergistically and effectively increase the degree of cooperativity for autoacti-
vation. This is different for deactivators: Deactivator-1 suppresses Deactivator-2, and vice versa, so that 
deactivators act competitively, with the dominant deactivator suppressing the subdominant deactivator. This 
important distinction is consistent with our observation that activation of one activator by the other, regardless of 
its dominance or subdominance, does not correlate well with protein phase, implying synergistic activation of 
both activators for all evolutionary periods (e.g., see Fig. 4a). On the other hand, the deactivation of one deactiva-
tor by the other correlates strongly with deactivator phase; this behavior implies that when a deactivator becomes 
dominant the rate at which it deactivates the subdominant deactivator typically increases; an example of this 

Figure 5.  Comparison of networks that remain oscillating when kA,D is replaced by kA,D  (red) vs. the case 
when kD,A is replaced by kD,A  (blue) is shown. The y-axis represents the percentage after 1000 trials. Larger and 
smaller reaction rates were replaced by the average of both separately. The inset shows a schematic example of 
the typical network architecture that results after a large number of accepted mutations.

Figure 4.  Synergistic activation between activators versus competitive deactivation between deactivators. The 
activator (deactivator) phase is shown in red (blue), while kA ,A1 2

 k( )D ,D1 2
 is shown in gray. +1 indicates 

Activator-1 (Deactivator-1) phase, while 0 indicates Activator-2 (Deactivator-2) phase. (a) The activation rate of 
an activator by the other activator, regardless of dominance or subdominance, does not correlate well with 
phase. (b) The deactivation rate of the subdominant deactivator is strongly correlated with the phase of the 
dominant deactivator.

https://doi.org/10.1038/s41598-020-66699-y
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behavior can be seen in Fig. 4b. This idea of synergistic versus competitive interactions is further borne out by the 
observation that the dominant activator has a higher autoactivation rate, whereas a subdominant deactivator has 
a higher auto-deactivation rate (see Fig. S2, (See Supplementary Material)). We can quantify this difference by 
carrying out another rate replacement test: we let a 2A–2D network evolve for 1000 accepted mutations but now 
replace the smaller of kA ,A1 2

 and kA ,A2 1
 by the larger value and determine if the network continued to oscillate. 

These results are then compared to replacing the smaller of kD ,D1 2
 and kD ,D2 1

. Based on the above analysis, we 
expect oscillations to be more likely to persist in the case of activators than deactivators, since activators are more 
likely to cooperate. Indeed, we find that 42.2% of tests resulted in oscillators for activator rate replacement while 
only 22.6% of the tests resulted in oscillators in the case of deactivator rate replacement.

Asymmetry in Cooperativity
We have discussed that the subdominant activator serves to increase the rate and also the cooperativity of effective 
autoactivation of the dominant activator. Is there an asymmetry in the role of cooperativity in autoactivation 
versus auto-deactivation in the context of oscillations? To address this question, we study a 1A–1D network and 
perform a stability analysis about its fixed points. To determine stability of a steady state, one must know the 
eigenvalues of the Jacobian matrix J of the system evaluated at the steady state21. However, for the special case of 
the two-node network, it is sufficient just to know the trace and determinant of the Jacobian. If the determinant 

>Jdet( ) 0 and the trace <Jtr( ) 0, then the steady state is stable and we do not expect limit-cycle oscillations. We 
will show that the trace becomes negative and the determinant becomes positive for any value of exponent of 
autoactivation that is less than a critical value. For a 1A–1D network, the dynamics of the active fractions of con-
centrations are given by:

⁎
⁎ ⁎ ⁎ ⁎α β= − + −

d A
dt

k A A k D A A A[ ] [ ] [ ] [ ] [ ] [ ] [ ], (5)
a
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where we have left the exponents of the autoactivation and auto-deactivation as variables a and b respectively. We 
denote the fixed points of the system by ⁎A[ ]0 and ⁎D[ ]0; they are obtained by setting ⁎d A dt[ ]/  and ⁎d D dt[ ]/  to zero 
in Eqs. 5 and 6 and solving for the active fractions of concentration. The Jacobian matrix of the system at the fixed 
point is

= 
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Inspection shows that a12 is always negative, a21 is always positive or equal to 0, and a22 is always negative. a11 
can be positive or negative depending on the value of a. If ≤a 011 , then >Jdet( ) 0 and <Jtr( ) 0, implying the 
absence of oscillations. It is thus necessary that >a 011  for the system to oscillate. To determine the role of coop-
erativity for producing oscillations, we rewrite Eq. 5 as

α β− = + − .k A A k D A A A[ ] (1 [ ] ) [ ] [ ] [ ] [ ] (7)a
A,A 0 0 D,A 0

2
0 0 0

⁎ ⁎ ⁎ ⁎ ⁎

Dividing Eq. 7 by ⁎A[ ]0 and plugging into the expression for a11, we find

⁎
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[ ]
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11
0

A,A 0 D,A 0
2α α β= − − + − + − + .

Note that at =a 1, corresponding to the absence of cooperativity in autoactivation, we have

α
= − − <⁎

⁎a a
A

k A
[ ]

[ ] 0,
(9)

a
11

0
A,A 0

so that >Jdet( ) 0. Consequently, there can be no oscillations for =a 1. We find also that there is no such con-
straint imposed by cooperativity in auto-deactivation, e.g. we verified numerically that both a11 and +a a11 22 can 
be greater than zero for =b 1. We further verified that the asymmetry noted in this paper arises independent of 
the choice of initial conditions, so long as the network remains oscillatory. This analysis highlights the asymmetry 
in the role of cooperativity in autoactivation versus auto-deactivation for producing oscillations.
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Conclusion
In this paper, we employed a sequence-based mutational algorithm to study the evolution of oscillatory pro-
tein networks. Beginning from a core module of an activating and deactivating protein that are subsequently 
duplicated, we found that deactivators possess a high degree of Deactivation Asymmetry while activators do not 
display any such Activation Asymmetry (see Fig. 2). We can understand this asymmetry by the synergistic roles 
of activating proteins and competitive roles of deactivating proteins: when an activator becomes subdominant, 
the dominant activator in the network works to increase the former’s activity. On the other hand, the dominant 
deactivator suppresses the subdominant deactivator. Finally, we showed that cooperativity is required only in 
autoactivation and not in auto-deactivation to generate oscillations.

Our theoretical results imply strong asymmetries in activator versus deactivator essentiality and func-
tion. We believe that more experimental work will further reveal the impact of such asymmetric behavior in 
protein-protein networks. Indeed, recent studies have already found these asymmetries experimentally15 and 
computationally10. Additional recent work has also found that DNA-copy-number asymmetry affects the ability 
of a genetic system of activators and deactivators to oscillate22. We note that deterministic models present only 
an approximation to the behavior of biophysical oscillators in vivo, and that the evolutionary dynamics of bio-
chemical networks, such as those that we study in this paper, are affected by the presence of biochemical noise23, 
including intrinsic noise and stochastic gene expression24. In particular, the presence of noise generally weakens 
the robustness of oscillations25,26. Here, we chose a deterministic model so that we might focus on understanding 
the evolutionary dynamics of biochemical oscillators using a sequence-based mutational algorithm, founded on 
the idea that in real systems a single mutation might influence multiple reactions. We note that an extension of 
this study to include noise and stochasticity could be implemented as in Tareen et al.17.

An interesting future direction will be to explore these ideas quantitatively using a partial information decom-
position27, or to evolve our oscillatory networks using biophysically realistic fitness landscapes28. Another future 
direction might also be to extend our model to systems other than oscillatory networks, such as signaling net-
works, to theoretically investigate asymmetries in the organization and dynamics of activators and deactivators. 
Finally, it would be interesting to see how the asymmetric roles of activators and deactivators extend to networks 
where the number of nodes is not fixed and could change with evolution.
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