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Spatial gradient sensing and chemotaxis via excitability in Dictyostelium discoideum
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The social amoeba Dictyostelium discoideum performs chemotaxis under starvation conditions, aggregating
towards clusters of cells following waves of the signaling molecule cAMP. Cells sense extracellular cAMP
and produce internal caches of cAMP to be released, relaying the signal. These events lead to traveling waves
of cAMP washing over the population of cells. While much research has been performed to understand the
functioning of the chemotaxis network in D. discoideum, limited work has been done to link the operation
of the signal relay network with the chemotaxis network to provide a holistic view of the system. We take
inspiration from D. discoideum and propose a model that directly links the relaying of a chemical message to
the directional sensing of that signal. Utilizing an excitable dynamical systems model that has been previously
validated experimentally, we show that it is possible to have both signal amplification and perfect adaptation
in a single module. We show that noise plays a vital role in chemotaxing to static gradients, where stochastic
tunneling of transient bursts biases the system towards accurate gradient sensing. Moreover, this model also
automatically matches its internal time scale of adaptation to the naturally occurring periodicity of the traveling
chemical waves generated in the population. Numerical simulations were performed to study the qualitative
phenomenology of the system and explore how the system responds to diverse dynamic spatiotemporal stimuli.
Finally, we address dynamical instabilities that impede chemotactic ability in a continuum version of the model.
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I. INTRODUCTION

The social amoeba Dictyostelium discoideum performs a
well orchestrated collective behavior as part of its life cycle.
For the majority of its life, D. discoideum acts as a single
cell that forages for food following lactic acid trails from
bacteria. However, under starvation conditions a dramatic
change occurs. Groups of cells within the population be-
come emergent aggregation centers, emitting cyclic adenosine
monophosphate (cAMP) into the extracellular environment in
a synchronized fashion. Other cells sense this extracellular
cAMP and respond by producing intracellular cAMP that they
extrude into the extracellular environment. Eventually, a large
population of cells is pulsing spiral waves of cAMP, synchro-
nized with a global period of 6—10 min determined largely by
intracellular dynamics. As the population of cells senses and
emits cAMP, the signal to begin aggregation is propagated
[1]. Cytoskeletal rearrangements allow for the creation of
pseudopodia that propel the cell forward in the direction of
the aggregation center. Once reaching the aggregation center,
cells begin to form a multicellular fruiting body that can
sporulate and reproduce the next generation of cells [2].
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To aggregate, cells need to not only relay the signal but also
need to perform chemotaxis, moving in response to a chemical
gradient [3]. Chemotacting cells must execute multiple tasks,
such as gradient sensing, polarization, motility, and signaling
(production and relaying of cAMP) to achieve felicitous col-
lective aggregation [4]. While there are a number of models
for chemotaxis in D. discoideum, no consensus solution yet
exists for the mechanisms involved, in contrast to the well
understood bacterial chemotaxis. Unlike bacterial chemotaxis
fully described in E. coli, D. discoideum utilizes spatial gra-
dient sensing rather than temporal gradient sensing (sensing
a chemical spatially across the cell rather than sensing a
chemical at different time points) to bias movement [5-12].
In spatial gradient sensing, the cell computes a concentration
difference of cAMP across its cell membrane and biases its
direction towards an increasing cCAMP concentration.

A central challenge for D. discoideum when using spatial
gradient sensing to successfully aggregate is known as the
“back-of-the-wave” problem. As a wave of cAMP washes
over a cell, the direction of the increasing gradient must
necessarily reverse. If the cell were to passively follow an
increasing gradient, the cell would first move towards the
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wave origin as it approaches and then in the opposite direction
as the wave washes over the cell. However, this behavior is
not observed biologically where cells have persistence in the
direction from where the wave originated [13]. The means
by which a cell maintains persistence despite the reversed
gradient on the back of a cAMP wave has been coined the
back-of-the-wave problem [4,8,14].

To successfully rectify these dynamic waves, cells must
match the internal time scale of mechanisms responsible for
adaptation or desensitization in spatial gradient sensing to the
time scale of wave incidence. In populations of D. discoideum
cells, cCAMP oscillations occur on a time scale of 6—-10 min
[15]. If the spatial gradient sensing network has an adaptation
process on the same time scale as cAMP signal relay, then
the back-of-the-wave problem could be readily solved. In this
regime, the cell would only respond to the incoming wave,
when the local gradient is in the same direction as the wave’s
origin, as the adaptation process would cause the cell to be
refractory during the back of the wave. A natural way to
have the chemotactic time scale match the wave period is to
have the processes of signal relay and gradient sensing be
driven by the same network.

The process responsible for the creation of population-
scale cAMP oscillations is controlled under the signal-
ing pathway [16]. While much work has been performed
to understand the signaling pathways, much is still un-
known [15,17,18]. In previous work, the signaling pathway
was faithfully modeled using a universality based approach
under a noisy FitzHugh-Nagumo (FHN) model [19]. In this
model, extracellular cAMP, or intracellular noise, has the
ability to excite the system into creating a transient pulse
of cAMP exhibited by a spike in the level of an activator
molecule. The increase in the activator incites a positive
feedback loop while also causing slower accumulation of
a repressor, ultimately leading to a pulse of cAMP that is
released into the extracellular environment. The FHN model
is a classic example of an excitable system that exhibits a
bifurcation to relaxation oscillations due to a supercritical
Hopf bifurcation [20-22].

In this work, we extend the ideas presented in [19] and
study how such an excitable signaling network could also be
used to perform spatial gradient sensing in a single module.
This work, while inspired by D. discoideum, depicts a possible
mechanism for spatial gradient sensing via excitability, rather
than being intended as a complete and accurate model of
D. discoideum’s chemotaxis network. This model naturally
solves the back-of-the-wave problem, provides amplification
of a shallow chemical gradient, and is able to concomitantly
exhibit perfect adaptation. We also show that its behavior
reproduces previous experimental results on D. discoideum
and provides experimental predictions.

II. A TWO-COMPARTMENT MODEL FOR SPATIAL
GRADIENT SENSING

To begin our analysis, we consider a simple toy model of
a D. discoideum cell with two compartments denoted “front”
and “back.” When we apply a gradient in this toy model, we
simply mean that the front has a higher signal than the back.
The leading edge of the cell is responsible for sensing and
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FIG. 1. The two-compartment FHN model. (a) A visual repre-
sentation of the two-compartment FHN model. Two activators, A
and Ap exist at the *front’ or the *back’ (leading or lagging edge) of
the cell, respectively, with a shared repressor. (b) Phase portrait of
the Ar, Ap, and R nullclines (blue, red, and green, respectively) with
a single transient burst trajectory of Ar in black. (c) Time course of
the the ’front’ activator A transient burst from (b) and the respective
R response caused by internal noise under a static gradient. (d) 2D
visualization of the fixed point structure. While the system only has
one fixed point, we represent it in a 2D plane to demonstrate how
repressor coupling alters the fixed point in A and Ap in the presence
of a gradient. If the front and back were uncoupled (the fixed points
indicated by the opaque dots) the system would require the same
amount of energy to activate either compartment. Instead, by sharing
a repressor the fixed point moves forward in Ar while also moving
backwards in Ag and therefore generates sensitivity to an incoming
gradient. The effective potential barriers AVr and AVy described by
equation 5 that must be crossed for excitation to a transient burst are
visualized in shaded blue and red, respectively. o = 0.4 for B and C,
Sr = 1land Sz = 0.97 for B, C, and D.

pseudopod formation with localized actin activation, while the
lagging edge generates an extensive myosin network required
for proper chemotaxis [9,23,24]. For the remainder of this
work, we will refer to the leading edge of the cell as the front
and the lagging edge as the back of the cell.

We consider the following dimensionless FitzHugh-
Nagumo (FHN) system that models the aforementioned two-
compartment toy model:

dAr A}
—— =Ar — — — R+ I(SF) + nr (1), (D
dt 3
dAg A3
—— =Ap— — — R+ 1(S) + na(?), ()
dt 3
dR Ap +Ap
(e . 3
0 ( > +Co>e 3)

The front and back compartments each have their own activa-
tor species, Ar and Ap respectively [Fig. 1(a)]. The repressor
R is shared between the compartments and is activated by both
Ar and Ap symmetrically. Sg and Sp represent the local level
of the extracellular stimulus at the front and back, respectively
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(such as cAMP concentration in D. discoideum), the func-
tion I encodes a preprocessing module acting on the signal
I(x) = aln(1 + Ki) where K; corresponds to the threshold for
response of cAMP and a determines the magnitude of the re-
sponse, ¢y is the steady-state activator value, g (t) and ng(t)
represent Langevin noise satisfying (n(t)n(t')) = o28(t —t')
where o2 is the strength of the noise, and € = i—: sets the
time-scale ratio of the activators and the repressor (a = 0.058,
K; = 1072, and € = 0.1 to mirror experimental results in the
signaling relay network [19]). We set ¢y = 1.2, keeping the
system outside of the oscillatory regime but close enough
to allow for transient excitable bursts. In the presence of a
stimulus, such as a gradient or noise, the system can become
excited to create a single transient burst in either or both
compartments, depending on the stimulus, after which the
activators fall back to low levels [Figs. 1(b) and 1(c)]. The
system is then refractory before returning to the vicinity of
the fixed point. Subsequently, a new stimulus must be added
to the system for another transient burst to occur. The time
scale of these transient bursts is determined by the system’s
parameters, in particular €, and is similar to the period of
the relaxation oscillations that occur in the oscillatory regime
[20,25].

The two-compartment FHN system is an extension of the
excitable model for the signaling network in D. discoideum
presented in [19]. The excitable signaling network in [19]
requires one activator and repressor to respond if a stimulus
is present and generate the phenomenology of the signaling
network. However, as we wish to have a system capable of
sensing the direction from which a stimulus originates, two
compartments each with independent activators and a shared
repressor are required. With this two-compartment model, the
system not only responds if a stimulus is present, but also
responds at the compartment in the directions from where
the stimulus originates first. By tuning the speed at which the
shared repressor responds after the activator, we generate the
phenomenology of spatial gradient sensing.

III. SENSITIVITY WITH PERFECT ADAPTATION AND
NOISE-DRIVEN BARRIER CROSSING

We begin our analysis by understating the properties of the
two-compartment FHN system with different stimuli. While
we ultimately want to apply dynamic gradients to the system,
we first apply a simpler static gradient S. By static, we
mean that the concentration of § at each compartment does
not change in time. We let Sr > Sp so that the gradient is
increasing in the direction of the front of the cell, similar to
biological cAMP waves generated by D. discoideum. In the
presence of a static gradient, the system sits at the fixed point
and requires energy to be excited.

Noise-driven barrier crossing to excitation has been ana-
lyzed in various FHN systems outside of the parameters used
in this work [26,27] and has been shown to follow Arrhenius
or Kramer escape rate equations of the form A = Ce™ 2"/ o?
where A is the firing rate of transient bursts, AV is a potential
barrier, and o2 replaces KpT in the classic Arrhenius equation
as noise fluctuations drive excitation when § is static.

We wish to show that our FHN system utilizes barrier
crossing to excitation to bias the system towards the front

of the cell. We first rewrite the dynamics in terms of an
instantaneous potential barrier AV to begin our analysis of
tunneling behavior. We can rewrite Egs. (1) and (2) more
generally with A p replacing Ar and Ap as

dArp _ 9V(Ars. R, Sk.)
e 0Ar g

+n(), “4)

where V(Arp, R, Sr.p)=—3A% g+ A% + (R — Skp)Ars.
On the time scale of escaping the dynamics of the left arm
of the A p nullclines in a static gradient Sg g, R is constant,
reducing V to a function of one parameter. V is a two well po-

tential with two local minima and one local maxima (Ay ; <
IV (Ars,R) _ |

WArs = 0 or

A(}q g < A;{ ) located at the three roots of —
R = App — $A} ; + Sr.5. We can then define

AVrpp(R) =V (A 5. R.Sr.5) = V(Ar 5. R.Sr.p).  (5)

which provides us with the barrier that blocks transient bursts
unless crossed [Fig. 1(d)].

Following Eq. (5), AVg p is a function of R and Sg . Sr s
shifts the A nullclines up and the A nullcline down in the
Ar p-R plane [Fig. 1(d)]. As R is shared between Ar and Ap
but S¢ > Sp, then the shape of the potentials Vi and Vj are
different. As Sg > Sp, then AVy < AVp and less energy is
necessary to cause an excitation event in Ay than it is in Ag.
Simply put, as the fixed point moves towards the bifurcation,
AV +— 0. Additionally, the system maintains sensitivity in an
elevated background stimulus concentration. The roots of V
do not change when a background stimulus concentration is
present as the difference in static gradient S — Sp remains
constant and does not change the shape of V.

Using AVrp, we next show that the two-compartment
system follows an Arrhenius rate equation A = Ce~AVrs/o”
to bias the front of the cell to be activated. The ratio of the
transient bursting rate of Ar and Ag, %, must have a linear

relationship to e~AV+AVa/o® for the system to follow the
Arrhenius rate equation. For our system, this is exactly what
we see [Fig. 2(a)]. While the exact form of the rate equation
cannot be solved (due to both excitability and noise being
away from idealized limits), our system nonetheless follows
Arrhenius-like behavior in a static gradient.

What does this barrier crossing behavior tell us about the
system in a static gradient where Sg > Sp? When the internal
noise is increased, the potential barriers AV and AVp can
be crossed more readily, and therefore the total number of
transient bursts increases monotonically as a function of noise
strength o [Fig. 2(b)]. However, as o increases, the increased
strength of driving fluctuations allows both the smaller AV
and the larger AVj to be crossed more easily, and in fact the
fraction of forward transient bursts of Ar, ]ﬁ, where N p
is the number of transient burst in Ar g, decreases monotoni-
cally [Fig. 2(c)]. In order to maximize sensing in the forward
direction, the system must be in a regime where the noise is
large enough to create many transient bursts, but small enough
so that the fraction of forward transient bursts remains high,
in essence balancing a speed-accuracy tradeoff. If the noise
strength is very small all transient bursts will be in the front
but they will be very rare, while a very large noise strength
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FIG. 2. Barrier crossing and effect of noise on the two-
compartment FHN system in a static gradient. (a) A linear rela-
tionship exists between the logarithm of the ratio of the firing rate
between Ay and Ag and e~ (AVr+aVe)/o? following Arrhenius behavior
of barrier crossing. The black line represents the line of best fit. Error
bars for ln(i—:) are not shown for clarity as the error is much less
than the error in the Arrhenius equation. (b) The total number of
transient bursts increases as a function of o, however (c) the fraction
of transients bursts in Ar decreases as a function of o. (d) The
chemotactic velocity (vc) increases until a certain level of noise o,
whereafter it begins to fall due to the potential barrier AVj being able
to be crossed. Error bars represent standard error of the mean (SEM).
Sr = 1 and Sp = 0.97 for all figures.

will cause many transient bursts, but the compartment that
bursts will be only slightly biased towards the front.
We define the chemotactic velocity (v¢) as

Nr — Np
UC - T ’ (6)
where T is total time in minutes. v is intended to measure the
cell’s eventual motility during chemotaxis. We use the word
“velocity” to describe Eq. (6) as v¢ is a measurement of how
much distance a cell could move over time if pseudopodia
were created by compartment activation. As spatial gradient
sensing is upstream of pseudopod formation, we treat each
transient burst as an event that could make a pseudopod and
move the cell forward or backwards depending on which
compartment is excited. Therefore, vc is a read-out of actual
velocity when considering possible cell movement generated
from spatial gradient sensing. We find that an optimal level of
noise strength o exists for a given static gradient to achieve
the largest vc [Fig. 2(d)]. This optimal level of noise provides
the greatest number of total transient bursts while minimizing
back transient bursts. vc is of the magnitude of 10~2 due to
how noise affects the dynamics of the FHN system. If the
system were oscillating, one transient burst would occur about
every 10 min and ve would be of order 10~!. However, in the
excitable regime noise dictates how often the system creates a
transient burst. At low noise levels, very few transient bursts
occur but they are always in the forward direction. There may
be, e.g., one to two forward transient bursts every 100 min

and v is of order 1072, As noise is further increased a greater
number of both forward and backwards transient bursts occur.
At high levels of noise, there may be, e.g., seven forward
transient bursts and six backwards transient bursts and vc
again is of the order 1072,

Previous models of spatial gradient sensing that employ
excitable dynamics, such as LEGI-BEN, have relied on an
R nullcline with finite slope and uncoupled compartments
to sense a shallow spatial gradient and gain sensitivity and
also a LEGI processing unit to provide gradient sensitivity
and perfect adaptation [11,28,29]. With a finite sloped R
nullcline, the fixed points of the system move closer to the
bifurcation as the local stimulus concentration increases. With
the fixed points closer to their respective bifurcations, the
system requires less input to be excited to a transient burst (as
AV is smaller) and is therefore more sensitive to a gradient.

Unlike previous models, we utilize a FHN system with an
infinite sloped R nullcline and a shared repressor. With an
infinite sloped R nullcline and without a shared repressor, the
system would have two fixed points [Fig. 1(d), faded dots]
and would require the same input for either compartment
to be excited. However, with a shared repressor, the single
fixed point of the system creates sensitivity by being more
positive in A than Ap [Fig. 1(d), shaded dots]. Therefore,
the magnitude of the stimulus required to cause excitation in
the front is less than the back, and sensitivity to a stimulus
is generated with a shared repressor and a infinite sloped R
nullcline. Notably, we also achieve perfect adaptation due to
the infinite slope of the R nullcline. The two-compartment
FHN system falls back to near basal levels of A and Ag be-
fore another excitation occurs, which resembles experiments
as spatial gradient components display near-perfect adaption
[30,31]. Perfect adaptation also makes it so the system can de-
tect small stimulus changes in a background concentration of
chemoattractant and is unlikely to oscillate under biologically
relevant stimuli. In D. discoideum sensitivity to small changes
in cAMP occurs in elevated background levels of cAMP as
with no background concentration [32]. In background stimu-
lus concentrations, the system maintains the same fixed point
in the dimensions of Ar g and only changes in R and therefore
maintains sensitivity in background stimulus concentrations.
Also, under biologically relevant stimuli, the fixed point of
the system will lie on the left branch of the Ar g nullclines and
therefore will never move past the bifurcation to oscillations.
Under conditions where the stimulus is very large at the front
of the cell and very small at the back of the cell, the system can
conceivably be pushed into oscillations due to the repressor
coupling.

IV. WAVE RECTIFICATION

We have discussed how, in our model, noise driven bar-
rier crossing is responsible for sensing in a static gradient.
However, chemotaxis in D. discoideum requires the sens-
ing of dynamic spatiotemporal stimuli to achieve felicitous
aggregation. With the velocity of cAMP waves produced
by D. discoideum being 830um and the average length of a
chemotactic cell being 15 um the back of the cell experiences
the same concentration of cAMP as the front of the cell after
approximately 7 s. Therefore, the spatial gradient sensing
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FIG. 3. Wave rectification mirrors biological experiments in the
two-compartment FHN model. Simulations of the two-compartment
FHN system with varying spatiotemporal stimuli S. (a) A wave
of cAMP with a velocity of 324m  (b) a wave of cAMP with a

min °’

velocity of 8750% similar to naturally occurring cAMP waves in
Dictyostelim populations, and (c) a temporally decreasing gradient.
The phenomenology seen here mirrors the results from [11]. Time O
denotes when the stimulus is 0.01% of the maximum concentration
and the wave stimulus shown is Sy (Sp not shown for clarity). (d) The
stimulus § modeled as an array of Gaussian functions with varying
periods (from peak to peak) with a constant velocity of gi(zn‘l‘;" The
system provides the best performance when the period of the wave
is close to the natural oscillating frequency of the signaling network.
Error bars represent standard error of the mean (SEM). o = 0.035
for all figures.

machinery must work quickly to repress the back of the cell
within this time frame.

D. discoideum produces waves of cAMP with a period of
6—10 min depending on the stage of chemotaxis, shortening as
aggregation develops [33]. Previous experiments have shown
that the cell’s ability to sense a chemoattractant depends
greatly on the temporal dynamics of the chemoattractant-
containing stimulus, such as the wave of cAMP utilized by
D. discoideum [11]. If a wave is too fast, the cell senses the
wave at both the front and the back of the cell, leading to
no net movement. However if the wave is of a biologically
relevant period, such as 7 min, the front of the cell senses
the wave as it approaches, but the back does not as the wave
washes over the cell. To ensure that our model faithfully
rectifies spatial gradients, we simulate previously performed
experiments analyzing the effect of varying spatiotemporal
cAMP waves on the D. discoideum spatial gradient sensing
component Ras [11].

We first consider a single period of a wave at varying
velocities [Figs. 3(a) and 3(b)]. We model the wave as a
Gaussian function as this closely mirrors the profile of cAMP
waves produced by D. discoideum under starvation condi-
tions [34]. Similar to experimental results in Dictyostelium,
our system has a natural oscillating frequency that allows
for dimensionless time T to be converted into dimensionful
time for comparison. With dimensionful time, we model the

front and the back of the cell by a time difference as to
when the stimulus is introduced. The average chemotaxing
Dictyostelium cell is 15 um and so providing a wave with a
specific velocity allows for the determination of the time lag
that the back of the cell experiences a stimulus after the front
of the cell [35]. Quick waves (85311’;“1) caused transient bursts
in both groups of activators Ar and Ag, which is as expected as
the shared repressor R doesn’t have sufficient time to build up
and inhibit activity of Ag [Fig. 3(a)]. Waves of a biologically
relevant speed (SgT’f:l“) allow for a time scale where the shared
repressor R can inhibit the activator Ay after initial activation
of Ar leading to a transient burst [Fig. 3(b)]. As only the front
of the cell bursts on a wave of a biologically relevant speed,
we show that the model faithfully replicates experimental
findings of spatial gradient sensing proteins [11].

Another feature of our two-compartment FHN spatial gra-
dient sensing model is that no transient bursts occur in a tem-
porally decreasing gradient, such as the back of a wave, fol-
lowing experimental results [Fig. 3(c)]. The lack of bursting
in a decreasing gradient is due to adaptation, which provides a
simple resolution to the back-of-the-wave problem. An input
of energy such as S or noise is needed to create a transient
burst as outlined in the previous section. In a decreasing
gradient, the system begins with a large stimulus present
causing AV p to be very large. A large amount of energy
would be needed to be put into the system to cross AVgp
and create a transient burst. Under the conditions that we use
in a decreasing gradient, the level of noise and a decreasing
S are unable to cause excitation. Therefore, the back-of-the-
wave problem is more accurately described as the top-of-the-
wave problem. We use the term top of the wave as the back
of the cell must be in an increasing gradient while the front of
the cell is in a decreasing gradient for backwards movement
to occur with a stimulus that is biologically relevant.

We now consider a continuous wave at a constant velocity
(83%‘?) with varying periods. During aggregation, the period
of cAMP waves generated by a population of D. discoideum
varies from 6 to 10 min, with optimal aggregation occurring
when the period of the wave is 7 min [11,16,33]. As the
adaptation time scale of the signaling network is utilized in
our spatial gradient sensing model, optimal gradient sensing
naturally occurs when a traveling wave of cAMP with a period
of about 7 min is applied to the system as possible excitation
is in phase with every incoming wave front [Fig. 3(d)]. The
matching of adaptation processes eliminates a need for com-
plex mechanisms to match the adaptation time scales of cAMP
production to spatial gradient sensing machinery.

V. CHEMOTAXIS FROM EXCITABLE
REACTION-DIFFUSION SYSTEM

While the simplified FHN model presented above captures
the qualitative phenomenology of spatial gradient sensing,
to model chemotaxis of D. discoideum, we need to account
for the potential diffusive dynamics of the activator and
the repressor across the cell membrane. We next develop a
continuum version of the proposed system that lives around
a circular cell membrane. Just as in the two-compartment
model, if R is not shared, then activation can occur along
multiple locations on the cell membrane which will disrupt the
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ability to sense a spatial gradient. However, when a globally
shared repressor is used in a continuum model, dynamical
instabilities are generated. Therefore, the continuum system
must have a locally diffusible repressor R with a finite diffu-
sion constant Dg, that should be as large as possible without
inducing an instability. In that case, R has the ability to share
information across the cell without causing instabilities. As
Dy, increases, so should the ability to sense a spatial gradient
accurately as the system will become blocked from excitation
in other locations of the cell membrane more rapidly.

We expand our model into a one-dimensional excitable
reaction-diffusion system on the cell membrane to detect spa-
tial gradients [20]. We treat the cell as a flat circular disk with a
diffusible activator A and repressor R along the circumference
of the disk obeying the dimensionless equations

% =A®0,1)— (AO,1)) — RO, 1)
+56) + VZA®©, 1) + 10, 1), (7
% = (A0, 1) + co)e + DV*R(, 1), (8)
where D = %, Dr and D, are the diffusion constants of

R and A resp/:actively, S =cos(f), and n(b,t) is Langevin
noise decorrelated in space and time satisfying the rela-
tion (n(0, 1)n(@’,t")) = c28(8 — 0')8(t — t'). Below we study
how diffusion and noise influence chemotaxis via pattern
formation in this excitable reaction-diffusion system.

We begin our analysis with Dg < D4 or D < 1. In this
regime, traveling waves of A are generated [Fig. 4(a),
top panel]. These wave solutions are known to exist in
the reaction-diffusion FHN system and are well described
[36,37]. As the activator A is diffusing more rapidly than the
repressor R, the repressor R cannot catch up to the activator
A. When D > 1, the activator can now be repressed by R
as Dg > D4 and transient patches are generated [Fig. 4(a),
middle panel] [36]. These patches resemble many signaling
components in D. discoideum such as Ras and even down-
stream proteins involved in pseudopod formation such as
actin [38].

However, when D is increased further (D > 10), stationary
pattern states emerge [Fig. 4(a), bottom panel]. When per-
forming linear stability analysis, the system is linearly stable
in the absence of noise. Therefore, these pattern states may be
transiently generated by noise and we wish to determine the
effects of noise on pattern formation and its consequence on
chemotaxis in the reaction-diffusion system with large D. As
the stationary pattern state exists in the absence of a stimulus,
we set S = 0 in the following analysis unless otherwise noted.
We follow Butler and Goldenfeld’s analysis on noise induced
pattern formation [39]. If noise has the ability to decay some
perturbations slower than others, transient patterns can occur.
To begin, we Fourier transform perturbations of the system
about the homogeneous steady state solution in both the
spatial and temporal domains,

(6A(0,1),8R(0,1),1n(0,1))

= / (A(k, ), R(k, w), n(k, )= Ddkdw, (9)
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FIG. 4. Effect of noise and the diffusion constant ratio on chemo-
taxis. The reaction-diffusion FHN models the activity of A and R
along the membrane of a disk shaped cell over time. S is modeled as
0.1cos(0) in (a) and (c)—(f). (a) Altering D causes phase transitions
in the continuum FHN system. For small D < 1, traveling waves
occur. As D increases past 1, transient patches excited by noise are
dynamically generated. However, at D > 10 a stochastic stationary
pattern state is obtained. (b) As D increases, the peak of the activator
power spectrum Py (k, 0) is amplified, depicting noise driven station-
ary pattern formation. (c) V¢ increases roughly linearly as a function
of D in the transient patch regime. (d) Just as in Fig. 2(b), noise
biases the chemotactic velocity towards the direction of the gradient
until a certain point where noise allows for other compartments to
burst. As D increases, so does the chemotactic velocity, until D > 10
where the stationary pattern state forms. (e),(f) As D is increased so
does the rate (e) and the duration (f) of transient bursts. A single
representative patch is shown in (f). ¢ = 0.4 and ¢y = 0.62 for all
figures except (d) where noise varies. Error bars represent standard
error of the mean (SEM).

substituting in Egs. (7) and (8), we obtain

—iwx =Jx+ 1, (10)
where
Ak, w) 1-— 3c(2) —k? -1
X = 5 J = )
Rk, w) € —Dk?
kv
and 5= |:77( Ow):|. (11
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We solve for the activator concentration,
_ DI’y — iwn
det(J) — w? + iwTr(J)’
from which we solve for the power spectrum of A,
Pak, w) = (A(k, @)A(k, —w)),
[ (=DK% + ol 13
\[det(J) — @?]? + [@Tr()? [,

Ak, ) (12)

where (... ), is the average over noise n. With uncorrelated
Gaussian noise, (|n|2),, = 02, reducing Eq. (13) to
[(—Dk*)* + »*]o*

Patk, ) = [det(J) — @22 + [@Tr()2 (14)

Explicitly this is
Pak, w)
_ (D*k*+w?)o?
[P (= 1433 +k2) €] +[w(1-3c3 -k —Dk?)’]

15)

Stationary pattern formation occurs when there is a peak in
Py for o = 0. From Eq. (15), we see thatif D = O or o = 0, no
peak exists implying no pattern states exist. However, while o
and D are finite, a peak is introduced and stationary patterns
are enhanced by increasing D [Fig. 4(b)].

While increasing D and noise strength o are beneficial
for optimal performance in a static gradient, the presence of
noise induced pattern states are detrimental. Biologically, the
stationary pattern state represents constant activation along
the leading edge of the cell. Activation of spatial gradient
sensing proteins along the cell membrane is upstream and re-
quired for pseudopod formation, while repression of activated
spatial gradient sensing proteins, such as cytosolic regulator
of adenylyl cyclase (CRAC), is required for pseudopod re-
traction [40]. Therefore, if a segment of the cell membrane is
constantly activated a pseudopod could be formed, but would
never retract and thus no forward movement would occur. On
the other hand, if D is too small, traveling wave pattern states
would cause the cell to move in circles, thus not making any
net movement. Therefore, the interplay between noise and
the diffusion constant ratio D is critical in accurate gradient
sensing. D can neither be too small (leading to traveling
waves) nor too large (leading to stationary patterns), but rather
the cell must tune D to an intermediate regime so that transient
patches are generated. Interestingly, both stationary pattern
formations and traveling waves have been seen in the cell
surface proteins of chemotaxing D. discoideum [36,40-42],
which may be in part caused by the phenomena described
above.

While all three states generated by the continuum model
are seen in biology, we wish to analyze the most biologically
relevant state and focus on the transient patch state (1 < D <
10). To quantify chemotaxis in the presence of a static spatial
gradient in the continuum model, we define an analog to v¢
called the continuum chemotactic velocity or V¢ defined as

Vee = ZZ HAQ@®, ;))COS(@)’ (16)
0

where H(A) is the Heaviside function of the activator A and
T is the total time in minutes. Therefore, if a patch occurs
at 0 = 0, the system will be providing the best performance
and the worst performance occurs when a transient burst is at
0 ==m.

As stated earlier, V¢ should increase as a function of D in
the presence of the static gradient S. Holding noise strength
o = 0.4 constant, this is indeed the case [Fig. 4(c)]. Vcc
increases roughly linearly with respect to D. As the signal
S has the largest concentration at 6 = 0, patches will be
biased along this axis [Fig. 4(d)]. However, it is possible for
noise to cause excitation in other compartments. Increasing D
ensures that after a patch is generated, noisy patches generated
at locations where S is low are either short-lived or will
not occur as the compartments will already be inhibited.
Along with decreasing the chance for noise-driven excitation
of compartments along low concentrations of the signal S,
increasing D also increases the duration and frequency of
transient patches [Figs. 4(e) and 4(f)]. We notice that as
D +— 10 the characteristic duration of the patches increases.
The system appears to be attempting to reach the stationary
pattern state, but fails to do so. Therefore, even though the
stationary pattern state is not present, increasing D changes
the characteristics of the transient patches to be closer to the
shape of the stationary pattern state. More so, the rate at which
transient patch formation occurs increases as the system is
moving closer to the stationary pattern state where activation
never becomes repressed. Therefore, the system tends to be
constantly activated and the frequency of transient patches
increases. This behavior may be due to the size of the basin
of attraction for the stationary pattern state being small and
therefore difficult for solutions to converge until D > 10.

VI. CONCLUSIONS

The system we present here provides a simple solution to
time-scale matching between gradient sensing and the signal-
ing network, while providing sensitivity, perfect adaptation,
and accurate wave rectification. Utilizing perfect adaptation,
we achieve sensitivity and the ability to detect shallow gradi-
ent stimuli. Noise provides the necessary energy to push the
system past a potential barrier, biasing the sensing of a static
spatial gradient towards the origin of that spatial gradient.
Expanding our model from a simplified two-compartment
model into a one dimensional reaction-diffusion model that
lives on the cell membrane, we find that noise interacts with
the diffusion constant ratio D to create pattern states that have
been seen experimentally and could influence chemotaxis of
Dictyostelium discoideum.

Allowing the signaling machinery to activate spatial gra-
dient sensing solves one of the major issues in D. discoideum
chemotaxis. We naturally solve the back-of-the-wave problem
as the back of the excitable system will not burst in a decreas-
ing gradient and will not burst in a biologically relevant wave
back due to the time scale of adaptation. In hand, we naturally
solve the issue of time-scale matching between the signaling
network and spatial gradient sensing. In D. discoideum
starvation-induced chemotaxis, cAMP is released into the
extracellular environment every 6-10 min. The ability to sense
a spatial gradient of cAMP occurs optimally when the spatial
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gradient has a period of 5-9 min. By utilizing the signaling
network to perform spatial gradient, we solve this problem by
matching their time scales of adaptation automatically.
Having answered these issues with our theory that explains
previous experimental findings, we also provide experimental
predictions to determine if this theory could be an accurate
model for Eukaryotic chemotaxis. Both the two-compartment
and the continuum model predict the existence of an opti-
mal chemotactic velocity as a function of noise due to the
competition of total bursting rate and bursting fraction of
the leading edge. The continuum model predicts a bursting
regime at intermediate diffusivity ratio D of repressor and
activator, where chemotactic velocity increases with D. At
small and large D, traveling wave and stationary pattern states
emerge, respectively, due to the interplay of excitability and
noise, which could potentially reduce chemotatic capability
of the cell. While components of the spatial gradient sensing
network in D. discoideum are unknown, one component that
may be of interest for experimental observation is surface
cAMP receptor 1 (cAR 1). cARI is the main transmembrane
cell surface receptor responsible for sensing cAMP during
starvation induced chemotaxis and is upregulated tenfold dur-

ing aggregation [43,44]. cAR1 is essential to chemotaxis as
cells without cAR1 lack the ability to perform any aspects
of chemotaxis and cAR1 pathways can display adaptation to
cAMP [24,45]. Thus cARI may be used as an activational
receptor for both the signaling and spatial gradient networks.
Subcellular localization and activation of many components in
chemotaxis is common in D. discoideum and thus localization
and activation of cAR1 would not be out of place [44]. While
localization assays have been developed for the cAR1 G-
coupled proteins, a direct assay to determine the activation of
cARI1 spatially has yet to be developed [46].
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