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1 Abstract

Aim: The geographic range and ecological niche of species are widely-used concepts in
ecology, evolution, and conservation and many modeling approaches have been developed to
quantitatify each. Niche and distribution modeling methods require a litany of design choices;
differences among subdisciplines have created communication barriers that increase isolation of
scientific advances. As a result, understanding and reproducing the work of others is difficult, if
not impossible. It is often challenging to evaluate whether a model has been built appropriately
for its intended application or subsequent reuse. Here we propose a standardized model
metadata framework that enables researchers to understand and evaluate modeling decisions
while making models fully citable and reproducible. Such reproducibility is critical for both
scientific and policy reports, while international standardization enables better comparison
between different scenarios and research groups.

Innovation: Range Modeling Metadata Standards (RMMS) address three challenges: they (i)
are designed for convenience to encourage use, (ii) accommodate a wide variety of
applications, and (iii) are extensible to allow the research community to steer it as needed.
RMMS are based on a data dictionary that specifies a hierarchical structure to catalog different
aspects of the range modeling process. The dictionary balances a constrained, minimalist
vocabulary to improve standardization with flexibility for users modify and extend. To facilitate
use, we have developed an R package, rangeModelMetaData, to build templates, automatically
fill values from common modeling objects, check for inconsistencies with standards, and
suggest values.

Main Conclusions: Range Modeling Metadata tools foster cross-disciplinary advances in

biogeography, conservation, and allied disciplines by improving evaluation, model sharing,



model searching, comparisons, and reproducibility among studies. Our initially proposed
standards here are designed to be modified and extended to evolve with research trends and

needs.



2 Introduction

Species’ geographic ranges and environmental niches are fundamental units of biogeography
and among the most widely-used summaries in biology (Guisan & Thuiller, 2005; Jetz et al.,
2012). Correlative range models (i.e., species distribution models, environmental niche models,
resource selection models, etc.) describe how occurrence or abundance varies in environmental
and/or geographic space and are applied to biodiversity assessments and forecasts,
conservation planning, niche evolution, invasion biology, and many other fields (Franklin, 2010;
Peterson et al., 2011; Guisan et al., 2017). Many modeling approaches have been developed
to quantitatively characterize ranges and environmental niches with different goals in each field,
and user-friendly software has enabled many thousands of studies. However, differences in
approaches and methodologies—-some based on different study foci and others on
field-specific jargon—-have created barriers to communication and led to increasing isolation of
scientific advances. For example, wildlife ecology has a literature on resource selection
modeling that is rather distinct from environmental niche modeling in plant ecology, in spite of
very similar data, concepts, and objectives (Warton & Aarts, 2013). Recent calls have been
made to standardize range model metadata to enable reuse of models both generally (Borba &
Correa, 2015; Costa et al., 2018) and with the specific goal of estimating biodiversity patterns
(Araujo et al., 2019), but detailed metadata standards remain lacking. Here, we propose Range
Modeling Metadata Standards (RMMS) that aim to improve communication, reproducibility, and

reusability of published models.
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2.1 Why do we need RMMS?

Range modeling is a highly varied field with little consensus and calls for greater standardization
and transparency (Joppa et al., 2013). Without standardized metadata that describe range
models, it can be difficult to evaluate if a model has been built appropriately for its intended use
or if it is suitable for reuse in subsequent studies. A number of studies have outlined clear
connections between modeling decisions and resulting inferences (Merow et al., 2014;
Guillera-Arroita et al., 2015; Guisan et al., 2017), and advances in biological metadata have
already standardized and connected primary biodiversity data (Wieczorek et al., 2012; Guralnick
et al., 2017). By specifying standards, methodologies will become more immediately transparent
for peers as researchers adopt a standard metadata vocabulary. Easy-to-use metadata will
considerably simplify the reviewing process by automating the reporting of decisions, which can
take considerable time for reviewers and help them better understand the methodological
context of a study’s insights. Metadata can also help relieve manuscripts from laborious

methodological descriptions, increasing valuable space to focus on results.

Range models constitute valuable information products that have been recognized as key for
developing an understanding of the status and trends in species distributions. They are vital to
large biodiversity modelling projects such as Botanical Information and Ecology Network (BIEN;
biendata.org) and Map of Life (MOL, mol.org) and synthetic conservation efforts such as
defining Species Distribution Essential Biodiversity Variables (Pereira et al., 2013; Jetz et al.,
2019). The large taxonomic scale of the range models in these efforts leverages standardized
approaches to improve model reliability, but such mass production places an even stronger

onus to report how models were produced. The potential inclusion of range models produced by
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the research community in these databases necessitates metadata that enables comparisons
and integration. Making range model products easily citable via searchable metadata increases
accessibility to other subdisciplines of biology and environmental science and provides credit for
the researchers who developed the models. Standardization also helps connect related
subdisciplines that have evolved their own language or best practices but may benefit from
cross-pollination. Over time, adherence to metadata standards would support a catalog where
researchers could search for modeling studies based on features of interest (e.g., data sources,
model method and settings, reported evaluation metrics) which would otherwise likely be
inaccessible from metadata on a published paper. Meta-analyses leveraging this resource might
have applications ranging from community ecology to biogeography to methodological

development.

Taken together, advancing standardized range model metadata will enable more reproducible,
standardized, searchable, and citable science. As these standards are meant to grow with the
field, they will benefit from engagement and improvements from the user community. After an
initial phase of testing and validation, we hope that RMMS can become a completely
community-driven enterprise without need for management by a given entity or our research
team. These gains in scientific precision and communication are well-positioned to outweigh the
effort required to report standardized metadata. Furthermore, our efforts will bring range
modeling in line with other successful efforts in Reproducible Research Systems (Mesirov,

2010) in other domains in the life sciences (Goecks et al., 2010).

To promote adoption of our proposed metadata standard, we have designed convenient and

flexible tools for its implementation, including a user-friendly interface to enable researchers to
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provide such descriptions with minimal effort and errors. We provide an R package,
rangeModelMetadata, that automatically completes many required fields and can be

extended to automatically fill them from common modeling objects in R.

3 rangeModelMetadata (rmm) Format

The rangeModelMetadata (rmm) format that we propose is designed to be human-readable to
accommodate more flexible specification of inputs, as well as ensure generality beyond specific
software or present-day use cases. After sharing a minimum set of critical metadata, provision
of additional information is optional. This flexibility gives researchers three advantages: (i) it is
adaptable to new technologies (e.g., algorithms, applications), (ii) it will ensure relevance to a
broad user base, and (iii) it permits customization as needed. The standards are comprehensive

enough to provide guidance and clarity, but not onerous.

The basic unit of RMMS is a single study with a single model per taxon to reduce the burden on
researchers, in contrast to building a metadata object for each species or model (although this is
a custom option). This follows standards from the biosciences standards community to focus on
the study or experiment (Taylor et al., 2008). The structure of rmm objects correspond to eight
top-level fields: authorship, studyObjective, data, dataPrep (data preparation), modelFit,
prediction, evaluation, and code (Table 1). Within each of these top-level fields are subfields,
which may contain further granular reporting. The named values assigned to unique
combinations of fields (e.g., data:environment:extent) are termed ‘entities’ (see the data

dictionary in Table 1). Entities have values that are vectors of characters or numbers.
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Our metadata dictionary includes the hierarchical structure of the metadata entities, provides
standardized and suggested inputs, and defines all the content needed to produce an rmm
object (Table 1; Appendix S1). Each row defines a single entity in an rmm object, classified by
columns specifying the field hierarchy described above. Some entities with commonly-used
settings have a constrained vocabulary to standardize values (noted in the constrainedValues
column of the dictionary), while others may take on any value. To balance flexibility with
standardization, many entities are partially constrained such that a standardized vocabulary is
available for certain common values while user-defined values are also accepted. To add further
flexibility, many fields have a :Notes entity (e.g. data:notes, dataPrep:notes, modelFit:notes,
etc.) to allow authors to mention any additional high-level critical information. Formatted
examples as well as descriptions of guidelines for user-defined values are also included in the
dictionary. All values can be entered programmatically with our R package
rangeModelMetadata or manually into a csv file (templates provided in Supplements S5 and

S6).

4 Standards

The standards below provide background on the predefined entities and guidance on how to

extend them to include user-specified options.

4.1 A Case Study

As an example for constructing an rmm object in the sections that follow, we built a simplified

range model for Bradypus variegatus, the Brown-throated sloth, in South America. Specifically,



we use Maxent (Phillips et al., 2006) and dismo (Hijmans et al., 2010) applied to occurrence
data from GBIF (GBIF.org, 2019) and climate data from Worldclim (Fick & Hijmans, 2017). See
supplement S4 for complete workflow. Various modeling decisions are described below in the
context of constructing a metadata object. Notably, we begin with a study involving only a single
species and describe how to extend this below in Multispecies Studies. The resulting rmm

object is shown in Figure 2.

4.2 Authorship

The authorship: field provides information on citation, contact information, related studies
using the models, and licensing/use restrictions associated with the models. Each rmm object is
given a unique name in the format Author_Year_Taxa_Model _fw. We suggest the convention
that Author be limited to surnames and that multiple authors be included via camel case (e.g.,
MerowMaitnerOwensKassEnquistJetzGuralnick). Year should include a four-digit year. Taxa
can be specified at the author's’ discretion and include common or scientific names at any
appropriate taxonomic level (e.g., Sloth, Bradypus, BradypusVariegatus). Model should
describe the algorithm used (multiple models can be specified when using ensemble models
(Araujo & New, 2007; Thuiller et al., 2009)) —-standardized model names can be viewed in the
modelFit:algorithm field of the data dictionary. Finally, two random alphanumeric characters
should be appended to the rmm name to prevent cases where ambiguity might arise. A
complete example could take the form (Fig. 2):

MerowMaitnerOwensKassEnquistJetzGuralnick_2018_BradypusVariegatus_Maxent_b3.

10
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4.3 Study Objective

Entities under studyObjective, including :purpose, :rangeType, :invasion, transfer,
etc. provide authors with a text field to briefly describe the intended application of their study to
set the context for modeling decisions specified in other fields. In our example study, the model
it was fit in the northern part of South America, and transferred to the southern part in order to
determine whether there is any potentially suitable habitat in a region where no records exist:
studyObjective:purpose="'transfer’
studyObjective:rangeType="potential’

studyObjective:transfer="detect unoccupied suitable habitat'

4.4 Data

Information within the data field pertains to occurrence records (data:occurrence) and
environmental data (data:environment) used to train or transfer models. The :occurrence
field may contain taxon names (:occurrence:taxaVector), the type of occurrence data used
(:occurrence:occurrenceDataType; e.g., presence-only, presence-absence, abundance), the
temporal extent of the occurrence records (:occurrence:yearMin, :occurrence:yearMax),
occurrence data sources (:occurrence:sources), and information on sample sizes. The
data:environment field may contain information on the environmental variables used
(:environment:variableName), the temporal extent of the environmental layers
(:environment:yearMin, :environment:yearMax), and the source of the environmental data
(:environment:sources). For example, occurrence information for our example includes

(additional entities in Supplement S4):

11



data:occurrence:presenceSampleSize=290
data:occurrence:backgroundSampleSize=5084
data:occurrence:yearMin=1970

data:occurrence:yearMax=2000

4.5 Data Prep

Information within the dataPrep field details any changes, cleaning, or validation done to the
data. Errors or inherent biases (i.e., spatial) in publicly available occurrence data are common
(Serra-Diaz et al., 2018) and may have serious consequences for modeling (Phillips et al., 2009;
Merow et al., 2016). Common reasons for excluding coordinates include: coordinates not falling
in the specified political division, coordinates reflecting non-native or cultivated occurrences,
coordinates representing centroids of a political division, duplicated coordinates, or biased
spatial clustering (Aiello-Lammens et al., 2015; Robertson et al., 2016; Maitner et al., 2017;
Serra-Diaz et al., 2018). Valid points may also need to be removed if they constitute

environmental outliers that may strongly bias a model (Soley-Guardia et al., 2014).

Within the dataPrep field there are four subfields: :errors, :biological, :environmental, and
:geographic. The :errors field contains information regarding any removal of duplicate
(:errors:duplicate) or suspicious points (:errors:questionablePointRemoval). The
:geographic field contains information related to geographic name standardization
(:geographic:geographicStandardization) and occurrence point validations
(geographic:geographicOutlierRemoval, :geographic:centroidRemoval,
:geographic:pointInPolygon) on the basis of geopolitical regions as well as geographic

outlier removal (:geographic:geographicOutlierRemoval). The biological field contains

12
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information related to taxonomic name standardization
(:biological:taxonomicHarmonization) as well as the identification of records that are likely
to represent introduced or cultivated species (:biological:nonNativeRemoval,
:biological:cultivatedRemoval). The environmental field contains data related to
changes made to the environmental layers used, as well as occurrence point exclusion on the

basis of environmental data (environmental:environmentalOutlierRemoval).

In our simplified example, we removed records duplicated within cells (on the 10 km grid of the
environmental layers) and thinned the occurrence data to reduce the effects of spatial
autocorrelation:
dataPrep:biological:duplicateRemoval:rule="one observation per cell’
dataPrep:geographic:spatialThin:rule="20km used as minimum distance

between points"”

4.6 Model Fitting

The modelfit field has the largest variety of entities owing to the profusion of modeling
algorithms and decisions applied in their use. A subfield specifies the algorithm name and can
be user-defined to accommodate newly developed algorithms. In cases where ambiguity may
exist about algorithm definitions, e.g., determining whether one should define
modelFit:algorithm = ‘Poisson point process’ or ‘glm’ because the latter can be fit
with GLM software, we leave this to the authors’ discretion and provide the
modelFit:algorithmNotes entity if needed. It is worth remembering that the intention of rmm
objects is to be human-readable and therefore subject to context and interpretation. . . .Notes

entities, such as modelFit:notes, allow users to describe this context to the desired level of
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detail. The modelFit field contains subfields for specifying data partitioning methods (e.g.,
k-fold cross-validation), specification of how covariates are treated (e.g., scaled, z-scores) and
algorithm-specific settings. For Maxent modeling, we have specified comprehensive examples,
while providing only minimal recommendations for other algorithms. We leave extensions to
other algorithms for their expert users to recommend as part of our efforts to engage the
research community in further development. For example, users can also specify their own
custom entities to accommodate less common metadata. This flexibility ensures that our
metadata framework is not so prescriptive that it excludes less-common modeling tools or those

yet to be developed.

In our simplified example, we used Maxent via the ENMeval R package (Muscarella et al., 2014)
to compare different combinations of feature classes and different regularization parameters.
Models were compared based on AUC evaluated on test data, obtained from spatial block
cross-validation. As rmm objects are designed to handle a single model per species, we report
the optimal model settings only and include information in the relevant .. .Notes entities on the
model selection strategy. Had we used ensemble averaging over these candidate models, we
would have reported the attributes of the ensemble and including attributes of the component
models in the .. .Notes fields.
rmm$modelFit$partition$partitionRule="spatial block cross validation’
rmm$modelFit$maxent$featureSet="LQ"
rmmgmodelFit$maxent$regularizationMultiplierSet=1
rmmgmodelFit$maxent$samplingBiasRule="ignored"’
rmm$modelFit$maxent$notes="'ENMeval was used to compare models with L

and LQ features, each using regularization multipliers of 1,2,3.

14


https://paperpile.com/c/4udzSt/MPRH
https://paperpile.com/c/4udzSt/MPRH
https://paperpile.com/c/4udzSt/MPRH

The best model was selected based on test AUC evaluated under

spatial block cross-validation.'

4.7 Prediction

The prediction field describes common attributes of a variety of possible output types,
including the prediction in geographic space (optionally a single prediction or the mean of
multiple models), predictions transferred in space or time, and prediction uncertainty. For each
of these prediction types, users specify the units (e.g., binary presence/absence, abundance,
absolute probability of occurrence, etc.), the maximum and minimum values, and notes
associated with interpretation. For each prediction type (except uncertainty), users can
optionally specify a threshold value or rule to convert continuous predictions to binary. Finally,
text can be provided to describe rules for extrapolation, building ensembles of models, and
other optional attributes of model reporting. In our example study, we make predictions using
Maxent’'s ‘raw’ (or relative occurrence rate; Merow et al. 2013) values. Note the use of functions
(raster::cellStats(); Hijmans et al. 2019) to fill in entities, where p is the prediction raster. Further,
analogous entities related to transferring predictions to a new regions, are shown in Supplement
S4 for brevity.

rmm$prediction$continuous$units="relative occurrence rate"

rmm$prediction$continuous$minVal=raster::cellStats(p,min)

rmm$prediction$continuous$maxVal=raster::cellStats(p,max)

rmm$prediction$extrapolation="clamping"

15



4.8 Evaluation

The evaluation: field stores a range of statistics used to quantify model training, testing or
overall evaluation. This follows recommendations common in machine learning (Hastie et al.,
2009) for splitting data into three subsets before model building: training, testing, and
evaluation. Training statistics are evaluated on the data used to fit, or train, the model. Testing
statistics are calculated on data withheld from training and describe evaluation on test data to
assess generality. Such testing statistics can be used for model selection or for weighting in
model ensembles, and can help determine which model settings are optimal of those tested
(answering the question ‘of the models run, which is “best”?’). The evaluation data are
independent of both training and testing data and provide a means to assess how well the
selected/average model performs with out-of-sample prediction (answering the question ‘how
good is the best model?’). While we recommend data partitioning as the most robust option, we
realize that many studies do not have sufficient data—- it is thus common to use testing data for
evaluation. In this case, researchers should report their statistics as testing, and provide an
evaluation:notes that these statistics were also used for evaluation. For training, testing, and
evaluation a common set of names of standardized statistics are provided (e.g. AUC, TSS, etc.);
users can also include their own statistics and cite them in evaluation:references. Notably,
we have designed the rmm object structure to accommodate a single model per taxon; this
model can either be the output of a single algorithm, or the summary (i.e. mean or median) of a
single algorithm fit to subsets of the data (e.g. k-fold cross validation), or multiple models (e.g.,
an ensemble, as from the biomod2 R package (Thuiller et al)). In studies where multiple models

are relevant to report for each species, a separate rmm object should be used for each model

type.
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In our example study, only AUC evaluated on test data was used to select optimal model

settings. In general, it is better practice to examine multiple metrics. Note that we fill in values

directly from those stored in an ENMeval object called e.
rmm$evaluation$trainingDataStats$AUC=e@results[i, ]$trainAuC

rmm$evaluation$testingDataStats$AUC=e@results[i, ]$avg.test.AUC

4.9 Code

The code: field stores obligate information about software references and versions as well as
optional links to scripts hosted online. As rmm objects are designed to be human-readable,
information that enables true reproducibility is stored in these scripts, e.g., hosted by journals in
supplemental information or on Github. We recommend these files be free of constraints beyond
those used by journals to avoid a prohibitive amount of work by authors which discourages
sharing their code. As biologists continue to strive toward greater reproducibility, we hope
standards do emerge, but this is beyond the current scope of our metadata standards. We do
however offer entities for different types of code, which currently include code:demoCodeLink
(for brief, reduced functionality examples), code:vignetteCodelLink (for commented,
tutorial-styled code), and code:fullCodeLink (for a full reproduction of the analysis). These
distinctions aim to help users better understand what to expect from the code and for authors to
target different audiences needing different levels of detail. We recommend that
code: codeNotes include information on which platforms the code has been tested. In our
example study, we cite the relevant R packages with:
rmm=rmmAutofillPackageCitation(rmm=rmm,

packages=c('rgbif', 'sp', 'raster’', 'dismo', 'ENMeval'))
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4.10 Vector-valued entities

Some entities are naturally defined as vectors so we adopt JSON formatting (www.json.org) to
help clearly define named vector-valued entities. For example, when specifying the spatial
extent of the modeling domain, it is common to use the minimum and maximum coordinates
(i.e., bounding box). To specify these limits unambiguously with JSON, we use (from the
example study): [{"xmin":-125,"xmax":-32,"ymin":-56, "ymax":40}]. (In JSON syntax,
the ‘string’ describing the name of a quantity is in double quotations and its ‘value’ is given
following a colon.) Vector-valued entities are apparent in a number of cases:
data:environment:minVal and :maxVal indicate the extremes of each environmental layer in
the analysis (e.g., [{"biol1":289,"biol2":7682,"biol6":2458}]. Even if users are not
familiar with JSON, the jsonlite package (Ooms, 2014) provides convenient tools to convert
an R data.frame to JSON text (see vignettes). A number of vector-valued entities already have
names defined, but we expect that use cases will arise that require users to extend JSON

formatting to other entities.

4.11 Multispecies Studies

Thus far we have focused on studies that have a single species; however RMMS are readily
extended to include multiple species. As many model properties can (and arguably should) be
specific to a particular species, we have also designed the metadata structure to accommodate
multi-species studies through the use of a taxonSpecific column in metadata dictionary (Table

1). This column defines whether a given entity applies to all taxa in the study (e.g.,
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data:occurrence:dataType), applies to each species separately by specifying a vector with a
value for each species (e.g. data:occurrence:presenceSampleSize), oris a single value or
vector with a value for each species (e.g., data:occurrence:backgroundSampleSizeSet).
Hence the taxonSpecific column indicates whether or not a vector-valued entity describes
different taxa (e.g., data:environment:sources may contain a vector of references to different
sources and a value of taxonSpecific=no indicates that these sources apply generally and not to
different taxa). Note that any entity with taxon-specific values can optionally be specified as
[{“speciesl”:valuel, “species2”:value2}], but users can also choose the simpler

multispecies vector formatting with valuel,value2, etc.

In multispecies studies, entities can take single or multiple values and are associated with a
vector of taxon names. Thus an entity may have a single value if it is constant for all study taxa,
or a vector of values associated with their respective taxa. This framework can also be thought
of as a table with columns for taxa and rows for entities. For example, a study containing two
species would specify their names (using R syntax for convenience) as
data:occurrence:taxon=c('taxonl', 'taxon2'), and all subsequent entities can be
provided with values as vectors of length 2 when the value differs among species or length 1
when the value is the same among species (e.g.,
data:occurrence:presenceSampleSize=c(24137, 4520) and
data:occurrence:yearMax=2018, respectively). Models of each taxon in a study are likely to
have different properties, such as presence sample size, but may also have different model
settings. Indeed, model evaluation and ecological reality of the response may be greatly
improved by tuning parameters to individual datasets (Merow et al., 2013, 2014; Muscarella et

al., 2014).
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For simplicity in multispecies studies, users can specify unique values of an entity for each
species as just described or a character string describing a methodological rule for choosing the
value. Most model settings have ...Set and ...Rule entities that users can choose from. For
example, when thresholding continuous predictions to make a binary map,
modelFit:prediction:thresholdSet=c(.003,.002) could be used to indicate the specific
threshold values or alternatively modelFit:prediction:thresholdRule="5% training
presence’ could be used to identify the rule to determine the thresholds applied to multiple
taxa. In cases where multiple modeling algorithms are relevant, we recommend making a
separate rmm object for each algorithm—-this is designed to keep rmm objects easily
human-readable and avoid confusion about entities that might have similar inputs but different

names/interpretations with different modeling approaches.

4.12 Common Use Cases

To help guide users through determining which entities to include, we define a suite of common
families of entities in the metadata dictionary that may be relevant for a given study. As a
baseline, the base family defines the minimum set of entities used to define a typical model.
Certain entities are obligate, such as those relating to data sources, while others are
recommended as typically sufficient to meet research community standards, and yet others are
entirely optional. Researchers can modularly combine the base family with other families to
represent different workflows that most closely match their study type as a template (examples
in Table 1). Entities can then be added or removed as seen fit (except for obligate entities,

which can be left empty but not deleted so that the decision to omit them is readily apparent).
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Some entities are conditionally obligate: e.g., if any entities in the optional field
prediction:transfer:environmentl (defining the environmental conditions, perhaps for
some data set on future conditions for model transfer) are non-NULL, related entities must have
non-NULL values (:yearMin, :yearMax, :resolution, :extent, :sources). Hence
someone modeling the future extinction risk of a species with Maxent could combine the
families obligate, dataPrep, maxent (entities associated with the Maxent modeling algorithm),
and transferEnv1 (entities associated with environmental conditions where a model is projected)

as a starting point for their metadata template.

5 rangeModelMetadata R Package

Although our RMMS framework is software-agnostic, we simplify the process of building a
metadata list by providing an R package, rangeModelMetadata, which provides a number of
user-friendly tools that define, print, autofill, query, and check rmm S3 objects. It begins by
defining the families of entities relevant to the study to generate an empty template. These
templates are defined as lists of lists which capture the natural hierarchical structure of our
metadata documentation scheme. As shown in Figure 1, this structure allows users to get or set
values of particular entities using the format fieldl1$field2$field3$entity (e.g.
model$algorithmSettings$maxent$featureSet, oroutput$predictiongunits inthe case
where only the first two fields are relevant. To enable flexibility for analysis outside of R, we

provide tools to export rmm objects as csv files.

The rangeModelMetadata package provides a number of convenience features.

rmmPrintFull() displays only non-null entities while rmmPrintEmpty () displays only null
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entities to help determine missing information. These can further be parsed into obligate and
optional entities. To reduce errors and simplify information entry, we provide a number of
rmmAutoFill...() functions that capture relevant information from commonly used R objects
during modeling. For example, in the simplest case, one can provide a raster::stack of
environmental input layers or model predictions to automatically fill in associated metadata
entities. Similar functionality exists for citations, occurrence data, and ENMeval (Muscarella et
al., 2014) objects. These functions also provide useful examples for other package developers
to write rmmAutofill...() functions to connect to new packages. For further refining inputs,

rmmSuggests() has predefined options for input entities and their values.

We provide a number of automated checks to help researchers detect potential issues (e.qg.,
misspellings) and ensure some level of standardization with a number of rmmCheck...()
functions. Checking standards are drawn directly from terms in the data dictionary and hence
update automatically with any changes. Multiple checks are available, including those for
standardized fields (rmmCheckNames), standardized entities (rmmCheckValues), missing fields
(rmmCheckMissingNames) and empty entities (rmmCheckEmpty). Each check function returns
information on names that are (1) matched exactly to standardized values, (2) names of partial
matches to standardized values, and (3) unmatched names. This enables users to see what
changes might be relevant while allowing them the flexibility to ignore the suggestions and
include their own custom names or values. Checks for empty entities can be split into obligate,
recommended, and optional entities to help users determine missing information. For a final
check of all entities in an rmm object, we provide the rmmCheckFinalize() function that runs all

the rmmCheck...() functions together.
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The rangeModelMetadata package include a number of other facilities. The base R function
str() can print an rmm object to different field depths. rmmToCSV() exports the rmm object into a
‘flat’ csv format that is readable by other software platforms and more human-readable. Finally,
users can also specify their own custom entities to accommodate metadata for less-common or
currently undeveloped tools, e.g.,

modelFit:algorithm:algorithmSettings: userDefinedEntity =x

where ~userDefinedEntity” is a name provided by the user and x is its value.

6 Discussion

We propose a comprehensive framework for recording metadata on range models that
enhances transparency, reproducibility, and sharing. To reduce the burden on researchers to
provide this information, we have developed an R package with a variety of convenience
functions to fill, suggest, and check metadata objects efficiently. We anticipate that these
advances will enable better comparisons between studies and synthesis across disciplines,
improved models based on the ability to readily check for best practices, and improved citability

and sharing of knowledge products.

Our decision to make rmm objects extensible, rather than tightly constrained, reflects our goal of
prioritizing convenience to researchers, but involves some tradeoffs. A rigidly-structured object
with strictly predefined entities and values for those entities would ensure standardization,
prevent errors due to typos, and generally be more easily searchable. However, as the field of
range modeling is always growing, an exhaustively prescriptive metadata framework would be

impractical to maintain and would likely involve such a lengthy manual that it would inhibit use.
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Hence we have elected to implement a more lightweight and flexible framework with fewer
entities that can be more readily adapted to any range modeling workflow. It remains the
responsibility of the researchers, editors, and data providers to curate the text in these entities

to ensure clarity and precision.

To enable an evolving data dictionary we will maintain it on Github so that contributions and
suggestions are readily tracked, discussed, and incorporated. We ultimately plan to follow
Github vocabulary management processes similar to those used by the Darwin Core

maintenance group (see https://github.com/tdwg/dwc). We will serve as an initial governance

board to moderate proposed changes but welcome others to join our team, particularly those
with different expertise. Facilitating community-moderated evolution of the data dictionary will be
the subject of future work and will depend critically on the reception and responses to the
currently proposed framework. We aim for RMMS to be a fully open source and community

driven enterprise.

RMMS has the potential to improve the review process for manuscripts using range models.
Journals may choose to define their own families of standards for particular applications or to
adopt those we propose. These standards (and convenience functions like
rmmCheckFinalize()) will make it easier for authors checking model details before journal
submission and for journal reviewers/editors checking the compliance and completeness of
submitted rmm objects. To allow a broader user base to easily evaluate rmm objects, we have
developed a web-based graphical interface (with the R package shiny; (Chang et al., 2017)) that

enable users to upload an rmm object either as a CSV or RDS (R’s data format for a single
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object) file and check for missing fields or standardization issues Figure 3). It can be accessed
within R using the two commands:

library(rangeModelMetadata)

rmmCheckShiny ()

Because Shiny applications are built over the top of R, this allows us to use the exact R code
that console users would use to check rmm objects. The code used for checking and the results
can readily be exported so that editors can share these results with authors without ambiguity.
Finally, the application includes options to submit multiple rmm objects to report differences

among them for comparing with previous studies.

Defining community standards can support reporting and help encourage best-practice
approaches to science. Suboptimal methodologies will become more immediately transparent
and requests for metadata information will encourage researchers to conduct more
comprehensive analyses and supply information that is vital for their peers to understand,
evaluate, and use their work. (Araujo et al., 2019) recently proposed a set of best practices and
reporting standards for the use of SDMs in biodiversity models; our metadata standards and
tools reflect these same ideals. For example, best practices can be established by defining a
family of the entities required for biodiversity assessments (e.g., a new biodiversity family).
By proposing standardized values associated with acceptable practices for the biodiversity use
case, best practices can be clearly defined (e.g., to characterize the quality of predictor

variables proposed by (Araujo et al., 2019)).

Community standards mean that both smaller scale efforts or larger taxon-region specific

projects that produce range models can do so in a way that supports community efforts and
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assures that catalogs across independent efforts can be developed. Any downstream uses will
benefit from the transparency enabled by the standards which should enhance the rigor and
credibility of range models for, e.g., conservation application for more applied outcomes. Similar
to how standards such as Darwin Core or Humboldt Core are facilitating the combination of
point and inventory data of often vastly different origins (Wieczorek et al., 2012; Guralnick et al.,
2017) in support of aggregators such as the Global Biodiversity Information Facility (GBIF), we
hope that RMMS and its future evolution will set the stage for a more programmatic synthesis of
range models and their products. For example, in Map of Life, which is integrating biodiversity
information to develop a range of species distribution resources and both produces and
consumes range models, RMMS opens up the opportunity for a more informed visual and
quantitative comparison and eventually integration of range models produced by different
groups. Thus the standards open the door for contributed range models from taxon experts to
enable their aggregation and integration in support of advancing the biodiversity knowledge

base broadly.

As RMMS evolve and grow, we will facilitate other software developers to link their work easily
to rangeModelMetadata and enable rmm objects to be largely autofilled based on the output of
other R packages. For example, in complex cases involving more comprehensive range
modeling workflows such as Wallace (Kass et al., 2018), an R-based ecological modeling
software, or those used by BIEN and MOL, filling in rmm object entities can be built into the
workflow. In Wallace an additional top level field, wallace:, is added to store additional
information that can be used to reproduce a session. Other workflows may similarly benefit from
reading in settings from rmm objects to automatically select parameters, in which case rmm

objects would serve as automatic lab notebooks to reproduce analyses. This next stage of
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integration with other software tools will serve as way to further refine and maintain the data

dictionary while engaging key range modeling teams in the process.

The range model metadata standards that we propose provide a number of tools to clarify and
streamline reporting, sharing, evaluating and searching range models. We consider this the
beginning of a community process rather than its endpoint, and the standards are therefore
software agnostic, extensible and readily updated. If further engagement, adoption, and
advancement by others is successful, the proposed standards hold long-term benefits for the

larger community and the impact of their work.
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8 Data Accessibility Statement

All code is maintained on Github (https://github.com/cmerow/rangeModelMetadata) and also

served on CRAN (http://cran.us.r-project.org/).

9 Tables

Table 1. An example of entries in the rmm metadata dictionary. The full dictionary is available in
Supplement SS1. Fields specify the hierarchy of the metadata object while entities define the
quantity of interest. Entities are assigned values as shown in the examples (example values are
separated by semicolons). Families specify collections of related entities used for generating
templates and checking for conditionally obligate entities. The examples column shows a variety

of appropriate values which might be relevant in different studies.
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fieldl field2 field3 entity family examples
anthorship rmmName base MerowMait nerOwens KassEnquistGuralnick_2018_Acer_Maxent_b3
authorship license base CC; CC BY; CC BY-SA; CC BY-ND; CC BY-NC; CC BY-NC-SA;
CC BY-NC-ND
purpose base projection
rangeType base potential; realized
invasion base native; invasive; naturalized; colonized
data oceurrence taxon base Acer rubrum; Nasua-nasua;
data oceurrence dataType base presence only; presence-absence; abundanece
data occurrence occurrenceT'ype NULL breeding; wintering; migratory; resident
data occurrence yvearMin base 1900
data oceurrence yearMax base 2000
data OCCUTTence presenceSampleSize occurrence, po, pa 87
data occurrence backgroundSampleSizeSet occurrence, po 1000
data environment variableNames base biol, biod, biol2, biol5
data environment minVal transfe [{"biol biol Bl hio2™9}]
data environment max Val transfe [{"bi01":292,"bio12":10017,"bio15":246,"bio2":212}]
data environment yearMin base 1970
data environment 3 base 2000
data environment extentSet base [{"xmin"-5582581.9734, "xmax":5367418.0266,"ymin":-
7389365.067,"ymax":7410634.933 }]
modelFit algorithm base generalized linear model; generalized additive model; boosted re-
gression trees; maxent; bioclim; Poisson point process; range bag-
ging; all biomod2 models;
modelFit maxent featureSet maxent L; LQ; LQP; LQPT; LQPTH; H; HT
modelFit maxent featureRule maxent L for <50 presences; LQ for >= 50 presences
modelFit maxent regularizationMultiplierSet maxent 1,15,2, 25 3
modelFit maxent regularizationRule maxent Chosen based on 5-fold cross validation on a grid of regularization
multipliers from [0;10]
modelFit maxent convergenceThresholdSet maxent 1.00E-05
modelFit maxent samplingBiasRule maxent target group; offset; none;
modelFit maxent sampling BiasNotes maxent NULL

prediction
prediction
prediction
prediction
predicti

ion
prediction
evaluation
evaluation
evaluation
code

transfer

transfer

transfer

transfer

transfer

transfer
trainingDataStats
testing DataStats
evaluationDataSte
software

10 Figures

Figure 1. An example rmm object template generated in R.
Note the hierarchical list structure. This example includes only

the entities that are considered fundamental for use with every

environment1
environment1
envirommentl
environment1
environment1
environmentl

ts

units
minVal

max Val
thresholdSet
thresholdRule
extrapolation
AUC

AUC

AUC
platform

transferEnv1

base

binaryClassification
binaryClas: ion
binaryClassification

base

range model. Top level fields are indicated with bold.

absolute probability; relative occurrence rate; presence/absence
0.001

0.97

0.34

5% quantile of training presences

clamping; extrapolate function

0.923
0.923
0.923
@Manual{title = {R: A Language and Environment for Statisti-
cal Computing },author = {{R Core Team}}organization = {R

Foundation for Statistical Computing},address = {Vienna, Aus-

> rmml=rmmTemplate(family=c('base'))
> str(rmm1,2)
List of 8
$ authorship
.S rmmName
.5 names
.5 ownership
.5 license : NULL
.5 contact : NULL
.S relatedReferences: NULL
.5 authorNotes : NULL
..$ miscNotes :NULL
.5 doi : NULL
S studyObjective :List of 4
.5 purpose : NULL
.5 rangeType: NULL
.S invasion : NULL
.5 transfer : NULL
S data :List of 4
..5 occurrence :List of 6
..$ environment:List of 9
..S observation:List of 3
..5 dataNotes : NULL
S dataPrep :lListof1l
..5 dataPrepNotes: NULL
$ modelFit :List of 9
.S algorithm : NULL

¢ alonrithmCitatinn « NI

:List of 9
: NULL
:NULL
:NULL




Figure 2. An example rmm object
with values, based on the
example from the main text. Top
level fields are indicated with
bold. Note that some output has
been omitted from the figure for
space, indicated by fruncated.

$ authorship :Listof6
[truncated]

$ studyObjective:List of 3

..$ purpose : chr "transfer"

..$ rangeType: chr "potential"

..$ transfer : chr "detect unoccupied suitable habitat"

$ data :List of 4
..% occurrence :Listof 7
....% dataType : chr "presence only"
..$ yearMin :num 1970
..$ yearMax : num 2000
..$ sources :List of 16
[truncated]

..$ backgroundSampleSizeSet: int 5359
.. ..% presenceSampleSize :int 122
.. ..$ backgroundSampleSize : int5359
..$ environment:List of 7
[truncated]
..$ dataNotes : chr "WorldClim data accessed through dismo v1.1-4"
..§ transfer :List of 1
.. ..$ environment1:List of 6
[truncated]
$ dataPrep  :Listof 3
.. geographic :List of 1
.. ..% spatialThin:List of 1
.. .. ..5 rule: chr "20km used as minimum distance between points"
..$ biological :List of 1
.. ..$ duplicateRemoval:List of 1
.. .. ..% rule: chr "one observation per cell"
$ modelFit :Listof5
..$ algorithm : chr "Maxent 3.3.3k via dismo 1.1.4"
..$ selectionRules : chr "highest mean test AUC"
..$ finalModelSettings: Factor w/ 6 levels "L_1","L_2","L_3",..: 4
..$ partition :List of &
.. ..$ partitionSet : chr "spatial blocks"
..$ partitionRule : chr "block cross validation: partitions occurrence
localities by finding the latitude "| __truncated_
.5 notes : chr "background points also partitioned"”
..$ occurrenceSubsampling: chr "k-fold cross validation"

.. ..$ numberFolds cint 4
..$ maxent :List of 5
.. ..$ featureSet :chr"LQ"

.. ..$ regularizationMultiplierSet: num 1

.. ..$ samplingBiasRule : chr "ignored"

.. ..% notes : chr "ENMeval was used to compare models with
L and LQ features, each using "| __truncated__

.. ..$ numberParameters :num 13

$ prediction :Listof 3

..$ extrapolation: chr "clamping"
[truncated]

.3 continuous :List of 3

.. ..% units : chr "relative occurrence rate"

.. ..$ minval: num 1.19e-12

.. ..$ maxVal: num 0.0164

$ evaluation :List of 1

..$ testingDataStats :List of 3

. .3 AUC : num 0.802

.. ..% omissionRate: num [1:2] 0.0501 0.2207

.. ..% notes : chr "omission rate thresholds are 1) minimum training
presence, 2) 10% training presence"”

$ code :List of 2

..$ software : chr "@Manual{\n title = {R: A Language and
Environment for Statistical Computing},\n "| _ truncated

..$ vignetteCodeLink: chr "https://github.com/cmerow/"| _ truncated
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Figure 2. A screenshot of the web-based Shiny app that enables checking and comparing rmm
objects without writing code. The Check Summary continues on to report on a number of
other comparisons, omitted here for the sake of space.

Range Model Metadata (RMM) Check

L oad MM 1 Check Summary
Browse... shiny_test_rmm1.csv
Performing all checks on RMM 1 ...
The following names are not similar to any suggested names,
$output$transfer$environmentl$resolution
Load RMM 2 $output$transfersenvironmentl$extent

) $output$transfer$environmentl$variableNames
Browse...  shiny_test rmm2.csv $output$transfersenvironment2$resolution

Upload complete $output$transfersenvironment2sextent

$output$transfersenvironment2$variableNames

Note: Single RMMs can be loaded as .rds or .csv files.

Note: TBD. For the field rmm$data$environment$variableNames
The following entries appear accurate:

wc2.8_bio_10m_01; wc2.0_bio_10m_04

There are 33 empty obligate fields:
$authorship$ownership
$authorship$license
$authorship$relatedReferences
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11 Supplementary Materials

S1. Metadata dictionary. Current version of the metadata dictionary. This currently exists as a
google sheet and is served on Github

(https://github.com/cmerow/rangeModelMetadata/blob/master/inst/extdata/dataDictionary.csv)

to enable updating and this static version is distributed with rangeModelMetaData package.
Download the most recent version of the rangeModelMetaData package from CRAN for any
updates.

S2. Function directory for rangeModelMetaData package. This is distributed as a vignette
with the package. Download the most recent version of the rangeModelMetaData package from
CRAN for any updates.

S3. rangeModelMetadata vignette. This is distributed as a vignette with the R package.
Download the most recent version of the rangeModelMetaData package from CRAN for any
updates.

S4. A complete example workflow. This includes building a range model and building a
rangeModelMetadata object. This follows the example in the main text and Figure 1, and is
distributed as a vignette with the R package. Download the most recent version of the
rangeModelMetaData package from CRAN for any updates.

S5. Full CSV template. A complete template of all entities, as a csv, for users who prefer to
enter values manually.

S6. Minimal CSV template. A template of base entities (minimum criteria) as a csv for users

who prefer to enter values manually.
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