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Abstract.  We build models for the distribution of social states in Twitter 
communities. States can be defined by the participation versus silence of 
individuals in conversations that surround key words, and we approximate 
the joint distribution of these binary variables using the maximum entropy 
principle, finding the least structured models that match the mean probability 
of individuals tweeting and their pairwise correlations. These models provide 
very accurate, quantitative descriptions of higher order structure in these social 
networks. The parameters of these models seem poised close to critical surfaces 
in the space of possible models, and we observe scaling behavior of the data 
under coarse-graining. These results suggest that simple models, grounded in 
statistical physics, may provide a useful point of view on the larger data sets 
now emerging from complex social systems.
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1.  Introduction

Social systems exhibit rich collective behaviors. Many large-scale social processes, from 
cultural fads [1] to residential segregation [2] to the polarization of political opinions 
[3], depend on the interactions of many individuals. Indeed, many social phenomena 
are emergent almost by definition. Sociologists have long explored the relationship 
between individual actions, interactions among individuals, and macroscopic social 
outcomes [4, 5].

While there is general agreement on the qualitative idea that social phenomena 
are emergent, there has been much less progress toward quantitative theories. For 
inanimate systems, especially near thermal equilibrium, statistical mechanics provides 
a framework for building quantitative theories of how macroscopic behaviors emerge 
from microscopic interactions. Importantly, successful theories in statistical mechan-
ics often are simpler than the underlying microscopic reality, and the renormalization 
group (RG) allows us to understand how this simplification is possible [6, 7]. Inspired 
by these examples, there have been eorts to examine social phenomena using ideas 
and methods borrowed from statistical physics [8]. Examples include the dynamics of a 
strike [9], the emergence of group consensus [10, 11], the behavior of dancers at heavy 
metal concerts [12], and temporal patterns of activity and inactivity on Twitter [13].

In much previous work, methods from statistical physics were used to construct 
mathematically precise versions of existing sociological theories [14], but the resulting 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


The statistical mechanics of Twitter communities

3https://doi.org/10.1088/1742-5468/ab3af0

J. S
tat. M

ech. (2019) 093406

models might or might not engage with quantitative data on real social systems. Here, 
inspired by a stream of work on biological systems ranging from families of proteins 
[15–18] to networks of neurons [19–22] to flocks of birds [23, 24], we take a dierent 
approach, using the maximum entropy method [25, 26] to build a statistical mechanics 
description of a social system directly from real data, independent of traditional socio-
logical hypotheses. Previous eorts in this direction include analyses of voting patterns 
on the US Supreme Court [27, 28] and patterns of conflict in troops of macaques [29].

Here we adopt the strategy of building models directly from data, and explore the 
emergence of collective behaviors in Twitter communities. In order to carry out this 
program we need to identify communities and to define behavioral states for all the 
individuals in those communities. As a first step, we take these states to be participat-
ing or not participating in conversations that involve particular keywords. Then, states 
are binary and the maximum entropy models consistent with the pairwise correlations 
among these variables are equivalent to Ising spin glasses [30]. These relatively simple 
models successfully predict higher order structure in the data. Analysis of these models, 
as well as a direct coarse-graining of the data, suggests that these systems are close to 
a critical point or critical surface in their parameter space. We explore what this might 
mean for social functioning.

2. Networks and states

The full set of Twitter users is vast, beyond our ability to build explicit models. As a 
start, we want to focus on smaller networks of users who are well connected with one 
another. We start by choosing a single Twitter user and then find the people whom this 
user follows, and the people whom those neighbors follow. The result is a social network 
with known connectivity and relatively short path lengths. Twitter provides public 
access to the last 3200 tweets for each user, so each node in our network is associated 
with a stream of timestamped text. For an average user in our datasets, this covers two 
to three years of tweets.

We note that the initial choice of root users is arbitrary, and it is dicult to ask in 
what sense our results are representative (except by trying many examples). Happily, 
none of the individuals identified in this way were public figures, or otherwise strong 
outliers in terms of their social media presence.

Even the networks at depth two from a random user are quite large (see table A1 in 
appendix A), so we focus further, breaking these networks into sub-communities using 
the Clauset–Newman–Moore algorithm [31]. This algorithm builds sub-communities 
such that the proportion of edges within sub-communities is maximized while minimiz-
ing the number of edges between sub-communities. The resulting sub-communities are 
the networks that we use for further analysis. Among 106 examples we analyze sub-
communities that contain between 8 and 80 people, and there do not appear to be any 
simple trends of topology versus size (see appendix A for these and other details). An 
example of the networks that we identify is in figure 1.

Having defined a network of individuals i = 1, 2, · · · ,N , what are the states σi taken 
on by these individuals? In examining the raw data, we find prominent words that 
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are used many times within a short period of time (appendix B). For the remainder 
of this paper, we will call these prominent words ‘keywords’, and they can intuitively 
be thought of as something akin to a topic of conversation in the community being 
studied. For example, in a community with many physicists, one prominent keyword 
identified was ‘Kosterlitz’, as many people talked about Kosterlitz in a very short 
period of time after he shared the 2016 Nobel Prize. We have provided an example list 
of keywords in a supplementary dataset.

These keywords suggest a simple and intuitive way to binarize data from Twitter: 
either a given individual has used a given keyword, or they have not. So, in the physi-
cists’ example, we can find who talked about Kosterlitz and who did not, and assign 
everyone who did talk about Kosterlitz a state σi = 1 and everyone who did not talk 
about Kosterlitz a variable σi = −1. We can then conglomerate these variables into a 
vector σ representing whether or not everyone in the dataset used the given keyword. 
In this sense, the variable σ represents a social state of the community—there is an 
event happening in the world (represented by the keyword), and members of the com-
munity can either participate in this event or remain silent.

The succession of keywords, which by definition are each well localized in time, pro-
vide a series of snapshots of the social state σ. These snapshots are drawn out of some 
distribution P (σ) which characterizes the collective states taken on by the network as 
a whole. Our goal is to characterize this distribution.

There obviously are many ways to simplify or binarize data from Twitter. Even 
with the use of keywords as a tool for simplification, these keywords themselves could 
be chosen in dierent ways. While we cannot claim uniqueness, we do feel that our 
choice of simplification is intuitive and easy to implement (appendix B). Importantly, 
we will see that the states defined in this way have orderly behavior.

Figure 1.  Example social network. An example social network used for building 
a pairwise max-ent model. Same sub-community as used in figure 4. We include 
more information on the topology of the social networks examined in appendix A.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


The statistical mechanics of Twitter communities

5https://doi.org/10.1088/1742-5468/ab3af0

J. S
tat. M

ech. (2019) 093406

3. Maximum entropy models

The social states σ are the ‘microscopic’ states of our system, describing what each 
individual user is doing during a single conversation. In the spirit of statistical mechan-
ics, we would like to write down the analog of the Boltzmann distribution, P (σ), which 
tells us which social states are favored in a community and which states are disfavored. 
As usual, the number of possible states σ is so large (2N) that we cannot directly ‘mea-
sure’ P (σ) from any reasonable amount of data once we are looking at networks of 
reasonable size (N � 10). More precisely, the distribution P (σ) is a list of length 2N, 
constrained only by normalization, and so if there is no simpler underlying structure 
then we can not make any progress without making more than 2N measurements.

How can we search, systematically, for simplifications of the distribution P (σ)? 
One idea is to take seriously some mean properties of the system that we can estimate, 
reliably, from our data, and start our search by insisting that our models match these 
empirical facts. It seems natural to ask, for example, that any reasonable model of a 
Twitter community match the mean probability 〈σi〉 that each user is active. We also 
suspect that correlations between pairs of users encode important information about 
collective behavior, so we propose that reasonable models should match these correla-
tions 〈σiσj〉. It is not at all clear whether these low-order correlations are sucient to 
describe the system, or whether we need more. Notice that if we continue down this 
path, asking that our model match higher and higher-order correlations, eventually we 
will have added so many constraints that we have specified the distribution. But this 
does not work, because a finite data set is not sucient to determine arbitrarily high-
order correlations with reasonable accuracy.

Even if we think that pairwise correlations are sucient to characterize the col-
lective behavior of the system, there are of course infinitely many distributions P (σ) 
that are consistent with the measured 〈σiσj〉. Following a recent stream of work on the 
description of biological systems [15–24], we will choose the distribution that has the 
maximum entropy consistent with the measured correlations. This approach has its 
roots in the work of Jaynes [25, 26], but it is important to emphasize that searching 
for maximum entropy distributions does not require us to adopt any of the ideological 
positions articulated by Jaynes and his followers, positions which have been repeat-
edly criticized by the statistical physics community; for a recent example see [32]. We 
emphasize also that we do not know the details of the underlying dynamics—it seems 
unlikely, for example, that the states we have defined have a Markovian evolution—
and hence we are not assuming that the maximum entropy model is the stationary dis-
tribution of some known stochastic process. We are interested in the maximum entropy 
model consistent with the means and pairwise correlations of user activity because this 
is well-motivated approximate model, one which matches some plausibly crucial fea-
tures of the data exactly while discarding all other structure. The question of whether 
this model is a ‘good model’ of the underlying distribution is an empirical question, not 
a theoretical question, because we have no theoretical ground truth.

To be concrete we consider the maximum entropy model consistent with the mean 
activity of each user in the community, and with the correlations between pairs of users 
who are connected in the network. The resulting probability distribution is

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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P (σ) =
1

Z
e−Eσ� (1)

Eσ = −
∑
i

hiσi −
1

2

∑
i �=j

AijJijσiσj,� (2)

where hi are parameters corresponding to constraints on one body marginals (equation 
(3)) and Jij are parameters corresponding to constraints on two body marginals (equa-
tion (4)). We introduce the adjacency matrix A for the community to remind us that 
we have constraints only among connected pairs; Aij  =  1 if there is a social tie between 
individuals i and j  and 0 otherwise. Thus, A represents a symmetrization of the under-
lying directed graph of following relationships on Twitter.

We find the values of {hi, Jij} by solving

〈σi〉P ≡
∑
σ

P (σ)σi = 〈σi〉obs.� (3)

〈σiσj〉P ≡
∑
σ

P (σ)σiσj = 〈σiσj〉obs.� (4)

This is in general a dicult computational problem [33], but we have solved it 
numerically for communities of up to 80 people using Monte Carlo methods [34] (see 
appendix C for details). An example of a covariance matrix,

Cij = 〈σiσj〉obs − 〈σi〉obs〈σj〉obs� (5)
and the corresponding coupling matrix Jij for a community is shown in figure 2.

A positive Jij corresponds to a tendency for two users to use the same keywords and 
a negative Jij corresponds to a tendency for users to avoid keywords used by another 
user. We find couplings of both signs (appendix D), as in spin glasses [30, 35], but it is 
important that couplings are not completely random, since they are determined by the 
observed correlations.

Maximum entropy models are appealing both because of their simplicity and 
because of their connections to statistical physics. But these are not arguments for their 
correctness. We could easily imagine, for example, that there are important multibody 
interactions among individuals, and in this case we could not give an accurate description 
of the joint distribution by matching pairwise correlations alone. To test these models 
we can compute higher order statistical quantities, and ask if these agree with the data. 
Importantly, once we have matched the one-body and two-body marginals, there are 
no free parameters left to adjust, so we are not ‘fitting’ these higher order structures—
either we get them right or we get them wrong. We focus here on two such structures, 
the triplet correlations and the distribution of how many people tweet about each 
keyword.

For every distinct group of three users in a network, we can define the triplet 
correlation

Cijk = 〈(σi − 〈σi〉)(σj − 〈σj〉)(σk − 〈σk〉)〉.� (6)
These correlations typically are quite small (C ∼ 0.01) but can be estimated with frac-
tional errors  ∼10% given the sizes of our data sets (appendix E). In figure 3 we show 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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the comparison of predicted versus observed triplet correlations, in one sub-community 
of 22 users. Results for many other sub-communities are similar, with prediction errors 
on the same scale as our measurement errors, although in certain communities the 
pairwise model fails to capture some aspects of three point correlation structure (see 
figure E1 in appendix E for examples).

A dierent way of assessing higher order structure in the network is to ask about 
the fraction of users that participate in a conversation,

Q =
1

2
+

1

2N

N∑
i=1

σi.� (7)

If the users tweet independently, then for large N we would see a Gaussian distribution 
of Q, and even for smaller communities the tail at large Q would be very restricted. 
We see in figure 4 that the observed distribution of Q is quite broad, with an extended 
tail, and that this is captured within error bars by our model. Thus, although we match 
only correlations among pairs of users, we can predict, quantitatively, the probability 
that many users will be active in the same conversation.

There are many reasons why a pairwise maximum entropy model should not work. 
In contrast to Jaynes, we do not view the maximum entropy principle as a way of 
making statistical inferences about the laws of this system, as these inferences are 
not guaranteed to be correct in nonequilibrium systems where the choice of canoni-
cal coordinates is unclear [32]. Thus in our system, there is no guarantee a maximum 
entropy model will produce accurate predictions. In particular, even in the absence of 
explicit combinatorial eects, averaging over many unseen factors that aect all the 
users, or dierent subsets of users, will generate eective multibody interactions in the 
joint distribution. These eects may be present, but what we see from figures 3 and 4  
is that we do not need to make explicit models of these eects in order to generate 
quantitative predictions for the joint distribution of social behaviors. These models, 
while simple, are suciently precise that it makes sense to take them seriously as sta-
tistical physics problems and ask what we can learn about the collective behavior of 
the network.

Figure 2.  Covariance and coupling matrices. An example of the covariance matrix 
(equation (5)) and the corresponding coupling matrix Jij (equation (2)) for a 
Twitter community. Same community as used in figures 3 and 4. Blank elements 
correspond to pairs of users without a direct social connection.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4. Toward a phase diagram

A crucial lesson of statistical physics is that the parameter space of models for systems 
with many interacting degrees of freedom breaks up, at large N, into distinct phases 
with qualitatively dierent behaviors. The boundaries between these phases become 
sharp as N → ∞, and on the boundaries the behavior of the system is a singular func-
tion of its parameters. Here we try to locate real networks of Twitter users in relation 
to these critical surfaces in parameter space.

Figure 3.  Triplet correlations. Predicted three point correlations from our model 
versus the empirical value of the three point correlations estimated from data, for 
one sub-community. Error bars typically are  ∼10% of the measured values; see 
appendix E.

Figure 4.  Distribution of simultaneous activity. Probability that a fraction Q of 
users tweet about a particular keyword. Empirical data (red), maximum entropy 
model (green), and a maximum entropy model including only one-body constraints 
(cyan).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Maximum entropy models have the form of a Boltzmann distribution, and so we 
can think about an ‘energy landscape’ as a function of the social state σ; energy 
minima correspond to probability maxima, identifying states that are favored by the 
network. Every sub-community we have examined has the same dominant energy basin 
that contains the vast majority of the data. This basin is defined by silence in the sub-
community (σi = −1 for all i). This in turn allows for an enormous simplification of our 
data, as we can define an order parameter by the overlap with the silent state [30]. The 
overlap with silence is just the negative of the usual magnetization, but it is important 
that we do not choose the magnetization arbitrarily.

Once we have an order parameter, we can define, in the usual way, a conjugate field 
and a susceptibility of the order parameter to this field; the susceptibility will be equal 
to the variance of the order parameter. Again this example is relatively simple—the 
conjugate field is a uniform ‘magnetic field’ ∆h that biases each user to tweet or remain 
silent, and the susceptibility χ is proportional to the variance of the fractional activity 
Q defined above (equation (7)). In figure 5, we track χ versus ∆h in a sub-community 
of 46 people (figure 1).

As we can see in figure 5, the system exhibits a large peak in susceptibility at a 
small forcing field. This is a collective eect, and would not be present if the users all 
tweeted independently (as shown in cyan). This peak in susceptibility is reminiscent 
of what we see at a critical point, where incremental changes in the control parameter 
lead to disproportionately large changes in observable behavior. Relative to the width 
of the peak, the system seems to be poised quite close to this near-critical point.

One may object that the language of ‘applied fields’ involves taking the mapping 
between maximum entropy models and their physical counterparts a bit too seriously. 
As an alternative, we can bias the system by choosing individuals out of the commu-
nity and conditioning the distribution of all other users on these individuals being in 
the state σµ = 1 (tweeting). Mathematically, if we hold σµ = 1 for µ = µ1,µ2, · · ·, then 
for all the remaining users the joint distribution still is given by equations (1) and (2), 
but with hi → hi +

∑
µ Jiµ [29]. An example susceptibility as a function of number of 

individuals forced is shown in figure 6 for the same sub-community as figure 5.
The fact that forcing some users to be active will bias the mean activity of other 

users is not surprising. More interesting is that the variance of total activity in the 
other users changes nonmonotonically as a function of the number of users that we 
force, echoing the dependence of susceptibility on applied field. In figure 6 we can see 
this peak occurs at 2–3 people being forced, out of a community of 46 people. In all 
the sub-communities that we have examined, the peak in variance occurs upon forc-
ing just a handful of users, often just one; there is no indication that this depends 
systematically on N. We conclude that many Twitter communities are within one to 
three users of being near maximal variance in activity [36]. This is a direct but per-
haps more intuitive analog of the peak in susceptibility for very small applied fields 
(figure 5).

If we have a statistical mechanics, then it should be possible to construct a thermo-
dynamics. Much of thermodynamics is about the tradeo between energy and entropy, 
and it might be unclear what this has to do with tweeting. But in the Boltzmann dis-
tribution, energy is just the (negative) log probability, and (microcanonical) entropy 
counts the number of states that have this probability. Intuitively, social states in 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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which more users are active have lower probability (figure 4), but until fully half the 
users are active there are more distinct states available at larger Q (equation (7)). Thus, 
less probable (higher energy) states are more numerous (higher entropy). We explore 
this tradeo between probability and numerosity following [21, 37, 38]; for details see 
appendix F.

The maximum entropy model assigns to each state σ an energy Eσ, through equa-
tion (2). We would like to count the number of states that have a particular energy, or 
range of energies, but this involves making bins along the energy axis. A simple alterna-
tive is to count the number of states with energy less than E, so we define the entropy

Figure 5.  Susceptibility. Predicted susceptibility against a forcing field for the 
community of 46 people shown in figure  1. Pairwise maximum entropy model 
(black) and independent model (cyan); red line indicates ∆h = 0, corresponding to 
the parameters inferred for the real network.

Figure 6.  Forcing individuals. Susceptibility as a function of the number of forced 
individuals for the community of 46 people shown in figure 1. Error bars represent 
standard deviation over dierent configurations of individuals being forced.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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S(E) = ln

(∑
σ

Θ(E − Eσ)

)
� (8)

where Θ(x) is the step function: Θ(x > 0) = 1, Θ(x < 0) = 0. We recall that the temper
ature is the derivative of the entropy with respect to energy. In our case we have T  =  1, 
from equation (1), and so the condition

dS(E)

dE
= 1� (9)

picks out the typical energy of the system. The fluctuations around the typical energy 
are related to the heat capacity C,

〈(δE)2〉 =
(
−d2S

dE2

)−1

= C� (10)

again with T  =  1. We expect that energies and entropies both are extensive, that is 
proportional to system size N for large N, so that C itself also is of order N. Then the 
fractional fluctuations 〈(δE)2〉/E2 ∼ 1/N  vanish rapidly for larger systems. At many 
critical points, d2S/dE2 vanishes, the specific heat C/N diverges with N, and the vari-
ance of energy fluctuations are similarly large.

Starting with our maximum entropy model, we can find entropy as a function of 
energy numerically using Wang–Landau sampling [39]. An example plot of S/N versus 
E/N is shown in figure 7 for a sub-community of 52 people. We see that the entropy is 
very nearly a linear function of energy across a wide range of energies near the typical 
value. It is not merely that d2S/dE2 vanishes at a single critical point, but it is very 
nearly zero all together. This unusual form of critical behavior was seen previously in 
the analysis of activity in networks of neurons [37].

5. Coarse-graining social data

The idea that social networks might be poised near a critical point is intriguing. 
Related notions of criticality have emerged from the analysis of neural networks, but 
this has also generated controversy. It is in principle possible that inference from finite 
data sets, using the maximum entropy framework, is biased toward finding models 
near criticality, or that some of the phenomenology which seems to be a signature 
of criticality could have more mundane explanations [40–43]. One response to these 
concerns is to look very closely and ask whether the alternatives to criticality really 
explain the data in detail, as discussed for a population of neurons in [21]. But the 
approach to a critical point seems so dramatic that we should be able to give a more 
direct argument.

In our modern view, a critical point can be defined as a nontrivial fixed point of the 
RG [6, 44]. In the standard formulation, microscopic variables live in real space, and 
have their dominant interactions with near neighbors. The RG involves averaging over 
spatial neighborhoods [45], and then tracking the distribution of these coarse-grained 
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variables as a function of the averaging scale. A crucial result is that the joint distribu-
tions of coarse-grained variables become simpler as the scale becomes larger, so that 
most interactions are ‘irrelevant’; models of macroscopic behavior thus are simpler and 
more universal than the underlying microscopic details. More subtly, there are special 
parameter settings such that the joint distribution of coarse-grained variables is invari-
ant to the scale of averaging. This is a fixed point of the RG transformation, and these 
fixed points correspond to critical points.

In order to explore RG ideas in more complex systems we have to find coarse-
graining strategies that do not lean on the locality of interactions. Recent work on 
large populations of neurons suggests that a natural analog of averaging with spatial 
neighbors is averaging with maximally correlated partners [46], and we follow this 
approach here. In brief, we walk through the network, identifying maximally correlated 
pairs i,j *(i), and then add the corresponding variables together,

σ
(2)
i = σ

(1)
i + σ

(1)
j∗(i)

,� (11)

where superscripts refer to the level of coarse-graining. We then repeat this for the next 
most correlated pair of people and so on, until the original N variables have become 
N/2. If we iterate this full procedure k times, then we turn our data on N people 
into data on N/K clusters, each with K  =  2k people in them. Though the underlying 
interactions have an irregular topology, we choose to coarse-grain with regular cluster 
sizes in order to yield a reproducible coarse-graining operation that can then be iterated 
multiple times.

If correlations are weak, the central limit theorem drives the activity of the clus-
tered variables toward the normal distribution as the clustering scale increases. Near 
criticality, the self-similar structure of correlations under our coarse-graining operation 
should evade the central limit theorem, driving the distribution toward a non-Gaussian 
fixed point. In the same way that the central limit theorem predicts a linear scaling 
(for example) of the variance with the number of variables that are being summed, the 

Figure 7.  Entropy versus energy. S(E)/N  from equation (8), plotted versus E/N, 
for a sub-community of N  =  52 users. Red line indicates average energy of system, 
blue line indicates line of slope 1 fit around the actual energy.
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approach to nontrivial fixed points typically is associated with dierent scaling behav-
ior. It is this scaling behavior that we are looking for in the data.

The means of the coarse-grained variables scale linearly with the cluster size K, 
so the first interesting question concerns the variance. For independent variables the 
variance will be linear in the cluster size K, while for perfectly correlated variables the 
growth would be quadratic. In figure 8 we show the behavior of the variance versus 
cluster size in a community of 583 people, and we see that the variance has near per-
fect scaling at an intermediate exponent  ∼1.5. This intermediate scaling indicates that 
there is nontrivial structure to the correlations in the dataset, independent of the level 
of coarse-graining, and we note that this scaling is very precise across nearly three 
decades. When analyzing dierent communities, we find a range of scaling exponents 
between 1.29 and 1.69. We could not discern any clear pattern or clustering in the scal-
ing of dierent communities. Although there is significant variability across communi-
ties, the precision of scaling within communities is surprising.

We can also look at the structure of correlations within clusters. In the analogy 
with physical critical points, we expect correlations to have the same structure at each 
stage of coarse-graining. In translation invariant systems with spatially local interac-
tions, this corresponds to a scale-free correlation function, or equivalently a power-law 
dependence of the spectrum on momentum. In our systems, the closest analogue to this 
correlation function is the spectrum of the correlation matrix within clusters [46, 47]. 
In figure 9 we plot the averaged spectra of cluster correlation matrices, for dierent 
clusters sizes K, as a function of the fractional rank of the spectrum for the same com-
munity as used in figure 8. We stop at K  =  128 to avoid contamination of the spectrum 
by finite sample eects.

As we can see in figure 9, the clusters seem to have a correlation spectrum that is 
independent of the size of the cluster. That is, plotted as a function of fractional rank, 
the spectra collapse onto a single curve that is independent of the degree of coarse-
graining, with the exception of the largest eigenvalue of each cluster. Furthermore, 

Figure 8.  Variance scaling. The variance of σ
(k)
i  against cluster size K  =  2k. Dotted 

lines indicate linear and quadratic scaling; red line indicates a power-law fit with 
exponent 1.49± .02. Error bars are the standard deviation over random halves of 
the data. Fit obtained by nonlinear least squares with reduced χ2 = 0.26.
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while the limited dynamic range in figure 9 precludes identification of a power law, the 
data are consistent with scale-free behavior. Although noisy, even this largest eigen-
value seems to have a regular behavior as a function of cluster size. The correlations are 
scale free both in the sense that they are independent of the degree of coarse-graining 
and in the sense that they are consistent with a power law form.

6. Discussion

The dynamics of human behavior on social media are complex, and what we have 
done here is a first try. Nonetheless, we find it striking that the social states of these 
networks have relatively simple, orderly behavior that can be captured in the language 
of statistical physics. The joint distribution of activity in a community is described 
quite accurately by models that match only pairwise correlations, and are equivalent 
to familiar Ising models. More deeply, the parameters of these models seem not to be 
arbitrary, but rather are poised near critical surfaces, and we see independent evidence 
of this near-criticality in the scaling behavior of the system under coarse-graining.

It is an old idea that complex systems, far from equilibrium, might organize them-
selves to states that are analogous to critical states in equilibrium statistical physics 
[48]. One can think of many reasons why such an organization might be advantageous: 
the system becomes infinitely sensitive to (some) small signals, distant parts of the sys-
tem can exchange information, the system grows long time scales, and more, although 
in dierent contexts the same features might be disadvantageous. Importantly, all of 
these features arise together at the critical point, and so it is necessarily dicult to 
disentangle which ones are actually functional.

There is an intuitive if non-rigorous connection between criticality and some famil-
iar properties of social systems. Specifically, the high susceptibility and information 
transfer in critical networks evoke the tendency of online content to ‘go viral’, or to 

Figure 9.  Correlation spectra. Correlation spectra of various cluster sizes plotted 
as a function of the fractional rank. Error bars are standard deviations across 
dierent clusters and random halves of the data. Cyan line is a power-law with 
exponent −0.438± 0.015.
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very quickly become very prominent on a social network. Just as small perturbations 
become amplified in critical networks, a social phenomenon initiated by a small group 
of people can quickly become amplified in online social networks.

While it is tempting to suggest that the proximity of a critical point is the ‘mechanism’ 
by which things go viral on a social network, it is dicult to imagine a mechanism for 
social systems to tune themselves to this kind of critical point. Generically, any system 
capable of producing such complex behavior will likely be controlled by many dierent 
parameters, and critical dynamics will only hold in a relatively small section of this 
high-dimensional space. It is unclear how an online social system would naturally tune 
itself to this area of its parameter space. Nonetheless, this is what we see.

It is important to interpret these potential signs of criticality cautiously. In physical 
systems far from equilibrium, large fluctuations in the density can extend over a much 
longer range than is generally possible in equilibrium systems, by mechanisms which 
are not connected with criticality [49–51]. Although the system we study here cannot 
be described by the specific models where these eects arise, they provide cautionary 
examples. The Twitter community surely is not in equilibrium, and as such, we are 
unable to say whether the behavior we observe comes from true criticality or from 
some other mechanism. What we can say is that the data are represented faithfully 
by a model that is mathematically equivalent to an equilibrium statistical mechanics 
problem close to a critical point, and that aspects of the system’s behavior exhibit 
scaling and an approach to a fixed distribution under coarse-graining.

As far as we know, neither the maximum entropy method nor the RG has been used 
previously in thinking about social networks. As the social science community accu-
mulates more ‘big data’, more such tools will be needed. We hope to have made clear 
that these relatively simple ideas, grounded in statistical physics, are quite successful 
in revealing interesting regularities of human behavior in these social systems.
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Appendix A. Acquiring data

Raw data were scraped from publicly available tweets using the Twitter API (https://
developer.twitter.com/). As described in the main text, for each dataset a root user 
was chosen and a social network was built out to second degree from that root. That 
is, we find who the root user follows, and then who those people follow; our examples 
of social networks are built from those connections. Characteristics of the datasets 
that we analyze are summarized in table A1, including information on the number of 
keywords or topics in each dataset, discussed further in appendix B.
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These networks were then reduced, identifying sub-communities using the Clauset–
Newman–Moore algorithm [31]. The resulting sub-communities contain between 8 and 
80 people, and vary considerably in topology, as summarized in figure A1.

Mean degree (at left in figure A1) represents the typical number of social connec-
tions that a given individual in a sub-community has within that sub-community. 
Below a sub-community size N ∼ 40 people, the mean degree K grows roughly linearly 
with the system size (Pearson correlation .74). For communities larger than 40 people, 
there is no discernible relationship between community size and the number of social 

Figure A1.  Topological characteristics. For 106 sub-communities with inferred 
pairwise max-ent models. (Left) Mean degree of social network K against community 
size N for all communities. (Right) Distribution of K/N.

Table A1.  Dataset characteristics. Basic graph characteristics about the datasets 
analyzed here. Keywords are defined as those words used at least ten times with a 
standard deviation in time of less than 130 d.

Dataset name # of people # of edges # of topics

A 927 69 280 7849
B 583 45 670 7030
C 646 72 870 9703
D 1184 205 834 8190
E 688 31 245 4159
F 261 5274 7940
G 575 17 422 3356
H 851 54 654 9298
I 498 15 798 6900
J 551 29 202 3374
K 99 2550 531
L 269 8788 1440
M 1128 47 762 9841
N 787 37 912 6731
O 94 582 382
P 651 24 000 11 329
Q 625 41 092 4923
Total 10 417 709 935 102 926
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connections (Pearson correlation  −.001). Interestingly, while one might imagine that 
these two types of social communities have dierent behaviors, in the communities that 
we have examined max-ent models are capable of describing both types of systems.

Our method of collecting data from Twitter diers from previous approaches, poten-
tially with implications for our conclusions. Broadly speaking, there are two approaches 
to handling Twitter data—one that attempts to use a sample of global Twitter activity 
and one that focuses on local subgraphs. Global analyses often use some version of the 
‘firehose’, or a live stream that contains some fraction of all tweets, either provided by 
Twitter directly or by a third party vendor [52, 53]. This leads to a very large amount 
of data, but is computationally intensive and is poorly suited for examining behavior 
in specific, small communities.

For our purposes we need to use a local approach to be able to model small sub-
communities, but this necessitates an arbitrary choice of where to look in the larger 
Twitter network. There are many ways of defining such local sub-communities, but 
our method is most closely aligned with [54], which attempts to find communities with 
shared interests by examining the Twitter users that follow all of a set of celebrities 
identified with that interest and then examining the topology of social links among 
those users. Like our method, the authors in [54] find a group of users centered around 
a pre-defined central user or set of users, but our method diers in that (1) our central 
user need not be a celebrity or anyone of import in the community and (2) going to 
follower depth two gives us larger datasets and communities. This allows us to both 
explore a wider variety of Twitter communities while maintaining community sizes 
capable of interesting collective behavior.

Given the relatively small size of the communities we examine we cannot claim that 
we are meaningfully sampling the entire Twitter network. As such, it is important to 
interpret our results in the context of the behavior of local social dynamics in small 
communities. It is also unclear to us how our particular method of selecting communi-
ties influences the results presented here, and it is possible that other ways of defining 
communities might yield dierent results.

Appendix B. Defining keywords

We define keywords to be words that are used many times while staying localized in 
a short period of time. Of course, we then must define how many times a word must 
be used and how localized a word must be to be considered a keyword. We use the 
standard deviation in the times that a word is used to quantify the degree to which a 
word is localized in time. These two criteria (number of times used, standard deviation 
in time) define a two dimensional space in which we can place each word that is used 
in a dataset. Our task is to find cutos in this space to define a clear set of keywords. 
Unfortunately, this is hard. All datasets examined are approximately Zipfian [55], 
which means that there is no clear scale for usage, making a non-arbitrary cuto for 
the number of times a word is used quite dicult.

The distribution of standard deviation in time for words is more interesting. We 
show the distribution of the standard deviation in time for language used in a dataset 
of 651 people in figure B1. As we can see in figure B1, this distribution has two peaks, 
one corresponding to words that are used in a very short amount of time (far left) and 
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words that are used with a standard deviation in time of around 500 d. The second 
peak begins with a kink in the distribution at a standard deviation of around 200 d. 
This second peak corresponds to words that are used independent of context, such as 
the staples of standard English vocabulary (‘the’, ‘she’, etc). Obviously, we do not 
want to include such words as keywords, as they are independent of context, and what 
makes keywords interesting is that they are highly contextual. We therefore bound the 
cuto in standard deviation in time to be well clear of this second peak in figure B1.

The statistics of word usage do not provide more detailed guidance for how to 
define keywords. As such, we examined the data at a range of dierent definitions 
for keywords [36], and generally found that the qualitative nature of results did not 
change with dierent definitions of keywords. For the purposes of presenting this data, 
we choose a definition for keywords that attempts to maximize the number of clearly 
meaningful data points. The exact parameters used for the datasets presented here are 
a cuto in standard deviation in time of 130 d and a requirement that the word must be 
used at least 10 times in the data. In our datasets, this generally is sucient to obtain 
on the order of 10 times the number of keywords as there are people in the dataset, 
while still yielding generally comprehensible keywords. The number of keywords gener-
ated by this procedure for each dataset is shown in the right column of table A1. We 
have provided a text file with example keywords from community P in table A1.

Our method of defining keywords diers from how past work on Twitter has ana-
lyzed the function of online communities, but we believe our approach oers unique 
conveniences for our methods of data analysis. Much of past literature on collective 
behavior on Twitter can be classified by the type of social interaction that the authors 
analyze. Twitter oers many dierent ways that users can interact, and these dierent 
types of interactions presumably lead to dierent social properties. Past quantitative 
work on social interaction on Twitter has analyzed directed tweets (when one user 
tweets at another specific user) [56], retweets (when one user amplifies a tweet from 
another user) [57, 58], shared use of hashtags (a tool to tag tweets in a given category) 
[59–62] or spread of topics as inferred from the text of tweets [63–65]. Analysis of 
hashtags and more traditional topic models from natural language processing are the 

Figure B1.  Distribution of standard deviations in time of word usage. For a 
dataset of 651 people. X-axis is in units of days.
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techniques most closely aligned with our goals in this paper, and therefore it is worth 
contrasting our approach with these alternatives.

We chose to focus on individual words instead of hashtags in our analysis of Twitter 
data as this gave us access to a much larger pool of data. The large majority of tweets 
have no hashtags [66], which would mean that focusing only on hashtag usage would 
discard a large amount of information about the communities we are studying.

Beyond embodying intuition about the topics of Twitter conversations, our approach 
to identifying keywords provides a natural binary state for each user, who either tweets 
that keyword or does not. Many other topic models, such as Latent Dirichlet Allocation, 
model texts as probabilistic mixtures of various topics rather than binary classifications 
of whether or not a topic is relevant [67], making it dicult to define binary states of 
the users.

It is also worth emphasizing what our definition of keywords neglects to capture 
about Twitter activity. Perhaps most importantly, we do not take into account the 
temporal order in which tweets are sent. This means our data does not distinguish 
whether person A tweets word X before or after person B. Temporal order of tweets is 
clearly important, for example when considering causality or influence between users, 
and techniques in network theory have been developed to contextualize the tempo-
ral interactions between nodes [68]. Additionally, there is compelling empirical work 
on Twitter communities indicating that temporal patterns of social interactions on 
Twitter have meaningful eects. Repeated exposure to hashtags has been shown to 
increase their probability of adoption [59], and popular hashtags have dierent dynam-
ics than less popular hashtags [69]. In short, it is clear that temporal patterns matter 
on Twitter.

We choose not to include temporal ordering in our analysis not because it is uninter
esting, but because we wanted to start with something simpler. We have the ambitious 
goal of describing the full joint distribution of user activity in a community. If we 
wanted to achieve the same goal in a dynamic setting, we would need to construct the 
full joint distribution of events in time, which is vastly more complex, and it is likely 
that this complexity could be tamed only by strong modeling assumptions, e.g. that 
some aspect of time evolution is Markovian. By focusing on states of the community 
in single epochs, rather than their sequence, we avoid all these assumptions and can be 
driven by the data.

Appendix C. Maximum entropy models

The maximum entropy method has a long history, and has received new attention in 
eorts to build statistical mechanics descriptions of biological networks directly from 
data. Much of what we need thus is well known in some communities. To make the 
discussion accessible to a wider community, we provide some review of these ideas here. 
We start with general ideas and proceed to the specifics of our problem.

We recall that entropy, in addition to its thermodynamic meaning, provides the 
unique measure of available information consistent with simple and plausible condi-
tions [70]. Distributions with larger entropy thus describe variables about which we 
know less, a priori. Maximizing the entropy is then a strategy for building models that 
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inject as little structure or knowledge as possible, as first emphasized by Jaynes [25, 
26]. Specifically, we want to insist that our models match certain features of the data, 
but otherwise have as little structure as possible.

In a system with states σ, we can construct features fµ(σ), for µ = 1, 2, · · · , K. 
Then if we are trying to make a model of the probability distribution P (σ), we insist 
that the average of these features in the model matches those seen experimentally,

〈 fµ(σ)〉expt =
∑
σ

P (σ) fµ(σ),� (C.1)

Figure C1.  Distribution of covariance matrix elements for connected and 
disconnected pairs. (red) Distribution of Cij across connected pairs (Aij  =  1). (green) 
Distribution of Cij across disconnected pairs (Aij  =  0). Square lines are histograms, 
smooth lines are Gaussian Kernel density estimates of the underlying continuous 
distribution with bandwidth determined by Scott’s rule [74]. Data are from the 
same community as in figure 3.

Figure C2.  Covariance prediction for Aij  =  0. For the same community as shown 
in figure 3. Red line indicates equality.
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for each µ. Among the distributions that obey this matching condition, we want to 
choose the one that maximizes the entropy

S[P (σ)] = −
∑
σ

P (σ) logP (σ).
� (C.2)

To solve the constrained maximization problem we introduce Lagrange multipliers and 
define

S̃[P (σ)] = −
∑
σ

P (σ) logP (σ) +
∑
µ

λµ

(
〈 fµ(σ)〉expt −

∑
σ

fµ(σ)P (σ)

)
+ λ0

(
1−

∑
σ

P (σ)

)
,

� (C.3)
where the Lagrange multipliers λµ correspond to each constrained feature and the term 
proportional to λ0 constrains the distribution to be normalized. Now we can search 
over all distributions, and adjust the values of the Lagrange multipliers at the end to 
be sure that the constraints are satisfied.

To maximize S̃[P (σ)], as usual we take the derivative and set it to zero,

∂S̃[P (σ)]

∂P (σ)
= 0;� (C.4)

we can verify that the second derivatives are negative so that we really are finding a 
maximum of the entropy. The solution is

P (σ) =
1

Z
exp

(
−

N∑
µ=1

λµfµ(σ)

)
,� (C.5)

Figure C3.  Couplings for Aij  =  0 and Aij  =  1 for a fully connected model. For the 
same community as shown in figure  3. Maximum entropy model inferred with 
Aij  =  1 for all pairs, then sorted by actual Aij in the community. Square lines are 
histograms, smooth lines are Gaussian kernel density estimates of the underlying 
continuous distribution with bandwidth determined by Scott’s rule [74]. Data are 
from the same community as in figure 3.
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where the partition function Z absorbs λ0 and thus depends implicitly on the values of 
all the other Lagrange multipliers,

Z =
∑
σ

exp

(
−

N∑
µ=1

λµfµ(σ)

)
.� (C.6)

While equation (C.5) gives the correct form of the max-ent model, it glosses over 
a major sticking point, which is that the correct values of the Lagrange multipliers λµ 
must be determined. In general this is a dicult computational problem [33], and we 
use a method based on Monte Carlo sampling. Briefly, we simulate the model with 
some set of parameters {λµ} and then examine the expectation values of the observ-
ables fµ, computed as averages over the Monte Carlo samples in the simulation epoch 
labelled by t. We then adjust the parameters by a factor proportional to the error  
[20, 22], so that the basic learning step is

λµ(t+ 1) = λµ(t)− η
[
〈fµ〉t − 〈fµ〉expt

]
,� (C.7)

where η is a learning rate. For discussions about convergence see [71, 72]. We iterate 
until the dierences between model and observed expectation values are comparable to 
the errors in the observed expectation values.

The expensive part of this procedure is generating new Monte Carlo samples for 
each set of parameters. To speed up this process we use the histogram Monte Carlo 
method, which allows us to recycle Monte Carlo samples generated with parameters λ 
to estimate features of the distribution parameterized by a dierent set of parameters 
λ′ [34, 73].

In our particular case, the features that we choose are fµ = σi and fµ = σiσj, for all 
values of i and j  that share a social tie. Constraining the expectation values of these 
features corresponds to fixing the probability that individual i participates in a Twitter 
conversation, and the correlations between participation by individuals i and j . With 
these choices, it is convenient to think of the Lagrange multipliers as ‘eective fields’ hi 
and ‘couplings’ Jij, and we arrive at the form of the model shown in equations (1) and 
(2) of the main text. As indicated above, we need to follow the Monte Carlo procedure 
to arrive at values of these parameters given our measurements of 〈σi〉 and 〈σiσj〉.

Although we are not trying to describe the dynamics by which communities move 
through sequences of states, these dynamics generate correlations that limit the num-
ber of independent samples and hence the statistical reliability of our analysis. We can 
estimate the eective number of independent data points by examining how the errors 
in the averages of our binary variables σi scale with the total number of included data 

points [22]. Briefly, for a variable σi we expect the squared error on the estimate of 

the average of σi to scale as δ2〈σi〉 = Var[σi]/n if we have n independent samples. This 
number of independent samples should be proportional to the raw number of keywords 
included, so that by looking at dierent subsets of the data we can find the propor-
tionality constant. Perhaps surprisingly, we find that we have approximately as many 
independent samples as nominal samples, indicating that correlations from one Twitter 
conversation to the next are weak.
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In building the maximum entropy model, we chose to constrain pairwise correla-
tions only between users that have a social connection. In figure C1 we check that this 
makes sense, comparing the distribution of covariance matrix elements Cij = 〈σiσj〉 for 
connected (Aij  =  1) and unconnected (Aij  =  0) pairs. We see, as expected, that correla-
tions between people who share a social tie (red) are much stronger than correlations 
between people who do not share a social tie (green), and that highly correlated pairs 
of individuals are always socially connected in this community. This simple pattern 
would not appear if the keywords that we identify did not have some social content.

A more subtle question is whether knowing the correlations between connected indi-
viduals is sucient to predict the correlations between unconnected individuals. Our 
maximum entropy model, which matches the correlations for pairs with Aij  =  1, makes 
predictions for all elements of the covariance matrix Cij. In figure C2 we test these pre-
dictions, and find good though not perfect agreement. The Pearson correlation between 
predicted and observed values is 0.95, which is quite high; again we emphasize that 
there are no free parameters that can be adjusted to improve this prediction.

Once we have inferred the maximum entropy model, it is reasonable to ask whether 
the parameters of this model can be related back to measurable features of the sys-
tem. Specifically, can we correlate strong couplings with some measurable feature of 
the systems? A similar question arises in studies that attempt to use a fully connected 
max-ent model in order to infer an underlying interaction topology based on which 
couplings are large. For example, in applications of max-ent modeling to protein struc-
ture determination, residues with large couplings are predicted to be in direct contact 
in the protein’s three dimensional structure [16]. We can ask an analogous question in 
our system: if we infer a fully connected model (that is, assume that Aij  =  1 for all pairs 
i �= j), can we recover the known social network topology? 

In figure C3 we see the distribution of couplings J∗
ij inferred from a fully connected 

model. The distributions of couplings for people who are in fact socially connected (red) 
and those who are not (green) overlap significantly, indicating that coupling strength 
alone would not be a reliable indicator to recover the social network topology. However, 
we can also see in figure C3 that all strongly positive couplings correspond to pairs of 
users that in fact share a social tie. That is, a fully connected model is not capable of 
identifying every following relationship in the community, but it is capable of picking 
out strong relationships that can only exist among people who follow one another.

It is useful to think about a null model in which we constrain only the probabilities 
that individuals participate in a Twitter conversation, but ignore correlations. Then 
the maximum entropy model has the same form as in equations (1) and (2), but with 
all Jij  =  0 and

hi = arctanh(〈σi〉).� (C.8)
This model is also equivalent to the assumption that each individual makes independent 
decisions about whether to tweet.

Appendix D. Energy landscapes

The model laid out in equations (1) and (2) is similar to canonical models of spin glasses. 
Spin glasses tend to have many minima in their energy landscape due to frustration 
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[30], which occurs when there are couplings of mixed sign in the Hamiltonian, com-
peting with one another. This in turn leads to many metastable states in the energy 
landscape.

We can assess the complexity of the energy landscape by measuring how frequently 
frustration occurs. We examine this by looking at the distribution of the product of 
all coupling terms representing a social triangle (where three people all have social 
ties to one another) in the communities. When the product of these interaction terms 
is positive, there exists a social configuration that can minimize all relevant terms in 
the Hamiltonian. When this product is negative, then no state can minimize all rel-
evant terms and the system is frustrated. We show an example of the distribution of 
couplings Jij and the distribution of the product of couplings from social triangles in 
figure D1. As we can see, there are a significant number of frustrated triangles. This is 
true for all the communities that we examined.

We can also evaluate the complexity of the energy landscape by directly esti-
mating the number of metastable states in the energy landscape, which we do by 
moving ‘downhill’ in energy from each of 105 Monte Carlo samples. We can then see 
how the number of metastable states scales with the size of the system. We show 
this relationship in figure D2 for all 106 communities we examined. Over the range 
that we can observe, the number of metastable states increases roughly exponen-
tially with system size, albeit with considerable variation from instance to instance. 
If this pattern persists into the thermodynamic limit it would put the energy land-
scape of these systems into the very complex class identified for the mean-field spin 
glass [30].

Figure D1.  Characteristics of coupling matrix. (Top) Distribution of couplings 
Jij for the community in figure  2. (Bottom) Distribution of the product of all 
interactions from closed social triangles in the same community. Approximately 
30% of all possible triangles are frustrated.
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Appendix E. Accuracy of three point correlations

In figure  3 of the main text, each three point correlation Cijk carries an empirical 
uncertainty that can be estimated by bootstrap. The shear quantity of possible three 
point correlations in a heterogenous system makes it dicult to evaluate the accuracy 
of our predictions, so here we bin the three point correlations by their empirical values 
and then compare the root mean square error in prediction by the pairwise max-ent 
model to the root mean square uncertainty in the data. In figure E1 we show two 
examples of these errors. Data from the community on the left is shown in figure 3 of 
the main text.

For the community on the left of figure E1, the prediction error is of the same 
order of magnitude as the measurement error, indicating that the pairwise max-ent 
model is able to capture three point correlations almost as well as the data allow. The 
bottom of figure E1 shows the cumulative distribution of three point correlations. As 
we can see, the accuracy in the top of figure E1 covers the bulk of this distribution. 
However, for the community shown on the right of figure E1, the prediction error from 
the maximum entropy model is significantly larger than the intrinsic error in the data. 
In short, for the community on the right, the pairwise maximum entropy model is not 
capable of accurately reproducing 3 point correlations to the precision that the data 
allows. This does not mean that the maximum entropy model is incapable of making 
useful predictions on the three point correlations. Indeed, for the community on the 
right, the Pearson correlation coecient between the empirical and predicted values of 
Cijk is 0.93, which would normally be viewed as a success, even if we do not reach the 
maximum possible accuracy.

In the bottom subfigures of figure E1, we can see that essentially all three point 
correlations are positive. We have noted this to be the case across many communities, 
but we lack a convincing explanation for why this is the case.

Figure D2.  Number of metastable states, estimated as described in the text, for 
each of the communities that we analyzed.
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It is unclear what determines how well a pairwise model is capable of fitting data 
from a given community, and we suspect that variation between communities could be 
a fruitful area of study.

Appendix F. Thermodynamics redux

If we can take our models seriously, then as the networks we study become larger the 
description in terms of statistical mechanics should imply an analog of thermodynam-
ics. We follow [21, 37, 38] in this construction, and for completeness we recall the argu-
ments presented there.

The essential step is to write the partition function not as a sum over states but as 
an integral over the density of states,

Z =
∑
σ

e−E =

∫
dEe−Eρ(E),� (F.1)

where

ρ(E) =
∑
σ

δ(E − Eσ).� (F.2)

We can integrate by parts to yield an expression in terms of the cumulative density of 
states, and from there the micro-canonical entropy (equation (8)),

Z =

∫
dEeS(E)−E.� (F.3)

We then scale the energy per node ε = E/N  and the entropy per node s = S(E)/N , 
which gives us

Figure E1. Cijk prediction error. Top shows the root mean square error for 
predictions of three point correlations from the pairwise max-ent model (green) 
as well as the root mean square uncertainty for empirical three point correlations 
(red). Data were binned to compute root mean square errors. Bottom shows 
cumulative distribution of empirical three point correlation values. Left and right 
represent data from two dierent communities (data from left shown in figure 3).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


The statistical mechanics of Twitter communities

27https://doi.org/10.1088/1742-5468/ab3af0

J. S
tat. M

ech. (2019) 093406

Z = N

∫
dεeN(s(ε)−ε) =

∫
dEe−Nf(ε),� (F.4)

where f(ε) = ε− s(ε), is the free energy per particle. The claim that

lim
N→∞

S(E)/N = s(ε)� (F.5)

is the claim that a thermodynamic limit exists, which is far from obvious. But if it does 
exist, we can continue.

If we take the limit N → ∞, we enter into the domain of Laplace’s approximation, 
where Z will be dominated by the minima of f . These minima are given by the solutions 
ε∗ such that:

df

dε

∣∣∣∣
ε∗
= 0 =⇒ ds

dε

∣∣∣∣
ε∗
= 1.� (F.6)

This is true for all systems, and is another way of defining temperature [37, 75], which 
we have set to be 1 in our discussion. Expanding to second order (as the first derivative 
disappears at the minima), we have that:

Z ≈ Ne−Nf(ε∗)

∫
dε exp

(
N

2
(ε− ε∗)2

d2s(ε)

dε2

∣∣∣∣
ε∗

)
.� (F.7)

In this equation, it seems that the term outside the integral provides a contribution 
from the typical energy ε∗, while the term inside the integral bounds the deviations 
from that typical energy. Crucially, the size of these deviations is controlled by the 
second derivative of the entropy with respect to the energy. When that second deriva-
tive is small, deviations from the typical energy will be large. This is a critical point.

The connection between the microcanonical entropy and the deviations from a sys-
tem’s typical energy is realized in the heat capacity, which can be expressed both in 

Figure F1.  Heat capacity. Heat capacity (equation (F.8)) as a function of a 
temperature coupled to the inferred max-ent Hamiltonian. Red line indicates 
actual temperature (T  =  1).
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terms of the second derivative of the microcanonical entropy or in terms of the variance 
of the energy:

CT = N

(
−d2S

dE2

)−1

= σ2
E.� (F.8)

Where σ2
E is the variance of the energy.

A nearly linear entropy should correspond to a large value of the heat capacity. 
We can see this in figure F1, where we simulate the system shown in figure 5 with 
a Hamiltonian scaled by various fictitious temperatures H → H/T . In figure F1, the 
real system (at T  =  1) is slightly on the low temperature side of the peak in the heat 
capacity. A peak in the heat capacity is another typical sign of criticality in physical 
systems, and it should increase our confidence that the systems examined here are near 
a critical point.
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