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Turbulent flows exhibit universal statistical properties. 
Understanding how these properties emerge from the under-
lying governing equations is a fundamental challenge in non-

equilibrium physics. In classic inertial turbulence, energy is injected 
externally to drive the flows. The nonlinear advective term of the 
Navier−Stokes equation is responsible for destabilizing the flow 
and transferring energy from the scales where it is injected to those 
where it is dissipated. This leads to an energy cascade in the inter-
mediate range of scales, where the flow acquires a scale-invariant 
structure that manifests as a power-law scaling of the kinetic energy 
spectrum. Kolmogorov used these arguments in 1941 to derive the 
universal scaling exponent − 5∕3 for inertial turbulence, indepen-
dent of the fluid’s properties1,2.

More recently, ‘elastic turbulence’ was discovered in polymer 
solutions at low Reynolds numbers, where inertia is negligible3. In 
the past decade, seemingly turbulent flows at low Reynolds numbers 
have also been discovered in a number of active fluids, mostly of bio-
logical origin. Examples include bacterial suspensions4–8, swarming 
bacteria9 and sperm10, suspensions of microtubules and molecular 
motors11–16, epithelial cell monolayers17–19, and suspensions of arti-
ficial self-propelled particles20,21. These fluids display spontaneous 
flows driven by internal active stresses generated by their compo-
nents at microscopic scales. At high activity, these flows become 
chaotic, and hence they have been referred to as active turbulence.

Hydrodynamic models for different types of active turbulence have 
been proposed. Motivated by suspensions of swimming bacteria, some 
models extend the Toner−Tu equations for polar flocks, thus inherit-
ing their nonlinear alignment and polarity self-advection terms7,8,22–25. 
Active turbulence in these models can be traced back to the same 
type of advective nonlinearity as in classic inertial turbulence: self-
propulsion acts as an effective inertia that transfers energy between 
scales26–30. However, in contrast to inertial turbulence, these models 
give rise to non-monotonous flow spectra with non-universal scaling 
exponents, which depend on the values of the model parameters7,26–28.

A different class of models considers active liquid crystals, 
with either polar or nematic symmetry. In the polar case, polarity  

self-advection or other self-propulsion-like terms give rise to oscil-
latory instabilities that eventually lead to spatio-temporal chaos31–36. 
In the nematic case, however, these terms are not allowed by sym-
metry. Nevertheless, chaotic flows also appear, driven only by active 
stresses37–52. The balance between active stress and elastic nematic 
stress defines an intrinsic length that determines the average vortex 
size45. At larger scales, Giomi has proposed the existence of a scaling 
regime of the flow spectrum45. However, such a scaling has not yet 
been demonstrated.

All together, these previous studies raise the question of whether 
turbulence in a more classic sense, with scaling behaviour and uni-
versal exponents, can exist in active fluids. Here, we show that active 
nematic fluids can feature turbulent flows with a universal scaling 
regime at large length scales. Active stresses power an instability 
that generates spontaneous flow, thereby injecting energy into the 
flow. We find that the spectrum of energy injection is broad but 
peaked at an intrinsic wavelength selected by the nonlinear dynam-
ics. We also find that the injected energy is dissipated without being 
transferred to other scales. Therefore, the scaling regime is not sus-
tained by an energy cascade but by the long-range hydrodynamic 
interactions of viscous flow.

Minimal hydrodynamic theory of active nematic fluids
We study two-dimensional active nematic fluids at low Reynolds 
number. Thus, we neglect inertial effects, so that momentum con-
servation reduces to force balance:

0 ¼ �∂αP þ ∂βðσαβ þ σ a
αβÞ ð1Þ

The pressure P enforces the incompressibility condition ∂αvα = 0 of 
the flow field v, whereas σαβ and σ a

αβ

I
 are the symmetric and antisym-

metric parts of the deviatoric stress tensor, respectively. The sym-
metric part is given by the constitutive equation53–56:

σαβ ¼ 2η vαβ � ζ qαβ ð2Þ
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where η is the shear viscosity, vαβ = 1∕2(∂αvβ + ∂βvα) is the sym-
metric part of the strain rate tensor, ζ is the active stress coefficient, 
and qαβ = nαnβ − 1∕2δαβ is the nematic orientation tensor defined by 
the director field n̂. We assume that the fluid is deep in the nematic 
phase so that the director has a fixed modulus jn̂j ¼ 1

I
, and com-

ponents nx ¼ cos θ
I

, ny ¼ sin θ
I

. For a continuous director field, 
this constraint precludes the presence or generation of topological 
defects. Moreover, for the sake of simplicity, we neglect the flow-
alignment coupling (ν = 0)57.

The antisymmetric part of the stress tensor is obtained from 
angular momentum conservation, and reads57:

σ a
αβ ¼

1
2
ðnαhβ � hαnβÞ ð3Þ

Here, hα = − δFn∕δnα = K∇2nα is the orientational field computed 
from the Frank free energy for nematic elasticity which, in the one-
constant approximation, reads57:

Fn ¼
K
2

Z

A

ð∂αnβÞð∂αnβÞ d2r ¼
K
2

Z

A

j=θj2 d2r ð4Þ

Finally, the dynamics of the director field reduces to:

∂tnα þ vβ∂βnα þ ωαβnβ ¼
1
γ
hα ð5Þ

where ωαβ = 1∕2(∂αvβ − ∂βvα) is the vorticity tensor, and γ is the rota-
tional viscosity. The left-hand side is the co-rotational derivative of 
the director field, whereas the orientational field on the right-hand 
side specifies the elastic torque acting on the director.

We introduce dimensionless variables by rescaling length by the 
system size L, time by the active time τa = η∕∣ζ∣, pressure by the 
active stress ∣ζ∣,and orientational field by K∕L2. To eliminate pres-
sure, we take the curl of the force balance equation (1) and obtain a 
Poisson equation for the vorticity ω, which we can write in terms of 
the stream function ψ defined by vx = ∂yψ, vy = − ∂xψ:

∇2ω ¼ �∇4ψ ¼ sðr; tÞ ð6AÞ

sðr; tÞ ¼ 1
2
R
A
∇4θ þ S

1
2

∂2x � ∂2y

h i
sin 2θ � ∂2xy cos 2θ

 
ð6BÞ

This equation describes a Stokes flow stirred by a vorticity source 
sðr; tÞ
I

 with two contributions. The first term comes from the anti-
symmetric stress already present in passive nematic. It accounts 
for the flow induced by the director relaxation. In contrast, the 
second term accounts for the active driving. In equations (6A) and 
(6B), we have defined three dimensionless parameters: the activity 
number A � L2=‘2c

I
, the viscosity ratio R ≡ γ∕η, and the sign of the 

active stress S ≡ ζ∕∣ζ∣ = ±1 for extensile and contractile stresses, 
respectively. The activity number A compares the system size L to 
the active length ‘c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K=ðjζjRÞ

p

I
 defined by the balance between 

active and nematic elastic stress.
Finally, in terms of the director angle field θ and the stream func-

tion ψ, the director dynamics equation (5) reads:

∂tθ þ ð∂yψÞð∂xθÞ � ð∂xψÞð∂yθÞ þ
1
2
∇2ψ ¼ 1

A
∇2θ ð7Þ

Equations (6A), (6B) and (7) specify the hydrodynamics of our  
minimal active nematic fluid. As shown in the Supplementary 
Note, for a given S = ±1, the model is left with a single dimen-
sionless parameter A0 ¼ A=ð2þ R=2Þ

I
. Therefore, R can be fixed  

without loss of generality. In the numerical simulations, we set  
R = 1. Moreover, for R = 0, the model takes a particularly simple 
form (Supplementary Note).

Stationary flow patterns
The equilibrium solutions of equations (6A), (6B) and (7) are uni-
formly oriented quiescent states (ψ = 0, θ = θ0), with spontaneously 
broken rotational symmetry. These states are unstable to orienta-
tional fluctuations, which result in active stress fluctuations. These 
stresses induce flows that enhance orientational fluctuations, thus 
giving rise to the so-called spontaneous flow instability54,58,59. The 
growth rate of small perturbations of wavevector q forming an angle 
ϕ with the director n̂ reads, in dimensional form:

ΩðqÞ ¼ SA
2
cos 2ϕ� 1þ R

4

� �
ðqLÞ2

� �
τ�1
r ð8Þ

where τr = γL2∕K. For contractile (extensile) stresses, with S = −1 (S 
= 1), the most unstable perturbations are transverse (longitudinal), 
that is, ϕ = π∕2(ϕ = 0), whereas longitudinal (transverse) modula-
tions are stable. Hereafter, we focus on the contractile case (S = −1) 
and we fix θ0 = 0.

The critical wavelength in the unstable direction, λc = 
2πℓc[2+R∕2]1∕2, decreases with activity. Therefore, the uniform  
state becomes unstable when λc < L, that is for A > Ac = 4π2(2 + 
R∕2), with Ac ≈ 100 for R = 1 (Fig. 1a). Right past the instabil-
ity threshold, only the longest-wavelength mode is unstable, and 
hence the system evolves into a stripe pattern of wavelength L with 
a spontaneous shear along the most unstable direction (Fig. 1b). 
With increasing activity, the amplitude of the pattern increases, 
and the domain walls, where the flow concentrates, become thinner 
(Supplementary Note).

At higher activity, the striped pattern undergoes a zig-zag insta-
bility that breaks translational invariance along the x̂ direction. The 
stripes become increasingly undulated and break up into vortices 
(Fig. 1c, Supplementary Movie 1). For these vortex patterns, reflec-
tion symmetry (θ → −θ, y → −y, ψ → −ψ) is spontaneously bro-
ken. Therefore, a pattern of vortices with the opposite orientation 
and vorticity is a degenerate solution. At high activity, vortex lattice 
solutions also exist but they are unstable (Supplementary Note). All 
these patterns satisfy the condition ψ = 2θ∕A + c, with c constant, 
such that the director angle remains constant along streamlines 
(Fig. 1c, see Supplementary Note).

Route to turbulence and nonlinear wavelength selection
The vortex patterns remain stable up to values of A ~ 1,500. For 
larger activities, we find that the system shows signatures of excit-
able dynamics40,60, whereby long transients with slow dynamics 
are interspersed with rapid rearrangements into a degenerate ori-
entation of the pattern. Further increasing the activity, the pattern 
becomes increasingly disordered (Fig. 2a) and exhibits persistent 
dynamics suggestive of spatiotemporal chaos (Supplementary 
Movie 2). Overall, this sequence of dynamical patterns can be seen 
as a route from laminar to turbulent flow.

In the disordered chaotic patterns, the spectrum of Frank 
elastic energy (equation (4), Supplementary equation (29) in 
Supplementary Note) features a peak at a wavelength indepen-
dent of system size (Fig. 2b). However, the linear dynamics of the 
spontaneous-flow instability does not select any intrinsic wave-
length but only the direction of the most unstable modes (equa-
tion (8) and Fig. 1a) . Therefore, the intrinsic wavelength λi ~ ℓc of 
the patterns (Fig. 2) must be selected by the nonlinear dynamics 
of the director field (equation (5)). In fact, the nonlinear selec-
tion mechanism is based on the dynamics of evolution toward the 
turbulent state. For example, upon a quench from the uniform 
state θ0 = 0 to the highly turbulent regime (A ≫ 5,000), the system 
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splits into two quiescent domains of uniform orientation θ = ±π∕2 
separated by walls of thickness ~ℓc ≪ L (Supplementary Note). 
The uniform domains are unstable in the perpendicular direction, 
and hence they also split. This process continues sequentially until 
the domain size is comparable to the wall thickness ~ℓc. Thereby, 
this transient instability cascade ends up restoring global rota-
tional invariance and selecting a wavelength for the flow pattern. 

A sequential process similar to this instability cascade was recently 
observed experimentally15.

Spectral energy balance
The instability cascade whereby the system becomes turbulent 
entails a transfer of energy between scales. However, beyond this 
transient effect, does a stationary transfer of energy exist in active 
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A. Points indicate numerical results (Methods), with discrete wavenumbers for a system of size L. b, Stripe pattern of the director field (top panel) and 
the corresponding spontaneous shear flow (bottom panel) for A = 200. c, Stable pattern of elongated domains of the director field (top panel) and the 
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nematic turbulence? To probe possible energy fluxes across scales, 
we perform a spectral analysis of energy balance in the stationary 
turbulent regime. The energy of nematic liquid crystals includes 
not only the kinetic energy of the flow but also the Frank elastic 
energy of the director field, Fn. For vanishing Reynolds number, the 
kinetic contribution vanishes. Thus, the rate of change of the aver-
age energy, which vanishes in a statistically stationary state, can be 
expressed in Fourier space as (Supplementary Note):

_FnðqÞ ¼ �DsðqÞ � DrðqÞ þ IðqÞ þ TðqÞ ¼ 0 ð9Þ

Here, we have separated four contributions: the shear viscous dis-
sipation rate of the flow, Ds(q); the rotational viscous dissipation rate 
of the director field, Dr(q); the power injected by the active stress, 
I(q); and the power T(q) transferred from other scales into mode 
q, which arises from the advection of the director field. The explicit 
form of these contributions in both real and momentum space are 
given in the Supplementary Note. In the following, we analyse the 
spectra of the contributions in equation (9) (Supplementary equa-
tion (32) in the Supplementary Note).

In contrast to inertial turbulence, the energy injection is not con-
trolled externally but it is a self-organized process. We find that the 
active power I has a probability distribution with a positive average, 
meaning that active stress yields a net injection of energy into the 
flow (Supplementary Fig. 1). In stationary conditions, the spectral 
distribution of active energy injection is broad, with a maximum at 

the selected wavelength λi (Fig. 3), where the stored elastic energy is 
also maximal (Fig. 2b).

Also in contrast to inertial turbulence, the power injection spec-
trum is balanced by the sum of the dissipation rate spectra locally 
in Fourier space (Fig. 3). This means that the energy injected at a 
given scale is entirely dissipated at the same scale. Therefore, there 
is no energy transfer between scales, and hence no energy cascade. 
Indeed, using symmetry arguments, we show that the energy trans-
fer term vanishes for all q, TðqÞ ¼ 0

I
 (Supplementary Note), which 

we verify numerically (Fig. 3).

Universal scaling
Finally, to study the structure of the turbulent flow, we analyse  
the spectra of the kinetic energy per mass density, E, and of the 
enstrophy E:

E ¼ 1
2

Z

A

v2 d2r; E ¼
Z

A

ω2 d2r ð10Þ

Hereafter, we call E the kinetic energy. The prominent injection of 
energy at the selected wavelength λi gives rise to vortices of that typi-
cal size (the small ripples in Fig. 4a). Accordingly, the kinetic energy 
and the enstrophy spectra (Supplementary equations (35) and (38) 
in Supplementary Note) exhibit a peak at λi (Fig. 4b,c). At wave-
lengths smaller than this typical vortex size, these spectra respec-
tively scale as E(q) ~ q−4 and EðqÞ ¼ 2q2EðqÞ  q�2

I
, in agreement 

with the numerical results and mean-field predictions by Giomi45. 
These scalings characterize the internal structure of the vortices.

At scales larger than λi, the system develops large patches of 
non-coherent but correlated flow with net circulation (large-scale 
structures in Fig. 4a), each of which encompasses many of the 
smaller coherent vortices (Supplementary Movie 3). These large-
scale structures emerge from the non-local character of Stokes flow. 
Thereby, local fluctuations of the vorticity source s instantaneously 
propagate to the whole system through the long-range kernel of 
equation (6A). As a result, the flow field builds up long-range corre-
lations, and hence the spectrum E(q) should display scale invariance 
at large length scales.

To extract the scaling exponent from the governing equations, 
we first analyse the spectrum of the vorticity source sðr; tÞ

I
, which is 

ultimately determined by the director field θðr; tÞ
I

 (equation (6B)). 
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I
 independent of system size. Here, ‘c

I
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ffiffiffiffiffiffiffiffiffiffi
Amax

p
 Lmax=566

I
), such that the activity number A ¼ L2=‘2c

I
 

increases with system size L = nΔ, where Δ is the spacing of the simulation 
grid points. The wavenumber is rescaled by the largest system size Lmax, 
such that the horizontal axis shows the mode number in the largest system 
(n = 2,048).
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The fact that the elastic energy spectrum is peaked and does not 
exhibit scaling suggests that orientational fluctuations have a finite 
correlation length. Therefore, we expect hj~θqj2i  q0

I
 for q → 0. 

Consequently, from equation (6B), hj~sqj2i  q4

I
. Hence, the vorticity 

source spectrum (Supplementary equation (43) in Supplementary 
Note) should scale as SðqÞ  q hj~sqj2i  q5

I
, which we verified 

in our simulations (Supplementary Fig. 3). In turn, in Fourier 
space, equation (6A) reads �q2~ωq ¼ ~sq

I
, and hence hj~ωqj2i  q0

I
 

and hj~vqj2i ¼ q�2hj~ωqj2i  q�2

I
. Thus, we find that the kinetic 

energy and enstrophy spectra scale as EðqÞ  q hj~vqj2i  q�1

I
 and 

EðqÞ  q hj~ωqj2i  q
I

, which we also verify numerically (Fig. 4b,c).

Discussion and conclusions
In summary, we have introduced a minimal hydrodynamic theory 
of an active nematic fluid at zero Reynolds number. Based on this 
theory, we have shown that active fluids can exhibit turbulent flows 
with universal scaling properties.

To maximize analytical insight and simulation power, we 
ignored topological defects and the flow-alignment coupling. At 
scales comparable to the intrinsic active length, the creation and 
annihilation of topological defects is strongly coupled to the vortex 
dynamics43,45,60. Nevertheless, in agreement with ref. 45, our results 
show that defects are not essential to understand the large-scale sta-
tistics of active turbulence. Moreover, including the flow-alignment 
coupling does not qualitatively modify the spontaneous flow insta-
bility59 that drives the turbulence. We expect that this coupling can 
only modify non-universal features such as the structure of vortex 
patterns and the transition to turbulence, but not the short- or long-
range character of correlations. Hence, we believe that our minimal 
description captures the essential ingredients that determine the 
universal scaling properties of active nematic turbulence.

In order to understand the route to turbulence, we first studied 
the emergence of both stationary and turbulent flow patterns. In 
active nematic fluids, non-uniform director fields generate active 
stresses that drive spontaneous flows which, in turn, couple to the 
director field. At moderate values of the dimensionless activity 
number A ¼ ðL=‘cÞ2

I
, this unstable feedback gives rise to stable sta-

tionary patterns of orientation domains and flow vortices (Fig. 1) of 
increasing complexity48,61. At higher activity, the system undergoes 
a transition to turbulence. The turbulent state is characterized by 

a single characteristic length, λi ~ ℓc (Fig. 2). We showed that the 
wavelength selection mechanism is inherently nonlinear. In con-
trast, in the active turbulence of generalized flocking models, the 
vortex size is selected by a linear instability7,8,22–27,62.

To look for universal features, we studied the large-scale statistical 
properties of the turbulent flows. In particular, we derived the spectral 
energy balance in the turbulent regime. We showed numerically that 
energy injection by the active processes spans all scales, and it is maxi-
mal at the selected wavelength λi (Fig. 3). At vanishing Reynolds, the 
injected energy cannot be transferred to other scales by momentum 
advection as in inertial turbulence49. Here we showed that, even in the 
presence of advection of the director field, our minimal active nematic 
fluid does not exhibit energy transfer between scales in the stationary 
turbulent state. The absence of energy transfer is possible because, in 
active fluids, the spectrum of energy injection is not externally fixed 
but results from the feedback between the director and the flow fields. 
As a result, the system self-organizes into a state in which energy injec-
tion is exactly balanced by dissipation at each scale. Further research 
is needed to determine whether flow alignment or topological defects 
can lead to stationary energy transfer between scales.

Finally, we studied the spectra of kinetic energy and enstrophy of 
the turbulent flows. Active stresses generate vortices with a charac-
teristic scale. Hence, at the scale λi of maximal active injection, the 
flow spectra feature a peak that reflects the underlying pattern of vor-
tices, in agreement with previous work45,49. Based on similar obser-
vations, and using mean-field arguments, Giomi predicted that the 
spectrum of kinetic energy would have a E(q) ~ q−1 scaling regime at 
large scales. However, he could not access sufficiently large scales to 
verify this prediction in simulations45. Here, we leveraged our mini-
mal approach to reach very large-scale simulations that allowed us to 
conclusively demonstrate this scaling regime (Fig. 4). Moreover, we 
provide an analytical understanding of the origin of the scaling and 
of the universal character of its exponent. In the absence of inertia, 
hydrodynamic interactions are long-range. Thereby, local stresses 
generate not only coherent vortices of a characteristic size but also 
large-scale correlated flows. These flows span a range of scales only 
limited by the system size, as manifested in the scaling behaviour. 
We derived the scaling laws from the governing equations simply 
by assuming that the director field has a finite correlation length. 
Provided that this condition holds, we predict E(q) ~ q−1.
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to coherent vortices of typical size given by the scale of maximal energy injection λi. However, large-scale correlated flow patches also form owing to 
the non-local character of viscous flow. Lines with arrows indicate a few streamlines that highlight these large-scale circulations. b,c, The spectra of 
kinetic energy and enstrophy, equation (10) (Supplementary equations (35) and (38) in Supplementary Note), exhibit a peak at the maximal injection 
scale λi. At smaller scales and, importantly, also at larger scales, the spectra feature distinctive universal scaling regimes. As in Fig. 2b, ‘c

I
 is held fixed 

(‘c ¼ Lmax=
ffiffiffiffiffiffiffiffiffiffi
Amax

p
 Lmax=566

I
), such that the activity number A ¼ L2=‘2c

I
 increases with system size L = nΔ, where Δ is the spacing of the simulation 

grid points. The wavenumber is rescaled by the largest system size Lmax, such that the horizontal axis shows the mode number in the largest system (n = 
2,048). The energy and enstrophy spectra are shown in the dimensionless units defined in the text (Supplementary Note).
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In other words, we conclude that, via the long-range hydrody-
namic interactions of viscous flow, active processes are able to main-
tain large-scale modes out of equilibrium and enforce power-law 
scaling. In this sense63, chaotic flows in active nematic fluids can 
be called turbulent. These flows form a distinct class of turbulence 
at vanishing Reynolds number, in which (1) energy is injected at 
all scales in a self-organized way, and (2) the flow exhibits uni-
versal scale invariance at large scales. In addition, active nematic 
turbulence can exist without any stationary transfer of energy 
across scales. This type of active turbulence is thus different from 
that exhibited by flocking models, which display advective energy 
cascades26–30 and parameter-dependent scaling exponents7,26–28. 
Looking forward, we expect that our findings can be tested in large-
scale experimental realizations of active nematics.
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Methods
Numerical scheme. Here we describe the implementation of the numerical 
integration of our hydrodynamic equations, equations (6A), (6B) and (7). We 
implement a hybrid numerical scheme that combines a spectral method for the 
time-independent force balance equations (6A) and (6B) with a generalized 
version of the Alternating-Direction Implicit (ADI) algorithm64 for the time 
evolution of the director dynamics equation (7). To account for fluctuations, we 
supplement equation (7) with a Gaussian white noise field with hξðr; tÞi ¼ 0

I
 and 

hξðr; tÞξðr 0; t0Þi ¼ 2Dδðr� r 0Þδðt � t0Þ
I

, which we implement by means of a 
standard stochastic algorithm65. We discretize the fields on a grid of n × n points. 
We keep a constant grid spacing Δ, and we vary n to change the system size L = nΔ.

At each time step, the scheme computes the numerical Fourier transforms 
of the director angle field θðr; tÞ

I
 and of the nonlinear terms on the right-hand 

side of equation (6B). We apply the 2∕3 rule to prevent aliasing in the Fourier 
components64. From them, we compute the Fourier components of the stream 
function field ψðr; tÞ

I
 from the spectral decomposition of equations (6A) and (6B). 

In dimensionless variables, the Fourier components read:

~ψq ¼ � R
2A

~θq þ
S

q4 þ ϵ

q2x � q2y
2

F½sin 2θq � qxqyF½cos 2θq

" #
ð11Þ

where F½
I

 indicates the Fourier transform operator, and ϵ = 10−8 is a numerical 
cut-off to avoid the divergence of the q = 0 mode. The Fourier components  
are then transformed back to real space to update the angle field according  
to the stochastic version of equation (7). To this end, in addition to adding the 
noise term, we implemented two modifications of the standard ADI algorithm, 
which was originally designed to invert only the Laplacian operator. First,  
we discretize the advective terms in equation (7) by means of centred finite 
differences. Second, we leverage the Sherman−Morrison formula to impose 
periodic boundary conditions64.

Numerical tests. Numerical results were benchmarked against analytical results. 
In particular, we checked the growth rate, equation (8), as well as the saturation 
angle θs of the transversal stationary patterns, Supplementary equation (8) in 
Supplementary Note. The integral in Supplementary equation (8) was numerically 
approximated by summing 10,000 terms of the associated Legendre polynomial66:

ffiffiffiffiffiffiffiffiffiffiffi
2A

4þ R

r
¼ 2π

X1
k¼0

ð2k� 1Þ!!
2kk!

 2
sin2k

θs
2

ð12Þ

Numerical details. All numerical integrations have been performed for contractile 
systems (S = −1) with R ≡ γ∕η = 1. The amplitude of the angular noise is set to D 
= 5 × 10−4L2∕τr. In all cases, the initial condition was a quiescent state with uniform 
director along the x̂ axis, namely θ0 = 0. The integration time step is reduced as the 
number of grid points is increased (Table 1).

Stationary flow patterns. The snapshots of the stationary patterns in Fig. 1b,c were 
obtained from simulations run for a time t = 0.4τr on a grid of 256 × 256 points.

Numerical computation of energy and power spectra. All spectra are numerically 
computed by replacing the ensemble average by an average over 925 snapshots  
of simulations run for a time t = 0.1τr. To allow for temporal decorrelation,  
the snapshots are taken every δt = 10−4τr. To allow the system to reach a  
statistically stationary state, the snapshots are only taken after an initial transient 
of ts = 7.5 × 10−3τr. Using these snapshots, we compute a histogram of the 
corresponding spectral quantity over wave vector moduli which,  

for the isotropic correlations of the turbulent state (see Supplementary  
equation (28) in Supplementary Note), corresponds to the angular average  
of the spectrum.
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Table 1 | Integration time step Δt for simulations with different 
number of grid points n × n, corresponding to system sizes L = nΔ
n 128 256 512 1,024 2,048

Δt(τr) 10−4 10−5 5 × 10−6 10−6 2 × 10−7
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