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Universal scaling of active nematic turbulence

Ricard Alert®'234, Jean-Francois Joanny>®’ and Jaume Casademunt ®"22<

A landmark of turbulence is the emergence of universal scaling laws, such as Kolmogorov's E(qg) ~ g—°/3 scaling of the kinetic
energy spectrum of inertial turbulence with the wavevector g. In recent years, active fluids have been shown to exhibit turbu-
lent-like flows at low Reynolds number. However, the existence of universal scaling properties in these flows has remained
unclear. To address this issue, here we propose a minimal defect-free hydrodynamic theory for two-dimensional active nematic
fluids at vanishing Reynolds number. By means of large-scale simulations and analytical arguments, we show that the kinetic
energy spectrum exhibits a universal scaling E(q) ~ g~' at long wavelengths. We find that the energy injection due to activity has
a peak at a characteristic length scale, which is selected by a nonlinear mechanism. In contrast to inertial turbulence, energy
is entirely dissipated at the scale where it is injected, thus precluding energy cascades. Nevertheless, the non-local character
of the Stokes flow establishes long-range velocity correlations, which lead to the scaling behaviour. We conclude that active

nematic fluids define a distinct universality class of turbulence at low Reynolds number.

urbulent flows exhibit universal statistical properties.

Understanding how these properties emerge from the under-

lying governing equations is a fundamental challenge in non-
equilibrium physics. In classic inertial turbulence, energy is injected
externally to drive the flows. The nonlinear advective term of the
Navier—Stokes equation is responsible for destabilizing the flow
and transferring energy from the scales where it is injected to those
where it is dissipated. This leads to an energy cascade in the inter-
mediate range of scales, where the flow acquires a scale-invariant
structure that manifests as a power-law scaling of the kinetic energy
spectrum. Kolmogorov used these arguments in 1941 to derive the
universal scaling exponent — 5/3 for inertial turbulence, indepen-
dent of the fluid’s properties'’.

More recently, ‘elastic turbulence’ was discovered in polymer
solutions at low Reynolds numbers, where inertia is negligible’. In
the past decade, seemingly turbulent flows at low Reynolds numbers
have also been discovered in a number of active fluids, mostly of bio-
logical origin. Examples include bacterial suspensions**, swarming
bacteria’ and sperm'’, suspensions of microtubules and molecular
motors'' ', epithelial cell monolayers'”~", and suspensions of arti-
ficial self-propelled particles”*'. These fluids display spontaneous
flows driven by internal active stresses generated by their compo-
nents at microscopic scales. At high activity, these flows become
chaotic, and hence they have been referred to as active turbulence.

Hydrodynamic models for different types of active turbulence have
been proposed. Motivated by suspensions of swimming bacteria, some
models extend the Toner—Tu equations for polar flocks, thus inherit-
ing their nonlinear alignment and polarity self-advection terms”**>-%>.
Active turbulence in these models can be traced back to the same
type of advective nonlinearity as in classic inertial turbulence: self-
propulsion acts as an effective inertia that transfers energy between
scales”. However, in contrast to inertial turbulence, these models
give rise to non-monotonous flow spectra with non-universal scaling
exponents, which depend on the values of the model parameters”*-%.

A different class of models considers active liquid crystals,
with either polar or nematic symmetry. In the polar case, polarity

self-advection or other self-propulsion-like terms give rise to oscil-
latory instabilities that eventually lead to spatio-temporal chaos®'~*°.
In the nematic case, however, these terms are not allowed by sym-
metry. Nevertheless, chaotic flows also appear, driven only by active
stresses’’~*>. The balance between active stress and elastic nematic
stress defines an intrinsic length that determines the average vortex
size®. At larger scales, Giomi has proposed the existence of a scaling
regime of the flow spectrum®. However, such a scaling has not yet
been demonstrated.

All together, these previous studies raise the question of whether
turbulence in a more classic sense, with scaling behaviour and uni-
versal exponents, can exist in active fluids. Here, we show that active
nematic fluids can feature turbulent flows with a universal scaling
regime at large length scales. Active stresses power an instability
that generates spontaneous flow, thereby injecting energy into the
flow. We find that the spectrum of energy injection is broad but
peaked at an intrinsic wavelength selected by the nonlinear dynam-
ics. We also find that the injected energy is dissipated without being
transferred to other scales. Therefore, the scaling regime is not sus-
tained by an energy cascade but by the long-range hydrodynamic
interactions of viscous flow.

Minimal hydrodynamic theory of active nematic fluids

We study two-dimensional active nematic fluids at low Reynolds
number. Thus, we neglect inertial effects, so that momentum con-
servation reduces to force balance:

0= —0,P + 9(0up + 045) (1)

The pressure P enforces the incompressibility condition d,v, = 0 of
the flow field v, whereas o,; and o, are the symmetric and antisym-
metric parts of the deviatoric stress tensor, respectively. The sym-
metric part is given by the constitutive equation®°:

Cap = 21 Vap — § Gup (2)
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where # is the shear viscosity, v,;, = 1/2(d,v; + dv,) is the sym-
metric part of the strain rate tensor, { is the active stress coefficient,
and q,, = n,n, — 1/26,,is the nematic orientation tensor defined by
the director field n. We assume that the fluid is deep in the nematic
phase so that the director has a fixed modulus || = 1, and com-
ponents n, = cosf, n, = sinf. For a continuous director field,
this constraint precludes the presence or generation of topological
defects. Moreover, for the sake of simplicity, we neglect the flow-
alignment coupling (v = 0)*".

The antisymmetric part of the stress tensor is obtained from
angular momentum conservation, and reads™”:

a 1
ap =5 (nohp — hong) (3)

Here, h, = — 6F,/dn, = KV?n, is the orientational field computed
from the Frank free energy for nematic elasticity which, in the one-
constant approximation, reads’:

K 2, K 2 1
F, = E/(aanﬁ)(aanﬁ) d°r = E/ |Vo|” d°r (4)
A A

Finally, the dynamics of the director field reduces to:
1
Ottg + VpOptq + Waphp = ;ha (5)

where w,;, =1/2(d,v, — d,v,) is the vorticity tensor, and y is the rota-
tional viscosity. The left-hand side is the co-rotational derivative of
the director field, whereas the orientational field on the right-hand
side specifies the elastic torque acting on the director.

We introduce dimensionless variables by rescaling length by the
system size L, time by the active time 7, = 5/|(|, pressure by the
active stress |{|,and orientational field by K/L* To eliminate pres-
sure, we take the curl of the force balance equation (1) and obtain a
Poisson equation for the vorticity w, which we can write in terms of
the stream function y defined by v, = d,y, v, = — o,y

Vi = —Viy =s(r,t) (6A)

1R

s(r,t) = >

1
Vi +S [E [8)2( - Bﬂ sin 26 — aiy cos 26 (6B)

This equation describes a Stokes flow stirred by a vorticity source
s(r, t) with two contributions. The first term comes from the anti-
symmetric stress already present in passive nematic. It accounts
for the flow induced by the director relaxation. In contrast, the
second term accounts for the active driving. In equations (6A) and
(6B), we have defined three dimensionless parameters: the activity
number A = L2//2, the viscosity ratio R = y/#, and the sign of the
active stress S = {/|{] = +1 for extensile and contractile stresses,
respectively. The activity number A compares the system size L to
the active length ¢, = \/K/(|¢|R) defined by the balance between
active and nematic elastic stress.

Finally, in terms of the director angle field 6 and the stream func-
tion y, the director dynamics equation (5) reads:

30+ (3,)(2:0) — (3.:)(3,0) + %vzw _ %we )

Equations (6A), (6B) and (7) specify the hydrodynamics of our
minimal active nematic fluid. As shown in the Supplementary
Note, for a given S = +1, the model is left with a single dimen-
sionless parameter A’ = A/(2 + R/2). Therefore, R can be fixed

NATURE PHYSICS | VOL 16 | JUNE 2020 | 682-688 | www.nature.com/naturephysics

without loss of generality. In the numerical simulations, we set
R = 1. Moreover, for R = 0, the model takes a particularly simple
form (Supplementary Note).

Stationary flow patterns

The equilibrium solutions of equations (6A), (6B) and (7) are uni-
formly oriented quiescent states (y = 0, @ = 6,), with spontaneously
broken rotational symmetry. These states are unstable to orienta-
tional fluctuations, which result in active stress fluctuations. These
stresses induce flows that enhance orientational fluctuations, thus
giving rise to the so-called spontaneous flow instability’****. The
growth rate of small perturbations of wavevector q forming an angle
¢ with the director f reads, in dimensional form:

) = [Seos2p— (147 ) a5 (%)

where 7, = yL*/K. For contractile (extensile) stresses, with S = —1 (S
= 1), the most unstable perturbations are transverse (longitudinal),
that is, ¢p = n/2(¢p = 0), whereas longitudinal (transverse) modula-
tions are stable. Hereafter, we focus on the contractile case (S = —1)
and we fix 6, = 0.

The critical wavelength in the unstable direction, 4. =
271l [24R/2]'/?, decreases with activity. Therefore, the uniform
state becomes unstable when 4. < L, that is for A > A_ = 47°(2 +
R/2), with A, = 100 for R = 1 (Fig. 1a). Right past the instabil-
ity threshold, only the longest-wavelength mode is unstable, and
hence the system evolves into a stripe pattern of wavelength L with
a spontaneous shear along the most unstable direction (Fig. 1b).
With increasing activity, the amplitude of the pattern increases,
and the domain walls, where the flow concentrates, become thinner
(Supplementary Note).

At higher activity, the striped pattern undergoes a zig-zag insta-
bility that breaks translational invariance along the x direction. The
stripes become increasingly undulated and break up into vortices
(Fig. 1c, Supplementary Movie 1). For these vortex patterns, reflec-
tion symmetry (6 — —0, y — —y, w — —y) is spontaneously bro-
ken. Therefore, a pattern of vortices with the opposite orientation
and vorticity is a degenerate solution. At high activity, vortex lattice
solutions also exist but they are unstable (Supplementary Note). All
these patterns satisfy the condition y = 26/A + ¢, with ¢ constant,
such that the director angle remains constant along streamlines
(Fig. 1c, see Supplementary Note).

Route to turbulence and nonlinear wavelength selection
The vortex patterns remain stable up to values of A ~ 1,500. For
larger activities, we find that the system shows signatures of excit-
able dynamics'®®, whereby long transients with slow dynamics
are interspersed with rapid rearrangements into a degenerate ori-
entation of the pattern. Further increasing the activity, the pattern
becomes increasingly disordered (Fig. 2a) and exhibits persistent
dynamics suggestive of spatiotemporal chaos (Supplementary
Movie 2). Overall, this sequence of dynamical patterns can be seen
as a route from laminar to turbulent flow.

In the disordered chaotic patterns, the spectrum of Frank
elastic energy (equation (4), Supplementary equation (29) in
Supplementary Note) features a peak at a wavelength indepen-
dent of system size (Fig. 2b). However, the linear dynamics of the
spontaneous-flow instability does not select any intrinsic wave-
length but only the direction of the most unstable modes (equa-
tion (8) and Fig. 1a) . Therefore, the intrinsic wavelength 4, ~ €. of
the patterns (Fig. 2) must be selected by the nonlinear dynamics
of the director field (equation (5)). In fact, the nonlinear selec-
tion mechanism is based on the dynamics of evolution toward the
turbulent state. For example, upon a quench from the uniform
state 8, = 0 to the highly turbulent regime (A > 5,000), the system
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Fig. 1| Stationary patterns upon the spontaneous flow instability. a, The growth rate, equation (8), of perturbations transverse to the director (¢ =

nt/2) for a contractile system (S = —1) with R = 1. The critical wavelength, which is of the order of the active length ¢, decreases with the activity number
A. Points indicate numerical results (Methods), with discrete wavenumbers for a system of size L. b, Stripe pattern of the director field (top panel) and
the corresponding spontaneous shear flow (bottom panel) for A = 200. ¢, Stable pattern of elongated domains of the director field (top panel) and the
corresponding spontaneous flow vortices (bottom panel) at higher activity number A = 500. Small bars in the top panels indicate the director field. Lines
with arrows in the bottom panels indicate streamlines. The director angle is displayed in radians, and the stream function is shown in units of the nematic

relaxation time 7, = yL2/K.

splits into two quiescent domains of uniform orientation § = +1/2
separated by walls of thickness ~¢, < L (Supplementary Note).
The uniform domains are unstable in the perpendicular direction,
and hence they also split. This process continues sequentially until
the domain size is comparable to the wall thickness ~¢.. Thereby,
this transient instability cascade ends up restoring global rota-
tional invariance and selecting a wavelength for the flow pattern.

684

A sequential process similar to this instability cascade was recently
observed experimentally'.

Spectral energy balance

The instability cascade whereby the system becomes turbulent
entails a transfer of energy between scales. However, beyond this
transient effect, does a stationary transfer of energy exist in active
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Fig. 2 | Disordered pattern of director domains with a characteristic
wavelength. a, Snapshot of the angle field for a system size of 2,048 x
2,048 grid points at activity number A,.., = 3.2 X 10°. b, The spectrum

of the Frank elastic energy, equation (4) (Supplementary equation

(29) in Supplementary Note, in units of K/L,.,,) is peaked at an intrinsic
wavelength 4; ~ £, independent of system size. Here, /. is held fixed

(le = Linax/VAmax = Linax/566), such that the activity number A = L2/¢?
increases with system size L = nA, where A is the spacing of the simulation
grid points. The wavenumber is rescaled by the largest system size L .,,
such that the horizontal axis shows the mode number in the largest system
(n=2,048).

nematic turbulence? To probe possible energy fluxes across scales,
we perform a spectral analysis of energy balance in the stationary
turbulent regime. The energy of nematic liquid crystals includes
not only the kinetic energy of the flow but also the Frank elastic
energy of the director field, F,. For vanishing Reynolds number, the
kinetic contribution vanishes. Thus, the rate of change of the aver-
age energy, which vanishes in a statistically stationary state, can be
expressed in Fourier space as (Supplementary Note):

F.(q) = —Ds(q) — De(q) +1(q) + T(q) = 0 9)

Here, we have separated four contributions: the shear viscous dis-
sipation rate of the flow, D|(g); the rotational viscous dissipation rate
of the director field, D,(q); the power injected by the active stress,
I(q); and the power T(q) transferred from other scales into mode
g which arises from the advection of the director field. The explicit
form of these contributions in both real and momentum space are
given in the Supplementary Note. In the following, we analyse the
spectra of the contributions in equation (9) (Supplementary equa-
tion (32) in the Supplementary Note).

In contrast to inertial turbulence, the energy injection is not con-
trolled externally but it is a self-organized process. We find that the
active power I has a probability distribution with a positive average,
meaning that active stress yields a net injection of energy into the
flow (Supplementary Fig. 1). In stationary conditions, the spectral
distribution of active energy injection is broad, with a maximum at
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Fig. 3 | Spectra of the four contributions to the energy balance, equation
(9) (Supplementary equation (32) in Supplementary Note). These results
are for the largest system size with 2,048 x 2,048 grid points at activity
number A = 3.2 x 10°. Supplementary Fig. 2 shows results for smaller
systems. The active energy injection is entirely balanced by dissipation at
every scale; no energy is transferred between scales. The energy injection
rate is maximal at the selected wavelength A. The power spectra are shown
in the dimensionless units defined in the text (Supplementary Note).

the selected wavelength 4, (Fig. 3), where the stored elastic energy is
also maximal (Fig. 2b).

Also in contrast to inertial turbulence, the power injection spec-
trum is balanced by the sum of the dissipation rate spectra locally
in Fourier space (Fig. 3). This means that the energy injected at a
given scale is entirely dissipated at the same scale. Therefore, there
is no energy transfer between scales, and hence no energy cascade.
Indeed, using symmetry arguments, we show that the energy trans-
fer term vanishes for all g, T(q) = 0 (Supplementary Note), which
we verify numerically (Fig. 3).

Universal scaling

Finally, to study the structure of the turbulent flow, we analyse
the spectra of the kinetic energy per mass density, E, and of the

enstrophy &:
E:%/zdzr, €:/a)2d2r

A A

(10)

Hereafter, we call E the kinetic energy. The prominent injection of
energy at the selected wavelength 4, gives rise to vortices of that typi-
cal size (the small ripples in Fig. 4a). Accordingly, the kinetic energy
and the enstrophy spectra (Supplementary equations (35) and (38)
in Supplementary Note) exhibit a peak at A, (Fig. 4b,c). At wave-
lengths smaller than this typical vortex size, these spectra respec-
tively scale as E(q) ~ g~* and £(q) = 2¢°E(q) ~ q "2, in agreement
with the numerical results and mean-field predictions by Giomi*.
These scalings characterize the internal structure of the vortices.

At scales larger than A, the system develops large patches of
non-coherent but correlated flow with net circulation (large-scale
structures in Fig. 4a), each of which encompasses many of the
smaller coherent vortices (Supplementary Movie 3). These large-
scale structures emerge from the non-local character of Stokes flow.
Thereby, local fluctuations of the vorticity source s instantaneously
propagate to the whole system through the long-range kernel of
equation (6A). As a result, the flow field builds up long-range corre-
lations, and hence the spectrum E(q) should display scale invariance
at large length scales.

To extract the scaling exponent from the governing equations,
we first analyse the spectrum of the vorticity source s(r, t), which is
ultimately determined by the director field 6(r, t) (equation (6B)).
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Fig. 4 | Universal scaling of the flow spectra at large scales. a, Snapshot of the stream function field for a system size of 2,048 x 2,048 grid points at
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to coherent vortices of typical size given by the scale of maximal energy injection 4. However, large-scale correlated flow patches also form owing to

the non-local character of viscous flow. Lines with arrows indicate a few streamlines that highlight these large-scale circulations. b,c, The spectra of
kinetic energy and enstrophy, equation (10) (Supplementary equations (35) and (38) in Supplementary Note), exhibit a peak at the maximal injection
scale 4. At smaller scales and, importantly, also at larger scales, the spectra feature distinctive universal scaling regimes. As in Fig. 2b, ¢ is held fixed

(be = Linax/V/Amax = Lmax/566), such that the activity number A = Lz/ﬁg increases with system size L = nA, where A is the spacing of the simulation

grid points. The wavenumber is rescaled by the largest system size L, such that the horizontal axis shows the mode number in the largest system (n =
2,048). The energy and enstrophy spectra are shown in the dimensionless units defined in the text (Supplementary Note).

The fact that the elastic energy spectrum is peaked and does not
exhibit scaling suggests that orientational ﬂuctuatlons have a finite
correlation length. Therefore, we expect (|92| ) ~¢q° for g — 0.
Consequently, from equation (6B), (\sq| ) ~ q*. Hence, the vorticity
source spectrum (Supplementary equatlon (43) in Supplementary
Note) should scale as S(q) ~ g (|54|*) ~ ¢°, which we verified
in our simulations (Supplementary F1g 3). In turn, in Four1er
space, equat1on (6A) reads —q @q =S¢ and hence (|@q|*) ~ ¢°
and ([vq|*) = g 2(|@q|*) ~ g 2 Thus, we find that the kinetic
energy and enstrophy spectra scale as E(q) ~ q ([¥q|*) ~ g~ " and
E(g) ~q (|wq\ ) ~ g, which we also verify numerically (Fig. 4b,c).

Discussion and conclusions

In summary, we have introduced a minimal hydrodynamic theory
of an active nematic fluid at zero Reynolds number. Based on this
theory, we have shown that active fluids can exhibit turbulent flows
with universal scaling properties.

To maximize analytical insight and simulation power, we
ignored topological defects and the flow-alignment coupling. At
scales comparable to the intrinsic active length, the creation and
annihilation of topological defects is strongly coupled to the vortex
dynamics**®. Nevertheless, in agreement with ref. **, our results
show that defects are not essential to understand the large-scale sta-
tistics of active turbulence. Moreover, including the flow-alignment
coupling does not qualitatively modify the spontaneous flow insta-
bility™ that drives the turbulence. We expect that this coupling can
only modify non-universal features such as the structure of vortex
patterns and the transition to turbulence, but not the short- or long-
range character of correlations. Hence, we believe that our minimal
description captures the essential ingredients that determine the
universal scaling properties of active nematic turbulence.

In order to understand the route to turbulence, we first studied
the emergence of both stationary and turbulent flow patterns. In
active nematic fluids, non-uniform director fields generate active
stresses that drive spontaneous flows which, in turn, couple to the
director field. At moderate values of the dimensionless activity
number A = (L//.)?, this unstable feedback gives rise to stable sta-
tionary patterns of orientation domains and flow vortices (Fig. 1) of
increasing complexity**¢'. At higher activity, the system undergoes
a transition to turbulence. The turbulent state is characterized by
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a single characteristic length, 1, ~ £, (Fig. 2). We showed that the
wavelength selection mechanism is inherently nonlinear. In con-
trast, in the active turbulence of generalized flocking models, the
vortex size is selected by a linear instability”%**=2"2,

To look for universal features, we studied the large-scale statistical
properties of the turbulent flows. In particular, we derived the spectral
energy balance in the turbulent regime. We showed numerically that
energy injection by the active processes spans all scales, and it is maxi-
mal at the selected wavelength A, (Fig. 3). At vanishing Reynolds, the
injected energy cannot be transferred to other scales by momentum
advection as in inertial turbulence®. Here we showed that, even in the
presence of advection of the director field, our minimal active nematic
fluid does not exhibit energy transfer between scales in the stationary
turbulent state. The absence of energy transfer is possible because, in
active fluids, the spectrum of energy injection is not externally fixed
but results from the feedback between the director and the flow fields.
Asaresult, the system self-organizes into a state in which energy injec-
tion is exactly balanced by dissipation at each scale. Further research
is needed to determine whether flow alignment or topological defects
can lead to stationary energy transfer between scales.

Finally, we studied the spectra of kinetic energy and enstrophy of
the turbulent flows. Active stresses generate vortices with a charac-
teristic scale. Hence, at the scale 4; of maximal active injection, the
flow spectra feature a peak that reflects the underlying pattern of vor-
tices, in agreement with previous work'>"’. Based on similar obser-
vations, and using mean-field arguments, Giomi predicted that the
spectrum of kinetic energy would have a E(q) ~ q* scaling regime at
large scales. However, he could not access sufficiently large scales to
verify this prediction in simulations®. Here, we leveraged our mini-
mal approach to reach very large-scale simulations that allowed us to
conclusively demonstrate this scaling regime (Fig. 4). Moreover, we
provide an analytical understanding of the origin of the scaling and
of the universal character of its exponent. In the absence of inertia,
hydrodynamic interactions are long-range. Thereby, local stresses
generate not only coherent vortices of a characteristic size but also
large-scale correlated flows. These flows span a range of scales only
limited by the system size, as manifested in the scaling behaviour.
We derived the scaling laws from the governing equations simply
by assuming that the director field has a finite correlation length.
Provided that this condition holds, we predict E(q) ~ g7

NATURE PHYSICS | VOL 16 | JUNE 2020 | 682-688 | www.nature.com/naturephysics


http://www.nature.com/naturephysics

NATURE PHYSICS

ARTICLES

In other words, we conclude that, via the long-range hydrody-
namic interactions of viscous flow, active processes are able to main-
tain large-scale modes out of equilibrium and enforce power-law
scaling. In this sense®, chaotic flows in active nematic fluids can
be called turbulent. These flows form a distinct class of turbulence
at vanishing Reynolds number, in which (1) energy is injected at
all scales in a self-organized way, and (2) the flow exhibits uni-
versal scale invariance at large scales. In addition, active nematic
turbulence can exist without any stationary transfer of energy
across scales. This type of active turbulence is thus different from
that exhibited by flocking models, which display advective energy
cascades”™ and parameter-dependent scaling exponents”*.
Looking forward, we expect that our findings can be tested in large-
scale experimental realizations of active nematics.
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Methods
Numerical scheme. Here we describe the implementation of the numerical
integration of our hydrodynamic equations, equations (6A), (6B) and (7). We
implement a hybrid numerical scheme that combines a spectral method for the
time-independent force balance equations (6A) and (6B) with a generalized
version of the Alternating-Direction Implicit (ADI) algorithm® for the time
evolution of the director dynamics equation (7). To account for fluctuations, we
supplement equation (7) with a Gaussian white noise field with (&(r, £)) = 0 and
(E(x, t)E(x ', ")) = 2DS(x — r ')5(t — t'), which we implement by means of a
standard stochastic algorithm®. We discretize the fields on a grid of n X # points.
We keep a constant grid spacing A, and we vary n to change the system size L = nA.
At each time step, the scheme computes the numerical Fourier transforms
of the director angle field 6(r, t) and of the nonlinear terms on the right-hand
side of equation (6B). We apply the 2/3 rule to prevent aliasing in the Fourier
components®’. From them, we compute the Fourier components of the stream
function field w(r, t) from the spectral decomposition of equations (6A) and (6B).
In dimensionless variables, the Fourier components read:

4 -
T +e| 2

R - S
VYe= —55

2
q .
540 2 Flsin 20]y — 9.9, F [cos 26] (11)

where F[] indicates the Fourier transform operator, and € = 10~* is a numerical
cut-off to avoid the divergence of the ¢ = 0 mode. The Fourier components

are then transformed back to real space to update the angle field according

to the stochastic version of equation (7). To this end, in addition to adding the
noise term, we implemented two modifications of the standard ADI algorithm,
which was originally designed to invert only the Laplacian operator. First,

we discretize the advective terms in equation (7) by means of centred finite
differences. Second, we leverage the Sherman—Morrison formula to impose
periodic boundary conditions®.

Numerical tests. Numerical results were benchmarked against analytical results.
In particular, we checked the growth rate, equation (8), as well as the saturation
angle 6, of the transversal stationary patterns, Supplementary equation (8) in
Supplementary Note. The integral in Supplementary equation (8) was numerically
approximated by summing 10,000 terms of the associated Legendre polynomial®:

24 o [k—1I? .0,
/ 2y — ) % 12
irR " k:0|: 2K ] ) (12)

Numerical details. All numerical integrations have been performed for contractile
systems (S = —1) with R = /5 = 1. The amplitude of the angular noise is set to D
=5x 107"L?/7,. In all cases, the initial condition was a quiescent state with uniform
director along the % axis, namely 6, = 0. The integration time step is reduced as the
number of grid points is increased (Table 1).

Stationary flow patterns. The snapshots of the stationary patterns in Fig. 1b,c were
obtained from simulations run for a time ¢ = 0.4z, on a grid of 256 X 256 points.

Numerical computation of energy and power spectra. All spectra are numerically
computed by replacing the ensemble average by an average over 925 snapshots
of simulations run for a time t = 0.17,. To allow for temporal decorrelation,

the snapshots are taken every 5t = 10~*z.. To allow the system to reach a
statistically stationary state, the snapshots are only taken after an initial transient
of t, = 7.5 X 107z, Using these snapshots, we compute a histogram of the
corresponding spectral quantity over wave vector moduli which,

NATURE PHYSICS | www.nature.com/naturephysics

Table 1| Integration time step At for simulations with different
number of grid points n x n, corresponding to system sizes L = nA

n 128 256 512
At(z,) 10~ 10-° 5x10-°

1,024
10-¢

2,048
2x10~7

for the isotropic correlations of the turbulent state (see Supplementary
equation (28) in Supplementary Note), corresponds to the angular average
of the spectrum.
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