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In recent years, viruses similar to those that cause serious disease in humans and other
mammals have been detected in apparently healthy bats. These include filoviruses,
paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus
disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS)
in humans. The evolution of flight in bats seem to have selected for a unique set of
antiviral immune responses that control virus propagation, while limiting self-damaging
inflammatory responses. Here, we summarize our current understanding of antiviral
immune responses in bats and discuss their ability to co-exist with emerging viruses that
cause serious disease in other mammals. We highlight how this knowledge may help us
to predict viral spillovers into new hosts and discuss future directions for the field.
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INTRODUCTION

The outbreaks of Nipah virus infection in Malaysia (1998-1999) and Bangladesh (2001), Hendra
virus infection in Australia (1994) and the severe acute respiratory syndrome (SARS) pandemic
of 2003 laid the foundations for investigations into bats (mammals of the order Chiroptera) as
reservoirs of emerging viruses (1, 2). During the SARS pandemic of 2003, 8,098 people were infected
and 774 died (3). Subsequent sampling identified a closely related SARS-like virus in Himalayan
palm civets (Paguma larvata) (4) and bats in the region (2, 5). Moreover, viruses similar to those
that cause serious diseases in humans and agricultural animals have been detected in bats. These
include filoviruses (related to Ebola and Marburg viruses) (6-8), paramyxoviruses (related to Nipah
and Hendra viruses) (9) and coronaviruses [related to viruses that cause SARS and Middle East
respiratory syndrome (MERS)] (10-14). Of note, these viruses do not appear to cause disease in
bats and this has led to multiple studies exploring the ability of bats to harbor these viruses with no
observed clinical consequence (15-17).

The order Chiroptera is diverse and consists of over 1300 species of bats that are
distributed across every continent except Antarctica (18). Chiroptera consists of two suborders,
Yinpterochiroptera (which comprises megabats and several families of microbats) and
Yangochiroptera (comprising all remaining microbat families) that diverged over 50 million years
ago (19-21). Within these suborders, bat species display tremendous diversity in size, morphology,
ecological niches, diets, and social interactions. Considering the large number of species and the
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evolutionary diversification, studies performed on one bat may
not be representative of all species. Bats play an important
role in the ecosystem via pollination, seed dispersal and insect
control (18). However, recent studies have also discovered
an increasing diversity of zoonotic viruses in bats (22, 23).
Experimental infections of multiple bat species with Ebolavirus
(24), Marburg virus (MARV) (25), MERS coronavirus (MERS-
CoV) (26), Nipah virus (27), and Hendra virus (28) have
demonstrated limited viraemia in bats. These studies raise further
questions about adaptations in bat antiviral immune responses.
The evolution of the bat antiviral immune system is multifaceted
and several factors, such as the evolution of flight (29, 30)
and co-evolution of bats with their viruses have likely shaped
their distinct immunological responses. Understanding how bats
control virus-mediated pathogenesis may enable researchers
to identify novel therapeutic targets and molecules to treat
infections with these viruses in other mammals, including
humans and agricultural animals. In this Review, we summarize
major developments in understanding bat antiviral responses,
highlighting unique properties of bat immune systems and
comparing and contrasting antiviral signaling pathways in bat
and human cells.

INNATE IMMUNITY IN BATS

Mammalian cells have evolved conserved pattern recognition
receptors (PRRs) that sense pathogen associated molecular
patterns (PAMPs) derived from viruses, bacteria and parasites
(31-33). Following virus infection, infected cells initiate signaling
events that induce the expression of antiviral and pro-
inflammatory cytokines (33-35). Antiviral cytokines, such as
interferons (IFNs), activate the expression of IFN-stimulated
genes (ISGs) that inhibit virus replication through different
mechanisms [reviewed by Schoggins et al. (36)]. Innate signaling
pathways are being extensively investigated in human and rodent
cells and recent studies have discovered the existence of similar
pathways in bats.

The availability of whole genome and transcriptome
sequences for some bat species has enabled in silico data mining
to detect homologs of the mammalian innate immune system.
Approximately 3.5% (or 500 in total) of the transcribed genes
identified in the black flying fox (Pteropus alecto) are thought
to be immune-related (37). In the closely related Jamaican fruit
bat (Artibeus jamaicensis), 466 immune-related genes have
been identified by transcriptome analysis (38) and 2.75% of
genes (roughly 407 genes) in the Egyptian fruit bat (Rousettus
aegyptiacus) are immune-related (39). These studies were
amongst the first to produce transcriptomic datasets for bats
and pioneered studies of the bat immune system. Furthermore,
an examination of the transcriptome of P. alecto identified a
proportion of transcripts that did not match known annotated
transcripts, suggesting the presence of bat-specific transcripts,
some of which may also have immune functions (37). In
comparison, 7% of the human genome represents immune genes
(40). Thus, it is possible that we are yet to discover the full range
of immune related genes in bats or bats may indeed have a

smaller repertoire of immune-related genes, relative to humans.
These studies need to be further validated by an exhaustive
search of novel immune-related genes in bats, sampling multiple
bat species and sequencing transcripts from different cell types
and tissues. The genomes and transcriptomes of at least 18 bat
species are currently available in databases (30, 41), providing
important insights into the evolution of their immune system
and antiviral immunity. Below, we discuss the evolution of
antiviral responses in bats in the context of cellular detection of
RNA and DNA viruses.

Bat PRRs and RNA Viruses

PRRs, such as Toll-like receptors (TLRs) are evolutionarily
conserved across the animal kingdom (42). Due to the
importance of bats as reservoirs of zoonotic RNA viruses (43),
there is particular interest in identifying the intracellular PRRs in
bat cells that may engage antiviral signaling pathways following
infection with RNA viruses. In human cells, endosomal TLRs
3, 7, and 8 detect viral RNAs (35). Full-length transcripts
for TLR 1- TLR10 have been sequenced in P. alecto and a
TLR13 pseudogene has been detected (44), but their functions
in bats have not been fully characterized. Bat cells from
multiple species upregulate type I IFNs and ISGs in response
to poly(L:C) treatment and Sendai virus infection, suggesting
that the dsRNA sensing machinery is conserved between
bat and human cells (45-49). The role of TLR3 in sensing
exogenous dsRNA has been confirmed in cells from the big
brown bat (Eptesicus fuscus) (49), but interaction studies and
identification of ligand binding domains in bat TLR3 have not
been performed. Computational structural analysis of TLRS8
sequences from twenty-one bat species has identified differences
between bat and human sequences (50). 63% of bat TLRS
genes have evolved under purifying selection and 7% of amino
acid sequences that make up the ligand-binding domain of
TLR8 differ between bat and other mammalian TLR8 proteins.
Moreover, TLR8 sequences vary within bat species (50). Thus,
it is important to acknowledge species-specific adaptations
in bats.

Cytosolic PRRs, such as retinoic acid-inducible gene-I (RIG-
I) and melanoma differentiation-associated gene 5 (MDA5),
that detect exogenous RNA in human cells have been detected
in most bat genomes or transcriptomes that have been
studied (37, 49). RIG-I and MDAS5 from P. alecto have
similar primary structures and patterns of tissue expression
compared to their human counterparts. Similar to human
and rodent cells, P. alecto kidney cells produce IFNs in
response to stimulation with poly(I:C) (46). A separate study
in the distantly related insectivorous bat species, E. fuscus also
identified a role for RIG-I and MDAS5 in sensing poly(L:C) (49).
Thus, cytosolic RNA sensors are conserved and functional in
bat cells.

Limited Inflammatory Responses

Following ligand sensing, PRRs signal through adaptor proteins
to express antiviral and pro-inflammatory cytokines. Regulation
of such inflammatory responses is crucial in order to limit
tissue damage. Many severe virus infections are associated with
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excessive inflammation-associated pathology in humans (51, 52).
Bats have evolved novel mechanisms to limit virus-induced pro-
inflammatory responses while maintaining type I IFN responses
to limit virus propagation (Figure 1). Understanding how bats
limit virus-induced pro-inflammatory processes may enable
researchers to adapt these strategies to counteract inflammation
in humans.

In E. fuscus, the NF-kB family member c-Rel can interact
with the promoter sequences of TNF to restrict the levels
of production of this inflammatory cytokine (49). The lack
of a strong inflammatory response in virally infected bat
immune cells has also been attributed to low levels of NLRP3
inflammasome activation (17). Bat cells infected with influenza
A viruses, Melaka virus or MERS-CoV induced lower levels
of apoptosis-associated speck-like protein containing a CARD
(ASC) speck formation and IL-1f secretion compared to what is
seen in mouse and human cells, but this had minimal effect on the
levels of virus replication (17). Strong and chronic inflammation
has been associated with poor disease prognosis and health
issues in humans and other susceptible animal models (53, 54).
The ability of bats to control high levels of inflammation may
also explain their long life span (55, 56) in addition to their
ability to host (57) multiple viruses in the absence of clinical
disease. Similar studies on virus-host interactions in bats are
allowing researchers to understand the evolution of antiviral
responses in mammals and underlying factors that lead to lethal
disease outcomes in humans upon infection with emerging bat-
borne viruses.

Induction of IFNs in Bats

In human cells, RNA and DNA virus recognition and signaling
converge on the transcription factors interferon regulatory factor
3 (IRF3) and IRF7 (31, 58) that drive the expression of IFNs
(33). Bat IRF3 sequences are evolutionarily distinct from their
mammalian counterparts (59). Functional studies indicate that
IRF3 in E. fuscus cells mediates antiviral signaling in response
to poly(I:C) and MERS-CoV. Knock-down or deficiency of IRF3
in E. fuscus cells reduces IFNP induction in response to polyl:C
stimulation or MERS-CoV infection (59). In P. alecto cells, IRF7
mRNA is constitutively expressed and has a more widespread
tissue distribution in bats compared to in humans and mice,
which may allow bats to respond more rapidly to infection (60).
Functional activity of P. alecto IRF7 has also been demonstrated.
Similarly to knockdown of IRF3 mRNA in E. fuscus, knockdown
of IRF7 in P. alecto cells significantly reduced the induction
of mRNA encoding IFNP following infection with the mouse
paramyxovirus Sendai virus and led to an increase in viral titres
when the cells were infected with the bat paramyxovirus Pulau
virus (60). In both P. alecto and E. fuscus cells, IRF7 is induced in
response to poly(IC) stimulation (49, 60). However, cytoplasmic
adaptor proteins of TLRs and cellular kinases that activate IRF3
and IRF7 have not been studied in bats.

The RLR adaptor, mitochondrial antiviral-signaling (MAVS)
protein leads to nuclear translocation of NF-kB and IRF3 for
the induction of type I IFNs (61). Functional conservation in
MAVS signaling has been demonstrated in the Chinese rufous
horseshoe bat (Rhinolophus sinicus) and the straw-colored fruit

bat (Eidolon helvum). Interestingly, expression of bat MAVS
in MAVS knockout human cells resulted in induction of the
IFNB promoter and expression of an ISG, namely IFN-induced
protein with tetratricopeptide repeats 1 (IFIT1) (62). Expression
of bat and rodent MAVS in human MAVS knockout cells also
resulted in the activation of IRF3 post Sendai virus infection (62).
These studies suggest that rodent, human and bat MAVS have
conserved functional properties, however, downstream signaling
pathways and molecules involved in MAVS-mediated signaling
are yet to be characterized in bats.

An early IFN response is critical to limit virus propagation
(36, 63, 64). The type I IFN encoding locus is contracted in the P.
alecto genome; it has only 10 IFN loci, including three functional
IFNa loci, and this is fewer than any other mammalian species
(15). Unstimulated tissues and cells from P. alecto constitutively
express transcripts for three IFNa genes and associated ISGs. In
contrast, constitutive expression of I[FNa was not observed in
primary cells from R. aegyptiacus (16), hinting at species-specific
differences in IFN responses in bats. Treating R. aegyptiacus
cells with IFNw functionally inhibited vesicular stomatitis virus
(VSV) replication (16). Sendai virus infection also induces the
expression of IFNs in R. aegyptiacus cells, including an IFNw
response (16). IFNk and IFNw from the Serotine bat (Eptesicus
serotinus) can also limit replication of multiple lyssavirus strains
in susceptible bat cell lines (65).

Beyond type I IFNs, type III IFNs (IFNXs) also play a role in
antiviral immunity in mammals and induce a similar subset of
ISGs (66). P. vampyrus has coding sequences for three type III
IFNs in its genome, which is similar to the number of functional
type III IFNs in humans, but only two are transcribed in the
closely related bat P. alecto (67). Expression of IFNA1 and A2 in
P. alecto splenocytes was induced upon infection with Tioman
virus (bat paramyxovirus) in the absence of type I IFN expression,
providing evidence for a role for type III IFNs in the ability of
bats to coexist with viruses (67). However, henipavirus infection
antagonizes type I and type III IFN production and signaling
in P. alecto cells, unlike in human cells where only type I IFN
production is inhibited by viral proteins (68). Given the variety
of IEN subtypes and bat species, it will be important to further
elucidate the response within different immune and structural
cell types from multiple bat species following infection with
viruses representing diverse viral families.

Interferon Signaling

In human cells, IFNs interact with IFN a/f receptors (IFNAR),
which comprise IFNAR1 and IFNAR2, to induce ISGs. IFN
signaling in P. alecto cells is dependent on IFNAR2 (69):
depletion abolishes IFN signaling and significantly increases
replication of HINT1 influenza virus. It is widely accepted that
ISG expression correlates with the establishment of an antiviral
state in infected and neighboring cells (36). In human cells, based
on cell type and duration of IEN treatment, 50-1000 ISGs have
been identified (36). It has not yet been established how many
ISGs are induced in different bat cells. Furthermore, Shaw and
colleagues demonstrated that each mammal possesses a unique
repertoire of ISGs, including genes that are common and others
that are species or lineage specific (70). Considering that bats are
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FIGURE 1 | Bat cells mount an antiviral response to RNA viruses, but limit the expression of inflammatory cytokines. Infection with RNA viruses, such as Sendai virus,
or transfecting cells with surrogate double-stranded RNA [poly(l:C)] or single-stranded RNA is detected by Toll-like receptors (TLRs) 3, 7 and 8 or cytosolic receptors
retinoic acid-inducible gene-I (RIG-l) and melanoma differentiation-associated protein 5 (MDAS). Activation of these receptors activate downstream adaptor proteins,
such as mitochondrial antiviral signaling protein (MAVS). Adaptor proteins activate cellular kinases, such as TANK-binding kinase 1 protein (TBK1), which in-turn
activate interferon regulatory factor 3 (IRF3) or IRF7 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) to stimulate the expression of interferons
(IFNs), such as IFNs a, B, w, k, and », and pro-inflammatory cytokines, such as IL8, TNFa, and IL1B, respectively. IFNs bind to interferon a/p receptors (IFNAR; IFNAR1
and IFNAR2) on infected and neighboring cells to activate the JAK-STAT signaling pathway via kinases such as Janus kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2) that
phosphorylate signal transducer and activator of transcription (STAT) proteins. Phosphorylated STAT proteins (STAT1 and STAT2) merge with IRF9 and induce the
expression of interferon stimulated genes (ISGs), such as OAS1 and Mx1. However, unlike in human cells, the parallel activation of pro-inflammatory cytokines is
dampened in bat cells. c-Rel, a protein from the NFkB family of proteins binds to the TNFa promoter to inhibit activation of this pro-inflammatory cytokine in E. fuscus
cells (49). The bat NLRP3 inflammasome activation is dampened, reducing the ability of bat cells to produce IL1B, a key inflammatory cytokine (17). In the figure, red
arrows indicate a dampened response in the pathway, relative to human cells. Question marks (?) highlight pathways and molecular homologs that have not been

characterized or identified in bats. The data have been compiled from studies in different species and one finding may not represent a universal bat response. ER,
endoplasmic reticulum.

over 1300 species and are distributed between two sub-orders, it
is likely that they express unique and different ISGs. Identifying
and studying homologs of human ISGs alone may not represent
the full potential of ISGs in bats.

Similar to what is seen in human cells, poly(I:C) induces
the expression of transcripts for MDAS5, RIG-I, radical S-
adenosyl methionine domain-containing 2 (RSAD2), IRF7, 2-
5/-olig0adenylate synthase 1 (OASI), IFN-inducible protein 6
(IFI6) and myxovirus resistance 1 (MxI) in E.fuscus kidney cells
(49). Mx1, OASI and protein kinase R (PKR) transcritps are also
inducible in P. alecto bat cells in an IFN dose-dependent manner
(71). Furthermore, the OASI gene promoter in P. alecto cells has
two IFN-stimulated response elements (ISREs), compared to the
one ISRE element that is seen in the human OAS1 promoter
(71). Thus, OAS1 may play an important antiviral role in RNA
virus infections in P. alecto and E. fuscus. A separate study

showed that ectopic expression of Mx1 from six different bat
species reduced ebolavirus and influenza A virus replication
in human embryonic kidney (HEK293T) cells (72). Residues
within the Mx1 protein in 13 species of bats are positively
evolving (72), hinting at the importance of their role in limiting
virus propagation.

ISG transcript expression kinetics have been studied in P.
alecto cells. There is a universal rapid induction and subsequent
rapid decline in the levels of all ISG transcripts that were studied
in type I IFNa treated P. alecto cells (73), which may correlate
with quicker control of virus replication and reduced cellular
toxicity. In contrast, ISG transcript levels in IFN-treated human
cells remained elevated for longer times (73). Transcripts for ISGs
in unstimulated bat cells were also higher than in human cells,

further corroborating the observation of high levels of basal IFNa
in this bat species (15).
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Unlike in human cells, ribonuclease L (RNase L) is inducible
by IENs in P. alecto cells. Expression of atypical ISGs has also been
observed in immortalized P. vampyrus kidney cells infected with
Newcastle disease virus (NDV) (74). In addition to upregulating
expression of IFNB, RIG-I, ISG15, MDAS5, and IRF1, NDV-
infected P. vampyrus kidney cells also upregulated transcripts
for RNDI, SERTA-domain containing 1(SERTADI), ChaC
glutathione specific gamma-glutamylcyclotransferase 1(CHACI),
and MORC3. The activation of these genes is dependent on NDV
infection, as universal IFNa treatment alone is not sufficient
(74). Thus, virus infection may induce secondary responses that
augment IFN treatment. Furthermore, bats may have evolved
unique sensors of viral components or PAMPs that can activate
ISGs in the absence of IFN stimulation. Alternatively, bats may
have evolved virus sensing and signaling mechanisms that can
stimulate the production of ISGs via transcription factors that
directly interact with the promoters of ISGs, independent of
IFN production. The expression of RND1 as an ISG in the
above study was restricted to P. vampyrus cells, while MORC3
expression varied between cells from different bat species, further
highlighting the importance of species-specific differences in bats
(74). The atypical ISGs that were reported in this study have not
been characterized as antiviral genes in bats or other mammals,
including humans and murine species. These observations also
raise additional questions about the possibility of virus-specific
antiviral genes that are induced independently of IFNs in
bat cells.

In summary, bats respond to RNA virus infections by
inducing a robust IFN response while controlling an exaggerated
pro-inflammatory response, thus limiting virus-induced
immunopathology as observed in humans infected with these
viruses (51, 52, 75). However, these observations have largely
been made in primary and immortalized cell lines and the
physiological relevance of these responses in in vivo bat model
systems remains to be tested. Several unique ISGs and atypical
induction of ISGs have been observed in bat cells (73). In human
cells, expression of individual ISGs can inhibit virus replication,
such as ISG20 that displays remarkable anti-bunyavirus activity
(76). The effects of expressing homologs of atypical bat ISGs
in human cells have not been studied. Learning from atypical
antiviral immune responses in bat cells may enable researchers to
design alternate therapeutic strategies to induce or exogenously
activate antiviral pathways in humans and agricultural animals
that are infected with emerging high-impact viruses. Studies in
bat cells also highlight the antiviral roles of less studied IFNs,
such as IFNk and IFNw (65). Studies looking at the effect of
inducing these IFNs in human cells may help us identify the
role played by these IFNs in limiting replication of zoonotic
bat-borne viruses. Although responses to RNA virus infections
are being investigated in bats, the immunological responses to
DNA viruses are less studied.

Sensing DNA Viruses

The focus on zoonotic RNA viruses has led to slower
developments in understanding interactions between the bat
immune system and DNA viruses. Multiple DNA viruses
have been detected in bats, including herpesviruses (77-80),

adenoviruses (81), hepadnaviruses (82), poxviruses (83) and
polyomaviruses (81, 84, 85). These discoveries highlight the
need to study antiviral responses to DNA viruses in bats. In
human cells, endosomal TLR9 (35) and cytosolic receptors from
the PYHIN family (86) [absent in melanoma 2 (AIM2), IFN-
inducible gene 16 (IFI16), myeloid cell nuclear differentiation
antigen (MNDA) and IFN-inducible protein X (IFIX)], cyclic
GMP-AMP synthase (cGAS) (87), DNA-dependent activator of
IFN-regulatory factor (DAI) (88), RNA polymerase III (PolIII)
(89), LRR binding FLII interacting protein 1 (Lrrfipl) (90),
DDX41 (91), DExH-Box helicase 9 (DHX9) and DEAH-Box
helicase 36 (DHX36) (92) can detect exogenous or self DNA
(86, 93). Detection of exogenous or self DNA leads to activation
of downstream mediators and expression of antiviral and pro-
inflammatory cytokines (35).

Dampened DNA Virus Sensing in Bats

While bats have evolved to detect and respond to RNA virus
infections, studies indicate that responses to DNA viruses are
dampened (94, 95) (Figure 2). Ahn et al. compared the genomic
sequences of 10 bat species and discovered that the PYHIN family
of genes were absent (94). In addition, a recent study found
that the ability of stimulator of IFN genes (STING)—which is
an essential adaptor protein that is involved in multiple DNA
sensing pathways (93)—to induce IFN expression is dampened
in bat cells due to the loss of a serine residue at position 358
(95). This mutation in STING led to higher levels of herpes
simplex virus (HSV) replication in P. alecto kidney cells and
re-introducing the serine residue at position 358 significantly
inhibited HSV replication. These studies provide experimental
support for the loss of self DNA and exogenous DNA sensing and
signaling in bat cells.

TLRY sequences in eight bats, from three different families
(Pteropodidae, Vespertilionidae, and Phyllostomidae) are evolving
under purifying selection and multiple mutations in the ligand-
binding domain of this receptor have been reported (96). TLR9 in
E. fuscus kidney cells could not be stimulated to the same extent
as observed in human cells by CpG ODNs (49). This observation
supports computational data by Escalera-Zamudio et al. that
TLRY in bats may have evolved altered ligand specificity (96)
and bat-specific CpG ODNs may be required to initiate TLR9
signaling. The functional roles and activating ligands of all TLRs
in bats are yet to be identified.

The reduced ability of bat cells to detect exogenous and
self-DNA is speculated to be a side-effect of the evolution of
flight (94). During flight, the body temperature of bats can rise
dramatically to over 41°C (97). High metabolic rates, along with
elevated body temperatures, produce reactive oxygen species,
which can cause DNA damage and release of DNA into the
cytoplasm (98, 99). To overcome this, bats show evidence of
positive selection in various genes involved with DNA repair,
with consequences for antiviral responses (29). Similarly, the
selective pressure of DNA damage and release of self-DNA in
the cytoplasm may have selected for the loss of certain cytosolic
sensors of DNA in bat cells, while evolving DNA binding motifs
in other receptors, such as TLR9 (96). These observations have
been largely made by analyzing genomic sequences and they
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FIGURE 2 | Exogenous and self-DNA sensing pathways are dampened in bat cells. In human cells, endosomal TLR9 (35) and cytosolic receptors from the PYHIN
family (86) [absent in melanoma 2 (AIM2), IFN-inducible gene 16 (IFI16), myeloid cell nuclear differentiation antigen (MNDA) and IFN-inducible protein X (IFIX)], cyclic
GMP-AMP synthase (cGAS) (87), DNA-dependent activator of IFN-regulatory factor (DAI) (88), RNA polymerase Il (Pollll) (89), LRR binding FLII interacting protein 1
(Lrrfip1) (90), DDX41 (91), DExH-Box helicase 9 (DHX9) and DEAH-Box helicase 36 (DHX36) (92) can detect exogenous and self-DNA (86, 93). On binding to DNA,
these receptors signal through adaptor proteins to activate cellular kinases, such as TANK-binding kinase 1 protein (TBK1), which in-turn activates transcription
factors, such as interferon regulatory factor 3 (IRF3) or IRF7 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) to induce expression of antiviral
interferons (IFNs) and pro-inflammatory cytokines, respectively. PYHIN family of cytosolic receptors signal through STING and the NLRP3 inflammasome. This family of
receptors has been negatively selected for and lost in the genomic sequences of bats (94). A downstream signal mediator of cGAS, stimulator of IFN genes (STING) is
less functional in bat cells, relative to human cells (95). The attenuated function of STING would likely extend to other DNA sensors that signal through STING, such as
DDX41, DHX9, DHX36, and DAI. The presence and function of additional homologs of DNA sensors, such as TLR9, Pollll, and Lrrfip1 have not been characterized in
bats. In the figure, red arrows indicate a dampened response in the pathway, relative to human cells. Question marks (?) highlight pathways and molecular homologs
that have not yet been characterized or identified in bats. The data have been compiled from studies in different species and one finding may not represent a universal

bat response. ER, endoplasmic reticulum.

raise several questions about antiviral defensive responses in bats
against DNA viruses. Receptors such as Lrrfipl (90), TLRY (96)
and pollIl (89) may have been positively selected for in bats
to compensate for the loss of the PYHIN family of proteins
and the lack of activation of STING (Figure 2). In addition,
other pathways, such as autophagy may have undergone positive
selection in bats (100). The DNA-dependent protein kinase
catalytic subunit (DNA-PKcs, encoded by PRKDC) is involved
in DNA-damage responses and has additionally been suggested
to bind cytosolic DNA and promote type I IEN responses (101).
DNA-PKcs is positively selected for in the genomes of both P.
alecto and M. davidii, likely due to the evolution of flight (29).
Whether positive selection on bat DNA-PKcs has inadvertent
consequences for DNA sensing in bats remains to be determined.

Compensating for Dampened DNA Sensing
There is evidence of crosstalk between viral RNA- and DNA-
sensing pathways in mammals and there also appears to be

positive feedback mechanisms that increase cellular expression
of STING (102). In theory, mRNA transcripts from DNA viruses
could be sensed by RIG-I in bat cells to initiate an antiviral
response, which could lead to increased expression of STING,
thereby overcoming the limited activation of STING that is
typically seen in bat cells. It is unlikely that bats have lost all
forms of exogenous and endogenous DNA sensing machinery
since DNA viruses have been detected and isolated from multiple
species of bats (77-79, 83, 103). Future studies will elucidate
adaptations that bat cells have evolved to sense DNA viruses,
while limiting detection of self DNA.

Nucleotide-binding oligomerization domain (NOD)-like
receptors are intracellular PRRs that can recognize nucleic acids
from invading viruses (104). Genes encoding the NOD-like
receptors NACHT, LRR, and PYD domains-containing protein
3 (NLRP3) and NOD-, LRR- and CARD-containing 5 (NLRC5)
have been identified in the transcriptome of P. alecto (37) but
only NLRP3 has been functionally characterized in bats (17).
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Despite the identification of homologs of several PRRs in some
bat species, the available genomes of most bat species have
not been assessed for the presence of PRRs. The presence or
absence of novel immune-related genes or altered functions for
existing genes have not been exhaustively studied. Similarly, it is
unknown if existing PRRs can recognize a broader category of
PAMPs to compensate for the lost PRRs in bats.

In summary, the evolution of flight in bats may have had
inadvertent consequences for their immune responses. Bats
diverged over 80 million years ago (21, 105) and are the only
mammals capable of true self-powered flight (105). Bats display
high metabolic rates and body temperatures during flight (106).
To minimize DNA damage that is associated with high metabolic
rates, DNA repair pathways have been positively selected for in
bats (29). In addition, endogenous DNA sensing pathways have
been dampened to reduce self-DNA-mediated immunopathology
(94, 95). This may have had consequences for detecting viral
DNA. Whether global DNA sensing pathways in bats have been
dampened is speculative, especially since bats carry several DNA
viruses and do not display overt signs of infection (43). Future
studies will determine if bats have evolved novel mechanisms to
differentially sense and respond to self and exogenous DNA.

ADAPTIVE IMMUNITY IN BATS

There are limited studies on adaptive immune responses
in bats, largely due to a lack of reagents and appropriate
experimental models. Recent developments in the identification
and development of bat cross-reactive antibodies along with the
establishment of various captive bat experimental colonies have
facilitated advancement in this area, as we discuss below.

Antibody Responses in Bats

Transcripts for major subclasses of antibodies, such as IgA, IgE,
IgG, and IgM have been detected in bats (107, 108). Serological
studies of virus-specific bat antibodies were among the first
functional studies to be performed. Infection of R. aegyptiacus
with MARV resulted in the development of antigen-specific
IgG responses in the bats by 28 days after challenge (25, 109-
111). While the durability of the antibody response seems to
vary—with one study reporting that antibody titers fell below
detectable levels by 3 months after infection (25) and another
study finding virus-specific 1gG levels were still maintained
11 months following infection (111)—both studies found that
secondary challenge with MARV increased virus-specific IgG
antibodies titres to a greater extent than seen following initial
MARY infection. Earlier studies reported that the magnitude and
duration of antibody responses in bats in response to antigens
such as X174 bacteriophage or sheep red blood cells may be lower
compared to what is seen in conventional laboratory animals
(112, 113). The function of antibodies during viral infection in
bats is also not known. While seronegative bats had no detectable
virus replication or shedding (25), a subsequent study identified
non-neutralizing antibody responses following MARV, EBOV,
and Sosuga virus (SOSV) infection (114). In another study,
sera from wild-caught E. fuscus bats that were positive for E.
fuscus gammaherpesvirus (EfHV) genomic sequences did not

contain neutralizing antibodies against the virus (79). Moreover,
experimental infection of P. alecto with Hendra virus led to
inconsistent patterns in seroconversion (28). Approximately half
of the animals seroconverted and had relatively low titres of
virus-neutralizing antibody, but the bats were not necessarily
protected from virus replication and shedding. These data
suggest that the antibodies that arise in bats in response to
virus infection may control viruses via a mechanism that is
independent of virus neutralization.

Although patterns of seroconversion in bats have been
inconsistent at the individual-level, serological data may provide
valuable information about virus circulation at the population
level. For example, age-specific seroprevalence against Hendra
virus in P. scapulatus populations followed the classic J-
shaped curve suggesting waning maternal immunity followed
by horizontal transmission (115). Currently, our understanding
of the within-host dynamics of viruses within bats is poor—
a spectrum of hypotheses from acute infections followed by
long-term immunity to persistent infections followed by latency
and reactivation are possible (116). Serological data can help
distinguish among possible hypotheses to identify mechanisms
of viral persistence and circulation in bats. For example, Glennon
et al. constructed a generalized SEIR (susceptible, exposed,
infectious, recovered) model and demonstrated 46 plausible
transitions among SEIR states in infected bat populations. When
they fitted all 46 models to longitudinal data on henipavirus
serology from captive Eidolon helvum bats in Ghana, transitions
that involved re-infections and latent infections best fit the data
(117). Similarly, Brook et al. fitted serological data of bat species
in Madagascar to mathematical models and found support for
waning maternal immunity in neonates, whereas in adult bats
the models supported the continued presence of immunity (118).
More recently, however, R. aegyptiacus challenged with MARV
17-24 months after primary exposure exhibited a robust MARV-
specific antibody response and no detectable viremia or oral
shedding of virus even though the bats had MARV-specific
antibodies below the threshold of seropositivity (25). Following
heterologous MARV challenge, bats previously exposed to
MARYV exhibited some virus replication, but no detectable virus
shedding. This finding suggests that although antibody levels may
wane over time, bats still maintain protective immunity.

At the genomic level, bats appear to have a much larger
repertoire of germline genes encoding immunoglobulin variable
(V), diversity (D) and joining (J) segments than humans,
which could potentially provide a larger number of antigen
specificities in their naive B cell receptor (BCR) repertoire. In
little brown bats (Myotis lucifugus), there is less evidence of
somatic hypermutation, indicating that bats may rely more on
their germline repertoire to respond to infections (107, 119).

Immune Cell Populations in Bats

Very few bat-specific antibodies that identify immune cell
populations exist. To overcome this obstacle, Martinez Gomez
et al. and Periasamy et al. screened commercially available
antibodies for cross-reactivity to cells isolated from blood and
primary and secondary lymphoid tissues of P. alecto bats
(120, 121). Using monoclonal antibodies specific to mammalian

Frontiers in Immunology | www.frontiersin.org

January 2020 | Volume 11 | Article 26


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

Banerjee et al.

Evolution of Novel Immune Systems in Bats

transcription factors, Martinez Gomez et al. found that wild-
caught P. alecto bats displayed a predominance of CD8+ T cells
in the spleen, whereas CD44 T cells were the most prevalent
lymphocyte in the blood, lymph nodes, and bone marrow.
An unexpectedly high portion of CD3% T cells constitutively
expressed mRNAs for IL-17A, IL-22 or transforming growth
factor beta 1 (TGFP1), which indicates a strong bias toward Th17
and regulatory T cell subsets in bats. Following stimulation with
mitogens—phorbol 12, 13-dibutyrate (PDBu) and ionomycin,
the total number of CD3% T cells expressing IL-17A, IL-22,
or TGFB1 did not increase, but there was an increase in the
frequency of T cells expressing TNE, IL-10, IFNy, IL-2, granzyme
B, and perforin.

To evaluate B cell responses in bats, antibodies that recognize
bat Ig, MHC-II, CD21, and CD27 were identified (121). B cells
were successfully identified, although it was found that unlike
humans, bats have more T cells than B cells in the blood and
spleens. B cell proliferation was induced by lipopolysaccharide
(LPS) treatment in bats suggesting they may have a functional
TLR4 homolog. Furthermore, calcium influx was observed upon
crosslinking of the BCR, suggesting that bat B cells are functional.
The experiments performed on P. alecto were done on wild-
caught bats, which may differ in their immune status and this is
evident by the variability in data observed in this study within
sampled bats (120); however, Periasamy et al. also evaluated
captive Eonycteris spelaea bats and again found that T cells are the
dominant immune cell population in the spleen and blood (121).

In the absence of reliable in vivo studies, attempts have been
made to decipher adaptive immunity in bats using primary cells,
immortalized cell lines and ex vivo cell cultures (Figure 3). Crude
bone-marrow derived myeloid cell preparations from E. fuscus
were used to validated dsRNA sensing (49). P. alecto kidney cells
were used to identify self and Hendra virus peptide presentation
by MHC class I molecules (125). This study showed that bat
MHC molecules can accommodate larger peptides, compared
to other mammals and have unique consensus-binding motifs,
potentially as a result of their co-evolution with viruses (125).
The MHC class I protein complexes (126) in P. alecto were
recently crystallized, revealing three additional amino acids in bat
MHC class I (methionine, aspartic acid and leucine), compared
to other selected mammals (127). The three amino acids formed
an additional salt bridge that could potentially present high
affinity peptides during the peptide exchange process in bat
cells facilitating an efficient cell-mediated immune response.
With the ongoing development of bat-specific reagents, bone
marrow derived dendritic cells (DCs) and macrophages have
been cultured in vitro from P. alecto (122). Zhou et al. generated
P. alecto-specific reagents, such as granulocyte-macrophage
colony-stimulating factor (GM-CSEF), interleukin 4 (IL-4), FMS-
like tyrosine kinase 3 ligand (FLT3L) and colony-stimulating
factor 1 (CSF-1) to culture and characterize monocyte-derived
DCs, conventional DCs (cDCs) and macrophages from P. alecto
(122). Zhou et al. demonstrated that similar to human and
rodent cells, bat macrophages, putative monocytes and putative
cDCs are phagocytic. On stimulation with poly(I:C) (TLR3
ligand), Mx1 (ISG) transcript levels increased in all three cell
types; however, FLT3L-generated bat bone-marrow-derived bat

DCs induced high levels of IFNX2 transcripts on poly(I:C)
stimulation. This is consistent with observations in mice and
humans suggesting that bone-marrow-derived bat DCs share this
functional specialization with rodents and humans (122).

Although reagents are now being identified and developed
that can be used to study bat immunology, experiments
evaluating the immune response to infection still require
specialized facilities to house captive or wild-caught bats.
To overcome this challenge, 80-100 chimeric bat-mice were
developed to study the bat immune system by reconstituting
bat immune cells in these mice. Splenocytes and bone marrow
cells from E. spelaea were transplanted in immunodeficient mice
(NOD-scid IL-2R -/; NOD scid gamma mouse, NSG) (128). Bat
immune cells successfully repopulated the bone marrow, spleen,
liver and blood without the development of graft rejection.
Furthermore, chimeric bat-mice were able to respond to immune
stimuli and produce antigen-specific antibody responses. Of note,
although these mice were successfully reconstituted with bat
immune cells, the proportion of immune cell subsets does not
recapitulate the immune cell frequencies observed in vivo in bats
thus far. Even with that caveat, the ability to create 80-100 mice
with reconstituted bat immune cells (128) provides an excellent
foundation to better study immune cell responses to infection
in bats.

MODULATION OF ANTIVIRAL RESPONSES

Viruses evolve mechanisms to counteract cellular antiviral
responses in the host (129, 130). Emerging bat-borne viruses,
such as coronaviruses that cause SARS and MERS inhibit innate
antiviral responses in the infected host while inducing a strong
pro-inflammatory cytokine response that is associated with
immunopathology and significant morbidity and mortality (52,
131, 132). The ability of bats to harbor viruses from many viral
families with no overt signs of disease may hint at the inability of
these viruses to modulate antiviral responses in bats. Although
in vivo studies indicate that bats infected with henipaviruses
do not develop clinical signs of disease (27, 28), henipavirus
infection of P. alecto lung cells inhibits IFN production and
signaling. Ectopic expression of the ISG tetherin from fruit
bats (Hypsignathus monstrosus and Epomops buettikoferi) can
inhibit Nipah virus replication in fruit bat cells (133). However,
experimental Nipah virus infection of bat cells has been shown
to inhibit IFN production (68) and possibly, the associated
downstream expression of ISGs, such as tetherin. Thus, further
investigations are required to identify how bats control infection
with henipaviruses at cellular and systemic levels in the potential
absence of IFNs.

Not all bat-borne viruses can inhibit IFN production and
signaling in bat cells. MERS-CoV is speculated to have evolved
in Vespertilionid bats (12). MERS-CoV proteins can inhibit IFN
production in human cells (134-136), which contributes to its
pathology. However, infection of E. fuscus kidney cells with
MERS-CoV induces the expression of IFNf and OASI transcripts
in an IRF3-dependent manner (59). Infection of Jamaican fruit
bats (A. jamaicensis) with MERS-CoV did not produce apparent
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FIGURE 3 | Immune relevant cells that have been detected in representative bat species. Progenitor cells and cellular differentiation have not been studied in bats, but
there are some studies on myeloid and lymphoid cells. Most studies on bat immune-relevant cells have been carried out on cells from fruit bats. Functional
characterization of bat T and B cells have been carried out by detecting cytokines that are secreted by these cells on stimulation (120, 121). NK cells from P, alecto
and E. spalaea have been detected by flow-cytometry (121). Macrophages from P, alecto have been detected and cultured in vitro by using P, alecto-specific
reagents. Functional characterization of P alecto macrophages have been carried out by stimulating them with TLR3 ligand [poly(l:C)] and TLR7/8 ligand (CL0O97)
(122). Neutrophils have been detected in E. fuscus and M. lucifugus by differential staining (49, 123). Thrombocytes have not been characterized, but the ability of
bats to heal their wounds has been studied (124). “Depletion of red blood cells (erythrocytes; RBCs) from bat samples have been reported, but RBCs from bats have
not been functionally characterized. NA, not applicable; DC, monocyte derived dendritic cell; TLR, Toll-like receptor.

disease symptoms and induced the expression of ISGs, such
as Mx1, ISG56 and CCL5 (26), further bolstering the in vitro
observations seen with E. fuscus kidney cells. It is likely that
studies with a human adapted isolate of MERS-CoV (EMC/2012)
do not represent true virus-bat interactions. Future studies with

bat CoV isolates will shed more light on the ability of bat
CoVs to modulate antiviral responses in bat cells. The ability of
bat cells to resist virus protein-mediated modulation of innate
defensive responses is the focus of ongoing studies. The 3ABC
proteases of human hepatitis viruses cleave MAVS to evade the
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innate immune response (137). A recent study demonstrated
that bat MAVS orthologs are relatively resistant to cleavage by
their cognate 3ABC proteases, whereas proteases from bat-borne
viruses retain the ability to cleave human MAVS (62).

There are limited studies that have studied the functional
conservation and ability of bat cellular molecules to stimulate
antiviral signaling pathways in human cells. The above study
by Feng et al. showed that in addition to being resistant to
cleavage by 3ABC proteases, bat MAVS can actively signal in
human cells to activate the IFN promoter (62). The idea of
using bat molecules that are resistant to viral protein-mediated
modulation as therapeutics is still far-fetched. Further studies
are required to assess the functional conservation of other
bat molecules that may activate endogenous innate immune
responses in spillover mammals, such as humans that are infected
with bat-borne viruses.

As a reservoir host of several viruses, bats have evolved to
counteract the immune modulatory effects of viral proteins.
Limited studies have been carried out to understand how
innate and intrinsic antiviral responses in bat cells circumvent
inactivation by viral proteins. The few studies that have attempted
to answer this question have used human virus isolates that
are likely adapted to infect and modulate antiviral responses in
human cells. Studies with these isolates [MERS-CoV/ EMC2012
(26, 59), Nipah virus/ Bangladesh/ human/ 2004/ Rajbari R1 (68)
and Nipah virus/ Malaysia/ human/ 1000/ PKL (68)] do not
represent true virus-host interactions that are occurring in the
natural setting. Given the limitations and challenges associated
with isolating viruses from bats (138), these studies represent our
best understanding of these interactions. Isolating bat viruses,
such as recently discovered bat ebolaviruses (6, 7, 139) and
propagating them in relevant bat cells will represent true virus-
host interactions and selection pressure.

IMMUNE RESPONSE AND VIRUS
SPILLOVER

Understanding host immune responses in bats and developing
effective tools to detect and measure these responses in a
meaningful way at a population level will allow for the study
of variations in antiviral responses in wild bat populations.
Wild bat populations are vulnerable to multiple environmental
stressors, including seasonal fluctuations in food availability,
climatic-stressors, and anthropogenic disturbances (140). Each
of these environmental stressors can affect multiple barriers
to pathogen spillover (23, 141). For example, viral excretion
dynamics may be driven by bat densities and contact with
humans may be influenced by bat distributions (142). The
effect of environmental stressors on immune defense and
subsequent pathogen shedding is an important phenomenon
for spillover. Pulses of Hendra virus excretion from Pteropodid
bats, and associated Hendra virus spillover to horses, have
been coincident with severe food shortages for bats that are
driven by climatic anomalies (143). Moreover, seasonal life-
history events such as pregnancy and lactation can induce
physiological and energetic stress that influences antiviral activity

(144). Connections among nutritional stress, reproductive stress
and increased Hendra virus seroprevalence were observed in little
red flying foxes, Pteropus scapulatus (115). Elucidating the links
among nutritional and physiological stress, and mechanisms
underlying these associations require extensive temporal and
spatial sampling of wild bat populations in concert with
laboratory and modeling studies.

A large proportion of E. fuscus bats are infected with an
E. fuscus gammaherpesvirus (79) and it is unknown if the
lack of an effective antiviral response against DNA viruses
aids in inter- and intra-species transmission of herpesviruses
within bats. Speculations remain about the bat antiviral response
and the advantages of co-existing with some of these viruses.
Could infection with these viruses prime bat antiviral responses
against pathogens that do kill bats, such as Tacaribe virus and
rabies virus (145, 146)? Experimental rabies virus infection
studies in bats have led to conflicting conclusions about the
nature of disease, ranging from asymptomatic infections to fatal
meningitis (146-148). Perhaps different strains of rabies virus,
the infectious dose and the route of exposure have varying
effects on the outcome of infection in different bat species.
Currently, the literature is biased toward studying viruses that
do not cause visible signs of disease in bats. Indeed, there is a
need to study viruses that cause disease in bats and associated
immunological consequences in these bats. Bats can remain
infected with multiple zoonotic viruses in the wild (22), the role
of co-infection in modulating immune responses in bats needs
to be investigated. Understanding the impact of deforestation,
nutrition and other environmental factors on antiviral responses
in bats and correlation with virus spillover may allow for the
development of conservation policies that will mitigate the risk of
virus spillover from bats into humans and agricultural animals.

CHALLENGES IN STUDYING BATS

As mentioned previously, the order Chiroptera is diverse and
consists of over 1300 species of bats (18). The two suborders,
Yinpterochiroptera (which comprises megabats and several
families of microbats) and Yangochiroptera (comprising all
remaining microbat families) diverged over 50 million years
ago (19-21) and within these suborders, bat species display
tremendous diversity in size, morphology, ecological niches,
diets, and social interactions. The large species diversity is also
represented, in parts, in the evolution of immune responses
in bats. For example, although primary cells from P. alecto
constitutively express IFNa (15), Pavlovich et al. did not detect
constitutive expression of IFN« in cells from R. aegyptiacus (16).
Furthermore, Pavlovich et al. identified an expansion of type I
IFN genes in R. aegyptiacus (16), whereas type I IFN locus is
contracted in P. alecto (15).

The limitations of studying bat-virus interactions also extend
to the tools that are currently available. The limited repertoire of
cell lines from few species of bats and their tissues have led to
studies where viruses have been propagated and studied in cell
lines that are derived from unrelated or closely related species
of bats. This important topic was recently reviewed by us and
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a call for collaboration and sharing of resources was put out
to advance bat-virus interaction studies at a faster pace (138).
Similarly, inability to isolate majority of the “detected” bat viruses
have led to studies in bats and bat cells with human isolates of
closely related viruses (24, 26). These studies have demonstrated
that infected bats do not develop disease, raising speculations on
the role of bats as reservoirs. However, these observations have
been made in limited species of bats. Isolating a bat virus and
investigating virus replication and pathogen-host interactions in
cells from the source species of bat will represent true natural
processes and enable us to better predict factors that lead to pulses
of increased virus replication and shedding in bats (116, 149). An
interesting study to investigate species specific antiviral responses
would be to infect multiple bat species with Tacaribe virus and
monitor the outcome of infection. Tacaribe virus causes a fatal
infection in Artibeus bats (145) and it will be interesting to see if
this outcome can be reproduced in other species of bats.

Most infection studies in bats and bat cells have used human
isolates or virus stocks that have been propagated in non-bat cell
lines (138). Propagating viruses in non-natural hosts generates
adaptive mutations, such as mutations that were detected during
sequential passages of Marburg virus in mice and cell-culture
(150). Thus, over time, lab cultures of viruses do not represent
viruses that were originally detected or isolated in bats. However,
even with these limitations, they are currently the best model
strains that we have. Indeed, there is a need to isolate bat viruses
and generate virus stocks that have been propagated in cells
from the same species of bat. This was recently achieved for
a bat gammaherpesvirus that was isolated from E. fuscus using
a kidney cell line that was generated from the same species of
bat (79).

It has been particularly challenging to isolate bat viruses and
only fragments of viral genomes have been detected for multiple
bat-borne viruses (6, 7, 85, 151). The use of reverse genetics and
molecular tools have allowed researchers to rescue bat influenza
viruses (152). A similar approach, if possible, could be developed
for other bat viruses that have been difficult to isolate. This
will also require developing cell lines and reagents for the same
species of bat from which virus isolation is to be attempted.

In summary, studies in bats and bat cells are challenging
since limited tools are currently available. Lack of susceptible
cell lines have led to maintenance and propagation of bat viruses
in cells from other mammalian species, which could, in theory,
lead to adaptive mutations in bat viruses. However, even with
these caveats, the field of bat immunology and virology is slowly
developing and discovering novel adaptations in the bat immune
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