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Abstract. We establish that any subset of Rd of positive upper Banach density necessarily contains an

isometric copy of all sufficiently large dilates of any fixed two-dimensional rectangle provided d ≥ 4.
We further present an extension of this result to configurations that are the product of two non-degenerate

simplices; specifically we show that if ∆k1
and ∆k2

are two fixed non-degenerate simplices of k1 + 1 and

k2 + 1 points respectively, then any subset of Rd of positive upper Banach density with d ≥ k1 + k2 + 6 will
necessarily contain an isometric copy of all sufficiently large dilates of ∆k1

× ∆k2
.

A new direct proof of the fact that any subset of Rd of positive upper Banach density necessarily contains

an isometric copy of all sufficiently large dilates of any fixed non-degenerate simplex of k + 1 points provided
d ≥ k + 1, a result originally due to Bourgain, is also presented.

1. Introduction

1.1. Background. Recall that the upper Banach density of a measurable set A ⊆ Rd is defined by

(1) δ∗(A) = lim
N→∞

sup
t∈Rd

|A ∩ (t+QN )|
|QN |

,

where | · | denotes Lebesgue measure on Rd and QN denotes the cube [−N/2, N/2]d.

A result of Katznelson and Weiss [2] states that if A ⊆ R2 has positive upper Banach density, then its
distance set

dist(A) = {|x− x′| : x, x′ ∈ A}
contains all large numbers. This result was later reproved using Fourier analytic techniques by Bourgain in [1]
where he established the following more general result for arbitrary non-degenerate k-dimensional simplices.

Theorem 1.1 (Bourgain [1]). Let ∆k ⊆ Rk be a fixed non-degenerate k-dimensional simplex.

If A ⊆ Rd has positive upper Banach density and d ≥ k + 1, then there exists a threshold λ0 = λ0(A,∆k)
such that A contains an isometric copy of λ ·∆k for all λ ≥ λ0.

Recall that a set ∆k = {0, v1, . . . , vk} of k + 1 points in Rk is a non-degenerate k-dimensional simplex if
the vectors v1, . . . , vk are linearly independent and that a configuration ∆′k is an isometric copy of λ ·∆k in
Rd if ∆′k = x+ λ · U(∆k) for some x ∈ Rd and U ∈ SO(d) when d ≥ k + 1.

1.2. Main Results. In Section 2 we present a new and direct proof of Theorem 1.1 when k = 1, namely a
new proof of the aforementioned distance set result of Katznelson and Weiss. A new direct proof of Theorem
1.1 in its full generality is also given, in fact two different new approaches are presented in Section 3. However,
the main purpose of this article is to establish the following new results, namely Theorems 1.2 and 1.3 below.

Theorem 1.2. Let � = {0, v1, v2, v1 + v2} ⊆ R2 with v1 · v2 = 0 denote a fixed two-dimensional rectangle.

If A ⊆ Rd has positive upper Banach density and d ≥ 4, then there exists a threshold λ0 = λ0(A,�) such
that A contains an isometric copy of λ ·� for all λ ≥ λ0.

Since d ≥ 4 we can write Rd = Rd1 ×Rd2 with d1, d2 ≥ 2. It is important to note that the isometric copies
of λ ·�, whose existence in A Theorem 1.2 guarantees, will in fact all be of the special form

{(x, y), (x′, y), (x, y′), (x′, y′)} ⊆ Rd1 × Rd2

where |x− x′| = λ|v1| and |y − y′| = λ|v2|.

2010 Mathematics Subject Classification. 11B30.
The first and second authors were partially supported by Simons Foundation Collaboration Grant for Mathematicians 245792

and by Grants NSF-DMS 1600840 and ERC-AdG 321104, respectively.

1



2 NEIL LYALL ÁKOS MAGYAR

We also establish the following generalization of Theorem 1.2, but with a slight loss in the dimension d.

Theorem 1.3. Let ∆k1 and ∆k2 be two fixed non-degenerate simplices of dimension k1 and k2.

If A ⊆ Rd = Rd1×Rd2 has positive upper Banach density with each di ≥ ki+3, then there exists a threshold
λ0 = λ0(A,∆k1 ,∆k2) such that A contains an isometric copy of λ · (∆k1 ×∆k2) of the form ∆′k1 ×∆′k2 with

each ∆′ki ⊆ Rdi an isometric copy of λ ·∆ki for all λ ≥ λ0.

It will be clear from the proofs of Theorems 1.3 and 1.2 that if 1 = k1 < k2, then the conclusion of Theorem
1.3 will in fact hold under the weaker hypothesis that d1 ≥ k1 + 1 and d2 ≥ k2 + 3.

Note further that if A were a direct product set B1 × B2 ⊆ Rd1 × Rd2 with each di ≥ ki + 1, then the
conclusion of Theorem 1.3 (which contains the conclusion of Theorem 1.2 when each ki = 1) would follow
immediately from Theorem 1.1 and under the weaker hypothesis that d ≥ k1 + k2 + 2.

The natural extension of Theorems 1.2 and 1.3 to `-dimensional rectangles and `-fold products of simplices
(with ` > 2) also holds, but as the arguments involved in establishing these results are significantly more
technical than those needed for Theorems 1.2 and 1.3 we plan to address this in a separate article.

1.3. Outline of Paper. Our approach to proving Theorems 1.2 and 1.3 will be to reduce them to quantitative
results in the compact setting of [0, 1]d1 × [0, 1]d2 , namely Propositions 4.1 and 4.2. These reductions are
carried out in Section 4.1 with the remainder of Section 4 and the entirety of Sections 5-7 then devoted to
establishing Propositions 4.1 and 4.2.

In Section 2 we present a new direct proof of Theorem 1.1 when k = 1 and two new proofs of Theorem
1.1, in its full generality, are presented in Section 3. In both cases our novel approach will be to first reduce
matters to results for suitably uniformly distributed subsets of [0, 1]d.

2. Uniformly Distributed Subsets of Rd and a New Proof of Theorem 1.1 when k = 1

In this section we introduce a precise notion of uniform distribution for subsets of Rd and prove an (optimal)
result, Proposition 2.1 below, on distances in uniformly distributed subsets of [0, 1]d. Proposition 2.1 will be
critically important in our proof of Proposition 4.1, but as we shall see below it also immediately implies
Theorem 1.1 when k = 1 and hence provides a new direct proof of the following

Theorem 2.1 (Katznelson and Weiss [2]). If A ⊆ Rd has positive upper Banach density and d ≥ 2, then
there exists a threshold λ0 = λ0(A) such that for all λ ≥ λ0 there exist a pair of points

{x, x′} ⊆ A with |x− x′| = λ.

2.1. Uniform Distribution and Distances.

Definition 2.1 ((ε, L)-uniform distribution). Let 0 < L ≤ ε� 1 and QL = [−L/2, L/2]d.

A set A ⊆ [0, 1]d is said to be (ε, L)-uniformly distributed if

(2)

∫
[0,1]d

∣∣∣∣ |A ∩ (t+QL)|
|QL|

− |A|
∣∣∣∣2 dt ≤ ε2.

Proposition 2.1 (Distances in uniformly distributed sets). Let 0 < c ≤ 1, 0 < λ ≤ ε� 1 and d ≥ 2.

If A ⊆ [0, 1]d is (ε, ε4λ)-uniformly distributed with α = |A| > 0, then there exist a pair of points

{x, x′} ⊆ A with |x− x′| = cλ.

In fact, ∫∫
1A(x)1A(x− cλx1) dσ(x1) dx = α2 +O(c−1/6ε2/3).

where σ denotes the normalized measure on the sphere {x ∈ Rd : |x| = 1} induced by Lebesgue measure.

Before proving Proposition 2.1 we will first show that when c = 1 it immediately implies Theorem 2.1. To
the best of our knowledge this observation, which gives a direct proof of Theorem 2.1, is new.
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2.2. Proof that Proposition 2.1 implies Theorem 2.1. Let ε > 0 and A ⊆ Rd with δ∗(A) > 0.

The following two facts follow immediately from the definition of upper Banach density, see (1):

(i) There exist M0 = M0(A, ε) such that for all M ≥M0 and all t ∈ Rd

|A ∩ (t+QM )|
|QM |

≤ (1 + ε4/3) δ∗(A).

(ii) There exist arbitrarily large N ∈ R such that

|A ∩ (t0 +QN )|
|QN |

≥ (1− ε4/3) δ∗(A)

for some t0 ∈ Rd.
Combining (i) and (ii) above we see that for any λ ≥ ε−4M0, there exist N ≥ ε−4λ and t0 ∈ Rd such that

|A ∩ (t+Qε4λ)|
|Qε4λ|

≤ (1 + ε4)
|A ∩ (t0 +QN )|

|QN |

for all t ∈ Rd. Consequently, Theorem 2.1 reduces, via a rescaling of A ∩ (t0 +QN ) to a subset of [0, 1]d, to
establishing that if 0 < λ ≤ ε� 1 and A ⊆ [0, 1]d is measurable with |A| > 0 and the property that

|A ∩ (t+Qε4λ)|
|Qε4λ|

≤ (1 + ε4) |A|

for all t ∈ Rd, then there exist a pair of points x, x′ ∈ A such that |x− x′| = λ. Now since A ∩ (t+Qε4λ) is
only supported in [−ε4λ, 1 + ε4λ]d it follows that

(3) |A| =
∫
Rd

|A ∩ (t+Qε4λ)|
|Qε4λ|

dt =

∫
[0,1]d

|A ∩ (t+Qε4λ)|
|Qε4λ|

dt+O(ε4|A|),

from which one can easily deduce that

(4)
∣∣∣{t ∈ [0, 1]d :

|A ∩ (t+Qε4λ)|
|Qε4λ|

≤ (1− ε2) |A|
}∣∣∣ = O(ε2)

and hence that A is (ε, ε4λ)-uniformly distributed. The result therefore follows, provided d ≥ 2. �

2.3. Proof of Proposition 2.1.

Definition 2.2 (Counting Function for Distances). For 0 < λ� 1 and functions

f0, f1 : [0, 1]d → R

with d ≥ 2 we define

(5) T (f0, f1)(λ) =

∫∫
f0(x)f1(x− λx1) dσ(x1) dx.

Definition 2.3 (U1(L)-norm). For 0 < L� 1 and functions f : [0, 1]d → R we define

(6) ‖f‖2U1(L) =

∫
[0,1]d

∣∣∣ 1

Ld

∫
t+QL

f(x) dx
∣∣∣2 dt =

∫
[0,1]d

(
1

L2d

∫∫
x,x′∈t+QL

f(x)f(x′) dx′ dx

)
dt

where QL = [−L/2, L/2]d.

It is an easy, but important, observation that

(7) ‖f‖2U1(L) =

∫∫
f(x)f(x− x1)ψL(x1) dx1 dx+O(L),

where ψL = L−2d 1QL ∗ 1QL . Note also that if A ⊆ [0, 1]d with α = |A| > 0 and we define

fA := 1A − α1[0,1]d
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then

(8)

∫
[0,1]d

∣∣∣ 1

Ld

∫
t+QL

fA(x) dx
∣∣∣2 dt =

∫
[0,1]d

∣∣∣∣ |A ∩ (t+QL)|
|QL|

− |A|
∣∣∣∣2 dt+O(L).

Evidently the U1(L)-norm is measuring the mean-square uniform distribution of A on scale L. Specifically
if A is (ε, L)-uniformly distributed, then ‖fA‖U1(L) ≤ 2ε provided 0 < L� ε.

At the heart of this short proof of Proposition 2.1 is the following “generalized von-Neumann inequality”.

Lemma 2.1 (Generalized von-Neumann for Distances). For any c > 0, 0 < ε, λ� min{1, c−1} and functions

f0, f1 : [0, 1]d → [−1, 1]

with d ≥ 2 we have

|T (f0, f1)(cλ)| ≤
∏
j=0,1

‖fj‖U1(ε4λ) +O(c−1/6ε2/3).

Indeed, if A ⊆ [0, 1]d with d ≥ 2 and α = |A| > 0, then Lemma 2.1 implies that∣∣T (1A, 1A)(cλ)− T (α1[0,1]d , α1[0,1]d)(cλ)
∣∣ ≤ 3 ‖fA‖U1(ε4λ) +O(c−1/6ε2/3)

for any 0 < c ≤ 1 and 0 < ε, λ� 1. Since T (α1[0,1]d , α1[0,1]d)(cλ) = α2 +O(cλ) it follows that

T (1A, 1A)(cλ) = α2 +O(c−1/6ε2/3)

provided 0 < λ ≤ ε� 1.

To finish the proof of Proposition 2.1 we are therefore left with the task of proving Lemma 2.1.

Proof of Lemma 2.1. An application of Parseval followed by Cauchy-Schwarz implies that

T (f0, f1)(cλ)2 =
(∫∫

f0(x)f1(x− cλx1) dσ(x1) dx
)2

≤
(∫

Rd
|f̂0(ξ)||f̂1(ξ)||σ̂(cλξ)| dξ

)2

≤
∏
j=0,1

∫
Rd
|f̂j(ξ)|2|σ̂(cλξ)| dξ

where

µ̂(ξ) =

∫
Rd
e−2πix·ξ dµ(x)

denotes the Fourier transform of any complex-valued Borel measure dµ and ĝ(ξ) is the Fourier transform of
the measure dµ = g dx. Combining the basic fact (see for example [3]) that

|σ̂(ξ)| ≤ min{1, C|ξ|−(d−1)/2}

with the simple observation that |1− ψ̂(ξ)| ≤ min{1, C|ξ|} gives

|σ̂(cλξ)| = |σ̂(cλξ)|ψ̂(ε4λξ) + |σ̂(cλξ)|(1− ψ̂(ε4λξ)) ≤ ψ̂(ε4λξ) +O(min{ε4λ|ξ|, (cλ|ξ|)−1/2}).

The result now follows, since ‖fj‖22 ≤ 1,

min{ε4λ|ξ|, (cλ|ξ|)−1/2} ≤ c−1/3ε4/3

and a further application of Parseval (and appeal to (7)) reveals that∫
|f̂j(ξ)|2ψ̂(ε4λξ) dξ =

∫∫
fj(x)fj(x− x1)ψε4λ(x1) dx1 dx = ‖fj‖2U1(ε4λ) +O(ε4λ). �
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3. A New Proof of Theorem 1.1

In light of the reduction argument presented in Section 2.2 it is clear that in order to prove Theorem 1.1 it
would suffice to establish the following result for uniformly distributed subsets of [0, 1]d.

Proposition 3.1 (Simplices in uniformly distributed sets). Let ∆k = {0, v1, . . . , vk} be a fixed non-degenerate
k-dimensional simplex with c∆k

= min1≤j≤k dist(vj , span {{v1, . . . , vk} \ vj}) ≤ 1.

Let 0 < λ ≤ ε� min{1, c−1
∆k
} and A ⊆ [0, 1]d with d ≥ k + 1 and α = |A| > 0. If A is (ε, ε4λ)-uniformly

distributed, then A contains an isometric copy of λ ·∆k and in fact

(9)

∫∫
1A(x)1A(x− λ · U(v1)) · · · 1A(x− λ · U(vk)) dµ(U) dx = αk+1 +Ok(c

−1/6
∆k

ε2/3)

where µ denotes the Haar measure on SO(d).

Note that Proposition 2.1 is the special case of Proposition 3.1 with k = 1 and v1 = 1.

3.1. Proof of Proposition 3.1. Let ∆k = {0, v1, . . . , vk} be a fixed non-degenerate k-dimensional simplex
with

c∆k
= min

1≤j≤k
dist(vj , span {{v1, . . . , vk} \ vj}) ≤ 1.

Definition 3.1 (Counting Function for Simplices). For any 0 < λ� 1 and functions

f0, f1, . . . , fk : [0, 1]d → R
with d ≥ k + 1 we define

(10) T∆k
(f0, f1, . . . , fk)(λ) =

∫∫
f0(x)f1(x− λ · U(v1)) · · · fk(x− λ · U(vk)) dµ(U) dx.

Proposition 3.1 is an immediate consequence of the following “generalized von-Neumann inequality”.

Lemma 3.1 (Generalized von-Neumann for Simplices). For any 0 < ε, λ� 1 and functions

f0, f1, . . . , fk : [0, 1]d → [−1, 1]

|T∆k
(f0, f1, . . . , fk)(λ)| ≤ min

j=0,1,...,k
‖fj‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

Indeed, if A ⊆ [0, 1]d with d ≥ k + 1 and α = |A| > 0, then Lemma 3.1 implies∣∣T∆k
(1A, . . . , 1A)(λ)− T∆k

(α1[0,1]d , . . . , α1[0,1]d)(λ)
∣∣ ≤ (2k+1 − 1)‖fA‖U1(ε4λ) +Ok(c

−1/6
∆k

ε2/3)

for any 0 < ε, λ� 1. Since T∆k
(α1[0,1]d , . . . , α1[0,1]d)(λ) = αk+1 +O(λ) it follows that

T∆k
(1A, . . . , 1A)(λ) = αk+1 +Ok(c

−1/6
∆k

ε2/3)

provided 0 < λ ≤ ε� 1.

To finish the proof of Proposition 3.1 we are therefore left with the task of proving Lemma 3.1.

Proof of Lemma 3.1. By symmetry it suffices to show that

(11) |T∆k
(f0, f1, . . . , fk)(λ)| ≤ ‖fk‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

As in [1] we start by writing

T∆k
(f0, f1, . . . , fk)(λ) =

∫∫
· · ·
∫
f0(x)f1(x− λx1) · · · fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk) · · · dσ(d−2)

x1
(x2) dσ(x1) dx

where σ now denotes the normalized measure on the sphere Sd−1(0, |v1|) and σ
(d−j)
x1,...,xj−1 denotes, for each

2 ≤ j ≤ k, the normalized measure on the spheres

(12) Sd−jx1,...,xj−1
= Sd−1(0, |vj |) ∩ Sd−1(x1, |vj − v1|) ∩ · · · ∩ Sd−1(xj−1, |vj − vj−1|)

where Sd−1(x, r) = {x′ ∈ Rd : |x− x′| = r}. Since

|T∆k
(f0, f1, . . . , fk)(λ)| ≤

∫∫
· · ·
∫ ∣∣∣∫ fk(x−λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣ dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1) dx
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it follows from an application of Cauchy-Schwarz that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫
· · ·
∫∫ ∣∣∣∫ fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2 dx(13)

dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1).

An application of Plancherel therefore shows that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫
|f̂k(ξ)|2I(λ ξ) dξ

where

(14) I(ξ) =

∫
· · ·
∫ ∣∣ ̂

σ
(d−k)
x1,...,xj−1(ξ)

∣∣2 dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(d−2)
x1

(x2) dσ(x1).

Estimate (11) will follow if we can show that

(15) I(λξ) = I(λξ)ψ̂(ε4λξ) + I(λξ)(1− ψ̂(ε4λξ)) ≤ ψ̂(ε4λξ) +O(c
−1/3
∆k

ε4/3)

since ‖fk‖2 ≤ 1 and an application of Parseval and appeal to (7) reveals that

(16)

∫
|f̂k(ξ)|2ψ̂(ε4λξ) dξ =

∫∫
fk(x)fk(x− x1)ψε4λ(x1) dx dx1 = ‖fk‖2U1(ε4λ) +O(ε4λ).

To establish (15) we argue as in [1], in particular we use the fact that in addition to being trivially bounded

by 1 the Fourier transform of σ
(d−k)
x1,...,xk−1 also decays for large ξ in certain directions, specifically

(17)
∣∣ ̂
σ

(d−k)
x1,...,xk−1(ξ)

∣∣ ≤ C (r(Sd−kx1,...,xk−1
) · dist(ξ, span{x1, . . . , xk−1})

)−(d−k)/2

where r(Sd−kx1,...,xk−1
) = dist(vk, span{v1, . . . , vk−1}) denotes the radius of the sphere Sd−kx1,...,xk−1

.

This estimate is a consequence of the well-known asymptotic behavior of the Fourier transform of the
measure on the unit sphere Sd−k ⊆ Rd−k+1 induced by Lebesgue measure, see for example [3].

Together with the trivial uniform bound I(ξ) ≤ 1, and an appropriate conical decomposition (depending
on ξ) of the configuration space over which the integral I(ξ) is defined, this gives

(18) I(ξ) ≤ min{1, C(c∆k
|ξ|)−(d−k)/2}.

Combining (18) with the basic bound |1− ψ̂(ξ)| ≤ min{1, C|ξ|} we obtain the uniform bound

|1− ψ̂(ε4λ ξ)|I(λ ξ)� min{(λc∆k
|ξ|)−1/2, ε4λ|ξ|} ≤ c−1/3

∆k
ε4/3

from which (15) follows. �

3.2. A Second New Proof of Theorem 1.1. In this subsection we present an alternative approach to

proving Proposition 3.1 with the slightly worse error bound Ok(c
−1/12
∆k

ε1/3). Specifically, we show that one

can in fact establish the following (slightly weaker) generalized von-Neumann inequality for simplices using
only Lemma 2.1, namely the generalized von-Neumann inequality for distances.

Lemma 3.2 (Generalized von-Neumann for Simplices II). For any 0 < λ ≤ ε� 1 and functions

f0, f1, . . . , fk : [0, 1]d → [−1, 1]

|T∆k
(f0, f1, . . . , fk)(λ)| ≤

√
2π min

j=0,1,...,k
‖fj‖1/2U1(ε4λ) +O(c

−1/12
∆k

ε1/3).

In the proof below we will make use of the following straightforward observations:

(i) If we let ∆k−1 = {0, v1, . . . , vk−1}, then

(19) T∆k
(f0, f1, . . . , fk−1, 1[0,1]d)(λ) = T∆k−1

(f0, f1, . . . , fk−1)(λ) +O(λ).

(ii) If we let ∆′k = {0, v′1, . . . , v′k} with v′j = vk−j − vk for 0 ≤ j ≤ k − 1 and v′k = −vk, then

(20) T∆k
(f0, f1, . . . , fk)(λ) = T∆′k

(fk, fk−1, . . . , f0)(λ).
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Proof of Lemma 3.2. By symmetry it suffices to show that

(21) |T∆k
(f0, f1, . . . , fk)(λ)|2 ≤ 2π ‖fk‖U1(ε4λ) +O(c

−1/6
∆k

ε2/3).

We initially follow the proof of Lemma 3.1, but after (13) we now proceed differently. Instead of applying
Plancherel to the right hand side of

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫∫
· · ·
∫ ∣∣∣∫ fk(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2 dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

we now “square out” the right hand side to obtain

(22)

∫∫
· · ·
∫∫∫

fk(x−λxk)fk(x−λxk+1) dσ(d−k)
x1,...,xk−1

(xk+1) dσ(d−k)
x1,...,xk−1

(xk) dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

If d = k + 1, then for fixed x1, . . . , xk we can use arc-length to parameterize of the circle Sd−kx1,...,xk−1
, with

θ = 0 and θ = 2π corresponding to the point xk, to write

(23)

∫
fk(x− λxk+1) dσ(d−k)

x1,...,xk−1
(xk+1) =

∫ 2π

0

fk(x− λxk+1(x1, . . . , xk, θ)) dθ.

For any fixed θ ∈ [0, 2π] we then define ∆k+1(θ) = {0, v1, . . . , vk, vk+1(θ)} with vk+1 = vk+1(θ) satisfying
|vk+1| = |vk|, |vk+1 − vj | = |vk − vj | for all 1 ≤ j ≤ k− 1 and use θ to determine the angle between vk+1 and
vk measured from the center of the circle Sd−kx1,...,xk−1

, consequently

|vk+1 − vk| = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}).

It follows that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ 2π

0

T∆k+1(θ)(1[0,1]d , . . . , 1[0,1]d , fk, fk)(λ) dθ +O(λ)

and in light of (19) and (20) that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ 2π

0

T∆′k+1(θ)(fk, fk, 1[0,1]d , . . . , 1[0,1]d)(λ) dθ +O(λ)

=

∫ 2π

0

T∆′1(θ)(fk, fk)(λ) dθ +O(λ)

where

T∆′1(θ)(fk, fk)(λ) = T (fk, fk)(c(θ)λ) :=

∫∫
fk(x)fk(x− c(θ)λx1) dσ(x1) dx

with c(θ) = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}). Lemma 2.1 now implies that

|T∆′1(θ)(fk, fk)(λ)| ≤ ‖fk‖U1(ε4λ) +O((sin(θ/2))−1/6c
−1/6
∆k

ε2/3)

since c(θ) ≥ 2 sin(θ/2) c∆k
. This completes the proof, when d = k + 1, as

∫ 2π

0
(sin(θ/2))−1/6 dθ <∞, and in

fact establishes the result in general, since if d ≥ k + 2, one can define a new non-degenerate simplex

∆d−1 = {0, v1, . . . , vk−1, v
′
k, . . . , v

′
d−2, v

′
d−1}

with v′d−1 = vk and use the fact that

T∆k
(f0, f1, . . . , fk)(λ) = T∆d−1

(f0, . . . , fk−1, 1[0,1]d , . . . , 1[0,1]d , fk)(λ) +O(λ). �

3.3. A Direct proof of Lemma 3.2 when d ≥ k+ 2. We choose to include an additional argument similar
to the one presented above that covers the case d ≥ k + 2 directly. Arguments of this nature will be critical
important in Section 6.2 when we establish a “relative generalized von-Neumann inequality” for simplices.

If d ≥ k + 2 then in (22), for fixed x1, . . . , xk, we write

(24) σ(d−k)
x1,...,xk−1

(xk+1) =

∫ π

0

(sin θ)d−k−1 dσ
(d−k−1)
x1,...,xk−1,xk,θ

(xk+1) dθ

where σ
(d−k−1)
x1,...,xk−1,xk,θ

(xk+1) denotes the normalized measure on the sphere

(25) Sd−k−1
x1,...,xk−1,xk,θ

= Sd−1(0, |vk+1|) ∩ Sd−1(x1, |vk+1 − v1|) ∩ · · · ∩ Sd−1(xk, |vk+1 − vk|)
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with vk+1 = vk+1(θ) defined such that |vk+1| = |vk|, |vk+1 − vj | = |vk − vj | for all 1 ≤ j ≤ k − 1 with θ
determining the angle between vk+1 and vk measured from the center of the sphere Sd−kx1,...,xk−1

, consequently

|vk+1 − vk| = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}).
If we again let ∆k+1(θ) = {0, v1, . . . , vk, vk+1}, it follows that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ π

0

(sin θ)d−k−1T∆k+1(θ)(1[0,1]d , . . . , 1[0,1]d , fk, fk)(λ) dθ +O(λ)

and in light of (19) and (20) that

|T∆k
(f0, f1, . . . , fk)(λ)|2 ≤

∫ π

0

(sin θ)d−k−1T∆′k+1(θ)(fk, fk, 1[0,1]d , . . . , 1[0,1]d)(λ) dθ +O(λ)

=

∫ π

0

(sin θ)d−k−1T∆′1(θ)(fk, fk)(λ) dθ +O(λ)

where again

T∆1(θ)(fk, fk)(λ) = T (fk, fk)(c(θ)λ) :=

∫∫
fk(x)fk(x− c(θ)λx1) dσ(x1) dx

with c(θ) = 2 sin(θ/2) · dist(vk, span{v1, . . . , vk−1}). Lemma 2.1 again implies that

|T∆′1(θ)(fk, fk)(λ)| ≤ ‖fk‖U1(ε4λ) +O((sin(θ/2))−1/6c
−1/6
∆k

ε2/3)

since c(θ) ≥ 2 sin(θ/2) c∆k
and this completes the proof as

∫ π
0

(sin θ)d−k−1(sin(θ/2))−1/6 dθ <∞. �

4. Proof of Theorems 1.2 and 1.3

We now proceed with the main task, namely the proofs of Theorems 1.2 and 1.3.

4.1. Reducing Theorems 1.2 and 1.3 to quantitative results for subsets of [0, 1]d1 × [0, 1]d2 .

Proposition 4.1 (Rectangles). Let 0 < c ≤ 1 and A ⊆ [0, 1]d1 × [0, 1]d2 with d1, d2 ≥ 2 and α = |A| > 0.

If {λj} is any sequence in (0, 1) with λj+1 <
1
2λj for all j ≥ 1, then there exist 1 ≤ j ≤ J(α) and a

quadruple of points

{(x, y), (x′, y), (x, y′), (x′, y′)} ⊆ A with |x− x′| = λj and |y − y′| = cλj .

In fact, for λ = λj∫∫∫∫
1A(x, y)1A(x− λx1, y)1A(x, y − cλy1)1A(x− λx1, y − cλy1) dσ1(x1) dσ2(y1) dx dy ≥ C(α) > 0

where σi denotes, for i = 1, 2, the normalized measure on the unit sphere Sdi−1 ⊆ Rdi centered at the origin
induced by the Lebesgue measure on Rdi .

Proposition 4.2 (Product of Simplices). Let ∆ki = {0, vi1, vi2, . . . , viki} be fixed non-degenerate simplices of
dimension ki with

c∆ki
= min

1≤j≤ki
dist(vij , span

{
{vi1, . . . , viki} \ v

i
j

}
) ≤ 1

for i = 1, 2 and A ⊆ [0, 1]d1 × [0, 1]d2 with di ≥ ki + 3 and α = |A| > 0.

If {λj} is any sequence in (0, 1) with λj+1 <
1
2λj for all j ≥ 1, then there exist 1 ≤ j ≤ J(α,∆k1 ,∆k2)

and a product ∆′k1 ×∆′k2 ⊆ A with each ∆′ki ⊆ [0, 1]di an isometric copy of λj ·∆ki . In fact, for λ = λj∫∫∫∫ k1∏
i=0

k2∏
j=0

1A(x− λ · U1(v1
i ), y − λ · U2(v2

j )) dµ1(U1) dµ2(U2) dx dy ≥ C(α) > 0

where v1
0 = v2

0 = 0 and µ1 and µ2 denote the Haar measures on SO(d1) and SO(d2) respectively.

The reduction of Theorems 1.2 and 1.3 to these results in the compact setting of [0, 1]d1 × [0, 1]d2 is
straightforward and precisely the approach taken by Bourgain in [1] to prove Theorem 1.1, but for completeness
we supply the details for Theorem 1.2 below.
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Proof that Proposition 4.1 implies Theorem 1.2. We may assume that c := |v2| ≤ |v1| = 1.

Arguing indirectly we suppose that A ⊆ Rd with d ≥ 4 is a set with δ∗(A) > 0 for which the conclusion of
Theorem 1.2 fails to hold, namely that there exist arbitrarily large λ ∈ R for which A does not contain an
isometric copy of λ ·�.

We now let 0 < α < δ∗(A) and set J = J(α) from Proposition 4.1. By our indirect assumption we can
choose a sequence {λj}Jj=1 with the property that λj+1 <

1
2λj for all 1 ≤ j ≤ J − 1 and A does not contain

an isometric copy of λj ·� for each 1 ≤ j ≤ J . It follows from the definition of upper Banach density that
exist N ∈ R with N � λ1 and t0 ∈ Rd for which

|A ∩ (t0 +QN )|
|QN |

≥ α.

Rescaling A ∩ (t0 +QN ) to a subset of [0, 1]d and applying Proposition 4.1 leads to a contradiction. �

4.2. Proof of Propositions 4.1 and 4.2, Part I: A Density Increment Strategy.

Proposition 4.3 (Dichotomy for Rectangles). Let 0 < c ≤ 1 and Bi ⊆ [0, 1]di with di ≥ 2 and βi = |Bi| > 0
for i = 1, 2. If A ⊆ B1 ×B2 with |A| = αβ1β2 > 0 and 0 < λ ≤ ε� cβ6

1β
6
2α

32, then either

1

β2
1β

2
2

∫∫∫∫
1A(x, y)1A(x− λx1, y)1A(x, y − cλy1)1A(x− λx1, y − cλy1) dσ1(x1) dσ2(y1) dx dy ≥ 1

2
α4

or there exist cubes Qi ⊆ [0, 1]di of side-length ε4λ, sets B′i in Qi, and c′ > 0 for which

|A ∩ (B′1 ×B′2)|
|B′1 ×B′2|

≥ α+ c′ α32.

provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 respectively.

Proposition 4.4 (Dichotomy for Product of Simplices). For i = 1, 2 let Bi ⊆ [0, 1]di with di ≥ ki + 3 and
βi = |Bi| > 0 and ∆ki = {vi0, vi1, vi2, . . . , viki} be a non-degenerate simplex of dimension ki with vi0 = 0 and

c∆ki
= min

1≤j≤ki
dist(vij , span

{
{vi1, . . . , viki} \ v

i
j

}
) ≤ 1.

If A ⊆ B1 ×B2 with |A| = αβ1β2 > 0 and

0 < λ ≤ ε�k1,k2 (c∆k1
c∆k2

)2(βk1+1
1 βk2+1

2 α(k1+1)(k2+1))16

then either

1

βk1+1
1 βk2+1

2

∫∫∫∫ k1∏
i=0

k2∏
j=0

1A(x− λ · U1(v1
i ), y − λ · U2(v2

j )) dµ1(U1) dµ2(U2) dx dy ≥ 1

2
α(k1+1)(k2+1)

or there exist cubes Qi ⊆ [0, 1]di of side-length ε4λ, sets B′i in Qi, and c′ > 0 for which

|A ∩ (B′1 ×B′2)|
|B′1 ×B′2|

≥ α+ c′ α8(k1+1)(k2+1).

provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 respectively.

Sections 5 and 6 below are devoted to the proofs of Propositions 4.3 and 4.4. Central to each proof is
an appropriate “relative generalized von-Neumann inequality”, namely Lemmas 5.1 and 6.1. These relative
generalized von-Neumann inequalities in turn imply Corollaries 5.1 and 6.1, which together with Corollaries
5.2 and 6.2 (which are both consequences of an appropriate common “Inverse Theorem”, namely Theorem
5.1) immediately imply Propositions 4.3 and 4.4 respectively.

It is important to note that Propositions 4.3 and 4.4 are not in and of themselves sufficient to establish
Propositions 4.1 and 4.2. In order to apply a density increment argument one would need that the sets B′1 and
B′2 produced by Propositions 4.3 and 4.4, for which A has increased density on B′1×B′2, were (η, L′)-uniformly
distributed for a sufficiently small η and for L′ attached to some of the λj ’s on Q1 and Q2 respectively, which
they simply may not be. In Section 7 we complete the proofs of Proposition 4.1 and 4.2 by showing that we
can obtain suitably uniformly distributed sets B′1 and B′2 by appealing to a version of Szemerédi’s Regularity
Lemma [4] adapted to a sequence of scales.
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5. Proof of Proposition 4.3

At the heart of our proof of Proposition 4.3 will be an appropriate “relative generalized von-Neumann
inequality for rectangles”, namely Lemma 5.1 below. This result, together with a companion “Inverse
Theorem” (Theorem 5.1 below) and Proposition 2.1 will ultimately furnish a proof of Proposition 4.3.

Throughout this section we fix Bi ⊆ [0, 1]di with di ≥ 2 to be arbitrary sets with βi = |Bi| > 0 for i = 1, 2.

5.1. A Relative Generalized von-Neumann Inequality for Distances and Rectangles.

Definition 5.1 (A Counting Function for Rectangles). For any 0 < c ≤ 1, 0 < λ� 1 and functions

fij : [0, 1]d1 × [0, 1]d2 → R
with i, j ∈ {0, 1} we define

T�c(λ) := T�c(f00, f10, f01, f11)(λ)

where

(26) T�c(λ) =

∫∫∫∫
f00(x, y)f10(x− λx1, y)f01(x, y − cλy1)f11(x− λx1, y − cλy1) dσ1(x1) dσ2(y1) dx dy

Note that if we let

(27) ν(x, y) = ν1(x)1/2ν2(y)1/2

where

(28) ν1 = β−1
1 1B1

and ν2 = β−1
2 1B2

then, in light of Proposition 2.1, we have

(29) T�c(ν, ν, ν, ν)(λ) = T (ν1, ν1)(λ) · T (ν2, ν2)(cλ) = 1 +O(β−2
1 β−2

2 c−1/6ε2/3)

for any 0 < λ ≤ ε� 1, provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2

respectively.

Definition 5.2 (�(L)-norm). For 0 < L� 1 and functions f : [0, 1]d1 × [0, 1]d2 → R we define

(30) ‖f‖4�(L) =

∫
[0,1]d1

∫
[0,1]d2

‖f‖4�(L)(t1,t2) dt2 dt1

with

(31) ‖f‖4�(L)(t1,t2) =
1

L2(d1+d2)

∫∫∫∫
x,x′∈t1+Q1,L

y,y′∈t2+Q2,L

f(x, y)f(x′, y)f(x, y′)f(x′, y′) dx′ dx dy′ dy

where Qi,L = [−L/2, L/2]di for i = 1, 2.

As before it is a straightforward but important observation that ‖f‖4�(L) equals

(32)

∫∫∫∫
f(x, y)f(x− x1, y)f(x, y − y1)f(x− x1, y − y1)ψ1,L(x1)ψ2,L(y1) dx1 dx dy1 dy +O(L)

where ψi,L = L−2di 1Qi,L ∗ 1Qi,L .

In this setting we have the following “generalized von-Neumann inequality” relative to B1 ×B2.

Lemma 5.1 (Generalized von-Neumann for Rectangles relative to B1×B2). Let 0 < c ≤ 1 and ν = ν
1/2
1 ⊗ν1/2

2

where ν1 = β−1
1 1B1

and ν2 = β−1
2 1B2

. For any 0 < ε, λ� 1 and functions

fij : [0, 1]d1 × [0, 1]d2 → [−1, 1]

with i, j ∈ {0, 1} we have

|T�c(f00ν, f10ν, f01ν, f11ν)(λ)| ≤
∏

i,j∈{0,1}

‖fijν‖�(ε4λ) +O(β−1
1 β−1

2 c−1/24ε1/6).

It is easy to see that Lemma 5.1, combined with Proposition 2.1, gives the following
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Corollary 5.1. Let 0 < c ≤ 1, 0 < α, β1, β2 ≤ 1 and 0 < λ ≤ ε� cβ6
1β

6
2α

24.

If A ⊆ B1 ×B2 ⊆ [0, 1]d1 × [0, 1]d2 with |A| = αβ1β2 and ‖fAν‖�(ε4λ) � α4, then

T�c(1Aν, 1Aν, 1Aν, 1Aν)(λ) ≥ 1

2
α4

provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 respectively.

Proof of Corollary 5.1. It follows immediately from Lemma 5.1 that∣∣∣T�c(1Aν, 1Aν, 1Aν, 1Aν)(λ)− α4T�c(ν, ν, ν, ν)(λ)
∣∣∣ ≤ 15 ‖fAν‖�(ε4λ) +O(β−1

1 β−1
2 c−1/24ε1/6)

for any 0 < ε, λ� 1, where fA = 1A − α1B1×B2
. The result follows since, as noted in (41), the fact that B1

and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 allows us to use Proposition 2.1 and
conclude that

T�c(ν, ν, ν, ν)(λ) = 1 +O(β−2
1 β−2

2 c−1/6ε2/3)

for any 0 < λ ≤ ε� 1, as required. �

5.2. Proof of Lemma 5.1. The proof of Lemma 5.1 follows from two clever applications of Cauchy-Schwarz
combined with the following relative version of Lemma 2.1.

Lemma 5.2 (Relative Version of Lemma 2.1). Let B ⊆ [0, 1]d with d ≥ 2 and β = |B|.
For any 0 < c ≤ 1, 0 < ε, λ� 1 and functions f0, f1 : [0, 1]d → [−1, 1] we have

|T (f0ν, f1ν)(cλ)| ≤
∏

j∈{0,1}

(∫∫
fjν(x)fjν(x− x1)ψε4λ(x1) dx1 dx

)1/2

+ O(β−1c−1/6ε2/3).

where ν = β−11B.

Proof. Same as that for Lemma 2.1 above, but noting that ‖fjν‖22 ≤ β−1 for j = 0, 1. �

To prove Lemma 5.1 we first observe that

|T�c(f00ν, f10ν, f01ν, f11ν)(λ)| ≤
∫∫
|T (gx,x1

0 ν2, g
x,x1

1 ν2)(cλ)| ν1(x)ν1(x− λx1) dσ1(x1) dx

where

gx,x1

0 (y) = f00(x, y)f10(x− λx1, y)

gx,x1

1 (y) = f01(x, y)f11(x− λx1, y).

Applying Lemma 5.2 to T (gx,x1

0 ν2, g
x,x1

1 ν2)(cλ) followed by an application of Cauchy-Schwarz (and switching
the order of integration) shows that |T�c(f00ν, . . . , f11ν)(λ)|2 is majorized by∏

j∈{0,1}

∫∫ ∣∣T (hy,y10j ν1, h
y,y1
1j ν1)(λ)

∣∣ ν2(y)ν2(y − λy1)ψ2,ε4λ(y1) dy1 dy +O(β−2
1 β−2

2 c−1/6ε2/3)

where

hy,y10j (x) = f0j(x, y)f0j(x, y − λy1)

hy,y11j (x) = f1j(x, y)f1j(x, y − λy1).

Applying Lemma 5.2 once more, this time to T (hy,y10j ν1, h
y,y1
1j ν1)(λ), followed by another application of

Cauchy-Schwarz reveals that |T�c(f00ν, . . . , f11ν)(λ)|4 is majorized by∏
i,j∈{0,1}

∫∫∫∫
hy,y1ij ν1(x)hy,y1ij ν1(x−x1) ν2(y)ν2(y−λy1)ψ1,ε4λ(x1)ψ2,ε4λ(y1) dx1 dx dy1 dy+O(β−4

1 β−4
2 c−1/6ε2/3)

Since

hy,y1ij ν1(x)hy,y1ij ν1(x− x1)ν2(y)ν2(y − λy1) = fijν(x, y)fijν(x− x1, y)fijν(x, y − y1)fijν(x− x1, y − y1)

the result follows in light of observation (32). �
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5.3. Inverse Theorem for the �(L)-norm. The final piece in the proof of Proposition 4.3 is the following

Theorem 5.1 (Inverse Theorem). Let 0 < η, β1, β2 ≤ 1 and B1 and B2 be (ε, L)-uniformly distributed subsets
of [0, 1]d1 and [0, 1]d2 with 0 < L ≤ ε� η8 β2

1β
2
2 . If f : [0, 1]d1 × [0, 1]d2 → [−1, 1] satisfies

(33)

∫∫
f(x, y)ν1(x)ν2(y) dx dy = 0 and ‖fν‖�(L) ≥ η

with ν = ν
1/2
1 ⊗ ν1/2

2 and ν1 = β−1
1 1B1 and ν2 = β−1

2 1B2 , then there exist cubes Qi ⊆ [0, 1]di of side-length L
and sets B′i ⊆ Bi ∩Qi such that

(34)
1

Ld1+d2

∫∫
B′1×B′2

f(x, y)ν1(x)ν2(y) dx dy ≥ c η8.

As a consequence of Theorem 5.1 we immediately obtain the following corollary which together with
Corollary 5.1 implies Proposition 4.3.

Corollary 5.2. Let 0 < α, β1, β2 ≤ 1 and B1 and B2 be (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and
[0, 1]d2 with 0 < λ ≤ ε� β2

1β
2
2α

32.

If A ⊆ B1 ×B2 ⊆ [0, 1]d1 × [0, 1]d2 with |A| = αβ1β2 and

‖fAν‖�(ε4λ) � α4

with fA = 1A − α1B1×B2
, then there exist cubes Qi ⊆ [0, 1]di of side-length ε4λ and sets B′i in Qi for which

|A ∩ (B′1 ×B′2)|
|B′1 ×B′2|

≥ α+ c α32.

Proof of Theorem 5.1. If (34) holds for some cubes Qi := ti +QL and sets B′i := Bi ∩Qi, then Theorem 5.1
follows, so we may assume for all t1 ∈ [0, 1]d1 and t2 ∈ [0, 1]d2 that

(35) I(t1, t2) :=
1

β1β2Ld1+d2

∫
t1+QL

∫
t2+QL

f(x, y) dx dy ≤ c η8

with say c = 2−16. It is then easy to see that this assumption, together with our assumption on the sets Bi,
namely that ∫

||Bi ∩ (t+QL)| − βiLdi |2 dt ≤ ε2L2di ,

imply, via an easy averaging argument, that

(36) |Gη,ε| ≥
η4

16
where Gη,ε =

{
(t1, t2) ∈ Gε : ‖fν‖4�(L)(t1,t2) ≥

η4

16

}
and

Gε =
{

(t1, t2); |Bi ∩ (ti +QL)− βiLdi | ≤ ε1/2L2 for i = 1, 2
}
.

We first show that if there exist (t1, t2) ∈ Gη,ε for which |I(t1, t2)| ≤ η4/29, then Theorem 5.1 holds.
Indeed, by the pigeonhole principle, we see that given such a pair (t1, t2) we may choose x1 ∈ [0, 1]d1 and
y1 ∈ [0, 1]d2 so that

(37)

∣∣∣∣ 1

β1β2Ld1+d2

∫
t1+QL

∫
t2+QL

f(x2, y2)f(x2, y1)f(x1, y2) dx2 dy2

∣∣∣∣ ≥ η4

32
.

If we now write fy1(x2) = f(x2, y1), fx1
(y2) = f(x1, y2) and decompose fy1 = f+

y1 − f
−
y1 and fx1

= f+
x1
− f−x1

into their respective positive and negative parts, then it follows that∣∣∣∣ 1

β1β2Ld1+d2

∫
t1+QL

∫
t2+QL

f(x2, y2)g1(x2)g2(y2) dx2 dy2

∣∣∣∣ ≥ η4

27
,

for some functions gi : [0, 1]di → [0, 1]. Writing these functions as an average of indicator functions, namely

gi(x) =

∫ 1

0

1{gi(x)≥s} ds
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and appealing again to the pigeonhole principle, we see that we may choose sets U1 and V1 so that

(38)

∣∣∣∣ 1

β1β2Ld1+d2

∫
t1+QL

∫
t2+QL

f(x2, y2)1U1
(x2)1V1

(y2) dx2 dy2

∣∣∣∣ ≥ η4

27
.

We now set U2 = U c1 , V2 = V c1 and define, for j, j′ ∈ {1, 2}, the integrals

Ij,j′ :=
1

β1β2Ld1+d2

∫
t1+QL

∫
t2+QL

f(x2, y2)1Uj (x2)1Vj′ (y2) dx2 dy2.

Note that we know |I1,1| ≥ η4/27 and if I1,1 ≥ η4/27 then (34) holds for the sets B′1 = B1 ∩ (t1 +QL) ∩ U1

and B′2 = B2 ∩ (t1 +QL) ∩ V1. We may therefore assume that I1,1 ≤ −η4/27, but this assumption, together
with the previous assumption that

I(t1, t2) = I1,1 + I1,2 + I2,1 + I2,2 ≥ −η4/29

immediately implies that Ii,j ≥ η4/29 for some (j, j′) 6= (1, 1) and (34) again follows.

It remains to consider the case when I(t1, t2) ≤ −η4/29 for all (t1, t2) ∈ Gη,ε. Then by (35) and (36)∫∫
I(t1, t2) dt1 dt2 =

∫∫
Gη,ε

I(t1, t2) dt1 dt2 +

∫∫
Gcη,ε

I(t1, t2) dt1 dt2 ≤ −
η4

24

η4

29
+ 2

η8

216
≤ − η8

215
.

While on the other hand ∫∫
I(t1, t2) dt1 dt2 = O(L)

by the first assumption of (33), which is a contradiction. This proves the theorem. �

6. Proof of Proposition 4.4

An appropriate “relative generalized von-Neumann inequality” will again be central to our proof of
Proposition 4.4, specifically a “relative generalized von-Neumann inequality for product of simplices”.

However, the true heart of the argument is in fact the analogous result for just simplices, the proof of this
“relative generalized von-Neumann inequality for simplices” is necessarily significantly more involved than the
analogous relative result for distances (whose proof was essentially identical to the non-relative case) and it is
here that our loss in dimension appears.

We fix non-degenerate simplices ∆ki = {vi0, vi1, vi2, . . . , viki} of dimension ki with vi0 = 0 and

c∆ki
= min

1≤j≤ki
dist(vij , span

{
{vi1, . . . , viki} \ v

i
j

}
) ≤ 1

and let Bi ⊆ [0, 1]di with di ≥ ki + 3 and βi = |Bi| > 0 denote arbitrary sets, for i = 1, 2.

In contrast to the proof of Proposition 4.3, we will need to assume that our sets B1 and B2 are suitably
uniformly distributed, and make use of Proposition 3.1, throughout the proof of Proposition 4.4.

6.1. A Relative Generalized von-Neumann Inequality for Simplices and Products of Simplices.

Definition 6.1 (Counting function for ∆k1 ×∆k2). Let 0 < λ� 1.

For functions fij : [0, 1]d1 × [0, 1]d2 → R with (i, j) ∈ {0, 1, . . . , k1} × {0, 1, . . . , k2} we define

(39) T∆k1
,∆k2

(f00, . . . , fk1k2)(λ) =

∫∫∫∫ k1∏
i=0

k2∏
j=0

fij(x− λ · U1(v1
i ), y − λ · U2(v2

j )) dµ1(U1) dµ2(U2) dx dy

Note that if we let

(40) ν̃(x, y) = ν1(x)1/(k2+1)ν2(y)1/(k1+1)

where ν1 = β−1
1 1B1 and ν2 = β−1

2 1B2 then

T∆k1
,∆k2

(ν̃, . . . , ν̃)(λ) = T∆k1
(ν1, . . . , ν1)(λ) · T∆k2

(ν2, . . . , ν2)(λ)

and in light of Proposition 3.1 we can conclude that

(41) T∆k1
,∆k2

(ν̃, . . . , ν̃)(λ) = 1 +Ok1,k2(β−k1−1
1 β−k2−1

2 c
−1/6
∆k1

c
−1/6
∆k2

ε2/3)

for any 0 < λ ≤ ε� 1, provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 .
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In this setting we have the following “generalized von-Neumann inequality”, for which it is essential that
our count of product simplices is taken relative to suitably uniformly distributed sets B1 and B2.

Lemma 6.1 (Generalized von-Neumann for ∆k1 ×∆k2 relative to B1 ×B2). Let

ν̃ = ν
1/(k2+1)
1 ⊗ ν1/(k1+1)

2 and ν = ν
1/2
1 ⊗ ν1/2

2

where ν1 = β−1
1 1B1 and ν2 = β−1

2 1B2 For any 0 < λ ≤ ε� min{c∆k1
, c∆k2

} and functions

fij : [0, 1]d1 × [0, 1]d2 → [−1, 1]

with (i, j) ∈ {0, 1, . . . , k1} × {0, 1, . . . , k2} we have

|T∆k1
,∆k2

(f00ν̃, . . . , fk1k2 ν̃)(λ)| ≤ min
i=0,1,...,k1
j=0,1,...,k2

‖fijν‖�(ε4λ) +Ok1,k2(β−k1−1
1 β−k2−1

2 c
−1/8
∆k1

c
−1/8
∆k2

ε1/16)

provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 respectively.

It is easy to see that Lemma 6.1, combined with Proposition 3.1, gives the following

Corollary 6.1. Let 0 < α, β1, β2 ≤ 1 and

0 < λ ≤ ε�k1,k2 (c∆k1
c∆k2

)2(βk1+1
1 βk2+1

2 α(k1+1)(k2+1))16.

If A ⊆ B1 ×B2 ⊆ [0, 1]d1 × [0, 1]d2 with |A| = αβ1β2 and ‖fAν‖�(ε4λ) � α(k1+1)(k2+1), then

T∆k1
,∆k2

(1Aν̃, . . . , 1Aν̃)(λ) ≥ 1

2
α(k1+1)(k2+1)

provided B1 and B2 are (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and [0, 1]d2 respectively.

Proof of Corollary 6.1. It follows immediately from Lemma 6.1 that

|T∆k1
,∆k2

(1Aν̃, . . . , 1Aν̃)(λ)−T∆k1
,∆k2

(αν̃, . . . , αν̃)(λ)|

≤ (2(k1+1)(k2+1) − 1)‖fAν‖�(ε4λ) +Ok1,k2(β−k1−1
1 β−k2−1

2 c
−1/8
∆k1

c
−1/8
∆k2

ε1/16)

for any 0 < ε, λ � min{c∆k1
, c∆k2

}, where fA = 1A − α1B1×B2
while, as noted in (41), Proposition 3.1

implies that

T∆k1
,∆k2

(αν̃, . . . , αν̃)(λ) = α(k1+1)(k2+1)(1 +Ok1,k2(β−k1−1
1 β−k2−1

2 c
−1/6
∆k1

c
−1/6
∆k2

ε2/3))

for any 0 < λ ≤ ε� 1, as required. �

6.2. A Relative Version of Lemma 3.1. Key to the proof of Lemma 6.1 is the following

Lemma 6.2 (Lemma 3.1 relative to uniformly distributed sets). Let ∆k = {0, v1, v2, . . . , vk} be any non-
degenerate k-dimensional simplex with

c∆k
= min

1≤j≤k
dist(vj , span {{v1, . . . , vk} \ vj}) ≤ 1

and B ⊆ [0, 1]d with d ≥ k + 3 be an arbitrary set with β = |B| > 0. If we set ν = β−11B, then for any
0 < λ ≤ ε� c∆k

and functions f0, f1, . . . , fk : [0, 1]d → [−1, 1] we have

(42) |T∆k
(f0ν, . . . , fkν)(λ)|2 ≤

∫∫
fjν(x)fjν(x− x1)ψε4λ(x1) dx dx1 +Ok(β−3k−3c

−1/2
∆k

ε1/4)

for any 0 ≤ j ≤ k, provided B is a (ε, ε4λ)-uniformly distributed subset of [0, 1]d.

Proof. As in the proof of Lemma 3.1 it suffices, by symmetry, to establish (42) for j = k. Note also, as in
(41) above, that Proposition 3.1 implies

(43) T∆k
(ν, . . . , ν)(λ) = 1 +Ok(β−k−1c

−1/6
∆k

ε2/3),

provided 0 < λ ≤ ε� 1 and B is an (ε, ε4λ)-uniformly distributed subset of [0, 1]d with d ≥ k+1. It is equally
easy to see, using Lemma 3.1, that if 1 ≤ j ≤ k and any j of the weights ν are replaced with 1[0,1]d then this

modified count will still be asymptotically equal to 1 and will in fact equal 1 +Ok(β−k−1+jc
−1/6
∆k

ε2/3).
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Since

|T∆k
(f0ν, . . . , fkν)(λ)| ≤

∫∫
· · ·
∫
ν(x)ν(x− λx1) · · · ν(x− λxk−1)

∣∣∣∫ fkν(x− λxk) dσ(d−k)
x1,...,xk−1

(xk)
∣∣∣

dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx

it follows from an application of Cauchy-Schwarz, facilitated by (43) for the simplex ∆k−1, that

|T∆k
(f0ν, . . . , fkν)(λ)|2 ≤

(
1 +Ok(β−kc

−1/6
∆k

ε2/3)
)2(

M(λ) + E(λ)
)

where

M(λ) =

∫∫
· · ·
∫ ∣∣∣∫ fkν(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2 dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx

and

E(λ) =

∫∫
· · ·
∫ [

ν(x)ν(x− λx1) · · · ν(x− λxk−1)− 1(x)
]∣∣∣∫ fkν(x− λxk) dσ(d−k)

x1,...,xk−1
(xk)

∣∣∣2
dσ(d−k+1)

x1,...,xk−2
(xk−1) · · · dσ(x1) dx

where 1 = 1[0,1]d .

It follows from the proof of Lemma 3.1, specifically the argument from (13) to (16)) that

M(λ) ≤
∫∫

fkν(x1)fkν(x2)ψε4λ(x2 − x1) dx1 dx2.

We now complete the proof by establishing that E(λ) = Ok(β−k−3c
−1/6
∆k

ε1/4). Our strategy will be to

expand the square in the error term E(λ) which will add a new vertex xk+1 to the simplex. “Fixing” the
distance |xk+1 − xk| leads to an expression which may be viewed as the difference between a weighted and
an unweighted average over all isometric copies of a fixed (k + 1)-dimensional simplex. The reason that
this difference is small is that the measure ν behaves suitably random with respect to averages of this type,
expressed in (43). To remove the uncontrolled terms fk one needs another application of Cauchy-Schwarz
which leads to simplices of dimension k + 2 and the requirement d ≥ k + 3 for the underlying dimension of
the space.

Writing

ν(x)ν(x− λx1) · · · ν(x− λxk−1)− 1(x) =

k−1∑
j=0

[
ν(x− λxj)− 1(x)

]
ν(x− λxj+1) · · · ν(x− λxk−1)

with the understanding that x0 = 0, it follows that

E(λ) =

k−1∑
j=0

Ej(λ)

with

Ej(λ) =

∫∫
· · ·
∫ [

ν(x− λxj)− 1(x)
]
ν(x− λxj+1) · · · ν(x− λxk−1)

∣∣∣∫ fkν(x− λxk) dσ(d−k)
x1,...,xk−1

(xk)
∣∣∣2

dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

Squaring out we see that

Ej(λ) =

∫∫
· · ·
∫∫∫ [

ν(x− λxj)− 1(x)
]
ν(x− λxj+1) · · · ν(x− λxk−1)fkν(x− λxk)fkν(x− λxk+1)

dσ(d−k)
x1,...,xk−1

(xk+1) dσ(d−k)
x1,...,xk−1

(xk) dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

Since d ≥ k + 3 we can follow the argument in Section 3.3 and write

σ(d−k)
x1,...,xk−1

(xk+1) =

∫ π

0

(sin θ1)d−k−1 dσ
(d−k−1)
x1,...,xk−1,xk,θ1

(xk+1) dθ1

where σ
(d−k−1)
x1,...,xk−1,xk,θ1

(xk+1) denotes the normalized measure on the sphere

Sd−k−1
x1,...,xk−1,xk,θ1

= Sd−1(0, |vk+1|) ∩ Sd−1(x1, |vk+1 − v1|) ∩ · · · ∩ Sd−1(xk, |vk+1 − vk|)
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with vk+1 = vk+1(θ) satisfying |vk+1| = |vk|, |vk+1 − vj | = |vk − vj | for all 1 ≤ j ≤ k − 1 and θ1 determining
the angle between vk+1 and vk so that |vk+1 − vk| = 2|vk| sin(θ1/2).

If we now let ∆k+1(θ1) = {0, v1, . . . , vk, vk+1}, then it follows (again using (43)) that

Ej(λ) =

∫ π

0

(sin θ1)d−k−1T∆k+1(θ)(1, . . . , 1, ν − 1, ν, . . . , ν, fkν, fkν)(λ) dθ1 +Ok(β−k−1+jc
−1/6
∆k

ε2/3)

where T∆k+1(θ)(1, . . . , 1, ν − 1, ν, . . . , ν, fkν, fkν)(λ) equals∫∫
· · ·
∫∫∫ [

ν(x− λxj)− 1
]
ν(x− λxj+1) · · · ν(x− λxk−1)fkν(x− λxk)fkν(x− λxk+1)

dσ
(d−k−1)
x1,...,xk−1,xk,θ1

(xk+1) dσ(d−k)
x1,...,xk−1

(xk) dσ(d−k+1)
x1,...,xk−2

(xk−1) · · · dσ(x1) dx.

In light of (19) and (20) it suffices to now show that

E′j(λ) :=

∫ π

0

(sin θ1)d−k−1T∆′k+1−j(θ1)(fkν, fkν, ν, . . . ν, ν − 1)(λ) dθ1 = O(β−k−1+jε1/4)

where
∆′k+1−j(θ1) = {0, v′1, . . . , v′k+1−j}

with v′i = vk+1−i − vk+1 for 0 ≤ i ≤ k and v′k+1 = −vk+1.

Since |T∆′k+1−j(θ1)(fkν, fkν, ν, . . . ν, ν − 1)(λ)| is dominated by∫∫
· · ·
∫
ν(x)ν(x− λx1) · · · ν(x− λxk−j)

∣∣∣∫ (ν − 1)(x− λxk+1−j) dσ
′(d−k−1+j)
x1,...,xk−j

(xk+1−j)
∣∣∣

dσ′(d−k+j)
x1,...,xk−j−1

(xk−j) · · · dσ′(x1) dx

it follows from an application of Cauchy-Schwarz, facilitated by (43) for the simplex ∆′k−j(θ1), that

|T∆′k+1−j(θ1)(fkν, fkν, ν, . . . , ν, ν − 1)(λ)|2 ≤ 2 I∆′k+1−j(θ1)(λ)

where

I∆′k+1−j(θ1)(λ) =

∫∫
· · ·
∫
ν(x)ν(x− λx1) · · · ν(x− λxk−j)

∣∣∣∫ (ν − 1)(x− λxk+1−j) dσ
′(d−k−1+j)
x1,...,xk−j

(xk+1−j)
∣∣∣2

dσ′(d−k+j)
x1,...,xk−j−1

(xk−j) · · · dσ′(x1) dx.

Squaring out we see that I∆′k+1−j(θ1)(λ) equals∫∫
· · ·
∫∫∫

ν(x)ν(x− λx1) · · · ν(x− λxk−j)(ν − 1)(x− λxk+1−j) (ν − 1)(x− λxk+2−j)

dσ′(d−k−1+j)
x1,...,xk−j

(xk+2−j) dσ
′(d−k−1+j)
x1,...,xk−j

(xk+1−j) dσ
′(d−k+j)
x1,...,xk−j−1

(xk−j) · · · dσ′(x1) dx.

Since d ≥ k + 3 we can again argue as above to obtain

I∆′k+1−j(θ1)(λ) =

∫ π

0

(sin θ2)d−k−2+j
[
T1(λ)− T2(λ)− T3(λ) + T4(λ)

]
dθ2

where
T1(λ) = T∆′k+2−j(θ1,θ2)(ν, . . . , ν)(λ)

T2(λ) = T∆′k+2−j(θ1,θ2)(ν, . . . , ν, 1)(λ)

T3(λ) = T∆′k+2−j(θ1,θ2)(ν, . . . , 1, ν)(λ)

T4(λ) = T∆′k+2−j(θ1,θ2)(ν, . . . , ν, 1, 1)(λ)

with
∆′k+2−j(θ1, θ2) = ∆′k+1−j(θ1) ∪ {v′k+2−j}

with v′k+2−j = v′k+2−j(θ2) satisfying |v′k+2−j | = |v′k+1−j |, |v′k+2−j − vi| = |v′k+1−j − vi| for all 1 ≤ i ≤ k − j
and θ2 determining the angle between v′k+2−j and v′k+1−j so that |v′k+2−j − v′k+1−j | = 2|vj | sin(θ2/2).

We have therefore ultimately established

|E′j(λ)|2 ≤ C
∫ π

0

∫ π

0

∣∣T1(λ)− T2(λ)− T3(λ) + T4(λ)
∣∣ dθ2 dθ1
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for each 0 ≤ j ≤ k. In light of (43) we know that

Ti(λ) = 1 +Ok(β−k−3+jc
−1/6
∆′k+2−j(θ1,θ2)ε

2/3)

for i = 1, . . . , 4, and hence
E′j(λ) = Ok(β−k−3+jε1/4)

provided
c∆′k+2−j(θ1,θ2) ≥ ε.

The result now follows since the fact that

c∆′k+2−j(θ1,θ2) = min{c∆k
, 2|vk| sin(θ1/2), 2|vj | sin(θ2/2)}

and ε� c∆k
ensures that

|{(θ1, θ2) ∈ [0, π]× [0, π] : c∆′k+2−j(θ1,θ2) ≤ ε}| = O(ε). �

6.3. Proof of Lemma 6.1. The proof of Lemma 6.1 will follow from two applications of Cauchy-Schwarz
combined with Proposition 3.1 and Lemma 6.2. We first observe that if

T∆k1
,∆k2

(λ) := T∆k1
,∆k2

(f00ν̃, . . . , fk1k2 ν̃)(λ)

then

T∆k1
,∆k2

(λ) =

∫∫
ν1(x− λU1(v1

0)) · · · ν1(x− λU1(v1
k1))T∆k2

(gx,U1

0 ν2, g
x,U1

1 , . . . , gx,U1

k2
ν2)(λ) dµ1(U1) dx

where
gx,U1

j (y) = f0j(x− λ · U1(v1
0), y) · · · fk1j(x− λ · U1(v1

k1), y)

for each j = 0, 1, . . . , k2 and that Lemma 6.2 implies∣∣∣T∆k2
(gx,U1

0 ν2, . . . , g
x,U1

k2
ν2)(λ)

∣∣∣2 ≤ ∫∫ gx,U1

j ν2(y)gx,U1

j ν2(y − y1)ψ2,ε4λ(y1) dy dy1 +Ok2(β−3k2−3c
−1/2
∆k2

ε1/4)

for any 0 ≤ j ≤ k2. Hence by Cauchy-Schwarz, using (43) for T∆k1
(ν1, . . . , ν1)(λ), and switching the order of

integration we obtain that |T∆k1
,∆k2

(λ)|2 is majorized by∫∫
T∆k1

(hy,y10j ν1, . . . , h
y,y1
k1j

ν1)(λ) ν2(y)ν2(y − y1)ψ2,ε4λ(y1) dy dy1 +Ok1,k2(β−k1−1
1 β−3k2−3

2 c
−1/6
∆k1

c
−1/2
∆k2

ε1/4)

for any 0 ≤ j ≤ k2 where
hy,y1ij (x) = fij(x, y)fij(x, y − y1)

for i = 0, 1, . . . , k1. A further application of Cauchy-Schwarz (using the fact that ψ2,ε4λ is L1-normalized)
and appeal to Lemma 6.2 reveals that |T∆k1

,∆k2
(λ)|4 is majorized by∫∫∫∫

hy,y1ij ν1(x)hy,y1ij ν1(x− x1) ν2(y)ν2(y − y1)ψ1,ε4λ(x1)ψ2,ε4λ(y1) dx dx1 dy dy1

+Ok1,k2(β−4k1−4
1 β−3k2−4

2 c
−1/2
∆k1

c
−1/2
∆k2

ε1/4)

for any 0 ≤ i ≤ k1 and 0 ≤ j ≤ k2. Since

hy,y1ij ν1(x)hy,y1ij ν2(x− x1)ν2(y)ν2(y − y1) = fijν(x, y)fijν(x− x1, y)fijν(x, y − y1)fijν(x− x1, y − y1).

the result follows from (32). �

6.4. Inverse Theorem Revisited. We complete this section by noting the following immediate consequence
of Theorem 5.1 which together with Corollary 6.1 implies Proposition 4.4.

Corollary 6.2. Let 0 < α, β1, β2 ≤ 1 and B1 and B2 be (ε, ε4λ)-uniformly distributed subsets of [0, 1]d1 and

[0, 1]d2 with 0 < λ ≤ ε� βk1+1
1 βk2+1

2 α8(k1+1)(k2+1). If A ⊆ B1×B2 ⊆ [0, 1]d1 × [0, 1]d2 with |A| = αβ1β2 and

‖fAν‖�(ε4λ) � α(k1+1)(k2+1)

with fA = 1A − α1B1×B2
, then there exist cubes Qi ⊆ [0, 1]di of side-length ε4λ and sets B′i in Qi for which

|A ∩ (B′1 ×B′2)|
|B′1 ×B′2|

≥ α+ c α8(k1+1)(k2+1).
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7. Proof of Proposition 4.1, Part II: Regularization

To complete the proof of Proposition 4.1, as was noted after the Proposition 4.3, we need to now produce a
pair of new sets B′′1 and B′′2 that are (η, L′)-uniformly distributed for a sufficiently small η and for L′ attached
to some of the λj ’s, but for which A still has increased density on B′′1 × B′′2 . Proposition 4.3 did produce
a pair of sets B′1 and B′2 for which A has increased density on B′1 × B′2, but these sets are not necessarily
uniformly distributed. We will now obtain sets B′′1 and B′′2 with the desired properties from the sets B1 and
B2 produced by Proposition 4.3 by appealing to a version of Szemerédi’s Regularity Lemma [4] adapted to a
sequence of scales {Lj}1≤j≤J .

The precise result we need is stated below in Theorem 7.1, but first we state a couple of definitions.

Definition 7.1 (A partition P being adapted to scale Lj). Let 1 = L0 > L1 > L2 > · · · > 0 be a sequence
with the property that Lj+1 <

1
2Lj . We say that a partition P = Q∪R of [0, 1]d1 × [0, 1]d2 into cubes Q and

“rectangles” R is adapted to the scale Lj if each of the cubes in Q have sidelength Li for some 0 ≤ i ≤ j.

Definition 7.2 ((ε, L)-uniform distribution on Q). Let Q be a cube of sidelength L0 and 0 < L/L0 ≤ ε� 1.

A set B ⊆ Q is said to be (ε, L)-uniformly distributed on Q if

(44)
1

|Q|

∫
Q

∣∣∣∣ |B ∩ (t+QL)|
|QL|

− |B|
|Q|

∣∣∣∣2 dt ≤ ε2.

Theorem 7.1 (Regularity Lemma). Let 0 < β1, β2, η ≤ 1 and Bi ⊆ [0, 1]di with |Bi| = βi for i = 1, 2.

Given any sequence 1 = L0 > L1 > · · · > 0 with Lj+1 <
1
2Lj there exists 0 ≤ j < j′ ≤ J(β1, β2, η) and a

partition P = Q∪R of [0, 1]d1 × [0, 1]d2 adapted to the scale Lj with the following properties:

(i) For every cube Q = Q1 × Q2 in Q of sidelength Li with 0 ≤ i ≤ j − 1, the sets B1 and B2 are
(η, Lj′)-uniformly distributed on the cubes Q1 and Q2 respectively.

(ii) If N denotes the collection of cubes in Q = Q1 ×Q2 in Q of sidelength Lj for which at least one of
the sets B1 and B2 is not (η, Lj′)-uniformly distributed on the cubes Q1 and Q2 respectively, then∑

Q∈N
|Q|+

∑
R∈R
|R| ≤ η.

The proof of Theorem 7.1 follows by standard arguments, for completeness we include it in Section 7.1.

An almost immediate consequence of Theorem 7.1 is the following Corollary which, together with Proposition
4.3, provides a complete proof of Proposition 4.1, the easy verification of this we leave to the reader.

Corollary 7.1. Let 0 < α, β1, β2, τ, ε ≤ 1 and A ⊆ B1 × B2 ⊆ [0, 1]d1 × [0, 1]d2 with |A| ≥ (α + τ)β1β2

and |Bi| = βi for i = 1, 2. Given any sequence 1 = L0 > L1 > · · · > 0 with Lj+1 < 1
2Lj, there exist

0 ≤ j < j′ ≤ J(α, β1, β2, τ, ε) and squares Q1, Q2 of sidelength Lj such that the sets

B′i := Bi ∩Qi
with i = 1, 2 have the following properties:

(i) |B′i| ≥
1

3
βiτ |Qi|.

(ii) B′i is (ε, Lj′)-uniformly distributed on Qi

(iii)
|A ∩ (B′1 ×B′2)|
|B′1 ×B′2|

≥ α+
τ

3
.

Proof that Theorem 7.1 implies Corollary 7.1. Let η = εβ1β2τ/3 and P = Q∪R be a partition of [0, 1]d1 ×
[0, 1]d2 adapted to the scale Lj that satisfies the conclusions of Theorem 7.1 for some 0 ≤ j < j′ ≤ J(β1, β2, η).

Let B = B1 × B2 and U denote the collection of all cubes in Q = Q1 × Q2 in Q of sidelength Li with
0 ≤ i ≤ j for which B1 and B2 are (η, Lj′)-uniformly distributed on Q1 and Q2 respectively. Note that
property (ii) of Corollary 7.1 holds by definition for all cubes Q1 and Q2 for which Q1 ×Q2 ∈ U .
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If we let S denote the collection of all cubes Q in U which are sparse in the sense that |B ∩Q| < βτ |Q|/3,
then property (i) of Corollary 7.1 will hold by definition for all cubes Q1 and Q2 with Q1 × Q2 ∈ U \ S.
Finally, it is straightforward to see, using property (ii) of our partition P (on the size of N and R) and our
assumption on the relative density of A on B, that property (iii) of Corollary 7.1 must hold for at least one
cube Q in U \ S. �

7.1. Proof of Theorem 7.1. By passing to a subsequence we may assume Lj+1 ≤ 2−(j+6)ηLj , and in this
case we will show that the conclusions of the theorem hold with j′ = j + 1 for some 0 ≤ j ≤ J(β1, β2, γ, η).

For j = 0, 1, 2, . . . we construct partitions P(j) of [0, 1]d1 × [0, 1]d2 into cubes Q(j) and rectangles R(j)

starting from the trivial partition P(0) consisting of only one cube Q = [0, 1]d1 × [0, 1]d2 . The partition P(j)

will consists of two collections of cubes U (j),N (j) and a collection of rectangles R(j), that is

P(j) = U (j) ∪N (j) ∪R(j).

The collection R(j) will consist of rectangles R = R1 ×R2 whose total measure is small, specifically

(45)
∑

R∈R(j)

|R| ≤ η

2
,

while the collection U (j) will consist of cubes Q = Q1 ×Q2 of sidelength Li for some 1 ≤ i ≤ j such that B1

and B2 are (η, Li+1)-uniformly distributed on Q1 and Q2 respectively. Note that the cubes in U (j) may have
different sizes. The remaining collection N (j) will consist of those cubes Q of sidelength Lj which are not
(η, Lj+1)-uniformly distributed. We will stop the procedure when the total measure of the non-uniform cubes
is small enough, specifically when

(46)
∑

Q∈N (j)

|Q| ≤ η

2

and note that such a partition satisfies the conclusions of Theorem 7.1.

If [0, 1]d1 × [0, 1]d2 ∈ U (0), then the sets B1, B2 are both (ε, L1)-uniformly distributed and Theorem 7.1
holds. We thus assume that for some j ≥ 0 we have a partition P(j) for which (46) does not hold and let
Q = Q1 ×Q2 denote an arbitrary cube in N (j). By our assumption both cubes have sidelength Lj and Bi is
not (η, Lj+1)-uniformly distributed on Qi for either i = 1 or i = 2.

We assume, without loss of generality, that i = 1. Averaging show that for Q1 = t1 + [0, Lj ]
d1 and

L := Lj+1, we have

(47) |Eη| ≥
η2

2
|Q1|

where

(48) Eη :=

{
t ∈ Q1 :

∣∣∣∣ |B1 ∩ (t+QL)|
|QL|

− |B1 ∩Q1|
|Q1|

∣∣∣∣ ≥ η

2

}
.

Let m = bLj/Lj+1c and partition the cube Q′1 = t1 + [0, (m + 1)L]d1 ⊇ Q1 into grids of the form
G(s1) = s1 + {0, L, . . . ,mL}d1 with s1 running through the cube t1 + [0, L]d1 . Since L < 2−6Lj , by (47) there
exist s1 ∈ Q′1 such that

(49)
|G(s1) ∩ Eη|

md1
≥ η2

4
.

Fix such an s1 and consider the partition of Q1 into cubes of size L = Lj+1 and possibly rectangles, defined
by the grid G(s1). Repeat the same partition of the cube Q2 corresponding to a point s2 which we can choose
arbitrarily from a cube Q′2 ⊆ Q2 of size L. Taking the direct product of these partitions gives a partition of the
cube Q = Q1 ×Q2 into cubes of size L = Lj+1 and possibly also into some (d1 × d2)-dimensional rectangles.

After performing this partition of all cubes in N (j) we obtain the new partition P(j+1) of [0, 1]d1 × [0, 1]d2 .
The new cubes obtained are then partitioned into classes U (j+1) and N (j+1) according to whether they are
(η, Lj+2)-uniform. Note that the cubes in U (j) and rectangles in R(j) remain cells of P(j+1). Note that for

each cube Q ∈ N (j) the total measure of all the rectangles obtained is at most 16Lj+1L
−1
j |Q|, hence summing

over all cubes the total measure of the rectangles obtained this way is at most 4Lj+1L
−1
j . We adjoin these
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rectangles to R(j) to form R(j+1). Note that this way the total measure of the rectangles is always bounded
by

∞∑
j=0

16Lj+1

Lj
≤
∞∑
j=0

2−(j+2)η ≤ η

2
,

hence (45) holds.

A key notion in regularization arguments is that of the index or energy of a set with respect to a partition.
In our context we define it as follows. Let {Ck}Kk=1 denote the collection of cells that constitute P(j). For

any given cell Ck = Qk1 ×Qk2 in P(j), where Qki could be either a square or a rectangle, we let δki denote the
relative density of Bi in Qki for i = 1, 2, and define the energy of (B1, B2) with respect to P(j) by

(50) E(B1, B2;P(j)) :=
1

2

∑
Ck∈P(j)

(
(δk1 )2 + (δk2 )2

)
|Ck|.

It is not hard to see that the energy is always at most 1 and is increasing when the partition is refined. To
be more precise, we say a partition P ′ is a refinement of P if every cell C = Q1 ×Q2 of P is decomposed
into cells C`,`

′
= Q`1 × Q`

′

2 of P ′ so that cubes (or rectangles) Q`1 and Q`
′

2 form a partition of Q1 and Q2

respectively. Then |Q1| =
∑
` |Q`1| and |B1 ∩Q1| =

∑
` |B1 ∩Q`1|, hence writing δ1 for the relative density of

B1 on Q1 and δ`1 for the relative density of B1 on Q`1 one has

(51)
∑
`

(δ`1)2 |Q`1| = (δ1)2 |Q1|+
∑
`

(δ`1 − δ1)2 |Q`1|.

Similarly

(52)
∑
`′

(δ`
′

2 )2 |Ql2| = (δ2)2 |Q2|+
∑
`′

(δ`
′

2 − δ2)2 |Q`
′

2 |.

Multiplying equations (51) by |Q2|, (52) by |Q1|, and adding, we get

(53)
∑
`,`′

(
(δ`1)2 + (δ`

′

2 )2
)
|C`,`

′
| =

(
(δ1)2 + (δ2)2

)
|C|+

∑
`,`′

(
(δ`1 − δ1)2 + (δ`

′

2 − δ2)2
)
|C`,`

′
|.

Going back to our construction we have decomposed each cell Ck = Q1 × Q2 ∈ N (j) into cubes of the
form C`,`

′
= Q`1 × Q`

′

2 where Q`1 = s1 + `L + QL, Q`
′

2 = s2 + `′L + QL for some ` ∈ {1, . . . ,m}d1 and
`′ ∈ {1, . . . ,m}d2 , and into a collection of (d1 + d2)-dimensional rectangles of small total measure. By (49)

there at least η2md1/4 values of ` for which |δ`1 − δ1|2 ≥ η2/4. Thus, as |Q1| = Ld1j , |Q`1| = Ld1j+1 for all `,

and m = bLj/Lj+1c ≥ 1
2Lj/Lj+1, we have that

(54)
∑

`∈{1,...,m}d1

(δ`1 − δ1)2 |Q`1| ≥
η4

64
|Q1|.

By (53) this implies that the energy of (B1, B2) with respect to the collection of cells of P(j+1) contained
in Ck = Q1 ×Q2 given by the left side of (53) is at least

(55) E(B1, B2;P(j+1)|Ck) ≥ 1

2
(δ2

1 + δ2
2) |Ck|+ η4

128
|Ck|.

This holds for all non-uniform cells Ck ∈ N (j) and by our assumption that the total measure of N (j) ≥ η/2
it follows that

(56) E(B1, B2;P(j+1)) ≥ E(B1, B2;P(j)) +
η5

256
.

Thus the procedure must stop in j ≤ 256 η−5 steps providing a satisfactory partition. As explained above
this leads to a cell C = Q1 ×Q2 satisfying the conclusions of Theorem 7.1. �
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