PRODUCT OF SIMPLICES AND SETS OF POSITIVE UPPER DENSITY IN R?
NEIL LYALL AKOS MAGYAR

ABSTRACT. We establish that any subset of R? of positive upper Banach density necessarily contains an
isometric copy of all sufficiently large dilates of any fixed two-dimensional rectangle provided d > 4.

We further present an extension of this result to configurations that are the product of two non-degenerate
simplices; specifically we show that if Ay, and Ay, are two fixed non-degenerate simplices of k1 + 1 and
ko + 1 points respectively, then any subset of R? of positive upper Banach density with d > k1 + ko + 6 will
necessarily contain an isometric copy of all sufficiently large dilates of Ag, x Ag,.

A new direct proof of the fact that any subset of R% of positive upper Banach density necessarily contains
an isometric copy of all sufficiently large dilates of any fixed non-degenerate simplex of k + 1 points provided
d > k + 1, a result originally due to Bourgain, is also presented.

1. INTRODUCTION

1.1. Background. Recall that the upper Banach density of a measurable set A C R? is defined by

(1) 0*(A) = lim sup A0+ Qw)l QN)|,
N=00 s Q]

where | - | denotes Lebesgue measure on R? and @y denotes the cube [—N/2, N/2]%.

A result of Katznelson and Weiss [2] states that if A C R? has positive upper Banach density, then its
distance set

dist(A) = {|z — 2’| : z,2' € A}

contains all large numbers. This result was later reproved using Fourier analytic techniques by Bourgain in [1]
where he established the following more general result for arbitrary non-degenerate k-dimensional simplices.

Theorem 1.1 (Bourgain [1]). Let Ap C R* be a fired non-degenerate k-dimensional simple.
If A C R? has positive upper Banach density and d > k + 1, then there exists a threshold Ao = \o(A, Ay)
such that A contains an isometric copy of A+ Ay for all A > Xg.

Recall that a set Ay = {0,vy,...,vx} of k+ 1 points in R” is a non-degenerate k-dimensional simplex if
the vectors vy, ..., vy are linearly independent and that a configuration A}, is an isometric copy of A - Ay in
RYif A} =2+ X U(Ay) for some x € R? and U € SO(d) when d > k + 1.

1.2. Main Results. In Section 2 we present a new and direct proof of Theorem 1.1 when k& = 1, namely a
new proof of the aforementioned distance set result of Katznelson and Weiss. A new direct proof of Theorem
1.1 in its full generality is also given, in fact two different new approaches are presented in Section 3. However,
the main purpose of this article is to establish the following new results, namely Theorems 1.2 and 1.3 below.

Theorem 1.2. Let O = {0,v1,v9,v1 +v2} C R? with v1 - v = 0 denote a fized two-dimensional rectangle.
If A CR? has positive upper Banach density and d > 4, then there exists a threshold Ao = \o(A, ) such
that A contains an isometric copy of A -0 for all A > Ag.

Since d > 4 we can write R? = R% x R% with dq,ds > 2. It is important to note that the isometric copies
of X -0, whose existence in A Theorem 1.2 guarantees, will in fact all be of the special form

{(z,9), (@', y), (2,9). (',y)} S R" x R™

where |z — /| = A|vy| and |y — ¢'| = Ava].
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We also establish the following generalization of Theorem 1.2, but with a slight loss in the dimension d.

Theorem 1.3. Let Ay, and Ay, be two fixed non-degenerate simplices of dimension k1 and ka.

If A CR? = R% x R% has positive upper Banach density with each d; > k;+3, then there exists a threshold
Ao = Mo(A, Ak, Ay,) such that A contains an isometric copy of A - (Ag, x Ay,) of the form Aj x A} with
each A;w C R% an isometric copy of \- Ay, for all X > Xg.

It will be clear from the proofs of Theorems 1.3 and 1.2 that if 1 = k; < ko, then the conclusion of Theorem
1.3 will in fact hold under the weaker hypothesis that dy > k1 + 1 and dy > ko + 3.

Note further that if A were a direct product set By x By C R% x R% with each d; > k; + 1, then the
conclusion of Theorem 1.3 (which contains the conclusion of Theorem 1.2 when each k; = 1) would follow
immediately from Theorem 1.1 and under the weaker hypothesis that d > ki + ko + 2.

The natural extension of Theorems 1.2 and 1.3 to ¢-dimensional rectangles and ¢-fold products of simplices
(with £ > 2) also holds, but as the arguments involved in establishing these results are significantly more
technical than those needed for Theorems 1.2 and 1.3 we plan to address this in a separate article.

1.3. Outline of Paper. Our approach to proving Theorems 1.2 and 1.3 will be to reduce them to quantitative
results in the compact setting of [0, 1]% x [0,1]%, namely Propositions 4.1 and 4.2. These reductions are
carried out in Section 4.1 with the remainder of Section 4 and the entirety of Sections 5-7 then devoted to
establishing Propositions 4.1 and 4.2.

In Section 2 we present a new direct proof of Theorem 1.1 when k = 1 and two new proofs of Theorem
1.1, in its full generality, are presented in Section 3. In both cases our novel approach will be to first reduce
matters to results for suitably uniformly distributed subsets of [0, 1]%.

2. UNIFORMLY DISTRIBUTED SUBSETS OF R% AND A NEW PROOF OF THEOREM 1.1 WHEN k = 1

In this section we introduce a precise notion of uniform distribution for subsets of R and prove an (optimal)
result, Proposition 2.1 below, on distances in uniformly distributed subsets of [0, 1]¢. Proposition 2.1 will be
critically important in our proof of Proposition 4.1, but as we shall see below it also immediately implies
Theorem 1.1 when k& = 1 and hence provides a new direct proof of the following

Theorem 2.1 (Katznelson and Weiss [2]). If A C RY has positive upper Banach density and d > 2, then
there exists a threshold Ao = \g(A) such that for all X > N\ there exist a pair of points

{z, 2} CA with |z—12'|=\.
2.1. Uniform Distribution and Distances.

Definition 2.1 ((g, L)-uniform distribution). Let 0 < L <e < 1 and Qp = [-L/2,L/2]¢.
A set A C [0,1]% is said to be (g, L)-uniformly distributed if

AN (t+Qp)| ? )
— =27 _|A d .
@ /[0,1]d QL Al di<e

Proposition 2.1 (Distances in uniformly distributed sets). Let 0 <¢<1,0<A<e <1 andd > 2.
If A C[0,1]% is (g,e*\)-uniformly distributed with o = |A| > 0, then there exist a pair of points

{z,2'} CA with |v—2'|=cA\
In fact,
// La(z)la(z — edzy) do(zy) de = a® + O(c™/62/3),
where o denotes the normalized measure on the sphere {x € R? : |z| = 1} induced by Lebesque measure.

Before proving Proposition 2.1 we will first show that when ¢ = 1 it immediately implies Theorem 2.1. To
the best of our knowledge this observation, which gives a direct proof of Theorem 2.1, is new.
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2.2. Proof that Proposition 2.1 implies Theorem 2.1. Let ¢ > 0 and A C R with §*(4) > 0.
The following two facts follow immediately from the definition of upper Banach density, see (1):
(i) There exist My = My(A, ¢) such that for all M > M, and all ¢ € R?
AN (t+ Qum)l
Q]
(ii) There exist arbitrarily large N € R such that

AN (to +Qn)|
|Qn|

< (1+£4/3)6%(A).

> (1-&*/3)5°(4)

for some ty € R®.
Combining (i) and (ii) above we see that for any A > e=* My, there exist N > =4\ and ¢y € R? such that
[AN(t+ Qe |[AN (to+ Qn)]
|Qs4)\| |QN|

for all t € R%. Consequently, Theorem 2.1 reduces, via a rescaling of AN (ty + Qn) to a subset of [0,1]%, to
establishing that if 0 < A < e < 1 and A C [0,1]? is measurable with |A| > 0 and the property that

AN (t+ Qesy)|
|Q64)\|

for all t € RY, then there exist a pair of points z, 7’ € A such that |z — 2/| = A\. Now since AN (t + Q.1y) is
only supported in [—e*\, 1+ 4] it follows that

[AN (t+ Qc1))] AN (t+ Qe 4
A= [ AU FCe] g 2O+ Cen)l A
®) 4 /]Rd |Qean ' /[o 1] |Qcal t+ 014,

from which one can easily deduce that

IA

(14 &%)

< (1+¢eh4]

AN(t
(4) {repye s HOEEG o oy g}~ o)
|Qs4)\|
and hence that A is (g, e*)\)-uniformly distributed. The result therefore follows, provided d > 2. O

2.3. Proof of Proposition 2.1.

Definition 2.2 (Counting Function for Distances). For 0 < A < 1 and functions

fo, f1: [0, 1]d —R
with d > 2 we define

(5) T(fo, f1)(A / fola) fila — Azy) do(zy) da.

Definition 2.3 (U!(L)-norm). For 0 < L < 1 and functions f : 4 5 R we define

) 1w = [ |z [ @] a= [ (LM // ) ') ' de )t
[0,1]@ t+QrL [0,1]4 2 €Et+Q L

where Qp = [-L/2, L/2]°.
It is an easy, but important, observation that
@ 191300y = [ [ $@0 = 0)pnon) don e+ O(D),

where 1y, = L72% 14, * 1g,. Note also that if A C [0,1]? with o = |A| > 0 and we define

fA = 1A - 041[0,1]d



4 NEIL LYALL AKOS MAGYAR

AN (t+Qp)l ’
8) /‘Ld / )dx‘ dt = ’m—w dt + O(L).
0.1

[0,1]4 t+Qr

Evidently the U!(L)-norm is measuring the mean-square uniform distribution of A on scale L. Specifically
if Ais (¢, L)-uniformly distributed, then || fal|y1(z) < 2e provided 0 < L < e.

At the heart of this short proof of Proposition 2.1 is the following “generalized von-Neumann inequality”.
Lemma 2.1 (Generalized von-Neumann for Distances). For anyc >0, 0 < &, A\ < min{1,c™'} and functions
fos fr:[0,1)7 = [=1,1]

with d > 2 we have

T (fo, F)(eN)] < [T Ifillureany + O /02/3).

§=0,1
Indeed, if A C [0,1]¢ with d > 2 and a = |A| > 0, then Lemma 2.1 implies that
|T(14,14)(c)) — Tl 14, alig 13a)(eX)| < 3| fallyi(ean) + O(c™H/0e¥/3)
for any 0 < ¢ <1and 0 <e, A < 1. Since T(aly 14, aljg1ja)(cA) = & + O(cA) it follows that
T(1a,14)(c)) = &® + O(c™/5%/3)
provided 0 < A <e <« 1.

To finish the proof of Proposition 2.1 we are therefore left with the task of proving Lemma 2.1.

Proof of Lemma 2.1. An application of Parseval followed by Cauchy-Schwarz implies that
T(fo. )N = ( [ [ folodfa(o = x) dotar) o)

(|, 1@IA©Ia0)d)

I1 [ 1E©Feeo)d

7=0,1

IN

I A

where
) = [ e duta)
Rd

denotes the Fourier transform of any complex-valued Borel measure dy and g(£) is the Fourier transform of
the measure dy = g dz. Combining the basic fact (see for example [3]) that

5(&)] < min{1,Cl¢[~“@=D/2}
with the simple observation that |1 — (¢)| < min{1, C|¢|} gives
5(eX)| = [F(eAO) [P (*AE) + [3(cAE)| (1 — P(e*A)) < D(e?AE) + O(min{= g, (eAl)~1/2}).
The result now follows, since || f;[12 < 1,
min{e*Al¢], (eAl¢])TV/2} < ¢ 1/2e/

and a further application of Parseval (and appeal to (7)) reveals that

/ FHOPd(ENe) de = // £ @) (@ — 21 ean (1) day dz = |53 oap, + OEN). 0
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3. A NEw PROOF OoF THEOREM 1.1

In light of the reduction argument presented in Section 2.2 it is clear that in order to prove Theorem 1.1 it
would suffice to establish the following result for uniformly distributed subsets of [0, 1]%.

Proposition 3.1 (Simplices in uniformly distributed sets). Let Ax = {0,v1,..., v} be a fized non-degenerate
k-dimensional simplex with ca, = min;<j<j dist(v;,span{{vi,...,ve}\ v;}) < 1.

Let 0 < A <ex min{l,cgi} and A C [0,1]¢ with d > k+1 and o = |A| > 0. If A is (g,e*\)-uniformly
distributed, then A contains an isometric copy of A - Ay and in fact

—-1/6
(9) // La(@)lale = X-Uvy)) - 1a(z = X-Uvg)) du(U) dz = o+ + Ok(CAk/ £2/3)
where v denotes the Haar measure on SO(d).
Note that Proposition 2.1 is the special case of Proposition 3.1 with £k =1 and v; = 1.

3.1. Proof of Proposition 3.1. Let Ay = {0,v1,...,v;} be a fixed non-degenerate k-dimensional simplex
with
cA, = 1r§n]12k dist(v;, span {{v1,..., vk} \v;}) <1

Definition 3.1 (Counting Function for Simplices). For any 0 < A < 1 and functions

anfla"'7fk : [071]d_>R
with d > k + 1 we define

(10) T (fos frs -5 fr) (A /fo YAz = X-Uvy)) - fulz = X-Uvg)) du(U) de.

Proposition 3.1 is an immediate consequence of the following “generalized von-Neumann inequality”.
Lemma 3.1 (Generalized von-Neumann for Simplices). For any 0 < ¢, \ < 1 and functions
fosfryeeos fi 0 (0,17 — [—1,1]
Tan(for firs IS _min il ey +Oleay %),

Indeed, if A C [0,1]¢ with d > k + 1 and a = |A| > 0, then Lemma 3.1 implies
T, (Lay ..o, 14)(N) = Ty (@dpo gja, - ., ol g ga) (V)] < (255 = 1)|| Fallos any + On(cal /%)
for any 0 < &, A < 1. Since T, (aljgyja, ..., alj1ja)(A) = ¥t 4+ O()) it follows that
Ta,(La,..., 1A)()\) =t + Ok(Cgi/GEQ/S)
provided 0 < A <e < 1.
To finish the proof of Proposition 3.1 we are therefore left with the task of proving Lemma 3.1.

Proof of Lemma 8.1. By symmetry it suffices to show that

(11) ITa (fos fis - )N < I filloneany + Oeal/%e%).
As in [1] we start by writing

Ta, (fo, fry-oos fe)(A // /fo V(= Aer) - filw = Axg) dolt 9, () - dol) (w2) do(ar) da

where o now denotes the normalized measure on the sphere S=1(0, |v1|) and J;Eff_j ?%71 denotes, for each
2 < j <k, the normalized measure on the spheres

(12) Sty =50 ) NS (@, oy —wil) N S (g, oy — v )

where S (z,r) = {2/ € R¢ : |z — 2’| = r}. Since

T oo Frve e SO < [ [ oo [| [ fio-ran) dold 2, (on)] dotd F2D () - dotid=? (az) doan) de
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it follows from an application of Cauchy-Schwarz that

(13)  [Tac(fo fro o )N / //‘/fk (0= e do@ D, (o) do

dol@=FD (2 1) dol@D) () do(a1).

L1y Th—2

An application of Plancherel therefore shows that

Ty frseo s POV < [IROPIOO
where
(14) O = [ [Io @ do o) ) ot ) doan).
Estimate (11) will follow if we can show that
(15) I(AE) = IAED(*XE) + T(NE)(1 — 1h(* X)) < B(*XE) + O(cp) *e*?)

since || fx||]2 < 1 and an application of Parseval and appeal to (7) reveals that
(16) /|J?k(§)|21$(54/\§) d§ = // fr(@) fo(@ = 21)pear(@1) e dey = || frllfr oy + O(EMN).

To establish (15) we argue as in [1], in particular we use the fact that in addition to being trivially bounded
by 1 the Fourier transform of agfffk)l .1 also decays for large £ in certain directions, specifically

k) —(d—Fk)/2
(7 o P (O] < O (r(SEE ) - dist(Espan(an, .. ax-1))

) = dist(vg, span{vy, ..., vk_1}) denotes the radius of the sphere SI—*

..... Tp—1 S TR—1"

This estlmate is a consequence of the well-known asymptotic behavior of the Four1er transform of the
measure on the unit sphere 4% C R¥**! induced by Lebesgue measure, see for example [3].

Together with the trivial uniform bound I(£) < 1, and an appropriate conical decomposition (depending
on &) of the configuration space over which the integral I(£) is defined, this gives

(18) 1(€) < min{L, Cea, l¢))~H/2).
Combining (18) with the basic bound |1 — A( &)] < min{1, C|¢|} we obtain the uniform bound
11— (e AET(AE) < min{(hea, €]) V2, e NE]} < cxl/?et/3
from which (15) follows. 0

3.2. A Second New Proof of Theorem 1.1. In this subsection we present an alternative approach to
proving Proposition 3.1 with the slightly worse error bound Ok(cgi/ 2.1/ 3). Specifically, we show that one
can in fact establish the following (slightly weaker) generalized von-Neumann inequality for simplices using
only Lemma 2.1, namely the generalized von-Neumann inequality for distances.

Lemma 3.2 (Generalized von-Neumann for Simplices II). For any 0 < A <e < 1 and functions
fosfryooos fr [0,1]% = [—1,1]
Ta(for fi s SOV V2T _min 11y + Olea, ),
In the proof below we will make use of the following straightforward observations:
(i) If we let Ag—1 ={0,v1,...,v5_1}, then
(19) Ta(fos f1s - fro—15Lo,002)(A) = Ta,_, (fo, f1,- 5 fe—1)(A) + O(N).
(ii) If we let A} = {0,v1,..., v} } with v} = vp_; —vg for 0 < j <k —1 and v}, = vy, then

(20) Ty (fos frs oo fe)(N) = Ty (fr fom1s -5 fo) (M)
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Proof of Lemma 3.2. By symmetry it suffices to show that

(21) Ty (for 1y )V < 27 || fillon einy + Oeal/%e%/3).

We initially follow the proof of Lemma 3.1, but after (13) we now proceed differently. Instead of applying
Plancherel to the right hand side of

1T (fo, f1, - fo) (VP < // /‘/fk (x — Azyg) da(d k)xk_l(:tk) dag‘i k;i) ,(@p—1) - do(xy) da.

we now “square out” the right hand side to obtain

(22) // // felz=Azk) fr(z— )\xk+1)da(d k)wk @y 1)da(d k,)mk,l( )da(d k;i)2(xk_1)~-~da(x1)dx.

If d =k + 1, then for fixed x1, ...,z we can use arc-length to parameterize of the circle Sd k Laop 1 With
6 = 0 and 6 = 27 corresponding to the point xj, to write
2m
(23) / Fele = Aanp) dol0, (ar) = [ fule — Aapga (@, .2k, 6)) do.
0

For any fixed 6 € [0, 27] we then define Ap41(0) = {0,v1,..., vk, Vk11(0)} with vp41 = vey1(6) satisfying
|Vk41] = |vk|, [Ve41 — v;| = Jvg — ;| for all 1 < j <k —1 and use 6 to determine the angle between vy and

v measured from the center of the circle S¢°% | consequently

[vk+1 — vi| = 2sin(6/2) - dist(vg, span{vy, ..., vg_1}).

It follows that
2
|TAk (an Jio-eos fk)(A)F < / TAk+1(9)(1[0,1]d’ B 1[0,1]‘% Jrs fk)()‘) do + O()‘)
0
and in light of (19) and (20) that

27
|TAk(f0)f1a"'7fk)()\)|2S/ Ty, 0 Frs iy Lo, - -+ Lo, ) (A) d + O(X)
0

27
- / Tar o) (for fe) (V) d + O(N)

where
Tag(o)(fes FON) =T SO 1= [ [ fulrfula = cl0)har) doten) da
with ¢(0) = 2sin(0/2) - dist(vg, spanf{vy, . .. ,vk_l}). Lemma 2.1 now implies that

Ty 0) (Fis SN < Fillon ey + O((sin(8/2) 7/ 0c5,%<>/?)
since ¢(f) > 2sin(#/2) ca, . This completes the proof, when d = k + 1, as f027r(sin(0/2))*1/6 df < oo, and in
fact establishes the result in general, since if d > k 4 2, one can define a new non-degenerate simplex
Adfl = {0’ Uiy -0y Vg1, ’U;cv o ,’();72, vldfl}

with v/,_; = v;, and use the fact that
Ta(fo, frse s fo)N) = Tag_, (for -+ fo—15 Lo a]as - - -5 Ljo,13a5 S ) (A) + O(N). O

3.3. A Direct proof of Lemma 3.2 when d > k+ 2. We choose to include an additional argument similar
to the one presented above that covers the case d > k + 2 directly. Arguments of this nature will be critical
important in Section 6.2 when we establish a “relative generalized von-Neumann inequality” for simplices.

If d > k + 2 then in (22), for fixed 1, ..., 2k, we write

(24) o P (@r) = / (sinf)" Vo P () d

(dkl)

2r_y.00.0(@Tk+1) denotes the normalized measure on the sphere

where o,

(25) S a0 = SO ok ) N ST (@, o — o) -0 SYT (@ fvggr — vk])
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with vg41 = vey1(0) defined such that |vgi1| = |vk|, [vg41 —vj] = |vg —v;| for all 1 < j < k—1 with 0

determining the angle between vy41 and v, measured from the center of the sphere Sg;.’“‘_,wkfl, consequently

[vk+1 — vi| = 2sin(6/2) - dist(vg, span{vy, ..., vg_1}).

If we again let Agi1(0) = {0,v1,..., 0k, Vk41}, it follows that

Ta, (for frs oy f) V2 < /O (sin ) F 1 Ta 0y (Ljo,agas - -5 Loages s f2) (A) dO + O(X)

and in light of (19) and (20) that

‘TAk(fO’fla"'afk)(A)F < A (Sine)dikilTA' (9)(fk7fk71[0,1]%"'31[0,1]‘1)()‘) d9+0(>\)

k+1

= [0y Ty (i F) O 80+ 00
where again
Ty 0 (fes FON) =T SO 1= [ [ fulrfula = cl0)har) dotan) da
with ¢(0) = 2sin(6/2) - dist(vg, span{vy,...,vk—1}). Lemma 2.1 again implies that
(Taq 6y (Fies )N < [l ooy + O((sin(8/2)) 71011/ 0e2/)
since ¢(6) > 2sin(6/2) ca, and this completes the proof as [; (sin8)4*~1(sin(6/2))~1/6 df < oc. O

4. PROOF OF THEOREMS 1.2 AND 1.3

We now proceed with the main task, namely the proofs of Theorems 1.2 and 1.3.

4.1. Reducing Theorems 1.2 and 1.3 to quantitative results for subsets of [0,1]% x [0, 1]%.

Proposition 4.1 (Rectangles). Let 0 < ¢ <1 and A C [0,1]% x [0,1]92 with dy,ds > 2 and a = |A| > 0.
If {\;} is any sequence in (0,1) with A\j11 < 3X; for all j > 1, then there exist 1 < j < J(a) and a
quadruple of points

{(z,y), (@, y), (z,9), (@, ¢y )} CA with |z —2'| =X and |y —y'| = c);.
In fact, for A = A

//// la(z,y)la(z — Az1,y)1a(z,y — cAyr)la(x — Axq,y — chyr) doi(x1) doa(y1) de dy > C(a) > 0

where o; denotes, for i = 1,2, the normalized measure on the unit sphere S%“~1 C R% centered at the origin
induced by the Lebesgue measure on R%.

Proposition 4.2 (Product of Simplices). Let Ay, = {0,v%, v, ... m,ii} be fized non-degenerate simplices of
dimension k; with
cn,, = é“gnk dist(v}, span {{v{,..., v}, } \ vj}) <1

fori=1,2 and A C[0,1]% x [0,1]% with d; > k; + 3 and o = |A| > 0.
If {\;} is any sequence in (0,1) with \j41 < %)\j for all j > 1, then there exist 1 < j < J(a, Ag,, Ag,)
and a product A} x A} C A with each A} C [0, 1% an isometric copy of \;j - Ay,. In fact, for X =\;
k1 ko

////H [Tt =X Uiwh),y = X Ua(0])) dpa (Ur) dpa(U2) dacdy > C(a) > 0

i=05=0
where v§ = v3 = 0 and p1 and pe denote the Haar measures on SO(dy) and SO(dg) respectively.
The reduction of Theorems 1.2 and 1.3 to these results in the compact setting of [0,1]% x [0,1]% is

straightforward and precisely the approach taken by Bourgain in [1] to prove Theorem 1.1, but for completeness
we supply the details for Theorem 1.2 below.
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Proof that Proposition 4.1 implies Theorem 1.2. We may assume that ¢ := |vg| < |v1| = 1.

Arguing indirectly we suppose that A C R? with d > 4 is a set with 6*(A4) > 0 for which the conclusion of
Theorem 1.2 fails to hold, namely that there exist arbitrarily large A € R for which A does not contain an
isometric copy of A - [J.

We now let 0 < o < §*(A) and set J = J(«) from Proposition 4.1. By our indirect assumption we can
choose a sequence {\; }3-]:1 with the property that A\;;1 < %)\j for all 1 < j < J —1 and A does not contain
an isometric copy of A; - [ for each 1 < j < J. It follows from the definition of upper Banach density that
exist N € R with N > )\; and ¢, € R? for which

|[AN (to + Q)|
VT RN S
|Qn|
Rescaling A N (tg + Qn) to a subset of [0,1]¢ and applying Proposition 4.1 leads to a contradiction. O

4.2. Proof of Propositions 4.1 and 4.2, Part I: A Density Increment Strategy.

Proposition 4.3 (Dichotomy for Rectangles). Let 0 < ¢ < 1 and B; C [0,1]% with d; > 2 and 3; = |B;| > 0
fori=1,2. If AC By X By with |A| = aB182 >0 and 0 < A < e < ¢B385a?, then either

1 1
6262 //// 1A($,y)1A(fﬂ - )‘xby)lA(xay - CAyl)]-A(x - )\xl,y - C)\yl) dffl(l'l) dO’Q(yl)d.Tdy > 5044
1~2

or there ezist cubes Q; C [0,1]% of side-length e*\, sets Bl in Q;, and ¢’ > 0 for which
[AN (B x By)| ) 32
_— = > .
BB ST
provided By and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0,1]% respectively.
Proposition 4.4 (Dichotomy for Product of Simplices). Fori = 1,2 let B; C [0,1]% with d; > k; + 3 and
Bi = |Bi| > 0 and Ay, = {v,vi,v},... v} } be a non-degenerate simplex of dimension k; with vy =0 and

cn,, = 1gjun dist(v}, span {{vf,...,vp }\vj}) < 1.

If AC By x By with |A| = af182 > 0 and
0 <A< e <hymy (Cay, cay, ) (BT BE2 TRt (ke 1)) 16

then either

1 2 1
et ) T a2 Ut AVt s (03) a0 ey > 10840

=0 j5=0
or there exist cubes Q; C [0,1]% of side-length e*\, sets Bl in Q;, and ¢’ > 0 for which
|[AN (By x By)|

S ! oS+ (k1)
B < By - otee

provided By and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0,1]% respectively.

Sections 5 and 6 below are devoted to the proofs of Propositions 4.3 and 4.4. Central to each proof is
an appropriate “relative generalized von-Neumann inequality”, namely Lemmas 5.1 and 6.1. These relative
generalized von-Neumann inequalities in turn imply Corollaries 5.1 and 6.1, which together with Corollaries
5.2 and 6.2 (which are both consequences of an appropriate common “Inverse Theorem”, namely Theorem
5.1) immediately imply Propositions 4.3 and 4.4 respectively.

It is important to note that Propositions 4.3 and 4.4 are not in and of themselves sufficient to establish
Propositions 4.1 and 4.2. In order to apply a density increment argument one would need that the sets Bf and
B!, produced by Propositions 4.3 and 4.4, for which A has increased density on B} x B, were (1, L')-uniformly
distributed for a sufficiently small n and for L’ attached to some of the \;’s on @1 and Q2 respectively, which
they simply may not be. In Section 7 we complete the proofs of Proposition 4.1 and 4.2 by showing that we
can obtain suitably uniformly distributed sets B} and B} by appealing to a version of Szemerédi’s Regularity
Lemma [4] adapted to a sequence of scales.
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5. PROOF OF PROPOSITION 4.3

At the heart of our proof of Proposition 4.3 will be an appropriate “relative generalized von-Neumann
inequality for rectangles”, namely Lemma 5.1 below. This result, together with a companion “Inverse
Theorem” (Theorem 5.1 below) and Proposition 2.1 will ultimately furnish a proof of Proposition 4.3.

Throughout this section we fix B; C [0,1]% with d; > 2 to be arbitrary sets with 3; = |B;| > 0 for i = 1,2.
5.1. A Relative Generalized von-Neumann Inequality for Distances and Rectangles.
Definition 5.1 (A Counting Function for Rectangles). For any 0 < ¢ <1, 0 < A < 1 and functions

fij 1[0, 1% x [0,1]% - R
with 4,5 € {0,1} we define
T, (A) == T, (foos fi0, for, f11)(A)

where
(26) Th, (M) = / / / Joots ) Fro(@ — A, ) for (2.5 — Ay ) fur (@ — Aarsy — eAy) do (1) dos(y) der dy

Note that if we let

(27) vz, y) =1 (95)1/21/2(?%)1/2

where

(28) vy =B, and vy =By 1,

then, in light of Proposition 2.1, we have

(29) T, (v, v, v, v)(N) = T(v1,v1)(N) - T(va, v2) (eX) = 1+ O(B7 28y 21 /6%/3)

for any 0 < A\ < e < 1, provided By and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0, 1]
respectively.

Definition 5.2 (O(L)-norm). For 0 < L < 1 and functions f : [0,1]% x [0,1]% — R we define

4 _ 4
(30) = [ U deads
with
1
(31) 11 ween = praray [ [f] F@nie ey sa.y) o dedy dy
z,x’ €t1+Q1,L
Y,y €ta+Qo L

where Q; 1, = [~L/2,L/2]% for i =1,2.

As before it is a straightforward but important observation that || f Hé( 1) equals

(32) / / / / F )@ — 1,9) f @y — 92) (@ — 21,y — y)or.s (21) a1 (1) dey da dyy dy + O(L)

where ¢i,L = [~2d: 1Qi,L * lQi,L'

In this setting we have the following “generalized von-Neumann inequality” relative to By X Bs.
Lemma 5.1 (Generalized von-Neumann for Rectangles relative to By x Ba). Let0 < ¢ <1 andv = 1/11/2®y21/2
where v, = ﬁfllBl and vy = [32_1132. For any 0 < e, A < 1 and functions

fij 2 [0,1]% x [0,1]%2 — [1,1]
with 1, j € {0,1} we have
T, (foovs frovs forvs fu)N < T figvlloessy + OB By e /24eM/0).
i,j€{0,1}

It is easy to see that Lemma 5.1, combined with Proposition 2.1, gives the following
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Corollary 5.1. Let 0 <c<1,0< a,B1,82 <1 and 0 < XA < e < cBB5a24.
If AC By x By C[0,1]" x [0,1]% with |A| = ap1B2 and || fav|nean) < o, then

To,(1av,Lav, 1av,14v)(N) > %0/1
provided By and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0,1]% respectively.
Proof of Corollary 5.1. It follows immediately from Lemma 5.1 that
Th, (1av, 1av, 1av, 1av)(\) — * T (v, v, v, v)(N)| < 15 | favlloEsa + O(ﬂflﬁglc_l/mel/ﬁ)

for any 0 < e, A < 1, where fa =14 — alp,xpB,. The result follows since, as noted in (41), the fact that B,
and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0, 1]2 allows us to use Proposition 2.1 and
conclude that

1n. (v,v,v, I/)()‘) =1+ O(ﬁf2ﬁ520_1/652/3)
for any 0 < A < e < 1, as required. O

5.2. Proof of Lemma 5.1. The proof of Lemma 5.1 follows from two clever applications of Cauchy-Schwarz
combined with the following relative version of Lemma 2.1.

Lemma 5.2 (Relative Version of Lemma 2.1). Let B C [0,1]¢ with d > 2 and § = |B|.
Forany 0 < c<1,0<¢e, <1 and functions fo, f1 : [0,1]¢ — [~1,1] we have

1/2
IT(fov, fir)(eN)] < ] (/ ij(w)ij(x—$1)¢54A($1)dfﬂ1d$> +O(B 7 eV,

j€e{o,1}

where v = 37 '1p.
Proof. Same as that for Lemma 2.1 above, but noting that || f;v[|3 < 37! for j =0, 1. O

To prove Lemma 5.1 we first observe that

|75, (foov, fiov, forv, fuiv)(AN)] S/ T (g0 v2, 97" va) (eX)| v (x)vi(z — Axy) doy (21) dx
where

90" (y) = foo(z,y) fro(x — Az1,y)
g7 () = for(z,y) fri(x — Awy, y).

T, Ty xr,xrq

Applying Lemma 5.2 to T'(gy"" " v2, g " v2) (cA) followed by an application of Cauchy-Schwarz (and switching
the order of integration) shows that [T, (foov, - . -, fi1v)(A)]? is majorized by

II / / T (" o1, W ) (V)| va (y)va(y — Aya )a.cox (v1) dys dy + O(B7 B3 2e™H/0e/?)
je{0,1}
where
o (@) = foj(2,y) fo; (z,y — Ay1)
(@) = frj(@,y) frj(@,y — Ayr).
Applying Lemma 5.2 once more, this time to T'(hg;" v1, h{3"'v1)()), followed by another application of
Cauchy-Schwarz reveals that |1, (foov, - - -, f11v)(N)]* is majorized by

11 //// WYy ()RS vy (m—21) va (y)va (y—Ayr )b con (21) o cox (1) davy de dyy dy+O (81 * By *e ™/ 0e2/9)
ije{0,1}

Since

R v ()R v (2 — a0 )ve(Y)va(y — Ay) = fijv(z,y) fijv(v — 21,9) figv(@,y — yi) fijv (@ — 21,y — y1)
the result follows in light of observation (32). O
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5.3. Inverse Theorem for the (J(L)-norm. The final piece in the proof of Proposition 4.3 is the following

Theorem 5.1 (Inverse Theorem). Let 0 < n, 81, 82 < 1 and By and Bs be (g, L)-uniformly distributed subsets
of [0,1]% and [0,1]% with 0 < L < e < n® B2B3. If f:[0,1]% x [0,1]% — [~1,1] satisfies

(33) / / f@ (@) dedy =0 and | frlow =1

with v = 1/11/2 ® 1/21/2 and vy = By Mg, and vy = By M1, then there exist cubes Q; C [0,1]% of side-length L
and sets B} C B; N Q; such that

(34) e [ f@am@nG) dedy > et

As a consequence of Theorem 5.1 we immediately obtain the following corollary which together with
Corollary 5.1 implies Proposition 4.3.

Corollary 5.2. Let 0 < ., 1,82 < 1 and By and By be (g,e*\)-uniformly distributed subsets of [0,1]% and
[0,1]%2 with 0 < A < e < BEB3a32.
If AC By x By C [0,1]% x [0,1]92 with |A| = af1 B2 and
[ favloeey > o
with fa = 14 — alp, «xp,, then there exist cubes Q; C [0,1]% of side-length e*\ and sets B! in Q; for which
[AN (B x By)| 32
BB T

Proof of Theorem 5.1. If (34) holds for some cubes Q; :=t; + @ and sets B} := B; N Q;, then Theorem 5.1
follows, so we may assume for all ¢; € [0,1]% and ¢, € [0, 1]92 that

1
(35) It 5o [ [ fewdedy<er
b 6162Ld1+d2 t1+Qr Jt2+QrL

with say ¢ = 2716, Tt is then easy to see that this assumption, together with our assumption on the sets B;,
namely that

24t < 2[4

/||Bm(t+QL>| L

imply, via an easy averaging argument, that

4 4
n n
(36) |Gyl > 16 where G, . = {(tl,tg) € G, : \|f1/||é(L)(tht2) > 16}

and

G. = {(t1;t2)§ |B; N (t; + Qr) — B L%

We first show that if there exist (t1,t2) € G, for which |[I(¢1,t2)] < n*/2°, then Theorem 5.1 holds.
Indeed, by the pigeonhole principle, we see that given such a pair (¢;,%3) we may choose x; € [0,1]% and
y1 € [0,1]% so that

(37) ’MQ;’M/M+QL /t2+QL f(@2,y2) f (@2, 01) f (21, y2) dwa dys
+ —_

If we now write fy, (v2) = f(z2,41), fu, (y2) = f(z1,32) and decompose f,, = f,}; — f,. and f., = f — f.,
into their respective positive and negative parts, then it follows that

1
- To, T dxo d
SN /ML /ML F (2 y2)91 (22)9 (y2) dera o

for some functions g; : [0, 1]% — [0, 1]. Writing these functions as an average of indicator functions, namely

1
g9i(w) = /O Lgi(z)>sy ds

<e?L%fori= 1,2}.

4
>
32

n

> o
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and appealing again to the pigeonhole principle, we see that we may choose sets U; and V; so that
4

1 .
5 7[35+/ / f z2,¥y2)1y, (z2)1 Y dx dy > L
( ) ’ 1 2Ld1 d t1+Qr Jt2+Q1L ( 2 2) 1( 2> Vl( 2> 2892 = 27

We now set Uy = Uf, Vo = Vi and define, for j,j’ € {1, 2}, the integrals

1
i = g aws 22, o) L0 (22) 1y, (y2) dez dy.
P BifeLiitds /tl+QL /t2+QL f@2v2)1u, (z2)1v;, (ve) dz dye

Note that we know |I1 1| > n*/27 and if Lii> n*/27 then (34) holds for the sets B} = By N (t; + Q) NU;
and By = By N (t1 + Q1) N V1. We may therefore assume that I 1 < —n*/27, but this assumption, together
with the previous assumption that
I(ty,te) =D+ Lo+ Iog + Inp > —n/2°
immediately implies that I; ; > n*/2° for some (j, j') # (1,1) and (34) again follows.
It remains to consider the case when I(t1,t2) < —n*/2° for all (t1,t2) € G, .. Then by (35) and (36)
8 8

I(t1, o) dty dto = I(t,ts) dty dt Ity dtydty < oy o0 o 1

1,l2)dly atz = (t1,t2) dty dta + (t1,t2) dty 2_—2429+ 516 = T5i5"
G’V],E G%,E

While on the other hand

/ / I(t1, 1) dtr dts = O(L)
by the first assumption of (33), which is a contradiction. This proves the theorem. O

6. PROOF OF PROPOSITION 4.4

An appropriate “relative generalized von-Neumann inequality” will again be central to our proof of
Proposition 4.4, specifically a “relative generalized von-Neumann inequality for product of simplices”.

However, the true heart of the argument is in fact the analogous result for just simplices, the proof of this
“relative generalized von-Neumann inequality for simplices” is necessarily significantly more involved than the
analogous relative result for distances (whose proof was essentially identical to the non-relative case) and it is
here that our loss in dimension appears.

We fix non-degenerate simplices Ay, = {v, vl vs, ... ,v};} of dimension k; with v} = 0 and
ey i i i
cay, = min dist (v}, span {{v{,..., v} } \vi}) <1

and let B; C [0,1]% with d; > k; + 3 and 3; = |B;| > 0 denote arbitrary sets, for i = 1, 2.
In contrast to the proof of Proposition 4.3, we will need to assume that our sets B; and By are suitably
uniformly distributed, and make use of Proposition 3.1, throughout the proof of Proposition 4.4.
6.1. A Relative Generalized von-Neumann Inequality for Simplices and Products of Simplices.
Definition 6.1 (Counting function for Ay, X Ag,). Let 0 < A <« 1.
For functions fi; : [0,1]% x [0,1]92 — R with (4,7) € {0,1,...,k1} x {0,1,...,k2} we define
]{)1 kz

(39 Tas, s (oo S = [[[[TLTT s = - U6l = A+ Ualu) s (U0) dina(U) sy

i=0 j=0
Note that if we let
(40) V(. y) = v (@) B2 Dy, (y) /D
where v; = Bfllgl and vy = 5;1132 then
Ty piy, W5, 0)(A) =Ty, (V1500 1)(A) - Ty, (v2, -, 12) (A)
and in light of Proposition 3.1 we can conclude that

(41) Tary o, (7 D)) =1+ Op, iy (BT 718572 i 0ei 1 0e2/)

k1 kg

for any 0 < A < e < 1, provided B; and By are (g, *)\)-uniformly distributed subsets of [0, 1] and [0, 1]%2.
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In this setting we have the following “generalized von-Neumann inequality”, for which it is essential that
our count of product simplices is taken relative to suitably uniformly distributed sets B; and Bs.

Lemma 6.1 (Generalized von-Neumann for Ay, x Ay, relative to By x Bs). Let

P D) @ Uatl) g, 12 g 12

D’ =
where vy = B g, and vy = By '1p, For any 0 < A < e < min{ca, ,ca,, } and functions
fiy 10,1 x [0,1]% — [—1,1]

with (i,7) € {0,1,...,k1} x {0,1,...,ko} we have

‘TAkl,AkQ (fOOAV', vy fklkZD)(A)l < i—Onllin b ||fijVH|:|(s4)\) + Okl,kz (6;k171527162710;1(80;1851/16)
=0,1,...,k1
Jj=0,1,....k2

provided By and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0,1]% respectively.
It is easy to see that Lemma 6.1, combined with Proposition 3.1, gives the following
Corollary 6.1. Let 0 < o, 81,82 < 1 and
0<A<e<hm (CAMCA;Q)Q( Fil ka1, (k1) (ko t1))16
If AC By x By C[0,1]% x [0,1]% with |A| = o182 and | favloeEn < ak1+D(ka+1) ypen
Ta,, A, (1P, 1aD)(A) > %a(’““)(’”“)
provided By, and By are (g,e*\)-uniformly distributed subsets of [0,1]% and [0,1]% respectively.
Proof of Corollary 6.1. It follows immediately from Lemma 6.1 that
ITay, A, (LaT, .., 1aV)(N)=Ta,, A, (a7, ..., aD)(A)]
< (2D (kat1) _ V)| fav o) + Ok ks (ﬂ;kl716;k2—1c£i:80£i£851/16)

for any 0 < g, \ < min{cAkl,cAkQ}, where f4 = 14 — alp, xB, while, as noted in (41), Proposition 3.1
implies that

Ta, an, (07, a)(A) = aB DD (14 Oy (8787 B e 0y /0e2/%)

for any 0 < A < e < 1, as required. O

6.2. A Relative Version of Lemma 3.1. Key to the proof of Lemma 6.1 is the following

Lemma 6.2 (Lemma 3.1 relative to uniformly distributed sets). Let Ay = {0,v1,v2,...,vx} be any non-
degenerate k-dimensional simplex with
CA, = 1§ji£k dist(v;,span {{v1,...,vx} \v;}) <1

and B C [0,1]% with d > k + 3 be an arbitrary set with 8 = |B| > 0. If we set v = =11, then for any
0 <\ <e<ea, and functions fo, fi,..., fx : [0,1] = [~1,1] we have

(42) ITa, (fov, . .-, frr) V)]? < / Fiv(@) fv(@ — a1)ean (21) do day + O (8738 3¢ /2e1/)
for any 0 < j < k, provided B is a (g,*\)-uniformly distributed subset of [0,1]%.

Proof. As in the proof of Lemma 3.1 it suffices, by symmetry, to establish (42) for j = k. Note also, as in
(41) above, that Proposition 3.1 implies

—k—1 —1/6
(43) Ta, (v, ,v)(A\) = 1+ O (B7F1e; /03,
provided 0 < A < ¢ < 1 and B is an (g, e*\)-uniformly distributed subset of [0, 1]¢ with d > k+1. It is equally
easy to see, using Lemma 3.1, that if 1 < j <k and any j of the weights v are replaced with 1 1j« then this
modified count will still be asymptotically equal to 1 and will in fact equal 1+ O (8~F~1%J cgi/ 6g2/ 3).
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Since

|TA, (fovs ..., fr)(A)] < // / vz —Ary) - v(e — Axg—q /fkl/ T — )\xk)do'(d kxk ()
dag(g’f) k;? ,(@p—1) - do(xy) dx
it follows from an application of Cauchy-Schwarz, facilitated by (43) for the simplex Aj_1, that
(T, (fov, - fo) NP < (14 Ok(B75ex <22 (M(N) + E())

where

// /‘/fky T — A\xg) da(d k)zk l(xk)‘ dag(g‘i k;i) ,(@r—1) - do(xy) dx

)\)://~~~/[V(as)u(xf)\x1) v(z — Azp_1) — 1(z /fky (& — Azy) dold= ’clckfl(xk)f

dUg(gi 'H;i) ,(@r_1) - do(xy) dx

where 1 = 1[071]41.
It follows from the proof of Lemma 3.1, specifically the argument from (13) to (16)) that

A) < // fev(xy) fev(xa)eay (g — 21) doq ds.

We now complete the proof by establishing that E(\) = Ok(ﬂ_k_sc;iwsl/‘l). Our strategy will be to
expand the square in the error term F(\) which will add a new vertex x4 to the simplex. “Fixing” the
distance |41 — x| leads to an expression which may be viewed as the difference between a weighted and
an unweighted average over all isometric copies of a fixed (k + 1)-dimensional simplex. The reason that
this difference is small is that the measure v behaves suitably random with respect to averages of this type,
expressed in (43). To remove the uncontrolled terms fj, one needs another application of Cauchy-Schwarz
which leads to simplices of dimension k + 2 and the requirement d > k + 3 for the underlying dimension of
the space.

Writing
k—1
v(z)v(x — Axy) - v(e — Azg—1) — 1(x) = Z [v(@ —Az;) — 1(2)|v(z — Azjq1) vz — Azp—1)
=0

with the understanding that zo = 0, it follows that

with

(A) = // iy ~/[V(x —Azj) — (@) v(e — Azjy1) - v — Azg_ /fky z—Awg)dolTR ()

da;‘i k;i) ,(@p—1) - do(xy) da.

2

Squaring out we see that

\) = // . /// [v(z = Azj) = 1(2)]|v(@ — Azjp1) - v(@ — Azg_y) fav(z — Axg) frov(z — Azjqr)
ol M, (i) dolt P, (2y) doldTFEY (w) - do() da.

$k—1( Tk—2

Since d > k + 3 we can follow the argument in Section 3.3 and write

Ji‘f:']f’)xkil(mk+1) :/0 (sin 6, )d k=1 4o a(v(f,..]i:ci) R (Tg41) dbr

where U(d b mi) k0 (zk+1) denotes the normalized measure on the sphere
S ey = SN0, ok ) N ST (@, ok —va]) e N ST (s Jokga — k)
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with vg41 = vy (8) satisfying |ve1| = |vkl, |vg41 — v = |k — vy for all 1 < j <k —1 and 6; determining
the angle between vi41 and vy, so that |vg41 — vi| = 2|vk | sin(61/2).
If we now let Ag41(01) = {0,v1,..., 0%, Vkt1}, then it follows (again using (43)) that

E;(\) = /O (sin Hl)d_k_lTAHl(g)(l, o Lv=1v,..,v fry, frv)(N)dOy + Ok(ﬁ_k_l"’jcgimaws)

where T, ., 9)(1,..., L, v =1v,...,v, fyv, frv)(A) equals
k+1 )

// /// x—Arj) = 1v(z — Azjp) - vz — Azg_r) frv(e — Aog) fuv (2 — Azgg)

dofy 1) o (@ean) dolT R, (@) dolTRED (@) - do(a) da.

eyl —1,Tf,01 NS T Ty Tp—1 \T R T X1, Trp—2
In light of (19) and (20) it suffices to now show that

() ::/ (sin )" a0y (fevs frvs v, ovyv = 1(A) dOr = O(B~F 1!/
0

where
k+1 ](91) = {0, ”1= ce 7”/k+17j}
with v = vpy1s —vpqr for 0 <i <k and vy | = —vpy1.
Since |TA/ (00 y(fxvs fev, v, . v,v = 1)(A\)] is dominated by

// / v(ix —Azy) - v(z — Azg—;)

it follows from an application of Cauchy-Schwarz, facilitated by (43) for the simplex A} _,(61), that
@) (v vy, vy =D <20 0,)(V)

/(V — 1) (@ = Azpyry) dolTEED (24 5)

do ;c(ld ’f:g)J (xp—j) - do’(x1) dx

Tar,,

where

a0 = [ [rt@wte = da)-vla = xousy)| [0 = (o = M) ol )

do!\=FED) (g i) - do’ (1) d.

L1y Th—j5—1

2

Squaring out we see that IAL+1_j(91)(/\) equals

// e /// v(z)v(z —Azr) vz — Azk—;)(v — 1) (¢ — Azppi—j) (v — 1) (2 — Azpqa—j)
dO'/(d kalsz)(xk+2 i) dU;(fl, k,rmlty)(gg,wrl )dg;(ff lfjkj)] l(xk—j) - do’ (z1) da.

Since d > k + 3 we can again argue as above to obtain

Ing, ](91)()\) /O’f(sin fo) 0= k=2t [T1(X) = To(X) — T5(X) 4 T4(N)] db-

where
Ti(N) =Tay,, (01,005 V)N
To(A) =Tay,, (01,00 (¥--- v 1)(A)
T3(N) =Tay ., (0002 L)(A)
Ty(N) =Tay,, 01,00 v, 1,1)(A)
with

A;c+2—j(01792) = k+1 J(el)U{Ukm ]}
with vy, o ;= vy o ;(02) satisfying |vp o ;[ = [vp gl [Vpyo; —vil = |vpyy; —wil forall 1 <i <k —j
and 02 determining the angle between v}, ; and vy ;_; so that v} o ; —vp 4y ;[ = 2|v;[sin(02/2).
We have therefore ultimately established

|E5(A \2<0/ / IT1(N) — T3(\) + Ta(N\)| db; dby
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for each 0 < j < k. In light of (43) we know that

B k_34j —1/6 £2/3
Ti(A) =1+ Ox(B +]0Ak+2 4(01’02) / )

fori=1,...,4, and hence 4
Ej(A) = Oy (8721 el/h)

provided

01,02) > €.

CAk+2 ](

The result now follows since the fact that
AL,y ,(01.0) = min{ca, , 2|vk|sin(01/2), 2|v;| sin(62/2)}
and € < ca,, ensures that

{(01,02) € [0,7] x [0,7] : ca 0,.0,) < et =0(e). U

6.3. Proof of Lemma 6.1. The proof of Lemma 6.1 will follow from two applications of Cauchy-Schwarz
combined with Proposition 3.1 and Lemma 6.2. We first observe that if

Ty, n,(A) = Tay, Ay, (fools - - s frks V) (A)

k42— _7(

then
Ty, Ap,(A) = // vi(z — AUL(v9)) - vi(z — AU (v,) T, (957 v2, g7 v ,g;gfl 2)(A) dpy (Uy) da:

where
95" (y) = foj(@ = X-Ui(v),y) - fraj(@ = X- Ui (vf,), )
for each j =0,1,...,ky and that Lemma 6.2 implies

\Takz 0 a0 ) // )97 va(y = y1)a.con (1) dy dys + O, (B~ 3c, 1 21/1)

for any 0 < j < ko. Hence by Cauchy-Schwarz, using (43) for Ta, (v1,...,v1)()), and switching the order of
integration we obtain that [Ta,  a,, (A)]?

/ / Ty, (P vis o BES )(N) va()va(y — y1)Wsean(y1) dy dys + Oy 1oy (87" 72 8y 32351 Oc 1/ 2e1/4)

k1 k2

is majorized by

for any 0 < j < ko where

h (x) = fij(@,y) fij(@,y — y1)
for i =0,1,...,k;. A further application of Cauchy-Schwarz (using the fact that 1y .4y is L'-normalized)
and appeal to Lemma 6.2 reveals that [Ta,, a,, (A)]* is majorized by

/// hi v (@) v (v — o1) va (y)v2 (Y — y1)thrcan (1) Ya,con (1) da doey dy dy

_ — — —4 —1/2 —1/2
+Ok1,k2 (ﬂl A 462 ohz 4CA / N / 61/4)

k1 ko

for any 0 <7 < kj and 0 < j < ko. Since

R v ()b ve (2 — 2 ve(Y)ve(y — y1) = fijv(x,y) figv(z — 21, 9) figv(z,y — ) figv(z — 21,9 — y1).
the result follows from (32). O

6.4. Inverse Theorem Revisited. We complete this section by noting the following immediate consequence
of Theorem 5.1 which together with Corollary 6.1 implies Proposition 4.4.

Corollary 6.2. Let 0 < «, 81, 82 <1 and By and B2 be (¢, 54)\) uniformly distributed subsets of [0, 1]d1 and
0,1 with 0 < A < & < B+ gk oS0 I A C By x By C [0,1)% x [0, 1)% with |A] = afh 8 and
1 favlinEes > albrtDk+D
with fa =14 — alp,xp,, then there exist cubes Q; C [0,1]% of side-length '\ and sets B in Q; for which

|AN (B} x By

> 8(k1+1)(k2+1)
BBy -
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7. PROOF OF PROPOSITION 4.1, PART II: REGULARIZATION

To complete the proof of Proposition 4.1, as was noted after the Proposition 4.3, we need to now produce a
pair of new sets BY and BY that are (1, L')-uniformly distributed for a sufficiently small  and for L’ attached
to some of the \;’s, but for which A still has increased density on B} x By. Proposition 4.3 did produce
a pair of sets B] and Bj for which A has increased density on Bj x Bj, but these sets are not necessarily
uniformly distributed. We will now obtain sets By and BY with the desired properties from the sets B; and
Bs produced by Proposition 4.3 by appealing to a version of Szemerédi’s Regularity Lemma [4] adapted to a
sequence of scales {L;}1<j<.

The precise result we need is stated below in Theorem 7.1, but first we state a couple of definitions.

Definition 7.1 (A partition P being adapted to scale L;). Let 1 =Ly > L1 > Ly > --- > 0 be a sequence
with the property that L; 1 < 1L;. We say that a partition P = QUTR of [0, 1]% x [0,1]% into cubes Q and
“rectangles” R is adapted to the scale L; if each of the cubes in Q have sidelength L; for some 0 <14 < j.

Definition 7.2 ((g, L)-uniform distribution on Q). Let @ be a cube of sidelength Ly and 0 < L/Ly < & < 1.
A set B C Q is said to be (g, L)-uniformly distributed on @ if

1 BN (t B||?
QI Jq Q| Q)
Theorem 7.1 (Regularity Lemma). Let 0 < f1, 82,1 < 1 and B; C [0,1]% with |B;| = B; fori=1,2.
Given any sequence 1 = Lo > Ly > -+ > 0 with Lj11 < %Lj there exists 0 < j < j' < J(B1,B2,n) and a
partition P = QU R of [0,1]% x [0,1]% adapted to the scale L; with the following properties:
(i) For every cube Q = Q1 X Q2 in Q of sidelength L; with 0 < ¢ < j — 1, the sets By and Bs are
(n, Lj»)-uniformly distributed on the cubes Q1 and Q2 respectively.

(i) If N denotes the collection of cubes in Q = Q1 X Q2 in Q of sidelength L; for which at least one of
the sets By and By is not (n, L;/)-uniformly distributed on the cubes Q1 and Q2 respectively, then

QI+ D IR <.

QEN RER

The proof of Theorem 7.1 follows by standard arguments, for completeness we include it in Section 7.1.

An almost immediate consequence of Theorem 7.1 is the following Corollary which, together with Proposition
4.3, provides a complete proof of Proposition 4.1, the easy verification of this we leave to the reader.

Corollary 7.1. Let 0 < a, 31,82, 7,¢ <1 and A C By x By C [0,1]% x [0,1]92 with |A] > (o + 7)B152
and |B;| = B; for i = 1,2. Given any sequence 1 = Ly > L1 > --- > 0 with Lj11 < %Lj, there exist
0<j<j <J(a,p1,B2,7,¢€) and squares Q1, Q2 of sidelength L; such that the sets

B; = Bi N Qi
with i = 1,2 have the following properties:

. 1
) 1B > 3 Birlil.
(ii) Bj is (g, Lj/)-uniformly distributed on Q;

... |[AN(B] x BY)| T

(iii) Bl x 5] 2a+3.

Proof that Theorem 7.1 implies Corollary 7.1. Let n = ¢f1527/3 and P = QU R be a partition of [0, 1]% x

[0,1]42 adapted to the scale L; that satisfies the conclusions of Theorem 7.1 for some 0 < j < j' < J(B4, B2, 7).
Let B = By x By and U denote the collection of all cubes in Q = Q1 X @2 in Q of sidelength L; with

0 < ¢ < j for which B; and By are (7, L;/)-uniformly distributed on @1 and Qs respectively. Note that

property (ii) of Corollary 7.1 holds by definition for all cubes @1 and Q2 for which Q1 X Q2 € U.
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If we let S denote the collection of all cubes @ in U which are sparse in the sense that |BN Q| < 57|Q|/3,
then property (i) of Corollary 7.1 will hold by definition for all cubes @1 and Q2 with Q1 x Q2 € U \ S.
Finally, it is straightforward to see, using property (ii) of our partition P (on the size of A" and R) and our
assumption on the relative density of A on B, that property (iii) of Corollary 7.1 must hold for at least one
cube Q in U\ S. O

7.1. Proof of Theorem 7.1. By passing to a subsequence we may assume L;;q < 2*(j+6)77Lj, and in this
case we will show that the conclusions of the theorem hold with j' = j + 1 for some 0 < j < J(81, 52,7, 7)-

For j = 0,1,2,... we construct partitions PU) of [0,1]% x [0,1]%2 into cubes QU) and rectangles R
starting from the trivial partition P(©) consisting of only one cube @ = [0,1]% x [0,1]%2. The partition P)
will consists of two collections of cubes UU), N'U) and a collection of rectangles R\), that is

P — ) U N URE).

The collection RY) will consist of rectangles R = R; x Ry whose total measure is small, specifically

(45) > IRrI< .

ReRG)
while the collection ¢4() will consist of cubes Q = Q1 x Qs of sidelength L; for some 1 < i < j such that B,
and By are (1, L;11)-uniformly distributed on Q7 and Q3 respectively. Note that the cubes in U9 may have
different sizes. The remaining collection N will consist of those cubes @ of sidelength L; which are not
(1, Lj41)-uniformly distributed. We will stop the procedure when the total measure of the non-uniform cubes
is small enough, specifically when

(46) > lel<g
QEN ()
and note that such a partition satisfies the conclusions of Theorem 7.1.

If [0,1]% x [0,1]% € U®), then the sets By, By are both (g, Ly )-uniformly distributed and Theorem 7.1
holds. We thus assume that for some j > 0 we have a partition PU) for which (46) does not hold and let
Q = Q1 X Qs denote an arbitrary cube in N'U). By our assumption both cubes have sidelength L; and B; is
not (1, Lj4+1)-uniformly distributed on @); for either i =1 or i = 2.

We assume, without loss of generality, that i = 1. Averaging show that for Q1 = t; + [O,Lj]d1 and
L := Ljiq, we have

2
(47) 1Byl > T1Qu]
where
— N|IBin(E+ Q)| [BiN@] 77}
1) Br={ieQ ’ Q1) @l |72

Let m = |L;/Lj;1] and partition the cube Q) = t; + [0,(m + 1)L]%™ D Q; into grids of the form
G(s1) = s1+{0,L,...,mL}% with s; running through the cube ¢; + [0, L]?'. Since L < 275L;, by (47) there
exist s1 € Q) such that

Cs)N Byl _ 7
z 0

Fix such an s; and consider the partition of )1 into cubes of size L = L;; and possibly rectangles, defined
by the grid G(s1). Repeat the same partition of the cube Q2 corresponding to a point s which we can choose
arbitrarily from a cube Q5 C @ of size L. Taking the direct product of these partitions gives a partition of the
cube Q = Q1 x (2 into cubes of size L = L;1 and possibly also into some (d; x dz)-dimensional rectangles.
After performing this partition of all cubes in N'U) we obtain the new partition PU+1) of [0, 1]% x [0,1]%.
The new cubes obtained are then partitioned into classes U1 and MU according to whether they are
(1, Lj4+2)-uniform. Note that the cubes in /) and rectangles in RU) remain cells of P+, Note that for
each cube Q € N'U) the total measure of all the rectangles obtained is at most 16Lj+1Lj_1 |Q|, hence summing

(49) e

over all cubes the total measure of the rectangles obtained this way is at most 4Lj+1L;1. We adjoin these
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rectangles to R to form RUTY). Note that this way the total measure of the rectangles is always bounded
by

Lj+ < 2= +2)py < 1
> L oS ey <
=0 7=0

hence (45) holds.

A key notion in regularization arguments is that of the index or energy of a set with respect to a partition.
In our context we define it as follows. Let {Cj,}/<, denote the collection of cells that constitute P¥). For
any given cell C* = Q% x Q% in PUY), where Q¥ could be either a square or a rectangle, we let 6% denote the
relative density of B; in QF for i = 1,2, and define the energy of (By, Bs) with respect to PU) by

(50) E(BL By PY) = o S (07 +(85)?) |CH.
Ckep)

It is not hard to see that the energy is always at most 1 and is increasing when the partition is refined. To
be more precise, we say a partition P’ is a refinement of P if every cell C' = Q1 X Q2 of P is decomposed
into cells C%* = QY x Qg/ of P’ so that cubes (or rectangles) Q% and Qg/ form a partition of @1 and Qo
respectively. Then |Q1] =Y, |Q¢| and |B1 N Q1| = >, |B1 N Qf], hence writing d§; for the relative density of
B; on @ and d{ for the relative density of B; on Q% one has

(51) ST 1QL = (012 1Q1] + Y (6F — 61)2 Q4.
l l
Similarly
(52) ST(05)21Q4] = (82)% Q2] + (85 — 82)? Q5 |-
Y Y

Multiplying equations (51) by |Q2]|, (52) by |@Q1], and adding, we get
(53) > (617 +(35)%) 165" = ((61)% + (82)) [C| + Y _((67 = 61) + (85 — 82)°)

00 00

Going back to our conbtruction we have decomposed each cell C* = Q1 x Q2 € NU) into cubes of the
form C4 = Q% x QY where Qf = s1 + (L + Qr, Q5 = sy + 'L + Qy, for some ¢ € {1,...,m}% and
¢ €{1,...,m}% and into a collection of (d; + ds)-dimensional rectangles of small total measure. By (49)
there at least n?m% /4 values of £ for which 0% — §;|> > 7?/4. Thus, as |Q:| = L;-117 QY| = L;lj_l for all ¢,
and m = LLj/Lj—i-lJ Z %Lj/Lj-&-la we have that

(54) > (o —a)* et

e{1,...,m}%

> Tl

By (53) this implies that the energy of (B, B2) with respect to the collection of cells of PUHD contained
in C* = Q1 x Q3 given by the left side of (53) is at least
(55) EBL B Pl cn) > 257403 CH + L 0¥,
This holds for all non-uniform cells C* € N'¥) and by our assumption that the total measure of A/ > 7/2
it follows that

(56) E(By,By; PUTY) > £(By, By; PY)) + %
Thus the procedure must stop in j < 256775 steps providing a satisfactory partition. As explained above
this leads to a cell C' = @1 x Q2 satisfying the conclusions of Theorem 7.1. |
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