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The information bottleneck (IB) approach to clustering takes a joint dis-
tribution P(X,Y) and maps the data X to cluster labels T, which retain
maximal information about Y (Tishby, Pereira, & Bialek, 1999). This ob-
jective results in an algorithm that clusters data points based on the
similarity of their conditional distributions P(Y | X). This is in contrast
to classic geometric clustering algorithms such as k-means and gaussian
mixture models (GMMs), which take a set of observed data points {x;};_1.y
and cluster them based on their geometric (typically Euclidean) distance
from one another. Here, we show how to use the deterministic infor-
mation bottleneck (DIB) (Strouse & Schwab, 2017), a variant of IB, to
perform geometric clustering by choosing cluster labels that preserve
information about data point location on a smoothed data set. We also
introduce a novel intuitive method to choose the number of clusters via
kinks in the information curve. We apply this approach to a variety of
simple clustering problems, showing that DIB with our model selection
procedure recovers the generative cluster labels. We also show that, in
particular limits of our model parameters, clustering with DIB and IB is
equivalent to k-means and EM fitting of a GMM with hard and soft as-
signments, respectively. Thus, clustering with (D)IB generalizes and pro-
vides an information-theoretic perspective on these classic algorithms.

1 Introduction

Unsupervised learning is a crucial component of building intelligent sys-
tems (LeCun, 2016), since such systems need to be able to leverage experi-
ence to improve performance even in the absence of feedback. One aspect
of doing so is discovering discrete structure in data, a problem known as
clustering (MacKay, 2002). In the typical setup, one is handed a set of data
points {x;}}, and asked to return a mapping from data point label i to a fi-
nite set of cluster labels c. The most basic approaches include k-means and
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gaussian mixture models (GMMs). GMMs cluster data based on maximum
likelihood fitting of a probabilistic generative model. k-means can be
thought of as either directly clustering data based on geometric (often Eu-
clidean) distances between data points or as a special case of GMMs with the
assumptions of evenly sampled, symmetric, equal variance components.

The information bottleneck (IB) is an information-theoretic approach to
clustering data X that optimizes cluster labels T to preserve information
about a third target variable of interest Y. The resulting (soft) clustering
groups data points based on the similarity in their conditional distributions
over the target variable through the KL divergence, KL[p(y | x;) | p(y | x;)].
An IB clustering problem is fully specified by the joint distribution P(X,Y’)
and the trade-off parameter § quantifying the relative preference for fewer
clusters and more informative ones.

At first glance, it is not obvious how to use this approach to cluster ge-
ometric data, where the input is a set of data point locations {x;}}\ . For
example, what is the target variable Y that our clusters should retain infor-
mation about? What should P(X,Y) be? And how should one choose the
trade-off parameter 8?

Still, Bialek, and Bottou (2004) were the first to attempt to do geomet-
ric clustering with IB and claimed an equivalence (in the large data limit)
between IB and k-means. Unfortunately, while much of their approach is
correct, it contained some fundamental errors that nullify the main results.
In the next section, we describe those errors and how to correct them. Essen-
tially, their approach did not properly translate geometric information into
a form that could be used correctly by an information-theoretic algorithm.

In addition to fixing this issue, we also choose to use a recently intro-
duced variant of the information bottleneck, the deterministic information
bottleneck (DIB) (Strouse & Schwab, 2017). We make this choice due to the
different way in which IB and DIB use the number of clusters provided to
them. IB is known to use all of the clusters it has access to, and thus cluster-
ing with IB requires a search over the number of clusters N, as well as the
parsimony-informativeness trade-off parameter g (Slonim, Atwal, Tkacik,
& Bialek, 2005). DIB, on the other hand, has a built-in preference for using
as few clusters as it can and thus requires only a parameter search over g.
Moreover, DIB’s ability to select the number of clusters to use for a given f
leads to a intuitive model selection heuristic based on the robustness of a
clustering result across g that we show can recover the generative number
of clusters in many cases.

In the next section, we more formally define the geometric clustering
problem, the IB approach of Still et al. (2004), and our own DIB approach.
In section 3, we show that our DIB approach to geometric clustering be-
haves intuitively and is able to recover the generative number of clusters
with only a single free parameter (the data-smoothing scale s). In section 4,
we discuss the relationship between our approach and k-means/GMMs,
showing that in particular limits, clustering with DIB and IB is equivalent
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to k-means/EM fitting of a GMM with hard and soft assignments, respec-
tively. Our approach thus provides a novel information-theoretic approach
to geometric clustering, as well as an information-theoretic perspective on
these classic clustering methods.

2 Geometric Clustering with the (Deterministic) Information
Bottleneck

In a geometric clustering problem, we are given a set of N observed data
points {x;};i—1.v and asked to provide a weighting g(c | i) that categorizes
data points into (possibly multiple) clusters such that data points “near”
one another are in the same cluster. The definition of near varies by algo-
rithm. For k-means, for example, points in a cluster are closer to their own
cluster mean than to any other cluster mean.

In an information bottleneck (IB) problem, we are given a joint distribu-
tion P(X,Y) and asked to provide a mapping g(t | x) such that T contains
the relevant information in X for predicting Y. This goal is embodied by the
information-theoretic optimization problem,

qig(t | x) = argmin I(X, T) — BI(T,Y), (2.1)
q(t1x)

subject to the Markov constraint T <> X < Y. § is a free parameter that al-
lows for setting the desired balance between the compression encouraged
by the first term and the relevance encouraged by the second. At small val-
ues, we throw away most of X in favor of a succint representation for T,
while for large values of 8, we retain nearly all the information that X has
about Y.

This approach of squeezing information through a latent variable bot-
tleneck might remind some readers of a variational autoencoder (VAE)
(Kingma & Welling, 2013), and indeed IB has a close relationship with VAEs.
As Alemi, Fischer, Dillon, & Murphy (2016) pointed out, a variational ver-
sion of IB can essentially be seen as the supervised generalization of a VAE,
which is typically an unsupervised algorithm.

We are interested in performing geometric clustering with the informa-
tion bottleneck. For the purposes of this letter, we focus on the deterministic
information bottleneck (DIB) (Strouse & Schwab, 2017). We do this because
the DIB’s cost function more directly encourages the use of as few clusters
as possible, so initialized with n* clusters, it will typically converge to
a solution with far fewer. Thus, it has a form of model selection built in
that will prove useful for geometric clustering (Strouse & Schwab, 2017). IB
tends to use all n"™ clusters and thus requires an additional search over
this parameter (Slonim et al., 2005). DIB also differs from IB in that it leads
to a hard clustering instead of a soft clustering.



The Information Bottleneck and Geometric Clustering 599

Formally, the DIB setup is identical to that of IB except that the mutual
information term I(X; T) in the cost functional is replaced with the entropy
H(T):

ot | x) = argmin H(T) — BI(T.Y). (2.2)
q(t|x)

This change to the cost functional leads to a hard clustering with the form
(Strouse & Schwab, 2017)

gpp(t | x) = 8(t — " (x)), (2.3)
t(x) = argmax logq(t) ~ BKL[p(y | 1) | 9(y | )] (2.4)
qt) =Y gt | x) p(x). (2.5)
1
WIn= 5 D q(t 1 %) p) ply | %), (2.6)

where equations 2.3 to 2.6 are to be iterated to convergence from some ini-
tialization. The IB solution (Tishby, Pereira, & Bialek, 1999) simply replaces
the first two equations with

q(t)
Z(x, B)

Tis(t | x) = exp[—BKL[p(y | x) | 9y | )]] . 2.7)

which can be seen as replacing the argmax in DIB with a soft max.

The (D)IB is referred to as a distributional clustering algorithm (Slonim &
Tishby, 2001) due to the KL divergence term d(x, t) = KL[p(y | x) [ q(y | )],
which can be seen as measuring how similar the data point conditional dis-
tribution p(y | x) is to the cluster conditional, or mixture of data point con-
ditionals, q(y | t) = 3", q(x | t) p(y | x). That is, a candidate point x will be
assigned to a cluster based on how similar its conditional p(y | x') is to the
conditionals p(y | x) for the data points x that make up that cluster. Thus,
both DIB and IB cluster data points based on the conditionals p(y | x).

To apply (D)IB to a geometric clustering problem, we must choose how
to map the geometric clustering data set {x;};=1.v to an appropriate IB data
set P(X,Y). First, what should X and Y be? Since X refers to the data being
clustered by IB, we choose that to be the data point index i. As for the target
variable Y that we wish to maintain information about, it seems reasonable
to choose the data point location x (though we discuss alternative choices
later). Thus, we want to cluster data indices 7 into cluster indices c in a way
that maintains as much information about the location x as possible (Still
etal., 2004).
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How should we choose the joint distribution p(i, x) = p(x | i) p(i)? At first
glance, one might choose p(x | i) = x,, since data point i was observed at
location x;. The reason not to do this lies with the fact that (D)IB is a distribu-
tional clustering algorithm, as discussed. Data points are compared to one
another through their conditionals p(x | i), and with the choice of a delta
function, there will be no overlap unless two data points are on top of one
another. That is, choosing p(x | i) = 8, leads to a KL divergence that is ei-
ther infinite for data points at different locations or zero for data points that
lie exactly on top of one another: KL[p(x | i) | p(x | j)] = Sxx;- Trivially, the
resulting clustering would assign each data point to its own cluster, group-
ing only data points that are identical. Put another way, all relational infor-
mation in an IB problem lies in the joint distribution P(X, Y). If one wants
to perform geometric clustering with an IB approach, then geometric infor-
mation must somehow be injected into that joint distribution, and a series
of delta functions does not do that. A previous attempt at linking IB and
k-means made this mistake (Still et al., 2004). Subsequent algebraic errors
were tantamount to incorrectly introducing geometric information into IB,
precisely in the way that such geometric information appears in k-means
and resulting in an algorithm that is not IB. We describe these errors in more
detail in the appendix.

Based on the problems identified with using delta functions, a better
choice for the conditionals is something spatially extended, such as

p(x | i) o exp[—;?d(x, xi)] , (2.8)

where s sets the geometric scale or units of distance and d is a distance met-
ric, such as the Euclidean distance d(x, x;) = ||x — x; I?. If we indeed use the
Euclidean distance, then p(x | i) will be (symmetric) gaussian (with vari-
ance s%), and this corresponds to gaussian smoothing our data. In any case,
the obvious choice for the marginal is p(i) = +, where N is the number of
data points, unless one has a reason a priori to favor certain data points over
others. These choices for p(i) and p(x | i) determine completely our data set
p(i, x) = p(x | i) p(i). Figure 1 contains an illustration of this data smoothing
procedure. We explore the effect of the choice of smoothing scale s through-
out this letter.

With the above choices, we have a fully specified DIB formulation of a ge-
ometric clustering problem. Using our above notational choices, the equa-
tions for the nth step in the iterative DIB solution are (Strouse & Schwab,
2017)

4" | i) = a(c - c*(")(i)), 2.9)

¢ (i) = argmax log g~ (c) — ﬂKL[p(x 1) | g V(x| c)], (2.10)
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Figure 1: Illustration of data-smoothing procedure. Example data set with one
symmetric and one skew cluster. (Top) Scatterplot of data points with smoothed
probability distribution overlaid. (Bottom) Heat map of the joint distribution
P(i, x) fed into DIB. The two spatial dimensions in the top row are binned and
concatenated into a single dimension (on the horizontal axis) in the bottom row,
which is the source of the striations.

(n)

7" (c) = (2.11)

(x| c) = Zq%‘ BEADE (n) > px 1), (212)

C S(n)

where 8" = {i : ¢*™ (i) = c} is the set of indices of data points assigned to
cluster c at step 1, and nﬁ”) = |S£")| is the number of data points assigned to
cluster c at step n. This process is summarized in algorithm 1.

Note that this solution contains g as a free parameter. It allows us to
set our preference between solutions with fewer clusters and those that re-
tain more spatial information. It is common in the IB literature to run the
algorithm for multiple values of g and plot the collection of solutions in
the information plane with the relevance term I(Y; T) on the y-axis and
the compression term I(X; T') on the x-axis (Palmer, Marre, Berry, & Bialek,
2015; Creutzig, Globerson, & Tishby, 2009; Chechik, Globerson, Tishby, &
Weiss, 2005; Slonim et al., 2005; Still & Bialek, 2004; Tishby & Zaslavsky,
2015; Rubin, Ulanovsky, Nelken, & Tishby, 2016; Strouse & Schwab, 2017;
Shwartz-Ziv & Tishby, 2017). The natural such plane for the DIB is with the
relevance term I(Y; T) on the y-axis and its compression term H(T) on the
x-axis (Strouse & Schwab, 2017). The curve drawn out by (D)IB solutions in
the information plane can be viewed as a Pareto-optimal boundary of how
much relevant information can be extracted about Y given a fixed amount
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Algorithm 1 Geometric clustering with DIB.

Input: data {x;},—.y tradeoff parameter 3, smoothing scale s
Initialize cluster assignments ¢*(©)(3)
Initialize cluster marginals ¢(V)(c) using eqn 11
Initialize cluster conditionals ¢(¥)(x | ¢) using eqn 12
Initialize step count n = 0
while not converged do
n+=1
Update cluster assignments ¢*()(¢) using eqn 9
Update cluster marginals ¢(")(c) using eqn 11
Update cluster conditionals ¢ (x | ¢) using eqn 12
end while

of information about X (IB) or representational capacity by T (DIB) (Strouse
& Schwab, 2017). Solutions lying below this curve are of course suboptimal,
but a priori, the (D)IB formalism does not tell us how to select a single so-
lution from the family of solutions lying on the (D)IB boundary. Intuitively
however, when faced with a boundary of Pareto optimality, if we must pick
one solution, it is best to choose one at the knee of the curve. Quantitatively,
the knee of the curve is the point where the curve has its maximum magni-
tude second derivative. In the most extreme case, the second derivative is
infinite when there is a kink in the curve, and thus the largest kinks might
correspond to solutions of particular interest. In our case, since the slope of
the (D)IB curve at any given solution is 87! (which can be read off from the
cost functionals), kinks indicate solutions that are valid over a wide range
of B. So large kinks additionally correspond to solutions robust to model
hyperparameters, in the sense that they optimize a wide range of (D)IB
tradeoffs. Such robust solutions should correspond to “real” structure in
the data. Quantitatively, we can measure the size of a kink by the angle 6 of
the discontinuity it causes in the slope of the curve (see Figure 2 for details).
We show in the next section that searches for solutions with large 6 result
in recovering the generative cluster labels for geometric data, including the
correct number of clusters.

Note that this model selection procedure would not be possible if we
had chosen to use IB instead of DIB. IB uses all the clusters available to it,
regardless of the choice of 8. Thus, all solutions on the curve would have
the same number of clusters anyway, so any knees or kinks cannot be used
to select the number of clusters.

3 Results: Geometric Clustering with DIB

We ran the DIB as described on four geometric clustering data sets, vary-
ing the smoothing width s (see equation 2.9) and trade-off parameter g,
and measured for each solution the fraction of spatial information extracted



The Information Bottleneck and Geometric Clustering 603

DIB informativeness term, I (c, x)

DIB compression term, H (¢)

Figure 2: Kinks in DIB information curve as model selection. Bmin and fax are
the smallest and largest B at which the solution at the kink is valid. Thus, ﬁ;iln
and B.L, are the slopes of upper and lower dotted lines. The kink angle is then
6 = Z — arctan(Bmin) — arctan(B}, ). It is a measure of how robust a solution is

to the choice of g; thus, high values of # indicate solutions of particular interest.

I (c;x) = II((f:)) I and the number of clusters used 7, as well as the kink an-
gle 6. We iterated the DIB equations above just as in Strouse and Schwab
(2017) with one difference. Iterating greedily from some initialization can
lead to local minima (the DIB optimization problem is nonconvex). To help
overcome suboptimal solutions, upon convergence, we checked whether
merging any two clusters would improve the value L of the cost functional
in equation 2.2. If so, we chose the merging with the highest such reduc-
tion and began the iterative equations again. We repeated this procedure
until the algorithm converged and no merging reduced the value of L. We
found that these “nonlocal” steps worked well in combination with the
greedy “local” improvements of the DIB iterative equations. While not es-
sential to the function of DIB, this improvement in performance produced
cleaner information curves with less noise caused by convergence to lo-
cal minima. Similar to Strouse and Schwab (2017), the automated search
over f§ began with an initial set of values and then iteratively inserted
more values where there were large jumps in H(c), I(c; x), or the number
of clusters used or where the largest value of g did not lead to a clus-
tering solution capturing nearly all of the available geometric informa-
tion (i.e., with I(c; x) & I(i; x). (For more details, see our code repository at
https:/ / github.com/djstrouse/information-bottleneck.)

"Note that I (i;x) is an upper bound on I(c; x) due to the data processing inequality
(Cover & Thomas, 2006), so I(c; x) is indeed the fraction of potential geometric information
extracted from the smoothed P(i, x).
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Figure 3: Results: Model selection and clustering with DIB. Results for four data

sets. Each row represents a different data set. (Left) Fraction of spatial informa-
I(c;x)

1Gx) 7
riety of smoothing scales, s. (Center) Kink angle 6 (of the I(c; x) versus H(c)
curve) versus number of clusters used, ., across a variety of smoothing scales,

5. (Right) Example resulting clusters.

tion extracted, I(c; x) = versus number of clusters used, 7., across a va-

Results are shown in Figure 3. Each large row represents a different data
set. The left column shows fractional spatial information I(c; x) versus num-
ber of clusters used 7,,* stacked by smoothing width s.? The center column
shows the kink angle 6 for each cluster number 1., again stacked by smooth-
ing width s. Finally, the right column shows example solutions.

*Note that this is not the same as the 7. in equations 2.11 and 2.12, which was the
number of data points assigned to a particular cluster c. Here we are using it to denote
the number of clusters with at least one data point assigned to it.

Note that this is not the same as the information plane curve from Figure 2. While the
y-axes are the same (up to the normalization), the x-axes are different.
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In general, note that as we increase 8, we move right along the plots in the
left column, that is, toward higher numbers of clusters n. and more spatial
information I(c; x). Not all values of 7, are present because while varying
the implicit parameter g, DIB will not necessarily “choose” to use all possi-
ble cluster numbers. For example, for small smoothing width s, most points
will not have enough overlap in p(x | 7) with their neighbors to support so-
lutions with few clusters, and for large smoothing width s, local spatial in-
formation is thrown out and only solutions with few clusters are possible.
More interesting, DIB may retain or drop solutions based on how well they
match the structure of the data, as we will discuss for each data set below.
Additionally, solutions that well match the structure in the data (e.g., ones
with 5. matched to the generative parameters) tend to be especially robust
to B, that is, they have a large kink angle 6. Thus, 6 can be used to perform
model selection. For data sets with structure at multiple scales, the kink
angle 6 will select different solutions for different values of the smoothing
width s. This allows us to investigate structure in a data set at a particular
scale of our choosing. We now turn to the individual data sets.

The first data set (top row) consists of three equally spaced, equally sam-
pled symmetric gaussian clusters (see the solutions in the right column).
We see that the three-cluster solution stands out in several ways. First, it is
robust to spatial scale s. Second, the three-cluster solution extracts nearly
all of the available spatial information; solutions with n. > 4 extract little
extra I(c; x). Third and perhaps most salient, the three-cluster solution has
by far the largest value of kink angle 6 across a wide range of smoothing
scales. In the right column, we show examples of three- and four-cluster
solutions. Note that while all three-cluster solutions look exactly like this
one, the four-cluster solutions vary in how they chop one true cluster into
two.

The second data set (second row) consists of three more equally sam-
pled symmetric gaussian clusters, but this time not equally spaced: two are
much closer to one another than the third. This is a data set with multiple
scales present; thus, we should expect that the number of clusters picked
out by any model selection procedure (e.g., kink angle) should depend on
the spatial scale of interest. Indeed, we see that to be true. The three-cluster
solution is present for all smoothing widths shown, but is selected out as the
best solution only by kink angle for intermediate smoothing widths (s = 2).
For large smoothing widths (s = 8), we see that the two-cluster solution is
chosen as best. For smoothing widths in between (s = 4), the two- and three-
cluster solutions are roughly equally valid. In terms of spatial information,
the two- and three-cluster solutions are also prominent, with both transi-
tions from n, =1 — 2 and n. = 2 — 3 providing significant improvement
in I(c; x) (but little improvement for more finely grained clusterings).

The third data set (third row) features even more multiscale structure,
with five symmetric, equally sampled gaussians, again with unequal spac-
ing. Sensible solutions exist for n. = 2-5, and this can be seen by the more
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gradual rise of the fractional spatial information I(c; x) with 7. in that
regime. We also again see a transition in the model selection by 6 from
the five-cluster solution at small smoothing widths (s = 1, 2) and the two-
cluster solution at larger smoothing widths (s = 8), with intermediate 7. fa-
voring those and intermediate solutions. Example clusters for n. = 2-5 are
shown at the right.

Finally, we wanted to ensure that DIB and our model selection procedure
would not hallucinate structure where there is none, so we applied it to
a single gaussian blob, with the hope that no solution with n, > 1 would
stand out and prove robust to 8. As can be seen in the fourth row of Figure 3,
that is indeed true. No solution at any smoothing width had a particularly
high kink angle 6, and no solution remained at the knee of the I(c; x) versus
the n, curve across a wide range of smoothing widths.

Overall, these results suggest that DIB on smoothed data is able to
recover generative geometric structure at multiple scales, using built-in
model selection procedures based on identifying robust, spatially informa-
tive solutions.

4 Relationship Between (D)IB and GMMs & k-Means

It is natural to wonder how the algorithm we introduce here, clustering
with DIB, relates to classic approaches to clustering, including GMMs and
k-means. We now establish the following equivalence: when the smooth-
ing scale s is small, 8 = 1, and g(x | ¢) is approximated as a gaussian r(x | c)
whose parameters are chosen to minimize KL[p(x | c) | r(x| C)], DIB and IB
correspond to EM-fitting of a GMM with hard and soft assignments, re-
spectively. When s is small and r(x | c) is chosen to be an isotropic gaussian
with fixed variance across clusters, DIB and IB correspond to hard and soft
k-means, respectively, with a logarithmic “cluster size bonus” weighted by
B~1. In the B — oo limit, the effect of the cluster size bonus vanishes and
the correspondence with hard and soft k-means is exact. Thus, clustering
with (D)IB can be viewed as a generalization of these approaches.

We begin by establishing the correspondence between DIB and the E-
step of fitting a GMM. Consider the KL divergence KL[p(x | i) | g(x | ¢)] that
(D)IB uses to cluster data points. When the smoothing scale s is chosen to
be small relative to the scale of 4(x | ¢), then we have

KL[p(x | i) | g(x | ¢)]

— [ px 1 itogatx | Odx— H[px 1], (4

X

—logq(x; | ©) / p(x | i)dx — H[p(x | )], (42)

—logq(xi | ¢) = H[p(x | )], (4.3)
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where we have used the assumption about the scale of s in moving from
the first to second line. Since H[p(x | i)] is independent of the cluster as-
signments, minimizing KL[p(x | 7) | g(x | ¢)] with respect to the cluster as-
signments is then equivalent to maximizing log q(x; | ¢), that is choosing a
maximum likelihood assignment of points to clusters. Thus equation 2.10
becomes

c*(i) = argmax log p(c) + Blog p(x; | ¢), (4.4)

1/

= argmax log p(c) /" +log p(x; | ¢). (4.5)

For g = 1, the two log probabilities combine and lead to a maximum a pos-
teriori (MAP) assignment of points to clusters

c*(i) = argmax log p(x;, ¢) = argmax p(c | x;) . (4.6)

For 1 < B < oo, the effect of B is to ”soften” the prior p(c) (equation 4.5),
leading to less aggressive cluster consolidation.

Of course, if we use the exact q(x | ¢) defined in equation 2.12, then the
scales of p(x | i) and q(x | c) are similar, and so our assumption in this section
is not valid. In order for it to be valid, we need to replace the exact g(x | c)
with an assumed parametric form that leads to further smoothing.

If we choose to replace q(x | ¢) with a gaussian approximation r(x | ¢) =
N (x| fte, B¢), then equation 4.6 corresponds to the E-step in EM fitting of
a GMM (Bishop, 2006). Note that ideally we would like for it to be true
that KL[p(x | i) | r(x | ¢)] = KL[p(x | i) | q(x | ¢)] so that the replacement of
g(x | c) by r(x | c) leads to us maximizing a lower bound on our original
objective (i.e., that which is maximized in equation 2.10), however this is
not generically true and KL[p(x | i) | r(x | ¢)] might be smaller or larger than
KL[p(x | i) | q(x | ¢)]-

The results in this section are only valid for a “small” smoothing scale s,
so let us now understand what that means in the particular case of gaussian
r(x | c). Consider the KL divergence in the assignment step (equation 2.10),
which in this case has a simple expression

KL[p(x | i) | r(x| 0)]
2

“ et (e —x)" =71 (e — x;) + log det =, + &, A7)

where k denotes terms not dependent on the assignment of points to clus-
ters, and thus irrelevant for the objective. Compare to the maximum likeli-
hood objective. The negative log likelihood of x; under r(x | c) is
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—10gN(Xi | e, e) o< (pe — xi)T E;1 (e —xi) + 10g det(X.) +k, (4.8)

where k again denotes terms independent of the assignment of points to
clusters, and thus ignorable. Note that when §% K tr(%,), the last two equa-
tions are the same, and thus the DIB cluster assignments correspond to max-
imum likelihood assignments. Thus, “small” s means s> < tr(Z.) in this
case. Of course, we don’t know tr(X;) until after we cluster our data, but
it is set by the natural length scales in the data, so we can take it to mean
that s needs to be small compared to those.

That establishes the correspondence for the E-step of EM fitting of a
GMM, but what about the M-step? Note that we haven't yet specified how
to fit the approximation (x | ¢) &~ q(x | c). One reasonable way that appears
often in the variational inference literature (e.g., Kingama and Welling,
2014) is to choose the parameters of r(x | ¢) (1, and Z.) that minimize
KL[p(x | ¢) | r(x | ¢)]. We choose this direction of the KL divergence because
itencourages a “mean-seeking” approximation of p(x | c) that tries better to
approximate the full distribution than the other, “mode-seeking” direction.
While this is again a generally intractable KL divergence between a mix-
ture of gaussians and a gaussian, fortunately in the s> < tr(Z.) limit that
we consider, it simplifies to

KL[p(x | c) | r(x] c)]

_ / p(x | ) log r(x | ¢)dx — Hp(x | 0)] (4.9)
= _nlc f ;;N(x; xi,s°) logr(x | ¢)dx — H[p(x | ¢)] (4.10)
~ _nlc Zs log r(x; | ¢) / N (x: %, %) dx — H[p(x | )] (411)
- —nlc ZS log r(x; | &) — H[p(x | o)]. (412)

where we move from the second to third line using the small s approxima-
tion (so that r(x | ¢) ~ r(x; | ¢) in the region of x where the bulk of N (x; x;, 5?)
is). Minimizing equation 4.12 with respect to ;. and X, again corresponds to
maximum likelihood assignments, this time of the model parameters rather
than cluster assignments. This corresponds to the M-step of EM fitting of a
GMM (Bishop, 2006).

Thus, for g =1, small s, and a gaussian approximation of p(x | c¢) (with
parameters chosen to minimize the KL divergence in equation 4.9), cluster-
ing with DIB is equivalent to EM fitting of a GMM with hard assignments
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(of data points to clusters). For g > 1, the effect of the cluster prior p(c) is
muted; that is, it is replaced with p(c)l/ B

If we set all cluster conditional approximations to have the same
isotropic covariance ¥, = diag(c?), then c* (i) becomes (plugging equation
4.8 into equation 4.5)

2
c*(i) = argmax % log p(c) — IIxi — well? (4.13)

c

2
o
= argmax F logn, — lIxi — well?, (4.14)

c

which corresponds to (hard) k-means with a cluster size bonus log 11, (where
ne = |S¢| is the number of points assigned to cluster ¢, as introduced in sec-
tion 2). In the g — oo limit, the logn. term can be ignored and the corre-
spondence with (hard) k-means is exact.

To see the correspondence between GMMs/k-means and IB, consider
that IB can be viewed as DIB with the hard max replaced by a soft max (see
equation 2.7). Thus, the same correspondences we drew between DIB and
GMMs/k-means with hard assignments hold for IB and GMMs/k-means
with soft assignments.

The correspondence between clustering with (D)IB and GMMs yields
new interpretations of both. From this perspective, clustering with (D)IB
can be viewed as a generalization of GMMs that 1) uses a more flexible,
nonparametric representation of the clusters, 2) includes an extra parame-
ter B for controlling the tradeoff between the prior and likelihood, and 3)
includes an extra parameter s for setting the length scale of interest. In the
other direction, GMMs can be viewed as mapping data points to cluster
labels that maximally preserve spatial information.

This is not the first correspondence between IB in a particular setting and
another probabilistic model. In the discrete setting, IB has been shown to
be related to EM fitting of a multinomial mixture model (Slonim & Weiss,
2003). In the time series setting (where X = x; and Y = x,1), IB is related
to canonical correlation analysis (Creutzig et al., 2009), and therefore linear
gaussian models (Bach & Jordan, 2006) and slow feature analysis (Turner &
Sahani, 2007). Under a variational approximation, IB applied to unsuper-
vised learning is related to a variational autoencoder (VAE) (Alemi et al.,
2016; Higgins et al., 2017; Kingma & Welling, 2014).

5 Discussion

We have shown in this letter how to use the formalism of the information
bottleneck to perform geometric clustering. A previous paper (Still et al.,
2004) claimed to contribute similarly; however, for the reasons discussed in
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section 2 and the appendix, their approach contained fundamental flaws.
We amend and improve on that paper in four ways. First, we show to fix
the errors they made in their problem setup (with the data preparation).
Second, we argue for using DIB over IB in this setting for its preference for
using as few clusters as it can. Third, we introduce a novel form of model
selection for the number of clusters based on discontinuities (or kinks) in
the slope of the DIB curve, which indicate solutions that are robust across
the DIB trade-off parameter . We show that this information-based model
selection criterion allows us to correctly recover generative structure in the
data at multiple spatial scales. Finally, we establish the correct correspon-
dence between clustering with (D)IB and k-means/GMMs, thus providing
both a generalization and information-theoretic interpretation of these clas-
sic approaches.

We have introduced one way of doing geometric clustering with the in-
formation bottleneck, but we think it opens avenues for other ways as well.
First, the uniform smoothing we performed could be generalized in a num-
ber of ways to better exploit local geometry and better estimate the true
generative distribution of the data. For example, one could do gaussian
smoothing with the mean centered on each data point but the covariance
estimated by the sample covariance of neighboring data points around that
mean. Indeed, our early experiments with this alternative suggest it may be
useful for certain data sets. Second, while choosing spatial location as the
relevant variable for DIB to preserve information about seems to be the ob-
vious first choice to investigate, other options might prove interesting. For
example, preserving information about the identity of neighbors, if care-
fully formulated, might make fewer implicit assumptions about the shape
of the generative distribution and enable the extension of our approach to
a wider range of data sets.

Scaling the approach introduced here to higher-dimensional data sets is
nontrivial because the tabular representation used in the original IB (Tishby
et al., 1999) and DIB (Strouse & Schwab, 2017) algorithms leads to an expo-
nential scaling with the number of dimensions. Recently, however, Alemi
et al. (2016) introduced a variational version of IB in which one parame-
terizes the encoder g(t | x) (and “decoder” q(y | t)) with a function approx-
imator (e.g., a deep neural network). This has the advantage of allowing
scaling to much larger data sets. Moreover, the choice of parameterization
often implies a smoothness constraint on the data, relieving the problem
encountered above of needing to smooth the data. It would be interesting
to develop a variational version of DIB, which could then be used to per-
form information-theoretic clustering as we have done here, but on larger
problems and perhaps with no need for data smoothing.
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Appendix: Errors in Still et al. (2004)

Aprevious attempt was made to draw a connection between IB and k-means
by Still et al. (2004). Even before reviewing the algebraic errors that lead
their result to break down, there are two intuitive reasons why such a claim
is unlikely to be true. First, IB is a soft clustering algorithm, and k-means
is a hard clustering algorithm. Second, the authors made the choice not to
smooth the data and to set p(x | i) = 8x,. As discussed in section 2, (D)IB
clusters data points based on these conditionals, and delta functions triv-
ially overlap only when they are identical.

The primary algebraic mistake appears just after equation 2.14, in the
claim that p,(x | ¢) o py—1(x | o)/, Combining the previous two claims in
that proof, we obtain

5xxi

1
pu(x|c) = N Z 7.0 A)pn—l(xi le)'/*. (A1)

Certainly this does not imply that p, (x| ¢) o< p—1(x | c)l/ * everywhere,
because of the 8y, factor, which picks out only a finite number of points.

One might wonder why, with these mistakes, the authors still obtain an
algorithm that looks and performs like k-means. The reason is that their
sequence of mistakes leads to the result in equation 2.15 that effectively as-
sumes that IB has access to geometric information it should not: namely, the
cluster centers at step n. Since these are exactly what k-means uses to as-
sign points to clusters, it is not surprising that the behavior then resembles
k-means.
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