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SUMMARY

Neural activity throughout the cortex is correlated
with perceptual decisions, but inactivation studies
suggest that only a small number of areas are neces-
sary for these behaviors. Here we show that the num-
ber of required cortical areas and their dynamics vary
across related tasks with different cognitive compu-
tations. In a visually guided virtual T-maze task, bilat-
eral inactivation of only a few dorsal cortical regions
impaired performance. In contrast, in tasks requiring
evidence accumulation and/or post-stimulus mem-
ory, performance was impaired by inactivation of
widespread cortical areas with diverse patterns of
behavioral deficits across areas and tasks. Wide-
field imaging revealed widespread ramps of Ca2+ ac-
tivity during the accumulation and visually guided
tasks. Additionally, during accumulation, different re-
gions had more diverse activity profiles, leading to
reduced inter-area correlations. Using a modular
recurrent neural network model trained to perform
analogous tasks, we argue that differences in
computational strategies alone could explain these
findings.

INTRODUCTION

Making decisions based on sensory stimuli is a crucial cognitive

ability, and its neural underpinnings have been the subject of

intense scrutiny for the past decades. A particular puzzle has

been the observation of task-related activity across the cortex,

often with similar response patterns (Allen et al., 2017; Brody

and Hanks, 2016; Dotson et al., 2018; Gold and Shadlen, 2007;

Hernández et al., 2010; Koay et al., 2019; Scott et al., 2017; Sie-

gel et al., 2015; Steinmetz et al., 2018). At face value, these find-
810 Neuron 104, 810–824, November 20, 2019 ª 2019 Elsevier Inc.
ings suggest the existence of distributed cortical computations.

However, systematic optogenetic inactivation studies have

generally found very localized behavioral effects, even when

widespread activity was observed under the same experimental

conditions (Allen et al., 2017; Guo et al., 2014; Zatka-Haas et al.,

2019). This highlights the possibility that such apparently distrib-

uted computationsmight serve other roles not relevant to the de-

cision on individual trials. However, perceptual decisions can

vary in difficulty, stimulus complexity, and cognitive computation

requirements. Decision-making tasks can consist of fixed one-

to-one sensory-motor mappings (Allen et al., 2017; Goard

et al., 2016; Guo et al., 2014; Harvey et al., 2012; Musall et al.,

2018; Pinto and Dan, 2015) or have multidimensional stimulus

sets, trial-varying difficulty, or sensory-motor transformations

that rely on stimulus working memory (Akrami et al., 2018; Brun-

ton et al., 2013; Gold and Shadlen, 2007; Morcos and Harvey,

2016; Odoemene et al., 2018; Pinto et al., 2018). Additionally,

tasks may vary widely in terms of the timescales over which de-

cisions unfold.

The aforementioned inactivation findings were obtained while

mice performed discriminations between two stimuli over rela-

tively short timescales, so it remains unclear whether they are

generalizable to other kinds of perceptual decisions. Indeed, it

has been proposed that the degree to which different brain areas

are causally involved in a behavior varies with the cognitive re-

quirements of the task (Fuster, 1997; Lashley, 1931). However,

direct evidence supporting this idea is lacking. Here we used

large-scale optical perturbation and recording methods to

perform an unbiased survey of both the Ca2+ activity patterns

and perturbation effects across the entire dorsal cortex of mice

performing, in the same virtual reality (VR) environment, three

related tasks with different cognitive requirements. We show

that, in contrast to what has been observed previously, distrib-

uted dorsal cortical areas appear to contribute to performance

of an evidence-accumulation task and a memory-guided task

but not a visually guided task. The nature of the behavioral ef-

fects depended on both the inactivated region and the task.

Moreover, the magnitude of performance drops was correlated
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Figure 1. Widespread Cortical Involvement in Evidence- and Memory-Based Navigation

(A) Schematic of the VR setup integrated with a scanning laser for optogenetic inactivation.

(B) Schematic of the three tasks. Right: accumulating-towers task. The animal navigates a 3-m virtual T-maze to retrieve a reward in the arm corresponding to the

side with the majority of towers, which appear transiently on either side anywhere in the first 2 m. Left: visually guided task. Maze and tower stimuli are the same,

but, additionally, a tall visual guide visible from the beginning of the maze indicates the reward location. Center: memory-guided task. The maze is the same, but

there are no tower stimuli, just a distal visual guide that disappears during the final 1 m.

(C) Overall performance of the three tasks (n = 36, 31, and 8 mice with at least 100 trials for the accumulating-towers, visually guided, and memory-guided tasks,

respectively). Circles indicate statistical significance (two, p < 0.01; three, p < 0.001; Tukey’s post hoc test).

(D) Average SD of view angle trajectories across spatial positions for the three tasks, illustrating similar motor behavior.

(E) Top: VGAT-ChR2-EYFP mouse with the cleared skull preparation. Bottom: schematic showing targeting of 29 bilateral cortical patches spanning many areas

(crosses), overlaid on a reference from the Allen Brain Atlas. Circles illustrate bilateral targeting of a pair of homotopic areas.

(legend continued on next page)
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with how demanding the tasks were. Although both the accumu-

lation and the visually guided tasks were associated with global

Ca2+ activity, we observed differences in cortical dynamics that

appeared to be related to the different underlying cognitive com-

putations. These data suggest that performance of tasks with

more complex cognitive demands results in engagement of

diverse computations across widespread regions of the cortex.

Finally, we trained a recurrent neural network (RNN) model with

a cortex-inspired modular architecture to perform both the visu-

ally guided and the accumulation task with fixed synaptic con-

nectivity. Based on this model, we argue that differences in the

underlying computations without changes in connectivity across

different tasks could themselves explain our imaging and inacti-

vation findings.

RESULTS

Widespread Effects of Cortical Inactivation in Memory-
Dependent Navigation Tasks
We trained head-fixed mice to perform three tasks, all of which

happened in the same VR T-maze (Figures 1A and 1B; Video

S1). One of the tasks was our previously developed ‘‘accumu-

lating-towers task’’ (Pinto et al., 2018; Figure 1B). As mice navi-

gated through the initial 2 m (�4 s) of the T-maze, salient objects

(towers) appeared transiently on either side. After a 1-m (�2-s)

delay, the mice turned to the arm corresponding to the side

with the highest tower count to retrieve a reward. The towers

occurred at random positions and counts in each trial so that

the mice experienced a wide range of magnitudes of sensory

evidence, defined as # right – # left (D) towers. Compatible

with previous behavioral analyses (Pinto et al., 2018), perfor-

mance was modulated by the amount of evidence and was sen-

sitive to single-tower count differences (Figures 1C and S1A;

overall performance: 69.3% ± 0.4% correct, mean ± SEM,

n = 36 mice). Moreover, a logistic regression analysis suggested

spatially uniform evidence integration (Figure S1B). The second

task, dubbed ‘‘visually guided,’’ maintained all maze features,

with the addition of a tall visual guide in the rewarded arm, visible

from the beginning of the maze (Figure 1B). Thus, although sen-

sory and motor features were highly similar between the two

tasks (Figures 1C, 1D, and S1), only the accumulating-towers

task required gradual evidence accumulation and workingmem-

ory. Consistent with lower cognitive demands, performance was

much higher in the visually guided task and had very little sensi-

tivity to D towers (Figures 1C and S1C; overall performance:
(F) Effects of whole-trial inactivation of 29 bilateral cortical patches on performan

trials/location). The size of each circle indicates the size of the effect (caption on

‘‘laser off’’ trials (STAR Methods). The color indicates the sign of the effect (red, d

bar), thresholded so that non-significant effects appear white.

(G) Same as (F) for the accumulating-towers task (n = 11 mice, 9,443 ‘‘laser on’’

(H) Same as (F) and (G) for the memory-guided task (n = 10 mice, 3,750 ‘‘laser o

(I) The magnitude of behavioral deficit is related to baseline task difficulty. Left: c

each of the 29 bilateral locations. Two circles, p < 0.01; three circles, p < 0.001;

mulation versus the memory-guided task). Colored circles and error bars, mean

formance (data in C) and normalized ‘‘laser on’’ performance (left). Crosses, avera

linear fit (the slope is significantly different from zero, 95% confidence interv

mean ± SEM.

See also Figures S1–S3 and Video S1.
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92.7% ± 0.6% correct, mean ± SEM, n = 31). The third task,

called ‘‘memory-guided,’’ was designed to control for the long

post-stimulus delay in the accumulating-towers task. This task

happened in the same maze but did not contain towers, just a

distal reward-indicating visual guide, which disappeared in the

last 1 m of the maze. Thus, the task required no evidence accu-

mulation, like the visually guided task, but contained a post-stim-

ulus delay, like the accumulating-towers task. However, the

absence of proximal towers resulted in less salient visual stimuli.

Indeed, despite not requiring accumulation, the behavioral

difficulty of the memory-guided task appeared closer to the

accumulating-towers than to the visually guided task, although

performance was still significantly higher (Figures 1C and S1C;

73.2% ± 1.4% correct, mean ± SEM, n = 8, ptask = 1.9 3

10�44, one-way ANOVA, accumulating towers versus memory-

guided: p = 0.007, Tukey’s post hoc test).

We first asked which dorsal cortical regions are required for

the mice to perform the tasks. To answer this, we trained mice

expressing Channelrhodopsin-2 (ChR2) transgenically in inhibi-

tory interneurons (VGAT-ChR2-EYFP) and rendered their intact

skulls optically transparent (Guo et al., 2014). This allowed us to

scan a blue laser over the dorsal cortex, randomly targeting 29

bilateral homotopic locations spanning sensory, motor, and as-

sociation cortices, in a subset of behavioral trials (Figure 1E).

We confirmed electrophysiologically that this approach

robustly inactivated discrete patches of the cortex (�1.5–

2-mm radius) in a laser power-dependent fashion with little

activity rebound (Figure S2). First we performed whole-trial

inactivation experiments (0 % y % 300 cm) as mice performed

the visually guided task. Significant inactivation effects were

restricted to visual cortical areas and, to a lesser extent, the

medial premotor cortex (Figure 1F; p < 0.01, bootstrapping).

These results are unlikely to be due to inadvertent inhibition

of underlying subcortical regions such as the striatum, where

ChR2 is not expressed (Guo et al., 2014). However, given the

inactivation spreads, we cannot rule out that the effects attrib-

uted to the premotor cortex are partly due to inactivation of the

underlying medial prefrontal cortex, which is required for

perceptual discrimination (Pinto and Dan, 2015). Regardless,

our results are broadly compatible with previous reports that,

in the dorsal cortex, only premotor and sensory areas are

required for simple perceptual decisions (Allen et al., 2017;

Guo et al., 2014; Zatka-Haas et al., 2019), highlighting the

fact that the VR-navigation component of our tasks does not

qualitatively change our findings.
ce of the visually guided task (n = 5 mice, 8,140 ‘‘laser on’’ trials; mean, 271.3

the right), given by the normalized performance drop between ‘‘laser on’’ and

ecreased performance), and the saturation is proportional to the p value (color

trials; mean, 314.8 trials/location).

n’’ trials; mean, 129.3 trials/location).

omparison of normalized performance during inactivation across tasks. Lines:

one-sided paired t test (the effect was larger for 19 of 29 regions in the accu-

± SEM across locations. Right: significant relationship between overall per-

ge ‘‘laser on’’ performance for each of the 29 bilateral locations; solid line, best

al); dashed lines, 95% confidence interval; colored circles and error bars,



Next we repeated the experiments as mice performed the

accumulating-towers task. Surprisingly, in contrast with the visu-

ally guided task, inactivating each of the 29 bilateral regions

resulted in significant decreases in overall performance (Fig-

ure 1G; p < 0.01, bootstrapping). This result was not due to

non-specific light effects because we observed no significant

effects in control mice not expressing ChR2 (Figures S2M–

S2S; ChR2+ effects were significantly larger than controls for

27 of 29 locations). Furthermore, although possibly an overesti-

mate of the amount of required cortical territory, the result

cannot be exclusively explained by large inactivation spreads

encompassing multiple cortical areas. Repeating the experi-

ments with much smaller laser powers and, thus, more spatially

restricted inactivation yielded qualitatively similar results with

widespread effects even at powers likely resulting in incomplete

local silencing (Figures S2K and S2L). Moreover, even at the

lowest tested laser power, the spatial map of inactivation effects

did not resemble that of the visually guided task, arguing against

the possibility that both tasks require the same set of cortical

areas but that sensitivity to inactivation is higher for the accumu-

lating-towers task. However, within visual cortical areas

(required for both tasks), the accumulating-towers task was

associatedwithmore sensitivity to themagnitude of perturbation

than the visually guided task (Figure S2J).

The accumulating-towers task is different from the visually

guided task in two ways. First, the visually guided task does

not require evidence accumulation; second, it does not contain

a post-stimulus delay. To identify which of the two features

contributed most to the difference between the tasks, we also

performed inactivations during the memory-guided task, which

contains a delay but no evidence accumulation. Interestingly,

as in the accumulating-towers task, the inactivation of all bilat-

eral locations resulted in significant performance drops (Fig-

ure 1H; p < 0.01, bootstrapping). To directly compare the effect

magnitudes between the different tasks, we normalized inactiva-

tion-induced performance decreases so that 0 reflected chance

performance and 100 reflected control (laser off) perfor-

mance (STAR Methods). Effect sizes varied significantly as a

function of tasks and the location of inactivation (Figure 1I;

ptask = 5.1 3 10�32, plocation = 9.7 3 10�7, 2-way ANOVA), indi-

cating that the requirements of different regions depend both

quantitatively and qualitatively on the tasks’ computational de-

mands. On average, themagnitude of the effect was significantly

higher in the accumulating-towers compared with the memory-

guided task (p = 0.006, one-sided paired t test, 19 of 29 regions

had a larger effect in the accumulation task). In addition, the

magnitude of the effects was significantly correlated with how

demanding the tasks were, as indexed by overall baseline per-

formance (Figure 1I, r = 0.88, p = 6.1 3 10�30, Pearson correla-

tion). These findings indicate that, although post-stimulus mem-

ory is a key contributor to the widespread cortical requirement,

the evidence accumulation process is also important because

it is associated with significantly larger deficits. Further evidence

for this comes from similarly widespread effects upon selective

cue region inactivations during the accumulating-towers task

(Figure S3A). Thus, tasks with different underlying cognitive

computations are associated with different sensitivities to, and

spatial effect distributions upon, cortical inactivations.
Inactivation Effects Are Task and Region Dependent
We next wondered whether the nature of the behavioral effects

of inactivation varied across the targeted regions. First we

analyzed the effect of inactivation on other behavioral measures

beyond overall performance and observed differences between

cortical regions (Figures 2A, 2B, and S3). For instance, during the

accumulating-towers task, we noted a large effect on side biases

upon bilateral inactivation of frontal, but to a much lesser extent,

posterior areas, although the preferred side was idiosyncratic

(Figure 2A). Note that a trivial explanation such as side differ-

ences in laser power cannot account for these results; hardware

issues would affect all mice equally, and implant inhomogene-

ities are unlikely to specifically affect the same regions across

animals. Moreover, no significant biases occurred during the

visually guided task (Figure S3A). We also observed different ef-

fects on running speeds and trajectory lengths that depended on

both the region and the task the mice were performing (Figures

2B, S3B, and S3C). Importantly, however, these effects were un-

likely to reflect gross motor deficits because the frequency of

motor errors was largely unaffected (Figure S4C). Cortical re-

gions also differed according to the behavioral effects of their

inactivation during the memory-guided task, but with a different

spatial distribution (Figures 2C and S3D). For instance, we again

observed idiosyncratic increases in side bias, but with the inac-

tivation of more posteromedial regions resulting in larger biases

instead (Figure 2C).

To better quantify these differences, we combined these

various measures of behavioral deficits during the accumu-

lating-towers or the memory-guided task and grouped them us-

ing hierarchical clustering (Figures S3E–S3G; STAR Methods).

During both tasks, the different areas could be grouped into

three clusters, which significantly differed in the magnitude of

the effect on all behavioral indicators (one-way ANOVA, p %

0.01). Compatible with our previous analyses, however, the clus-

ters contained different cortical regions in the two tasks (Figures

2D and 2E). Overall, our results suggest the existence of spatially

distributed processes underlying more demanding perceptual

decisions, but with different regions contributing to different as-

pects of the behavior, contrary to previous conclusions (Lashley,

1931). Further, they support the notion that different tasks with

different underlying computations, even when resulting in similar

overall demands, are associated with distinct whole-cortex ac-

tivity patterns.

Cortical Dynamics Are Task Specific
The inactivation results thus suggest differences in the underly-

ing large-scale cortical activity, even between related tasks. To

observe this directly, we performed wide-field Ca2+ imaging at

mesoscale resolution (�70 mm) over the dorsal surface of the

cortex, taking advantage of the same cleared skull preparation

applied to mice expressing GCaMP6f in cortical excitatory neu-

rons (Emx1-Ai93, n = 6; Figures 3A, 3B, S4, and S5). Note that,

despite the incidence of ictal events in some mice from this

line (Steinmetz et al., 2017), we have shown previously that it

has statistically indistinguishable behavior (Pinto et al., 2018)

and Ca2+ dynamics (Koay et al., 2019) from other mouse lines.

The wide-field signal is composed of both somatic and neuro-

pil activity, primarily from superficial layers (Allen et al., 2017;
Neuron 104, 810–824, November 20, 2019 813
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Figure 2. Location- and Task-Specific Spatial Patterns of Behavioral Deficits

(A) Bilateral whole-trial inactivation of frontal regions during the accumulating-towers task led to large idiosyncratic side biases. Left: magnitude of side biases for

individual mice (n = 11, black lines). Shown are biases in ‘‘laser off’’ and ‘‘laser on’’ trials for a sample posterior and a sample frontal region. Right: effect of

inactivating each region on absolute side bias. The size of each circle indicates the size of the effect (caption on the right). The color indicates the sign of the effect

(red, decrease; blue, increase), and the saturation is proportional to the p value (color bar; STAR Methods), thresholded so that non-significant effects

appear white.

(B) Different effects of inactivating bilateral regions on running speed during the accumulating-towers task. Conventions as in (A).

(C and D) Inactivation effects on absolute bias (C) and speed (D) for the memory-guide task. Conventions as in (A) and (B). Note the different spatial pattern.

(E) Dendrogram showing that cortical regions cluster into three groups according to the pattern of behavioral deficits in the accumulating-towers task.

(F) Each of the 29 bilateral cortical regions is color-coded according to the cluster to which they belong (colors in E).

(G) Significantly different effect sizes for five behavioral indicators across the three clusters (color code as in E and F). The p values on top are from one-way

ANOVAs performed separately for each indicator. Error bars, ± SEM.

(H–J) Same as (E)–(G) for the memory-guided task.

See also Figure S3.
Clancy et al., 2019; Ma et al., 2016a; Makino et al., 2017; Xiao

et al., 2017), so that it likely reflects the combined activity of

superficial somata and neuropil and distal axons arriving through

layer 1. This signal has been shown in a variety of GCaMP6-ex-

pressing mouse lines to be correlated with local spiking activity

(Allen et al., 2017; Clancy et al., 2019; Ma et al., 2016b; Makino

et al., 2017; Xiao et al., 2017) and to be largely dependent on

local synaptic transmission (Makino et al., 2017), but comparison

with cellular-resolution imaging suggested higher correlation

with layer 1 than layer 2/3 signals (Allen et al., 2017). Despite

not allowing us to isolate local computations definitively, it al-

lowed us to probe mesoscale dynamics simultaneously from

the same regions we inactivated and, crucially, to compare dy-

namics across tasks.
814 Neuron 104, 810–824, November 20, 2019
We measured Ca2+ dynamics during both the accumulating-

towers and the visually guided tasks from blocks of trials within

the same behavioral sessions (n = 25 from 6 mice, 2–5 ses-

sions/mouse). We focused on these two tasks because they

are directly comparable in terms of sensory stimuli and motor

output (Figure S1). Similar to recent reports (Allen et al., 2017;

Musall et al., 2018; Orsolic et al., 2019; Zatka-Haas et al.,

2019), both tasks were associated with widespread Ca2+ activity

(Figures 3B–3F and S6; Video S2). In particular, we observed

prominent activity ramps across the dorsal cortex, leading to

the reward location during both tasks (Figures 3E and 3F). These

correlated ramps, observed here for the first time in VR naviga-

tion, have been reported previously in other tasks (Allen et al.,

2017; Musall et al., 2018; Orsolic et al., 2019), suggesting that
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Figure 3. Task-Dependent Cortical Dynamics

(A) Schematics of the VR setup integrated with a wide-field macroscope.

(B) Example DF/F traces extracted for five ROIs (labels on the left), with behavioral events for ten consecutive trials of the accumulating-towers task (captions on

the right).

(C) Pixel-wise Ca2+ activity maps during the visually guided task, averaged over correct left-choice trials and maze regions as labeled on top. Black pixels

correspond to vasculature and headplate mask and were not included in the analyses.

(D) Same as (C) for accumulating-towers task trials during the same behavioral session.

(E) Spatially downsampled activity for all contralateral ROIs (i.e., right hemisphere) during the visually guided task, averaged overmice. The inset is amagnification

of the same data, focused on the first half of the maze. Error bars are omitted for clarity.

(F) Same as (E) for the accumulating-towers task. The p values on the right are for the task factor in a 2-way repeatedmeasures ANOVA (factors task and position).

In (C)–(F), DF/F was normalized separately for each task and ROI to emphasize relative activity timing. See also Figures S4–S6 and Video S2.
they might be a general phenomenon of decision-making. Addi-

tionally, extending these findings, and compatible with our inac-

tivation results, we observed differences in the large-scale activ-

ity patterns between the two tasks, primarily in the evidence

accumulation period (Figure 3F). To summarize these effects,

we averaged cortical activity over anatomically defined regions

of interest (ROIs; Figure S5). The temporal profiles of Ca2+ activ-

ity of all ROIs were significantly different between the two tasks

(Figures 3E, 3F, S6A, and S6B; p < 0.001, n = 6 mice, two-way

ANOVAs with repeated measures). Similar conclusions could

be drawn from pixel-wise analyses (Figures S6C–S6E).

We also observed task differences in the large-scale correla-

tions between cortical regions, which were also modulated by

whether the mice were engaged in a task (Figure 4A). Specif-

ically, although the general structure of inter-ROI correlations

was roughly preserved across tasks and spontaneous running
behavior (being largely explained by the physical inter-ROI dis-

tance; Figure S7A), we found that the overall magnitude of the

correlations decreased significantly when the mice were

engaged in a task and were smallest during the accumulating-

towers task (Figure 4B; p = 3.1 3 10�23, one-way ANOVA with

repeated measures; p < 10�4 for all pairwise comparisons,

Tukey’s post hoc test, n = 16 ROIs). Thus, because running pat-

terns were indistinguishable between the two tasks (Figures 1D

and S1), different cognitive computations themselves, not motor

activity, appeared to modulate inter-ROI correlations.

Further inspection of the data suggested that areas could be

grouped based on their correlations and that decreases in corre-

lation happened primarily across rather than within these groups

(i.e., note the darker regions in the off-diagonals; Figure 4A). To

test this directly, we used hierarchical clustering to group the

ROIs (STAR Methods), obtaining four clusters: one with visual
Neuron 104, 810–824, November 20, 2019 815
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Figure 4. Correlations between ROIs Are High but Modulated by Behavioral Context

(A) Average pairwise correlation matrices between all 16 ROIs for different conditions labeled on top.

(B) Average correlation between each ROI and the other 15 as a function of behavioral context. Circles, p < 0.001.

(C) Left: difference in correlation matrices between the accumulating-towers and visually guided tasks, with ROIs sorted according to their cluster membership

(right). Right: dendrogram showing hierarchical clustering of ROIs into 4 groups.

(D) For each ROI, we compared the average task-related change (D r) in correlation with ROIs within the same cluster or outside of it. Color code as in (B). One

circle, p < 0.05; three circles, p < 0.001.

(E) Relationship between session performance (n = 25 from 6 mice) and average correlation between the ROIs in the frontal cortex versus parietal cortices

(clusters 4 and 2 in C).

(F) Average correlation between each ROI and the other 15 as a function of maze region in the accumulating-towers task. Circles, p < 0.001. n.s., not significant.

(G) Difference in correlation matrices between hard and easy trials in the accumulating-towers task.

(H) Average trial difficulty-related change in correlation with ROIs within the same cluster or outside of it (accumulating-towers task). Color code as in (F). Two

circles, p < 0.01; three circles, p < 0.001.

See also Figure S7.
areas, one with parietal areas, one with retrosplenial areas, and

onewith frontal areas (Figure 4C).We then calculated the change

in correlation in the accumulating-towers versus the visually

guided task and compared, for each ROI, the amount of change

within and across its cluster. Confirming our visual impression,
816 Neuron 104, 810–824, November 20, 2019
correlations during the accumulating-towers task significantly

decreased only across clusters (Figure 4D; p = 8.0 3 10�8 and

0.26, respectively, for across and within; paired t test, n = 16

ROIs; differences between specific cluster pairs were not signif-

icant, p = 0.09, one-way ANOVA with repeated measures). Next



A B C Figure 5. Large-Scale Ca2+ Activity Is Sensi-

tive to Sensory Evidence Only during the

Accumulating-Towers Task

(A) Left: ROI examples (labels on top) of average

Z-scored DF/F as a function of the final amount of

sensory evidence (binned, color bar on top) during

the accumulating-towers task. Lines: mouse aver-

ages (n = 6). Error bars are omitted for clarity. Right:

linear fits to quantify the amount of evidence tuning,

corresponding to the examples on the left. Data

points, mouse averages; error bars, ± SEM. Lines

are average best fits from 50 bootstrapping itera-

tions. Sig., the slope is significantly different from 0;

n.s., the slope is not significantly different from 0.

(B) Average slopes of linear fits for each ROI during

correct (left) and error (right) trials for the accumu-

lating-towers task. Error bars, SD from boot-

strapping (n = 50 iterations). Filled bars indicate

slopes that are significantly different from 0. Circles

indicate significant differences between contra- and

ipsilateral slopes for each ROI.

(C) Same as (B) for correct trials in the visually

guided task. Note no significant tuning to sensory

evidence.
we wondered whether these changes in correlation, in addition

to reflecting changes in task demands, were also related to per-

formance of the task. Interestingly, although the general

decrease in correlations did not itself appear to be correlated

with performance (data not shown), the amount of decorrelation

between parietal and frontal cortices (cluster 2 versus cluster 4)

was significantly related to how well the animals performed the

accumulating-towers task on a session-by-session basis (Fig-

ure 4E; ⍴ = –0.55, p = 0.005, Spearman correlation, corrected

for multiple comparisons; this appeared to be largely driven by

decorrelation between the somatosensory cortex and frontal

areas, ⍴ = –0.56, p = 0.004). There were no significant relation-

ships between overall ROI Ca2+ activity levels and session per-

formance (data not shown), indicating that this finding is specific

to the inter-ROI correlations. This result shows that even appar-

ently small changes in correlation (�0.1) can be associated with

sizable behavioral effects (�10% correct). It is unclear how these

results relate to findings that the mammalian cortex has antago-

nistic networks with anti-correlated blood-oxygen-level-depen-

dent (BOLD) signals during resting states and task execution

(Raichle, 2015; Wig, 2017) because our mice were running under

all conditions, and running itself can modulate large-scale

cortical correlations (Clancy et al., 2019).

To further explore the relationship between task demands and

large-scale correlational structures, we asked whether they are

also modulated by within-task variations in cognitive load. We

reasoned that, on average, both memory load and stimulus

complexity increased with trial progression during the accumu-

lating-towers task, which should, in turn, decrease correlations.

Indeed, we observed a significant decrease in correlations

during later trial epochs (Figure 4F; p = 1.2 3 10�17 across

epochs, n = 16 ROIs, one-way ANOVAwith repeated-measures),

which was not observed in the visually guided task (Figure S7B).

Along the same lines, we reasoned that trial difficulty should also

modulate correlations. Across-cluster correlations were, in fact,
significantly lower in hard compared with easy trials (Figures 4G

and 4H; p = 1.7 3 10�4, two-sided paired t test). Similar results

were obtained at finer spatial resolutions (Figures S7C–S7F).

These findings further lend support to the notion that cognitive

load modulates correlations, even when task rules are held con-

stant. Together, our correlation results suggest that different

cortical areas form functional modules that perform more inde-

pendent computations when task demands increase.

Distributed Representations of Task Variables
throughout the Dorsal Cortex
Next we asked which aspects of the accumulating-towers task

are encoded in dorsal cortical Ca2+ activity. We first wondered

whether the differences observed between the two tasks during

the nominal cue region (Figure 3) were, in fact, related to the ev-

idence accumulation computation. We plotted the average ac-

tivity of each ROI separately for different amounts of final ipsi-

and contralateral sensory evidence. Posterior ROIs, in particular

V1 (Figure 5A) andmV2, appeared to have activity that increased

with the amount of contralateral evidence, unlike frontal ROIs

(e.g., mM2; Figure 5A). To better quantify this, we fit lines to

the cue-period-averaged activity of each ROI as a function of

contra- or ipsilateral evidence. During correct trials, V1 and

mV2 activity was significantly tuned to the amount of contra-

but not ipsilateral evidence (Figure 5B). Interestingly, during error

trials, significant tuning to ipsilateral evidence was present in

several ROIs (Figure 5B). In contrast, we observed no systematic

relationship between activity and sensory evidence during the

visually guided task (Figure 5C), consistent with our behavioral

data (Figures 1C and S1D).

The analysis above, however, assumes that tuning is static

throughout the maze, and it does not take into account finer-

grained spatial patterns of activity that may be present in the

data. To address this, we built separate linear decoders for accu-

mulated evidence, choice, and previous choice at each position
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Figure 6. Distributed Coding of Task Variables during the Accumulating-Towers Task

(A) Evidence decoding weights plotted in pixel space (�280 3 280 mm) at different maze positions, from an example session. Outlines show anatomical ROIs

(labels on the left); crosses indicate bregma location.

(B) Average Pearson correlation of evidence and choice decoding weights as a function of the distance between pixels. Dashed lines, ± SEM across mice (n = 6).

Shuffles were obtained by randomizing the pixel coordinates 50 times.

(C) Cross-validated performance of linear decoders of cumulative evidence (D towers) across maze y positions, using activity averaged within anatomically

defined ROIs or smaller pixels. Dashed lines, ± SEM (n = 6 mice).

(D) Accuracy of decoders employing pixels from only pairs of homotopic ROIs across maze y positions. Error bars are omitted for clarity.

(E) Maximal accuracy for decoders using pixels from the whole cortex (black, 1,120 3 1,120 mm) or only from homotopic ROI pairs. Error bars, ± SEM.

(F–H) Same as (C)–(E) for upcoming choice. (F) Decoding accuracy of pixel- or ROI-based decoders. (G) Accuracy of decoders using pixels from pairs of ho-

motopic ROIs. (H) Maximal decoding accuracy using pixels from the whole cortex or only pairs of ROIs.

See also Figures S8 and S9.
in the maze. We used Ca2+ activity that was either averaged

within each anatomically defined ROI or within finer-grained

pixels (�2803 280 mm; Figure 6A). We could decode the amount

of accumulated evidence above chance levels from the start of

the cue period, but with higher and stable accuracy after the

second half of the maze, using either ROIs or pixels (Figure 6C).

However, cross-validated decoding accuracy was signifi-

cantly higher when pixels were used (Figures 6C and S8A;

p = 0.02, two-sided paired t test), indicating that more informa-

tion is present on meso than on large scales. Moreover, the

decoding accuracy was comparable for pixel sizes as large

as �1120 3 1120 mm and lower for larger pixels (Figures S8A

and S8B; average ROI size, �2,500 3 2,500 mm), compatible
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with recent cellular-resolution findings in the posterior cortex

(Minderer et al., 2019). In pixel-based models, we typically

observed that the decoding weights were distributed broadly

over the dorsal cortex (Figure 6A). To quantify the spatial distri-

bution of weights, we calculated, for each pixel, its pairwise

Pearson correlation to all the other pixels and plotted that as a

function of their pairwise distance. Weight correlations fell to

chance levels at �1 mm and, interestingly, were below chance

between �2 and �3 mm (Figure 6B). This spatial scale agrees

with our previous analysis (Figures S8A and S8B).

Next, to test whether there are differences in the amount of

information about accumulated evidence across different

anatomically defined areas, we fit separate decoders using



only pixels from a pair of homotopic ROIs at a time. We

observed significant differences in decoding accuracy across

cortical regions that followed a general posterior-to-frontal

gradient so that visual areas had the highest accuracy and fron-

tal areas the lowest (Figures 6D and 6E; p = 1.1 3 10�14 across

decoders, one-way ANOVA with repeated measures). This

result is not likely to be due to inter-ROI differences in the

magnitude of responses to individual towers interacting with

slow GCaMP6f dynamics because we observed no significant

differences in tower-evoked activity at short lags (<0.5 s; Fig-

ures S9A and S9D; p = 0.24, one-way ANOVA with repeated

measures). Moreover, if the decoding results were strictly an

artifact of this interaction, then one would expect that, unlike

our observations, the decoding accuracy would fall off during

the delay, which is much longer than the time constant of

GCaMP6f (Chen et al., 2013). Note, however, that the lower de-

coding accuracies from frontal regions could be an artifact of

spatially averaging intermingled neuronal populations. Future

cellular-resolution studies should clarify this.

The accuracy of choice decoding was also significantly

higher than chance throughout the maze (Figure 6F), possibly

related to trial history effects (Koay et al., 2019; Pinto et al.,

2018). However, it remained low until the end of the cue region,

growing thereafter, compatible with our behavioral analysis

showing that the mice integrate evidence from the whole cue

period to make a decision (Figure S1B). Conversely, the decod-

ing accuracy of previous choice, although also significant

throughout the maze, was highest in the beginning of the trial

(Figure S8E). As with accumulated evidence, pixel-based

choice decoders outperformed anatomical ROI-based ones

(Figures 6F and S8B; p = 0.02, two-sided paired t test). Like-

wise, significant differences were observed across ROIs (Fig-

ures 5G and 5H; p = 7.8 3 10�13, one-way ANOVA with

repeated measures). Because view angle is itself correlated

with choice (Pinto et al., 2018) and may be encoded in the activ-

ity of many cortical areas (Krumin et al., 2018), we devised a

stringent analysis to control for potential view angle confounds

(STAR Methods). The results from this analysis supported most

of our conclusions (Figures S8C–S8H).

As a complementary analysis, we calculated average re-

sponses to the presentation of each tower as well as activity

preceding and immediately following turns. These behavioral

events evoked activity throughout the dorsal cortex, often with

similar time courses across areas (albeit with different magni-

tudes; Figures S9A–S9F), consistent with previous reports on

other tasks and sensory modalities (Allen et al., 2017; Ferezou

et al., 2007; Orsolic et al., 2019; Scott et al., 2017; Sreenivasan

et al., 2017). To better quantify the contribution of different

behavioral variables and account for their correlations, we built

linear encoding models of the Ca2+ activity of each ROI using

different task events at different spatial lags as predictors (Pinto

and Dan, 2015; Scott et al., 2017). We observed similar levels of

encoding of both sensory and motor events across cortical re-

gions (Figures S9G–S9J).

Together, the analyses above suggest distributed encoding of

task variables in the accumulation task but with differences

across cortical regions, in overall agreement with the inactivation

findings.
More Complex Computations Diversify Dynamics and
Increase Sensitivity to Perturbations in a Modular RNN
Compared to the visually guided task, the evidence accumula-

tion task was associated with more decorrelated dorsal cortical

dynamics, particularly across cortical area clusters, as well as

more widespread effects of inactivation. We next asked whether

differences in the underlying computations can explain such dy-

namic changes in a network without changing its underlying con-

nectivity. To test this, we built an RNN model and trained it to

perform both tasks, allowing us to gain insight into the possible

computational and wiring constraints behind our findings (Li

et al., 2016; Machens et al., 2005; Mante et al., 2013; Rajan

et al., 2016). Thus, the model was intended as a conceptual

exercise and not meant to reproduce every aspect of our

multi-area dataset.

The design of the RNN (Figure 7A) was inspired by our behav-

ioral and imaging results. It consisted of two modules (N = 500

units in each): one that received sensory input and another one

from which the ‘‘behavioral’’ response (i.e., RNN output) was

read out. For simplicity, we refer to them as the ‘‘posterior’’

and the ‘‘frontal’’ modules, respectively. We used the full-

FORCE algorithm (DePasquale et al., 2018) to train the RNN.

full-FORCE uses a second, ‘‘teacher’’ RNN to identify a set of

desired (‘‘target’’) activity patterns for performing the task. In

addition, external inputs (‘‘task hints’’) can be applied to the

teacher network to influence the details of the target activity, al-

lowing us to implement specific computational hypotheses

based on our experimental observations. Inspired by anatom-

ical data (G�am�anut‚ et al., 2018) and the large-scale correla-

tional structure we observed (Figure 4), we constrained the

teacher network to have dense connectivity within modules

and sparse connections between them (Figure S10A). Further-

more, because sensory evidence can be decoded with much

higher accuracy from the posterior than from the frontal cortex

(Figure 6C), only the posterior teacher module received the

accumulated evidence as a task hint (Figure S10B). Finally,

because both behavior and Ca2+ activity in the visually guided

task are insensitive to the amount of sensory evidence (Figures

S1C and 5C), the teacher network was provided no tower-

dependent hint during the visually guided task, leading it to

not accumulate the pulsed inputs (Figure S10B). Importantly,

no hints specifying the correlational structure of network activ-

ity were provided. After learning, the teacher network was

removed, and we analyzed the learner network operating on

its own.

The modular RNN found a solution for both tasks using the

same set of recurrent weights (Figures 7E and S10A), and

qualitatively replicated several key features of our results. We

observed much more diverse activity patterns among the units

during accumulation (Figure 7B). To quantify this, we calculated

pairwise Pearson correlations between the rates of all units

during each task. Unlike in our imaging data, in which there is

a substantial positive baseline correlation common to all re-

gions (Figure 4; r �0.5), potentially related to the presence of

global ramps (Figure 3), correlation distributions in the RNN

were symmetrically distributed around zero. However, they

differed across tasks in terms of their widths and degree of

unimodality (Figure S10E). To compare directly with imaging
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Figure 7. A Modular RNN Model Recapitulates Key Features of the Data

(A) Schematics of the modular multi-task RNN.

(B) Single-trial examples of activity from the same 6 units from both modules while the RNN is performing either task.

(C) Pairwise rate correlation matrices for both tasks.

(D) Histogram of changes in rate correlations (accumulating-towers – visually guided task) within and across modules.

(E) Effects of silencing different fractions of randomly selected units from the RNN on task performance. Error bars, ± SEM across inactivation runs (n = 50). Lines,

best-fitting exponential functions to average data.

See also Figure S10.
data, we displayed the absolute values of the correlations,

highlighting the degree of similarity in temporal activity profiles

of the network units regardless of sign (Figure 7B; adding a

surrogate global signal to RNN units results in similar distribu-

tions to the data; Figure S10E). During both tasks, correlations

were generally lower within than across modules, much like

our data (compare Figure 7C with Figure 4A). Moreover, the

magnitude of correlations was significantly decreased during

the accumulation task (Figure 7C; p = 1.3 3 10�144, signed-

rank test, N = 1,000 units). Interestingly, and again consistent

with our data (Figure 4C, D), correlations decreased signifi-

cantly more across than within modules (Figure 7D;

p = 3.73 10�40, signed-rank test, N = 1,000 units), even though

the underlying synaptic connectivity was held constant be-

tween tasks. This result was qualitatively similar across a range

of inter-module connectivity levels in the teacher network

(Figure S10C).

Thus, like the dorsal cortex, the RNN displayed more corre-

lated dynamics during the visually guided task. We hypothesized

that this amount of redundancy would result in lower sensitivity to

perturbations compared with the accumulation task. We tested

this by randomly silencing various fractions of the RNN units,

selected at random across both modules. Similar to increasing

laser power during inactivations (Figures S2I–S2L), increasing
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the fraction of silenced units led to a progressive drop in perfor-

mance during either task. Additionally, the network was indeed

more sensitive to perturbation during the accumulation task

(Figures 7E and S10D; ptask = 4.1 3 10�37, two-way ANOVA

with factor inactivation levels and task; pdecay rate < 0.01, boot-

strap, taken from exponential fits to the data). These results

were analogous to the V1 inactivation data at various laser powers

(Figure S2J). Thus, the modular RNNmodel qualitatively recapitu-

lated key aspects of dorsal cortical dynamics and inactivation

effects, suggesting that differences in task-related computations

per se could be sufficient to drive the complexification of dy-

namics we observed.

DISCUSSION

Here we show that cortical dynamics during cognitive behavior

are rearranged according to the computational requirements of

the task so that mesoscale Ca2+ activity becomesmore decorre-

lated across different regions, and the effects of perturbing

cortical dynamics become more widespread and of higher

magnitude, when computations become more complex. More-

over, different cortical areas contribute to distinct but overlap-

ping aspects of the computations, but their contributions are re-

arranged in a task-dependent fashion.



Global Signals and Localized Inactivation Effects during
Simple Decisions
Our results are broadly consistent with recent reports that simple

two-stimulus discrimination is associated with correlated, large-

scale ramping up of wide-field Ca2+ activity in dorsal cortical

areas (Allen et al., 2017; Musall et al., 2018), although perfor-

mance is only affected by the inactivation of a small subset of

these areas (Allen et al., 2017; Guo et al., 2014; Zatka-Haas

et al., 2019). Because the wide-field Ca2+ signal probably in-

cludes layer 1 activity (Allen et al., 2017; Ma et al., 2016a) and,

thus, non-local input, these widespread ramps could a reflect a

top-down input signal. Indeed, M2 inactivation has been shown

to abolish global cortical activity ramps (Allen et al., 2017) and to

disrupt the relative timing of cortical activity (Makino et al., 2017).

Further supporting this notion, recent results from our group

show that the ramps are far less prevalent in the somatic Ca2+

activity of individual layer 2/3 and layer 5 posterior cortical neu-

rons, which instead show choice-specific sequences of activity

that tile the trial during the accumulating-towers task (Koay

et al., 2019). The exact nature andmechanisms of these ramping

signals will be an interesting future research avenue. Possible

candidates include motor preparation and/or execution (Allen

et al., 2017; Gilad et al., 2018; Inagaki et al., 2019; Makino

et al., 2017; Musall et al., 2018; Orsolic et al., 2019; Stringer

et al., 2019), reward expectation (Inagaki et al., 2019; Shuler

and Bear, 2006), or learned task timing (Makino and Komiyama,

2015; Orsolic et al., 2019).

Widespread Requirements during Demanding Decisions
In contrast to the visually guided task, we show, for the first time,

that inactivation of widespread regions of the dorsal cortex leads

to behavioral deficits during more demanding memory-depen-

dent tasks (Figure 1). Importantly, the patterns and magnitude

of behavioral effects vary across cortical regions and tasks (Fig-

ures 1 and 2), which generally agrees with our analyses of wide-

field data suggesting functional gradients across the cortex.

Further, this diversity of impairments argues against non-specific

inactivation effects related to aversion to or distraction by

silencing otherwise irrelevant regions. Of course, inferring func-

tion from localized inactivations is fraught with difficulties stem-

ming from possible off-target effects (Hong et al., 2018; Wolff

and Ölveczky, 2018; Young et al., 2000). Further work with

cellular-resolution signals and simultaneous inactivation and im-

aging will be needed to understand the exact nature of the con-

tributions of different areas.

Another crucial question for future studies is precisely which

differences between the tasks drive the changes in the require-

ment and large-scale cortical dynamics we observed. Because

our tasks were nearly identical in terms of sensory and motor fea-

tures (Figures 1 and S1), trivial differences in sensory or motor-

related activity (Gilad et al., 2018;Musall et al., 2018) cannot easily

explain our results. Instead, we suggest that differences in the un-

derlying computations themselves appear to be the origin of the

findings, a conclusion supported by our RNN model (Figure 7).

The more complex computations in the accumulating-towers

task primarily stem from four features: its dependence on short-

term memory of the stimulus stream, the need to constantly up-

date this memory (i.e., evidence accrual), the relatively long accu-
mulation period (�4 s), and the post-stimulus delay (�2 s). The

memory-guided task controls primarily for the latter feature, and

the finding of similarly widespread inactivation effects in this

task suggests that memory load is an important contributor to

the tasks’ computational demands. On the other hand, the larger

deficits and similarly widespread effects during cue-period inac-

tivation in the accumulating-towers task show that evidence

accumulation is also important (Figures 1 and S3). Another possi-

bility highlighted by our findings is that even small changes in un-

derlying task computations may lead to a qualitative large-scale

reorganization of cortical activity. Further support for this idea

comes from recent findings that different behavioral strategies

within the same task are associated with different cortical dy-

namics and perturbation effects (Gilad et al., 2018).

The long timescale of evidence accumulation could also

explain why we observed behavioral deficits upon posterior pa-

rietal cortex (PPC) inactivation, unlike previous tasks with much

shorter accumulation periods (Erlich et al., 2015; Katz et al.,

2016). Indeed, non-accumulation tasks with long stimulus dura-

tions require PPC activity (Driscoll et al., 2017; Goard et al., 2016;

Harvey et al., 2012). Of course, given the small size of the mouse

PPC and the spread of inactivations, we cannot rule out that our

results are not due to inadvertent inactivation of nearby regions.

Future work should clarify this issue. Along similar lines, a longer

post-stimulus delay could explain the differences between our

findings in the memory-guided task and the more localized ef-

fects in a similar task (Guo et al., 2014), although differences in

sensory modality or the presence of virtual navigation could

also underlie the discrepancies.

Distributed Representations of Task Variables
Our imaging results (Figures 6 and S9) agree with many reports

of similar response properties and representations of multiple

task features in any given cortical area, both during evidence

accumulation (Brody and Hanks, 2016; Gold and Shadlen,

2007; Koay et al., 2019; Scott et al., 2017; Siegel et al., 2015)

and other types of memory-dependent decision-making (Dotson

et al., 2018; Hernández et al., 2010; Siegel et al., 2015). More

specifically, direct comparison of different cortical areas during

the same behavioral tasks in monkeys has shown that task infor-

mation is widespread, with stimulus signals following a general

sensory-to-motor cortex progression and choice information

appearing near-simultaneously throughout the network (Hernán-

dez et al., 2010; Siegel et al., 2015). The same overall pattern was

present in our data but with low accumulated evidence informa-

tion in frontal regions (although we did observe responses to

towers; Figure S9), which could be due to the spatial averaging

of the widefield signal. Our main conclusions are unlikely to be

influenced by this technical aspect, however. First, mesoscale

wide-field activity has been shown to be generally consistent

with local cellular activity (Allen et al., 2017; Chen et al., 2017;

Clancy et al., 2019; Gilad et al., 2018; Musall et al., 2018). More-

over, recent findings from our group show that coding similarities

are also present in single neurons from across the posterior cor-

tex during the accumulating-towers task (Koay et al., 2019).

Taken together, our imaging and inactivation results point to a

similar picture of distributed processing, which could be a gen-

eral hallmark of decision-making (Yoo and Hayden, 2018).
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Our findings of widespread task-related Ca2+ activity are also

supported by recent anatomical findings of very dense cortico-

cortical connectivity in the mouse (G�am�anut‚ et al., 2018; Oh

et al., 2014; Zhang et al., 2016; Zingg et al., 2014). Given this

amount of long-range recurrence, it is perhaps not surprising

that we observed correlated activity between different areas.

General mesoscale correlational structures do, in fact, appear

to be related to underlying anatomical connectivity (Mohajerani

et al., 2013; Stafford et al., 2014), but our results extend these

findings to show that they can also be dynamically modulated

by task features, in agreement with human fMRI data (Gonza-

lez-Castillo et al., 2015). Specifically, the evidence accumulation

task induces cortex-wide decorrelation (Figure 4), and the results

of our RNN model suggest that this can be driven primarily by

changes in the computational strategies of each task because

network connectivity is fixed (Figure 7). Similar to theoretical

conclusions on neuronal populations, such decreases in correla-

tions may increase coding capacity (Kohn et al., 2016). More-

over, the correlations were more decreased between than within

area clusters; this is a signature of networkmodularity, which can

itself generate more complex dynamics (Sporns et al., 2000).

Interestingly, short-term memory capacity in humans has been

linked to the amount of modularity across the cortex (Stevens

et al., 2012). However, caution should be exerted when interpret-

ing our correlation results, both because of the potentially non-

linear nature of the GCaMP6f signals (Chen et al., 2013) and

because the exact relationship between mesoscale and

cellular-resolution activity is presently unclear. A more mecha-

nistic understanding of these results will require follow-up

studies using cellular-resolution imaging and electrophysiology.

Conclusions
At first glance, our results seem reminiscent of near-century-old

findings that complex-maze learning and retrieval is affected

solely by the size, and not the location, of cortical lesions (Lash-

ley, 1931). However, our conclusions are fundamentally different.

Specifically, careful quantitative assessment of behavior shows

that cortical regions differ in terms of the effects of their inactiva-

tion in a task-specific fashion. Thus, our work reconciles appar-

ently disparate accounts of localization and integration of

cortical function by showing that these are complementary con-

cepts and that the degree of localization or integration depends

critically on behavioral complexity. Many challenges remain

before we can obtain a complete understanding of the circuit

mechanisms underlying perceptual decision-making. Our find-

ings emphasize the fact that, in addition to causal requirements

and local circuitry, the answer will necessarily involve an account

of how different brain areas interact dynamically and at large

scales to produce complex behavior.
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Mouse: B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)

8Gfng/J

The Jackson Laboratory JAX: 014548

Mouse: IgS6tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)

1Mmay/J

The Jackson Laboratory JAX: 024108

Mouse: B6.129S2-Emx1tm1(cre)Krj/J The Jackson Laboratory JAX: 005628

Mouse: B6.Cg-Tg(Thy1-YFP)HJrs/J The Jackson Laboratory JAX: 003782
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MATLAB 2015b, 2016b, 2017b Mathworks https://www.mathworks.com/products/

matlab.html

ViRMEn Aronov and Tank, 2014 https://pni.princeton.edu/pni-software-tools/

virmen

NI DAQmx 9.5.1 National Instruments https://www.ni.com/en-us/support/downloads/

drivers/download.ni-daqmx.html

HCImage Hamamatsu https://hcimage.com

Klusta Rossant et al., 2016 https://github.com/kwikteam/klusta

Scanning laser control software This paper https://github.com/BrainCOGS/laserGalvoControl

Other

Virtual reality setup tools Pinto et al., 2018 https://github.com/sakoay/AccumTowersTools
LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information requests may be directed to the Lead Contact, Dr. Carlos D.

Brody (brody@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Institutional Animal Care and Use Committee at Princeton University and were performed in

accordance with the Guide for the Care and Use of Laboratory Animals. We used both male and female mice aged 2 – 16 months,

from the following strains: wild-types used in control experiments for cortical inactivations (n = 3, C57BL6/J, Jackson Laboratories,

stock # 000664); VGAT-ChR2-EYFP for cortical inactivations [n = 28, B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J, Jackson

Laboratories, stock # 014548]; triple transgenic crosses expressing GCaMP6f under the CaMKIIa promoter, for widefield Ca2+ im-

aging (n = 6), from the following two lines: Ai93-D;CaMKIIa-tTA [IgS6tm93.1(tetO-GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay/J, Jackson Lab-

oratories, stock # 024108] and Emx1-IRES-Cre [B6.129S2-Emx1tm1(cre)Krj/J, Jackson Laboratories, stock # 005628]; Thy1-YFP-H for

imaging controls [n = 2, B6.Cg-Tg(Thy1-YFP)HJrs/J, Jackson Laboratories, stock # 003782]. Note that, despite the reported ten-

dency for a subpopulation of the Emx1-Ai93 triple transgenics to display ictal events (Steinmetz et al., 2017), we have previously

shown that this line has statistically indistinguishable behavior from other transgenic mouse lines (Pinto et al., 2018). Moreover,

cellular-resolution data from these mice during the accumulating-towers task did not differ from Thy1-GCaMP6f transgenics in a

recent study from our group (Koay et al., 2019).

The mice underwent sterile stereotaxic surgery to implant a custom lightweight titanium headplate (�1 g) and optically clear their

intact skulls, under isoflurane anesthesia (2.5% for induction, 1.5% for maintenance). The clear skull procedure was similar to pre-

viously described (Guo et al., 2014). After asepsis the skull was exposed, and the periosteum removed using a bonnmicro probe (Fine

Science Tools). The incision margins were covered with veterinary cyanoacrylate glue (surgi-lock 2-oc, Meridian), and a coat of com-

mercial cyanoacrylate glue (krazy glue, Elmers) was applied over the skull. Before the glue dried, a layer of diluted clear metabond

(Parkell) was applied (�2-mm thick, 2 scoops powder:7 drops of quick base:2 drops catalyzer) and allowed to cure for�10 minutes.

The surface of the cured metabond was then polished using a cement polishing kit (Pearson dental, going progressively from coarse

to fine). The metal headplate was attached to the cleared skull using metabond. After the metabond was cured, a �2-mm layer of
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transparent nail polish (Electron Microscopy Sciences) was applied and allowed to cure for �15 min. The implant was typically

covered using a custom 3D-printed headplate cap. Analgesia consisted of two doses of meloxicam (1 mg/kg I.P or S.C.), given

pre-operatively and 24 h later. Mice also received peri-operative I.P. injections of 37�C saline to maintain hydration. Body tempera-

ture was maintained constant using a homeothermic control system (Harvard Apparatus). The mice were allowed to recover for

5 days before starting water restriction for behavioral training. They were then restricted to an allotted water volume of 1 – 2 mL

per day, typically entirely delivered during behavioral sessions, always ensuring that no clinical signs of dehydration were present

and body mass was at least 80% of the initial value. If any of these conditions were not met, the mice received supplemental water

until recovering. The mice were extensively handled and had access to enriched environments as described elsewhere (Pinto

et al., 2018).

METHOD DETAILS

Behavior
The mice were trained to perform the accumulating-towers task in a virtual reality (VR) environment (Figure 1A), as previously

described in detail (Pinto et al., 2018). Briefly, the head-fixed mice sat on an 8-inch Styrofoam� ball suspended by compressed

air (�60 p.s.i), and ball movements were measured with optical flow sensors (ADNS-3080 APM2.6) connected to an Arduino Due

running custom code to transform ball rotations into virtual-world velocity (https://github.com/sakoay/AccumTowersTools/tree/

master/OpticalSensorPackage). The VR environment was projected onto a custom-built Styrofoam� toroidal screen spanning a

visual field of �270� of horizontally and �80� altitude using a DLP projector (Optoma HD141X) with a refresh rate of 120 Hz, a res-

olution of 10243 768 pixels and an RGB color balance of 0, 0.4 and 0.5, respectively. The set-up was enclosed in a custom-designed

sound-attenuating chamber (8020.inc), and VRwas controlled using the MATLAB (Mathworks)-based package ViRMEn (Aronov and

Tank, 2014) running on a PC.

The accumulating-towers task took place in a 3.3-m virtual T-maze comprised of a 30-cm start region, a 2-m cue region and a 1-m

delay region (Figure 1B). As the mice navigated the stem of the maze, they saw tall, high-contrast visual cues (towers, 6-cm tall and

2-cmwide) along either wall during the cue region, andwere rewarded for turning, after the delay, into the armwhere the largest num-

ber of towers occurred (4–8 mL of 10% v/v sweet condensed milk). Rewarded trials were followed by a 3 s ITI and error trials were

followed by a sound and a 12 s ITI. Tower positions were drawn randomly from two Poisson distributions with rates of 7.7 and 2.3 m-1

on the rewarded and non-reward side, respectively, with a 12-cm refractory period (or 8.0:1.6 m-1 in some optogenetic inactivation

sessions). Towers appeared when the animals were 10 cm away from their drawn location and disappeared 200 ms later. To

discourage side biases, we used a debiasing algorithm described elsewhere (Pinto et al., 2018). Each session started with at least

10 warm-up trials of the visually-guided task (see below, trials continued until mice reached at least 85% correct performance), fol-

lowed by the accumulating-towers task. If overall performance fell below 55% calculated over a 40-trial running window, animals

were transitioned to an easy 10-trial block of a maze without any distractor towers, to increase motivation (Pinto et al., 2018). These

trials were not included in any of the analyses. Behavioral sessions lasted for �1h, and typically consisted of 200 – 250 trials.

The visually-guided task not requiring evidence accumulation happened in the same virtual maze as the accumulating-towers task,

but, in addition to the towers, reward location was indicated using a tall visual guide located in the corresponding reward arm (30-cm

tall, 4-cmwide), visible from 10 cmonward. No other explicit task cue beyond the presence (or absence) of the guide was provided to

the animal to indicate task switches. For about half the inactivation experiment sessions (53/98), the towers in this visually-guided

task were displayed only on the rewarded side. Similarly, for 15/25 imaging sessions visually-guided task trials consisted of only

towers on one side. The mice achieved equivalent levels of performance with or without distractor towers, suggesting that they

use exclusively the visual guide (average performance of 94.1 and 97.3% correct for towers on one or both sides, respectively,

p = 0.21, two-sided t test, n = 5 mice who ran this version of the visually-guided task). Thus, these trials were combined for data anal-

ysis, unless stated otherwise.

Thememory-guided task also happened in the samemaze but contained no towers. Instead, a visual guide (60-cm tall, 8-cmwide)

was visible from the start of themaze (y = 10 cm) and disappeared at y = 200 cm,matching the post-stimulus delay of the towers task.

Each session started with at least 10 warm-up trials of the visually-guided task (as in the accumulating-towers task). If overall per-

formance fell below 60% calculated over a 40-trial running window, animals were transitioned to an easy 10-trial block of the visually-

guided task. Reward sizes and ITI lengths were the same for all tasks.

Scanning-laser optogenetic inactivation
We used a 473-nm laser (OBIS, Coherent) combined with 2D galvanometers (3-mm6210H, class 0, with individual 671XX controllers,

Cambridge Technologies) to allow scanning over the cortical surface. The laser was located outside the behavioral setup. The beam

was directed to the galvanometers inside the set-up using a single-mode fiber optic (460HP, 125 mm diameter, Thorlabs) coupled to

an aspheric lens fiber port for collimation (PAF-X-5-A, f = 4.6mm, Thorlabs) and then passed through an f-theta scan lens (f = 160mm,

LINOS) and a pellicle beamsplitter (CM1-BP108, Thorlabs) before reaching the cortical surface. The beamsplitter directed 8% of the

light to a camera (grasshopper3, Point Grey), allowing remote visualization of beam location. The beam had a Gaussian profile with a

diameter of 65 mmmeasured as full width at half height (115 mmat 1/e2), and the systemhad a position accuracy of�15 mm (measured

as the standard deviation of the distribution of the differences between target and actual beam location for 70 X-Y combinations).
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Reported laser powers were measured at the plane corresponding to the mice’s skull position. For all experiments, we used a laser

square wave at 40 Hz (80% duty cycle) with a linear 100-ms down ramp at laser offset, in order to minimize rebound activity (Guo

et al., 2014; Figure S2). Because laser offset was determined by the animals’ spatial position in themaze, ramp onset time was deter-

mined by estimating the desired offset time based on the animals’ current position and velocity. For bilateral inactivation, the galva-

nometers alternated between the two hemispheres at 200 Hz (20-mm travel time: �250 ms).

The galvanometers and the laser were controlled with analog voltage generated using a National Instruments DAQ card on a PC

running custom MATLAB code. This PC was slave to another PC running ViRMEn, which sent laser on, laser off, and galvanometer

position commands through digital lines. For whole-trial inactivation experiments (Figures 1, 2, and S1–S3), all bilateral grid locations

were inactivated in the same session, each with a probability of 0.01 (total ‘laser on’ probability of 0.29), drawn pseudorandomly. For

sub-trial inactivations of a subset of the areas (Figures S3A), between 1 and 5 areas were targeted in each session, with a probability

of 0.05 – 0.15 per area, depending on the experiment. Unless otherwise stated, laser power was 6 mW.

Inactivation coordinates were defined in relation to bregma, set manually by the experimenter. To ensure consistency, in each

session images of the implant acquired using the Point Grey camera were aligned to a reference using rigid transformations. These

images were acquired under green LED (532 nm) illumination to enhance vascular contrast. For the full-grid experiments, grid posi-

tions went from –3.5 to +3.5 AP in 1 mm increments, and 0.25, 1, 2 mmML between +1.5 and +3.5 AP, and also 3 mm in the other AP

coordinates. For the other experiments, we defined the following coordinates V1: –3.5 AP, 3 ML; RSC: –2.5 AP, 0.5 ML ; PPC: –2 AP,

1.75 ML ; mM2: 0.0 AP, 0.5 ML ; aM2: +3 AP, 1 ML.

Electrophysiological measurement of inactivation
We drilled a small (�300 mm diameter) craniotomy using a carbide burr, covered it with a silicone elastomer (Kwik-cast, World Pre-

cision Instruments) and allowed themice (n = 3 VGAT-ChR2-EYFP) to recover from the procedure for 24h. Thesemice had previously

undergone the headplate implant and cleared skull preparation, and anesthesia and analgesia procedures were followed as

described above. On the following day, the awake mice were head-fixed on a plastic running dish, the silicone plug was removed,

and a 32-channel, single-shank silicon probe spanning the depth of the cortex (Poly2, Neuronexus) was inserted using a microma-

nipulator under visual guidance, and allowed to stabilize for 30 min. Signals were acquired at 20 kHz and high-pass filtered at 250 Hz

using a digital amplifier board (RHD2132, Intan Technologies). While recording, we used the laser set-up to inactivate locations

centered at various distances from the recording site ([0 0.25 0.5 1 2] mm), at various powers ([.5 1 2 4 6 8] mW). Laser pulses

were 1.5 s long, and other parameters were as described above. Each of the 30 conditions had 10 repeats, drawn pseudorandomly,

with a 5 s inter-repeat interval. Voltage traces controlling the laser were also acquired with the amplifier board for synchronization.

Wide-field Ca2+ imaging
Weused a custom-built, tandem-lens wide-fieldmacroscope integrated with the VR setup to imageGCaMP6f fluorescence atmeso-

scale resolution. The objective close to the sample was a planapo 1x (Leica, M series) and the one close to sensor was a planapo

0.63x (Leica,M series). Imageswere acquired using an sCMOS (OrcaFlash4.0, Hamamatsu), at 20 frames per secondwith alternating

blue (470-nm) and violet (410-nm) illumination (�0.2 mW/mm2), and a size of 5123 512 pixels (pixel size of �17 mm). Both blue and

violet LEDs (Luxeon star) were coupled to clean-up bandpass filters centered at 482 and 405 nm, respectively (FF02-482/18, FF01-

405/10, Semrock), and collimators (COP1-A, Thorlabs). After passing through a dichroic beamsplitter (FF458-Di02, Semrock), they

were directed to a flexible fiber optic light guide (1/2’’ diameter, Edmond Optics) for epifluorescence illumination, with approximately

equal path lengths for both wavelengths. Green emission fluorescence passed through a dichroic beamsplitter between the two ob-

jectives (FF495-Di03, Semrock) and and was bandpass-filtered at 525 nm (FF01-525/45, Semrock) before reaching the sCMOS. The

LEDs were connected to MOSFET circuits controlled by custom-written code running on an Arduino Due to turn them on in alter-

nating imaging frames. The arduino received analog frame exposure voltage traces from the sensor. The imaging plane was focused

on the superficial vasculature and the space between the headplate and the objective was covered using a custom 3D-printed cone

to avoid light contamination from the projector. Images were acquired with HCImage (Hamamatsu) running on a PC. Image acqui-

sition was triggered by a TTL pulse from another PC running ViRMEn, and analog frame exposure voltage traces were acquired

through a DAQ card (National Instruments) and saved in the behavioral log file for synchronization.

Sensory cortex mapping
Mapping experiments were carried out in the same imaging setup described above but without violet-LED illumination since hemo-

dynamic contamination is unlikely to have a large impact on the fast component of airpuff stimulus-locked responses (Figure S5), and

is accounted for in the visualmappingmethod (Kalatsky and Stryker, 2003). In both cases, stimuli were delivered using a separate PC,

which also controlled the blue LED, and blank (LED off) frames were used to synchronize the stimulation and image sequences. For

somatosensory responses, we delivered 30 200-ms airpuffs (15 p.s.i.) to the right whisker pad of the mice, with 8 s intervals, by

sending a TTL pulse to a solenoid valve (NReseach). For visual area mapping, we used the method described in Zhuang et al.

(2017), adapted for bilateral stimulation in the toroidal screen. Briefly, a 20�-wide bar with a full-contrast checkerboard texture

(25�) changing polarity at 12 Hz drifted through the toroidal screen at 9�/s, in each of the four cardinal directions. For vertical direc-

tions, a single bar spanning the horizontal width of the toroidal screen drifted between 60� and �20� of elevation, and for horizontal

directions, two bars drifted between 0� and 120� (one on each half of the screen). Each direction was repeated 25 times.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data selection
Because trials occurred in a block structure, for the accumulating-towers and thememory-guided tasks we selected sessions with at

least one 40-trial block with overall performance above 60% correct and analyzed trials only from these blocks. Using these criteria,

we selected 25 imaging sessions from 6 mice and 984 inactivation sessions from 31 mice for the accumulating-towers task, and 97

inactivation sessions from 10mice for thememory-guided task. The visually-guided task did not contain blocks, so we applied a ses-

sion-wide performance criterion of 80% to include the data. This yielded 95 sessions from 5 mice for the inactivation experiments in

Figure 1F. For all tasks, we also excluded timed-out trials (> 60 s) and trials in which the animals traveled more than 110% of nominal

maze length (except for analyses measuring the effects on inactivations on these parameters).

Behavior
Overall percent correct performance was defined as the percentage of trials in which the mice chose the arm corresponding to the

largest number of towers, and side bias was defined as the difference between percent correct performance in right- and left-choice

trials, such that negative values indicate a left bias. Excess travel was defined as the distance traveled in excess of the nominal maze

length, in percentage of maze length. Speed was calculated using the total x-y displacement in the stem of themaze (0 < y < 300 cm),

and acceleration was defined as the average derivative of speed for a given maze region. Motor errors were defined as the combined

frequency (% trials) of the following events: large-magnitude view angles during the cue period (> 60�), trials with early turns (i.e., a

turn immediately before the arm, resulting in a wall collision), trials in which themouse first entered the opposite arm to its final choice,

trials with speeds below the 10th percentile (from the combined distribution of laser and control trials), and trials with at least 10%

excess travel. Psychometric curves were computed by plotting the percentage of right-choice trials as a function of the difference in

the number of right and left towers (#R – #L, orD).Dwas binned in increments of 5 and its value defined as the average Dweighted by

the number of trials. We fitted the psychometric curves using a 4-parameter sigmoid:

pR = 1+
a

1+ exp½ � ðD� D0Þ=l�
To assess how mice weighted sensory evidence from different segments of the cue region, we performed a logistic regression anal-

ysis in which the probability of a right choice was predicted from a logistic function of the weighted sum of the net amount of sensory

evidence per each of four segments, equally spaced between 10 (the earliest possible tower) and 200 cm:

pR = 1+
1

1+ exp

�
�
�
b0 +

P4
i = 1

biDi

��

To analyze virtual view angle (q) trajectories, we defined the view angle at a particular Y position, q(Y), as the value of q at the first time

point t at which y(t)RY.We then performed a linear choice decoding analysis based on the distributions of right- and left-choice view

angles for each y position, with 5-cm steps, by defining the optimal choice decoding boundary qcd(y) that most equally separated the

two distributions. Decoding accuracy was defined as the percent of right-choice trials with with q(y) > qcd(y) (Pinto et al., 2018). For the

tower-triggered view angle analysis (Figure S1), we first subtracted from each trial the average view angle trajectory separately for

left- and right choice trials. We then averaged the view angle aligned by the presentation of each left or right tower between 0 and

50 cm from the point the tower appeared, and subtracted the average view angle over the 20 cm preceding tower presentation. The

position at which the mouse turned was defined for each trial as the first point at which the derivative of the view angle trajectory

exceeded 3 standard deviations of the baseline derivative (calculated over 0 – 75 cm) for at least 4 consecutive 1-cm spatial bins

(as defined above).

Normalized inactivation-induced performance decreases (Figures 1F–1I) were calculated as 100 – [(laser – control) / (control –

chance performance)], where chance was determined empirically from the data as the average of the proportion of right (left) trials

(whichever was lowest) for each mouse, weighted by the number of trials, and calculated only for control (laser off) trials. This was

necessary because of the debiasing algorithm, which may result in unbalanced trial draws (Pinto et al., 2018).

Trial difficulty in the accumulating-towers task was defined as j#R – # Lj / (#R + #L), because performance depends both on the

difference between the sides and the total tower counts (Pinto et al., 2018). For the analysis in Figures 4G and 4H, we divided trials

into two groups using the median difficulty as the threshold.

Statistics of inactivation effects
The measures described above were calculated separately for ‘laser on’ and ‘laser off’ trials, and effect sizes were calculated as the

difference between the two. For measures that are not in percentage units (e.g., speed), effect size was calculated as percentage

change in relation to control data [i.e., 100 x (laser – control) / control)]. p values for the effects were calculated following the boot-

strapping procedure described in Guo et al. (2014). Data from different mice were combined, and in each of 10,000 iterations, sub-

jects, sessions and trials were sampled with replacement in this order, and effects were calculated as above. The p value was the

proportion of iterations in which the sign of the effect was different than the sign calculated using all the data. Because this is a
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two-sided test, significance levels were set to 0.025, and corrected for multiple comparisons using a false discovery rate procedure

(FDR, see General statistics). Error estimates on the behavioral indicators were calculated as the standard deviation across the boot-

strapping iterations. Effect sizes between different inactivation locations or groups (e.g., ChR2+ versus ChR2– controls) were statis-

tically compared using the same bootstrapping method.

Electrophysiology
Semi-automatic spike sorting was done using Klusta (Rossant et al., 2016), and manually curated by merging or excluding clusters

based on waveform similarity and time course of principal components. Clusters were considered to be single units if fewer than 1%

of spikes violated a 2-ms refractory period and were classified as multi-unit otherwise. Single andmulti-units were analyzed together

for the effects of laser inactivation. For each unit, waveforms were extracted for the channel with the largest amplitude, which also

determined the cortical recording depth assigned to it. We classified units as putative fast spiking (FS) cells if their peak-to-trough

width was smaller than 0.5 ms. Peristimuls time histograms were built with a bin width of 100 ms, and the amount of suppression

by the laser in % was calculated as 100 – 100 x FRlaser on/FRbaseline, where FR is the firing rate, laser on is the full 1.5 s laser on period

and baseline is the 1.5 s period preceding laser onset. For putative FS cells, % excitation was calculated as 100 x FRlaser on/FRbaseline.

Laser offset rebound (%) was calculated as 100 x (FRlaser off – FRbaseline)/FRbaseline, where laser off is the 0.5 s period following laser

offset.

Wide-field image preprocessing
Images in the sequence were corrected for motion artifacts by applying the x-y shift that maximized the cross-correlation between

each frame and a reference frame given by the mean across all frames. This average image was also used to detect large surface

blood vessels using a median filter iteratively applied at several spatial scales. The output of the filter was then thresholded to deter-

mine pixels corresponding to vasculature. The parameters of the algorithm were adjusted manually for each mouse. The final output

was a vasculature and off-headplate mask, which was applied to the entire image sequence to convert fluorescence values for pixels

in the mask to NaN. Note that we chose to mask large vessels because they have different hemodynamics than parenchymal vessels

(Ma et al., 2016a), such that the assumptions underlying our correction procedures (below)may not hold. Following thismasking step,

we spatially binned the images to 128 3 128 pixels (pixel size of �68 mm) and separated interleaved 470- and 410-nm-illumination

frames into two separate stacks for hemodynamic contamination correction and DF/F calculation as described below.

Isosbestic correction of hemodynamic artifacts and DF/F calculation
Weused an approach similar to one described previously (Allen et al., 2017), with a few crucial differences. The approach relies on the

fact that when 410-nm (the isosbestic) wavelength is used to excite GCaMP, the indicator produces greenwavelength emissions that

do not depend on intracellular Ca2+ concentration (Tian et al., 2009), and can thus be used to estimate Ca2+-independent changes in

measured fluorescence (Lerner et al., 2015), which presumably largely come from hemodynamic contamination (Ma et al., 2016a). An

advantage of this method is that it does not rely on reflectance measures, such that the photon path length of the two wavelengths is

much more similar, potentially resulting is less approximation error. For each pixel, we first smoothed the 410-excitation trace, Fv,

using a running Gaussian window (s = 400 ms) to get rid of high-frequency noise. We then used least-squares regression to find

a scaling factor and an offset so as to minimize the distance between Fv and 470-excitation fluorescence, Fb, thus obtaining a cor-

rected version of Fv, Fv’. We found this step to be necessary because we determined that �20% of the 410-nm signal comes from

autofluorescence of the metabond and/or nail polish, such that uncorrected Fv resulted in underestimation of fractional fluorescence

changes. The heuristically determined correction factors agreedwell with independent autofluorescence estimates (not shown). After

applying this correction, we calculated fractional fluorescence changes as F/F0, separately for Fb and Fv’, where F0 for each channel

was calculated as the mode of all F values over a 30 s sliding window with single-frame steps. We thus obtained pixel-wise traces of

fractional fluorescence with either 470- or 410-excitation, Rb and Rv, respectively. Because hemodynamic contamination is multipli-

cative, we then applied a divisive correction:DF/F =Rb /Rv – 1 (Ma et al., 2016a). For ROI analyses, we first averaged Fb and Fv across

all pixels belonging to the ROI, and calculated DF/F as described above.

Sensory maps
Retinotopic maps were computed following a previously described method (Garrett et al., 2014; Kalatsky and Stryker, 2003; Zhuang

et al., 2017). Briefly, DF/F was calculated for each pixel (where F0 was defined as above) and averaged over repeats for each of the

four cardinal directions. Averages were Fourier decomposed and retinotopic positions were extracted from the phase of the spectral

peak corresponding to the temporal frequency of the stimulus drift. Azimuth and altitude maps were combined into a field sign map

by taking the sine of the angle between the local gradients of the two. V1 borders were manually drawn on the field sign map. Airpuff

response maps were constructed by averaging response z-scores over trials, calculated as DF/F responses following 400 ms of the

airpuff subtracted by the baseline DF/F (400 ms preceding the airpuff) and divided by the baseline standard deviation. The final map

was obtained by thresholding pixels contralateral to the stimulus with a z-score higher than 1 for at least 100ms. To calculate average

maps acrossmice, we chose a reference visual map and registered the others to it using rigid transformations. These transformations

were then applied to the airpuff maps.
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Atlas registration and ROI selection
Data were downloaded from the Allen Brain Atlas API Mouse Brain (ccv3) at 50-mm resolution and Z-projected to create a flat map of

the following cortical areas (Allen abbreviation in parentheses): V1 (primary visual, VISp), mV2 (medial secondary visual, VISam and

VISpm), PPC (posterior parietal cortex, overlapping with anterior visual area, VISa), RSC (retrosplenial cortex, RSP), SS (somatosen-

sory cortex, SS), M1 (primary motor cortex, MOp), M2 (secondary motor cortex, MOs). Because we observed different inactivation

effects (Figures 1, 2, S3), and because functional gradients have been previously observed (Chen et al., 2017), M2 was then subdi-

vided into a medial and an anterior portion according to an anteroposterior line 1.25 mm lateral to bregma. The flat map was then

registered to each animal by creating an image containing only V1 pixels from the atlas and another with V1 pixels obtained from

visual area mapping. These two images were registered using affine transformations, which were then applied to the atlas coordi-

nates to extract pixels belonging to each ROI for a given imaging session. Different sessions from the same animal were aligned using

rigid transformations. For the analysis in Figure S7, we defined ROIs based on the coordinates used for whole-trial inactivation (Fig-

ure 1E), but separately for each hemisphere. We thus selected 58 non-overlapping, square-shaped ROIs of side 0.5 mm, centered at

the coordinates as described above.

Quantification of average time course
Unless otherwise stated, analyses were based on spatially downsampled activity, in 5-cm steps for the average time course (Figures

3 and S6). For each trial and y position in the maze, we sampled DF/F from a single frame corresponding to the first point in time that

the mouse visited that position. For the analysis in Figure S6, for each behavioral session we calculated the C.O.M. for each pixel in

the image as described above and created a vector of pixel C.O.M.s for each task (accumulating-towers and control) and trial type

(left- and right-choice), and computed linear Pearson correlation coefficients between different combinations of these vectors. For

task comparisons, correlation coefficients were first calculated separately for right- and left-trials and then averaged.

Linear fits for evidence tuning
For the analysis in Figure 5, average anatomical ROIDF/F was z-scored individually for each ROI and session. We then calculated the

average z-scored activity during the cue period, 0 % y % 200 cm, separately for each final value of sensory evidence (D towers),

divided into 6 equally sized bins, between 0 and 15 D towers, and converted into contra- or ipsilateral counts (from #R – #L) for aver-

aging across homotopic ROIs. These values were then averaged across sessions for each mouse (n = 6). We used the DF/F values

per evidence bin to fit a line separately for ipsi- and contralateral evidence, repeating the procedure 50 times, resampling the mouse-

wide averages with replacement. This procedure was done separately for each ROI, task and correct or error trials. The slope of the

evidence-tuning line was considered statistically significant if the average slope was beyond (or below) zero by at least two standard

deviations of the distribution given by the 50 bootstrapping iterations.

ROI correlations
Spontaneous (running in dark) correlations (Figure 4A) were calculated for a period of 10 minutes when the mice ran inside the VR

setup, with the projector turned off. Task correlations were calculated for spatially downsampled activity as described above, using

10-cm bins, only for correct trials. Adding error trials or using all imaging frames while the animals performed either task yielded very

similar results (not shown). For the analysis in Figure 4E, correlations were calculated using the whole activity traces (i.e., not down-

sampling or selecting trials), and behavioral performance was calculated for the entire session, including trial blocks that may have

been excluded from other analyses for not meeting the performance threshold (60% correct overall).

Decoding models
We trained linear decoders for upcoming choice, accumulated evidence and previous choice based on the simultaneous Ca2+ ac-

tivity of all the 16 ROIs, spatially binned pixels for whole-cortex decoders, or all pixels within each pair of homotopic ROIs. To decor-

relate evidence from choice, we used both correct and error trials when fitting the models. The models were fit with 50 runs of 3-fold

cross-validation using L2 penalty (ridge regression). For each spatial position (0 – 300 cm, with activity downsampled in 10-cm steps

as described previously) and each of 20 values of the penalty term l, we fitted a linear regression model using 2/3 of the data, from

both correct and error trials:

y = b0 +
Xn

i = 1

biXi + lkB!k

where y = cumulative #R – #L towers for that position in the case of evidence, or ± 1 for right and left choices, respectively, in the case

of upcoming and previous choice; bi is the decoding weight for each pixel (ROI), b0 is an offset term, n is the number of pixels (ROIs), X

is z-scoredDF/F for each pixel (ROI), and kB!k is the L2 norm of the vector of decoding weights. For each fit, we calculated decoding

accuracy on the 1/3 of the data not used to fit themodel, using the best value of l determined from training data. For evidence decod-

ing, accuracy was defined as the Pearson correlation coefficient between actual and decoded evidence across trials, for each spatial

bin. For choice and previous choice, we picked an optimal decoding boundary that most equally separated the left- and right- choice

trial distributions on the training set (see behavioral view angle analysis above), and applied that boundary to classify trials in the test
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set. Accuracy was defined as the proportion of trials in the test set with correct classification.We picked the value of l that maximized

accuracy, and used median accuracy and weight values across all 50 3 3 runs for that l. Shuffles were constructed by randomly

permuting the y values in the training set and calculating accuracy on non-shuffled test sets, performed 10 times with 3-fold

cross-validation (i.e., 150 times) for the best l value only. For the view angle control analysis (Figure S8), we first fit the view angle

q to the activity of each pixel, X, i.e., X = a q + b, and used the residuals of this regression as the inputs to the decoder instead of

X, and used the same fitting procedure as described above.

Event-triggered averages
Tower, post- and pre-turn triggered averages (Figures S9A–S9F) were calculated in time for each pixel (ROI) by aligning all trials to

event onset and z-scoring post-event activity (0 – 2 s) to a 500-ms baseline preceding the event. In the case of pre-turn averages,

activity was defined as the 2 s preceding turns, and baseline was taken to be the 500 ms following the turn.

Linear encoding model (GLM)

We fitted the Ca2+ activity of each ROI with a generalized linear model (GLM) (Pinto and Dan, 2015; Scott et al., 2017), where z-scored

DF/F for each spatial position y (0 – 300 cm, in 1-cm steps) was described as a linear combination of task events with different spatial

lags, with L2 penalty and 3-fold cross-validation:

DF=FðyÞ= b0 +
X100
i = 1

btR
i E

tR
y�i +

X100
i = 1

btL
i E

tL
y�i +

X50
i = 1

bD
i E

D
y�i +

X30
i =�30

b
dq=dt
i E

dq=dt
y�i +

X30
i =�30

bsp
i Esp

y�i + bqqðyÞ+ bchch+ bpchpch+ bprwprw+ lkB!k

where bxi is the encoding weight for predictor x at spatial lag i, b0 is an offset term, Ex
y is a delta function indicating the occurrence of

event x at position y, l is the penalty term and kB!k is the L2 norm of the weight vector. tR indicates the occurrence of a right tower, tL

of a left tower, D = cumulative #R – #L towers, dq/dt is virtual view angle velocity, sp is running speed, q is view angle (no lags), y is

spatial position in the maze stem (no lags), and ch, pch and prw are constant offsets for a given trial, indicating upcoming choice,

previous choice (+1 for right and –1 for left) and previous reward (1 for reward and –1 otherwise), respectively. The exact combination

of model parameters and number of lags for each parameter was chosen because it maximized cross-validated accuracy in an initial

model comparison. Cross-validation was performed as described for the decoding models, selecting 2/3 – 1/3 of trials (both correct

and error) instead of individual data points (i.e., points from the same trial were always in the same set). Model accuracy was defined

as the Pearson correlation between actual DF/F and that predicted by the model.

Clustering
Weperformed hierarchical clustering on correlation matrices as follows. For Figure 2, a 293 29 cortical region correlation matrix was

calculated from 5-element vectors given by inactivation effect sizes on performance, absolute side bias, speed, excess travel and

rate of motor errors. For Figure 4, we used the 16 3 16 ROI correlation matrix from correct trials in the accumulating-towers task,

although using data from the other conditions, or including error trials, yielded nearly identical results. For Figure S7, we used correct

trials from the towers task to compute two separate 29 3 29 inactivation-grid-based ROI correlation matrices, one for each hemi-

sphere, and averaged the two. We did so in order to be able to directly compare between bilateral inactivation and imaging results.

We then performed principal components analysis (PCA) on the correlation matrices and selected the top components that ac-

counted for at least 90% of variance – yielding 3 principal components (PCs) for Figures 2 and 4 (99.8% and 92.1% variance ex-

plained for inactivation and activity correlation, respectively) and 4 PCs for Figure S8 (90.8% of variance) – thus obtaining an n

area x n PC matrix. This matrix was then used to calculate Euclidean distances between the data points, providing the input to

the hierarchical clustering algorithm. We tested between 2 and 5 clusters, and the optimal number of clusters, k, was given by the

k that maximized clustering quality as measured by the Calinski-Harabasz index. For ease of comparison, GLM data (Figure S9)

were divided according to the clusters obtained from the correlation analysis (Figure 4), but clustering these data separately yielded

very similar ROI clusters (data not shown).

General statistics
For non-bootstrapping-based analyses, we first tested datasets for normality using the Lilliefors’ modification of the Kolmogorov-

Smirnov test. We used two-sided t tests to compare normally distributed datasets and theWilcoxon sign rank test otherwise (or their

paired test counterparts where appropriate). We corrected for multiple comparisons using FDR (Benjamini and Hochberg, 1995; Guo

et al., 2014). Briefly, p values were ranked in ascending order, and the ith ranked p-value, Pi, was deemed significant if it satisfied

Pi % (ai)/n, where n is the number of comparisons and a is the significance level. For comparisons among multiple groups, we per-

formed one- or two-way ANOVAs (with repeated-measures if group data were not independent), followed by Tukey’s post hoc tests

where appropriate. Binomial confidence intervals were calculated as 1-standard-deviation intervals using Jeffrey’s method. Unless

otherwise stated, imaging data were averaged over sessions for each animal first, and central tendency and error estimates were

calculated across mice (n = 6).
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Recurrent Neural Network Model
Network elements

We consider a network of N interconnected model neurons (‘units’) described by a standard firing rate model. Each model neuron is

characterized by an activation variable xi for i = 1;2;3;.;N (N = 1000) and a nonlinear response function, fðxÞ = tanhðxÞ. The model

neurons’ connections are determined by a recurrent synaptic weight matrix J with element Jij representing the strength of the

connection from presynaptic neuron j to postsynaptic neuron i (Figures 7A and S10A). Individual synaptic weights are changed by

applying the full-FORCE learning algorithm (DePasquale et al., 2018). The activation variable for each neuron xi is determined by:

t
dxi
dt

= � xi +
XN
j

JijfðxjÞ+ hi

In the above equation, t = 10 ms is the time constant of each unit in the network, which sets the timescale of network dynamics. hi is

the external input to the unit i. The network equations are integrated using Euler method with an integration time step, dt = 0.1ms.

Design of inputs and network output

The input hi = uinfin is provided to 50% of the network neurons (‘‘posterior module’’ indicated in green in Figure 7A) through the vector

of input weights, uin. To simulate the experimental design for the accumulating-towers task, fin takes the form of two trains of square

waves or ‘‘pulses,’’ one corresponding to the left and the other, to the right input (bottom left of Figure 7A). The pulses are generated

independently from a Poisson distribution and, in each trial, the network experiences a different number of pulses (up to 10 on each

side). For the visually-guided task, fin consists of pulses as explained above, and an additional constant input applied for the duration

of the cue period (Figure 7A, bottom left). For both tasks, the cue period is 2.5 s long.

After training, the network should respond to the pair of pulse trains in the accumulation task by producing a target output ‘‘bump’’

(fout(t); gray trace on the top right, Figure 7A) of duration 0.5 s at the end of the cue period. The output should be upward when the

number of pulses on the right exceed the number of pulses on the left, and downward otherwise. In the visually-guided task, the up-

ward bump indicates the presence of a constant input indicating a right choice and a downward bump indicates a constant input

indicating a left choice. The actual output of the network, z(t), is a linear combination of the activity of the 50% of the network neurons

that are not directly input-driven (‘frontal module’, Figure 7A): zðtÞ = P
j

wjfðxjÞ. Successful performance of the task is achieved by

matching z(t) to the target output fout(t), up to a desired degree of accuracy. The readout weights w are plastic and modifiable by

recursive least-squares (Haykin, 1986; see also Mante et al., 2013; Rajan et al., 2016; Sussillo and Abbott, 2009). A ‘go’ signal

was applied to instruct the network when to report a choice. The go signal was shaped as a quadratic function (top left of Figure 7A)

to mimic the shape of the global ramps we observed in Ca2+ activity (Figure 3).

Network training and performance evaluation

The full-FORCE (DePasquale et al., 2018) algorithm modifies the recurrent synaptic weights J by comparing the input into each unit

with a ‘target’ function. These target functions are the activity of a second, ‘teacher’ network (N = 1000) in which there are no plastic

synapses. This network obeys the same dynamical equations as described above and is driven by the same inputs as the network it is

meant to train. However, it has random, fixed recurrent connections (Gaussian distributed with zero mean and variance g2 / N), and

receives an extra ‘‘hint’’ input that enforces a specific computational strategy or rule for performing the task. For the accumulating-

towers task, the hint is the instantaneous integral of the difference in pulse counts,
R ðfRin �fLinÞdt (Figure S10B). There is no hint input for

the visually-guided task.

We extend the above technique in two important ways. First, like the learner network, the teacher network is constructed to have

two equally-sized modules, with strong, fully-reciprocal connectivity within each module (g = 1.5, connection probability, Pconn = 1)

and weaker, sparse connectivity between the two modules (g = 0.75, Pconn = 0.05, but a range of values did not affect our main con-

clusions, Figure S10). This modularity gives rise to specific features in its activity that the learner network must adopt. Second, the

trained network operates in amulti-task mode (Yang et al., 2019), in which it switches randomly between performing the accumula-

tion or guided task.

During training, the recurrent weights are modified by a recursive least-squares algorithm (Haykin, 1986), which compares the ac-

tivity of the teacher and learner network (DePasquale et al., 2018; Rajan et al., 2016; Sussillo and Abbott, 2009). The convergence of

the training procedure was assayed by calculating the squared error between the individual network neurons and their target func-

tions. We trained the network for 100 learning steps and computed performance after training based on an additional 100 steps. A

‘‘step’’ is defined as one run of the program for the duration of the relevant trial (T = 3 s).

The behavioral performance of the trained network was computed as the percentage of trials in which the network produced a

correct response relative to the total number of trials the trained network was tested on. A response was considered correct if the

sign of its integral during the response period matched that of the target output. A typical trained network was able to perform

the task to a percent correct level of 100% (Figure 7E). Performance was evaluated in the same way after silencing neurons, either

picked at random (Figure 7E), or from specific modules (Figure S10E). Each data point in silencing experiments consisted of 50 runs,

each with different sets of random units being silenced.
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DATA AND CODE AVAILABILITY

Data analysis code is available at https://github.com/BrainCOGS/widefieldImaging and https://github.com/BrainCOGS/

behavioralAnalysis. Additionally, code for laser-scanning control software is available at https://github.com/BrainCOGS/

laserGalvoControl. The curated raw datasets are still being documented and present technical difficulties for being deposited in a

public repository due to their large size. We are attempting to resolve these difficulties, but in the meantime the data are available

from the corresponding authors upon request. MATLAB source data for the main figures in the paper are available at Mendeley

Data, https://doi.org/10.17632/d2dkk9647b.1.
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