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ABSTRACT

We present a deep learning approach that selects representative time
steps from a given time-varying multivariate data set. Our solution
leverages an autoencoder that implicitly learns feature descriptors
of each individual volume in a latent space. These feature descrip-
tors are used to reconstruct respective volumes for error estimation
during network training. We then perform dimensionality reduction
of these feature descriptors and select representative time steps in
the projected space. Unlike previous approaches, our solution can
handle time-varying multivariate data sets where the multivariate
features can be learned using a multichannel input to the autoencoder.
We demonstrate the effectiveness of our approach using several time-
varying multivariate data sets and compare our selection results with
those generated using an information-theoretic approach.

1 INTRODUCTION

Time-varying multivariate data analysis and visualization has been
an important research topic in scientific visualization. Along this
topic, a key question researchers have studied is how to select rep-
resentative time steps from a series of volumes. The selected time
steps can be treated as a summarization of the entire time series for
subsequent analysis and visualization in a cost-effective manner. Ex-
isting works for time step selection are mainly based on information-
theoretic methods [12, 15], dynamic programming techniques such
as dynamic time warping [10], or a combination of both [15]. In
addition, a solution based on a minimum-cost flow-based technique
was proposed [1] for adaptive time step selection.

Although effective, the aforementioned solutions rely on hand-
crafted data features such as histograms, distributions, or isosurfaces
to evaluate the similarity or difference of the corresponding time
steps. Inspired by recent work on feature learning from streamlines
or stream surfaces [4], we advocate a machine learning approach
that automatically “learns” implicit feature descriptors of volumes
at individual time steps in a latent space. This can be realized using
an encoder-decoder framework in an unsupervised manner. Once
learned, the feature descriptors can well represent the underlying
volumetric data and can be used for time step selection. We achieve
this through dimensionality reduction and selection of representative
time steps in the 2D projected space.

The contributions of our work are the following. First, our work
is the first that applies deep learning techniques for time step selec-
tion. The deep learning approach enables implicit feature learning,
eliminating the need for explicit feature engineering. Second, we
integrate feature learning, projection, and exploration into a single
framework for time step selection and compare our work against
existing work. Third, unlike all previous works which only address
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the time step selection problem for a single variable [1,10,12,15],
our work can naturally handle multivariate data sets by selecting
representative time steps based on multivariate temporal features.

2 RELATED WORK

Deep learning has achieved impressive results in video summariza-
tion. Zhang et al. [14] built a convolutional neural network (CNN)
with long short-term memory (LSTM) to capture temporal depen-
dency among video frames though annotated videos. Gong et al. [3]
proposed sequential determinantal point process (SeqDPP) for select-
ing informative and diverse video frames to meet human-perceived
evaluation metrics in a supervised way. Zhang et al. [13] established
a subset selection technique that utilizes CNN though human-created
summaries to perform automatic keyframe-based video summariza-
tion. Our work differs from the above works in the following two
aspects. First, the above works require a large human labeled data
set but our deep learning framework can automatically select key
volumes without annotation. Second, due to the difficulty of training
LSTM, we only utilize CNN to extract volumetric features and then
select the key time steps based on the extracted features.

For feature learning using neural nets, Girdhar et al. [2] proposed
an encoder-decoder to learn object features and applied these fea-
tures for 3D object classification. Liu et al. [8] utilized a generative
adversarial network (GAN) to automatically learn object features
and recombined these features to synthesize unseen 3D objects. Our
work is similar to Han et al. [4] which establishes an autoencoder
to learn streamline or stream surface features from their respective
binary volume representations and utilizes these features to select
representatives. The difference is that instead of selecting stream-
lines or stream surfaces, we aim to select representative time steps
for time-varying multivariate data sets.

3 APPROACH

Our approach consists of two phases: feature learning and time
step selection, as sketched in Figure 1 (a). At the first phase, our
network accepts the volume at each time step as input, generates
its feature descriptor, and then utilizes the feature to reconstruct the
corresponding volume for network training. At the second phase, we
project the feature descriptors to a 2D space and select representative
time steps in the projected space.

Our network contains an encoder and a decoder. The encoder
takes a C x L x W x H volume as input and generates a feature de-
scriptor while the decoder accepts the feature descriptor as input and
outputs a reconstructed volume. L, H, and W denote the dimension
of the volume and C denotes the number of channels of this volume.
If C = 1, it is for single variable while if C > 2, it is for multiple vari-
ables. The encoder (decoder) consists of four learning blocks where
a learning block includes a convolutional (deconvolutional) layer, a
rectified linear units (ReL.U) layer [9], and a residual block [6], as
sketched in Figure 1 (b). After each learning block, the resolution is
halved (doubled) in the encoder (decoder). Following the four learn-
ing blocks in the encoder are one convolutional (Conv) layer and
one ReLU layer. The encoder generates a 1024-dimension feature
descriptor as output. Similar to the encoder, for the decoder, we add
one deconvolutional (DeConv) layer after four learning blocks to
produce the reconstructed volume. Note that tanh(-) is applied after
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Figure 1: (a) Our approach learns a feature descriptor for each time
step (single or multiple variables) and selects representatives in the
projected space. We use downsampled volumes as input due to the
GPU memory limitation. (b) The diagram of a learning block.

the last DeConv layer. For network optimization, we use the mean-
square error (MSE) to calculate the loss between the ground-truth
and reconstructed volumes

N
= Do Ve Vil M
where N is the number of training samples, V,; and Vj, are the recon-
structed and ground-truth volumes at time step k, respectively, and
[|-]|2 denotes the L, norm.

After collecting the feature descriptors of all the time steps, we
apply t-SNE [11] to reduce the feature dimension from 1024 to
2. As a neighborhood-preserving method, t-SNE has been shown
to perform better than other dimensionality reduction techniques
based on distance-preserving methods such as MDS and Isomap [4].
Then in the 2D projected space, each point represents a time step.
We connect the neighboring time steps to form a “path” and select
representatives in the following ways:

* Arclength-based selection. Compute the Euclidean distance be-
tween the neighboring points and select representatives as path
resampling based on the arclength. Given a distance threshold
¢, different numbers of representatives can be selected.

* Angle-based selection. Compute the angle formed among
consecutive neighboring points and select representatives as
path simplification based on the accumulated angle. Given an
angle threshold 0, different numbers of representatives can be
selected.

* Mixed selection. Combine arclength-based and angle-based
selections linearly. A threshold & € [0, 1] is used to control the
importance between arclength and angle. By default, @ = 0.5.

Note that the representatives are selected in the 2D projected space
instead of the original feature space. This is because in the projected
space, we can visualize features distribution and observe their pat-
tern. Moreover, we can intuitively explain why certain time steps are
selected from both quantitative and qualitative perspectives. If we
select the representatives in the feature space, the features may not
form a curve pattern and traditional measures such as the Euclidean

distance become inapplicable [4]. Our approach can also select rep-
resentative time steps for multivariate data sets. This is achieved by
taking the multivariate volumes at each time step as the multichannel
input to the encoder and generating the corresponding multivariate
volumes as the output of the decoder. The resulting feature descrip-
tor thus captures the multivariate features of the underlying data for
time step selection.

Table 1: The dimensions of each data set.

ori. dimension downsampled
data set (variable) (XXyXzXt) (xXyxz)
climate (temperature) 360 x 66 x 27 x 60 360 x 66 x 27
earthquake (amplitude) 256 x 256 x 96 x 598 96 x 96 x 24

combustion (CHI)
combustion (HR)
combustion (MF)
ionization (He+)
vortex (vorticity)

480 x 720 x 120 x 122
480 x 720 x 120 x 122
480 x 720 x 120 x 122
600 x 248 x 248 x 100
128 x 128 x 128 x 90

120 x 180 x 30
120 x 180 x 30
120 x 180 x 30
150 x 62 x 62
64 x 64 x 64

4 RESULTS

Data sets. We experimented with our approach using the data sets
listed in Table 1. The climate data set is from a simulation of
salinity and temperature in the equatorial region from 20°S to 20°N
for a period of 100 years. This data set has 1200 time steps (one
month per time step) and we used the first 60 of them and only the
temperature variable. The earthquake simulation models the 3D
seismic wave propagation of the 1994 Northridge earthquake. We
used the amplitude scalar variable. The combustion data set comes
from direct numerical simulation of temporally evolving turbulent
non-premixed flames where combustion reactions occur within the
two layers. These layers are initially thin planar layers and then
evolve into complex structures as they interact with the surrounding
turbulence. The simulation generates multiple variables and we
used three of them: scalar dissipation rate (CHI), heat release (HR),
and stoichiometric mixture fraction (MF). The ionization data set
is made available through the IEEE Visualization 2008 Contest.
The simulation is concerned with 3D radiation hydrodynamical
calculations of ionization front instabilities for studying a variety
of phenomena in interstellar medium such as the formation of stars.
The simulation generates multiple variables and we used He+ mass
abundance (He+). Finally, the vortex data set has been widely
used in feature extraction and tracking. The data set comes from
a pseudo-spectral simulation of vortex structures. We used the
vorticity magnitude scalar variable.

Training details. A single NVIDIA TITAN Xp 1080 GPU was
used for network training. For data preprocessing, we use bicubic
interpolation to downscale the volumes. This process can reduce
the GPU memory requirement and speed up the training. we scaled
the range of each downsampled volume to [—1, 1] and that of the
output volume to [—1,1]. This is because the value range for the
output of the final activation function tanh(-) is [—1,1]. We used
80% of data for training. For optimization, we followed He et
al. [5] to initialize parameters and applied the Adam optimizer [7]
for parameter updates. We set one training sample per minibatch
and trained the network for 100 epochs. It took anywhere from 1
(vortex) to 6 hours (earthquake) to train one data set. The training
time is mainly determined by the number of time steps and the
volume resolution. Using multiple variables does not significantly
increase the training time. We run 2,000 iterations when generating
the t-SNE projection.

Comparison of different selections. In Figure 2, we compare
three different time step selections: arclength-based selection, angle-
based selection, and mixed selection. We can observe that the result
of arclength-based selection is similar to that of uniform selection
(i.e., selecting every ith time step), but it selects those time steps



90
g . A\
" '
pLonnn 000 mummo omon.

(a) arclength-based, € = 0.05

(b) shape-based, 6 = 7 /4

(c) mixed, (¢,6,a) = (0.04,7/5,0.5)

Figure 2: Comparing different ways of time step selection using the vortex data set. All select 24 time steps from 90 time steps. In the t-SNE
projection, selected time steps are marked with blue dots and labeled with time step IDs, and those shown along with thumbnails are highlighted.

We also indicate selected time steps along the linear vertical timeline.
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Figure 3: Comparing selected time steps using the earthquake data set. Both select 50 time steps from 598 time steps. In (a), the horizontal and

vertical directions represent time step and importance, respectively.

that are close yet their distances in the t-SNE projection are large
(for example, time steps 33 and 35). As for shape-based selection,
it selects the representatives based on the change of accumulated
angles. We can observe that when the change of accumulated angles
is small, it will only select a few time steps (such as at the beginning
of the sequence). However, when the change gets large, it will select
time steps densely (such as the time period from time steps 60 to 70).
Due to the drawbacks of these two selections, where the arclength-
based selection fails to select time steps whose accumulated angles
change rapidly and the angle-based selection samples time steps
sparsely whose accumulated angles change slowly, we combine
these two selections and present a mixed selection, as shown in
Figure 2 (c). We can find that the mixed selection samples more
densely at the beginning of the sequence compared to shape-based
selection and it can also detect the time steps whose accumulated
angles change rapidly, such as time steps 61, 64, and 66. Therefore,
we opt to use the mixed selection to show our representative time
steps in the following results.

Qualitative and quantitative analysis. To demonstrate the ef-
fectiveness of our approach, we show qualitative results and compare
our method against the information-theoretic approach [12] using
the earthquake data set. In Figure 3, we compare the representa-
tive time steps selected by our approach and information-theoretic
approach. In Figure 3 (a), the importance score of each time step

Table 2: Comparison of the average PSNR (in dB) and RMSE values.
The best ones are highlighted in bold.

earthquake combustion (HR)
#rep. approach PSNR RMSE #rep. approach PSNR RMSE
ours 40.17  0.00760 ours 25.01 0.145
25 [12] 39.18  0.00721 | 15 [12] 2491 0.123
uniform 40.14 0.00778 uniform 24.97 0.136
ours 42.11 0.00589 ours 27.91 0.101
50 [12] 41.10  0.00489 | 30 [12] 2742 0.093
uniform 42.05 0.00592 uniform 27.73 0.097
ours 44.15  0.00424 ours 29.80 0.074
75 [12] 42.33  0.00383 | 42 [12] 29.01 0.075
uniform 44.00  0.00483 uniform 29.65  0.077
ours 46.40  0.00313 ours 32.13 0.058
100 [12] 4321  0.00315 | 62 [12] 32.06  0.059
uniform 46.10  0.00391 uniform 32.42 0.056

is plotted and 50 time steps are selected. As we can see, around
60% of the selected time steps are from time steps 70 to 220, since
the conditional entropy peaks among these time steps. In Figure 3
(b), the t-SNE projection is shown and we also select 50 time steps
from the sequence. We can observe that our approach selects the
representatives more balanced over the sequence. In the t-SNE pro-
jection, the small amplitude of fluctuation at the early time steps
is due to the steady increase of meaningful visual content as the
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Figure 4: Comparing t-SNE projection and time step selection results under single and multiple variables using the combustion data set. All select

30 time steps from 122 time steps.
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Figure 5: Comparing t-SNE projections using different types of time-
varying data sets. (a) ionization, (b) climate, and (c) combustion
(CHI). (a) to (c) are for regular, periodic, and turbulent types of data,
respectively. Time steps are marked with black dots. In (b), both ends
of the periods are highlighted (each period consists of 12 time steps).

earthquake shockwave quickly build ups. The first 200 time steps
of the sequence have slightly more time steps selected than the later
part of the sequence.

Furthermore, to quantitatively compare our approach against the
information-theoretic approach [12] and uniform selection, we use
the representative time steps to linearly interpolate the intermediate
time steps and utilize the peak signal-to-noise ratio (PSNR) and
root-mean-square error (RMSE) to evaluate the quality of the inter-
polated time steps. PSNR measures the peak error, whereas RMSE
represents the cumulative error between the reconstructed and origi-
nal volumes. The results with different numbers of representatives
are reported in Table 2. For PSNR (RMSE), the higher (lower) the
value, the better the quality. For the earthquake data set, we can see
that our deep learning approach is the best in terms of PSNR across
all cases reported here, while the information-theoretic approach is
the best in terms of RMSE for three out of four cases. Our approach
is the best in terms of both PSNR and RMSE when 100 time steps
are selected. For the combustion (HR) data set, we can observe that
our approach achieves the highest PSNR for three out of four cases,
while the information-theoretic approach gets the lowest RMSE for
two out of four cases. Our approach is the best in terms of both
PSNR and RMSE when 42 time steps are selected.

In Figure 4, we show the representatives of single and multiple
variables using the combustion data set. For the HR variable, we
can observe that the distance between the beginning and subsequent
time steps increases in the t-SNE projection, as shown in Figure 4
(a). This is because the two initially parallel layers get increasingly
turbulent as the simulation goes. For the MF variable, there is a clear
“U-turn” as shown in Figure 4 (b). The distance between beginning
time steps and time steps before the U-turn keeps increasing while

that between beginning time steps and time steps after the U-turn
keeps decreasing. A likely explanation is that the yellow parts in the
rendering get merged and then vanish while the red parts gradually
move apart. In Figure 4 (c), we can see that the t-SNE projection of
HR and MF variables preserves some patterns of individual variables.
For example, the fluctuation from time steps 44 to 51 is similar to
that from time steps 41 to 55 in the HR variable, while the pattern
of distance change between the beginning and subsequent time
steps is similar to that in the MF variable. This indicates that the
projection of multiple variables “assimilates” the information from
each individual variable, which confirms the meaningfulness of our
approach for representative time step selection from time-varying
multivariate data sets. We point out that we only show results with
two variables here due to the limitation of volume rendering (we
want to see all variables clearly in the rendering). The deep learning
framework itself can handle three or more variables.

Further verification. In Figure 5, we compare t-SNE projec-
tions using different types (i.e., regular, periodic, and turbulent) of
volumetric data to further verify the effectiveness of our approach.
‘We point out the periodic (circular) pattern exhibited in the climate
data set (Figure 5 (b)) and the turbulent (zigzag) pattern exhibited
in the combustion (CHI) data set (Figure 5 (c)). The regular pattern
exhibited by the ionization data set (Figure 5 (a)) is similar to what
we observe in Figure 4 (c) for the HR and MF variables of the com-
bustion data set. However, the CHI variable of the combustion data
set (Figure 5 (c)) reveals more the truly turbulent nature of the data.

5 CONCLUSIONS AND FUTURE WORK

We have presented a deep learning approach for selecting represen-
tative time steps from time-varying multivariate data sets. Using
an autoencoder, our approach can automatically learn feature de-
scriptors from volumetric data and across multiple variables in a
latent space, although this process takes longer time than previous
approaches. The learned features are used to guide the selection of
representatives in the 2D projected space. We demonstrate the effec-
tiveness of our approach and compare our time step selection result
against those generated using an information-theoretic approach and
uniform selection. In the future, we would consider the visual quality
of interpolated intermediate time steps as a constraint for selecting
representative time steps using deep reinforcement learning.
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