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ARTICLE INFO ABSTRACT

We present a novel spectrum-preserving sparsification algorithm for visualizing big
graph data. Although spectral methods have many advantages, the high memory and
computation costs due to the involved Laplacian eigenvalue problems could immedi-
ately hinder their applications in big graph analytics. In this paper, we introduce a
practically efficient, nearly-linear time spectral sparsification algorithm for tackling
real-world big graph data. Besides spectral sparsification, we further propose a node
reduction scheme based on intrinsic spectral graph properties to allow more aggressive,
level-of-detail simplification. To enable effective visual exploration of the resulting
spectrally sparsified graphs, we implement spectral clustering and edge bundling. Our
framework does not depend on a particular graph layout and can be integrated into dif-
ferent graph drawing algorithms. We experiment with publicly available graph data of
different sizes and characteristics to demonstrate the efficiency and effectiveness of our
approach. To further verify our solution, we quantitatively compare our method against
different graph simplification solutions using a proxy quality metric and statistical prop-
erties of the graphs.
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1. Introduction graph using a sparse graph. Compared to the original graphs,
sparsified graphs provide a number of advantages for subse-

Spectral methods are playing an increasingly important role quent analysis and visualization. For example, sparsified trans-

in many graph-based applications [1], such as scientific com-
puting [2], numerical optimization [3], image processing [4],
data mining [5], machine learning [6], and graph analytics [7].
For example, classical spectral clustering algorithms leverage
the eigenvectors corresponding to a few smallest nontrivial (i.e.,
nonzero) eigenvalues of Laplacians for low-dimensional spec-
tral graph embedding, which is followed by a k-means cluster-
ing procedure that usually leads to high-quality clustering re-
sults. Although spectral methods have many advantages, such
as easy implementation, good solution quality, and rigorous the-
oretical foundations [8, 9, 10], the high memory and compu-
tation cost due to the involved Laplacian eigenvalue problems
could hinder their applications in many emerging big graph an-
alytical tasks [11, 7, 12].

Graph sparsification refers to the approximation of a large

portation networks allow for developing more scalable navi-
gation or routing algorithms for large transportation systems;
sparsified social networks enable more effective understanding
and prediction of information propagation in large social net-
works; and sparsified matrices can be leveraged to efficiently
compute the solution of a large linear system of equations.
Recent research efforts on spectral graph sparsification allow
computing nearly-linear-sized subgraphs or sparsifiers (i.e., the
number of edges is similar to the number of nodes in the sub-
graph) that can robustly preserve the spectrum (i.e., eigenval-
ues and eigenvectors) of the original graph Laplacian. This
leads to a series of “theoretically nearly-linear-time” numerical
and graph algorithms for solving sparse matrices, graph-based
semi-supervised learning, spectral graph clustering, and max-
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flow problems [13, 14, 15, 16, 17, 18, 19, 3, 2]. However, the
long-standing question of whether there exists a practically effi-
cient spectral graph sparsification algorithm for tackling general
large-scale, real-world graphs still remains. For instance, the
state-of-the-art nearly-linear time spectral sparsification meth-
ods leverage Johnson-Lindenstrauss Lemma to compute effec-
tive resistances for the edge sampling procedure [14]. This
requires solving the original graph Laplacian multiple times,
thus making them impractical for handling real-world big graph
problems.

In this paper, we present spectrum-preserving sparsification
(SPS), a spectrum-preserving framework for sparsification and
visualization of big graph data. For sparsification, we real-
ize the nearly-linear time, yet practically scalable spectrum-
preserving big graph sparsification by leveraging a general-
ized eigenvalue perturbation analysis framework. Our spectral
graph sparsification framework will guarantee the preservation
of the key eigenvalues and eigenvectors within nearly-linear-
sized spectrally-similar graph sparsifiers, achieving more effi-
cient and effective compression of arbitrarily complex big graph
data. Furthermore, based on intrinsic spectral graph properties,
we propose a multilevel scheme for node reduction at varying
levels of detail, enabling interactive hierarchical visualization
of big graph data at runtime. For visualization, we develop
a framework that fluidly integrates edge and node reduction,
spectral clustering, and level-of-detail exploration to support
adaptive visual exploration of big graph data. This provides
users previously unavailable capabilities to navigate the large
graphs toward effective visual exploration and reasoning.

To demonstrate the effectiveness of our approach, we con-
duct extensive experiments using large graphs publicly avail-
able at the Stanford Large Network Dataset Collection [20] and
the University of Florida Sparse Matrix Collection [21]. The
Stanford collection includes data sets from various applications
(e.g., social networks, communication networks, citation net-
works, collaboration networks, road networks) with data gath-
ered from different platforms (e.g., Amazon, Flickr, Reddit,
Twitter, Wikipedia). The Florida collection includes a growing
set of sparse matrices that arise in real applications such as so-
cial networks, web document networks, and geometric meshes.
Graph data sets of different characteristics are selected to show-
case the scalability and robustness of our spectral graph sparsi-
fication and visualization techniques. In summary, the contri-
butions of our work are the following:

e First, we present an efficient spectral edge sparsification
(SES) algorithm that preserves the most important spectral
and structural properties within ultra-sparse graph sparsi-
fiers, achieving superior speed performance compared to
the state-of-the-art algorithms.

e Second, we propose a multilevel node reduction (MNR)
scheme to further simplify the spectrally-sparsified graph,
enabling level-of-detail exploration and speeding up the
subsequent layout computation.

e Third, we integrate spectral clustering and edge bundling
into graph drawing for effective visualization and explo-
ration of the underlying big graph data.

e Fourth, we demonstrate the effectiveness of our solution

against other graph simplification solutions through an ob-
jective evaluation using a proxy quality metric derived
from the graphs and statistical properties of the graphs.

2. Related Work
2.1. Spectral Methods for Graph Application

To address the computational bottleneck of spectral methods
in graph-related applications, recent research efforts aimed to
reduce the complexity of the original graph Laplacian through
various kinds of approximations. For example, k-nearest neigh-
bor (kNN) graphs maintain k nearest neighbors for each node,
whereas e-neighborhood graphs keep the neighbors within the
range of distance € [22]. Williams and Seeger [23] introduced a
sampling-based approach for affinity matrix approximation us-
ing the Nystrom method, while its error analysis has been pro-
posed in [24]. Chen and Cai [25] presented a landmark-based
method for representing the original data points for large-scale
spectral clustering. Yang et al. [26] proposed a general frame-
work for fast approximate spectral clustering by collapsing the
original data points into a small number of centroids using k-
means or random-projection trees. Liu et al. [27] introduced a
method for compressing the original graph into a sparse bipar-
tite graph by generating a small number of “supernodes”. Satu-
luri et al. [28] proposed a graph sparsification method for scal-
able clustering using a simple similarity-based heuristic. How-
ever, existing graph approximation methods cannot efficiently
and robustly preserve the spectrums of the original graphs, and
thus may lead to degraded or even misleading results. Re-
cently, spectral perturbation analysis was applied to spectral
graph sparsification and reduction in order to reduce the graph
to nearly-linear-sized with high spectral similarity [29, 30, 31].
This progress makes it possible to develop much faster algo-
rithms such as the symmetric diagonally dominant (SDD) ma-
trix solvers [32] as well as spectral graph partitioning algo-
rithm [30]. Note that these recent works on graph sparsifica-
tion [29, 31, 32] only address spectral graph simplification but
not spectral graph drawing using a multilevel approach. To
our best knowledge, the integration of spectral sparsification,
multi-level spectral clustering, graph layouts, and state-of-the-
art edge bundling has not been attempted and thus poses a valid
scientific contribution.

2.2. Spectral Graph Drawing

Among the spectral methods for graph drawing, the eigen-
projection method uses the first few nontrivial eigenvectors of
the graph Laplacian matrix or the top dominant eigenvectors
of the adjacency matrix. Hall [33] used the eigenvectors of
the Laplacian to embed graph vertices in a space of arbitrary
dimension. The entries of the k eigenvectors related to the
smallest nonzero eigenvalues are used as a node’s coordinates.
This is referred to as k-dimensional graph spectral embedding.
Pisanski and Shawe-Taylor [34] took Hall’s method to gener-
ate pleasing drawings of symmetrical graphs such as fullerene
molecules in chemistry. Brandes and Willhalm [35] used eigen-
vectors of a modified Laplacian to draw bibliographic networks.
Note that for regular graphs (where every node has the same
degree), the eigenvectors of the Laplacian equal those of the
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adjacency matrix, but in a reversed order. This is not the case
for non-regular graphs. Using the Laplacian is advantageous
as it is rooted in a more solid theoretical basis and gives better
results than those obtained using the adjacency matrix.

Koren et al. [36, 37] proposed algebraic multigrid compu-
tation of eigenvectors (ACE), an extremely fast algorithm for
drawing very large graphs. ACE identifies an optimal drawing
of the graph by minimizing a quadratic energy function, which
is expressed as a general eigenvalue problem and efficiently
solved using fast algebraic multigrid implementation. Harel and
Koren [38, 39] designed high-dimensional embedding (HDE)
for aesthetic drawing of undirected graphs. HDE first embeds
the graph in a very high dimension and then projects it into the
2D plane using principal component analysis. This algorithm is
fast, exhibits the graph in various dimensions, and supports in-
teractive exploration of large graphs. Koren [37, 40] presented a
modified approach that uses degree-normalized eigenvectors to
achieve aesthetic graph layouts. The degree normalized eigen-
vectors adjust the edge weights to reflect their relative impor-
tance in the related local scale. As such, the modified solu-
tion can allocate each cluster an adequate area in the drawing
and avoid drawing extremely dense clusters. Hu et al. [7] de-
signed a spectral graph drawing algorithm that includes node
projection, node dispersion, and sphere warping. They first
projected nodes onto a k-dimensional sphere, then dispersed
nodes around the sphere’s surface to separate apart densely con-
nected clustered nodes, and finally warped the k-dimensional
sphere’s surface to a 2D space using multidimensional scaling.
Their algorithm can clearly show the topology and community
structures of the graph.

Most spectrum-based graph visualization techniques [34, 35,
36, 38, 37] only place their focus on graph layout. Besides
drawing the graph using spectral sparsification, we integrate
spectral clustering and edge bundling to help users better ex-
amine the graph for effective visual understanding. This is par-
ticularly important when handling big graph data as visual un-
derstanding of the complex and diverse graph relationships is
the key.

2.3. Quality Metrics for Graph Sampling

An important question for graph sampling is how to evaluate
the quality of the simplified graph. To evaluate the similarity
between the original and sampled graphs, Hu and Lau [41] em-
ployed three metrics: (1) fotal variation distance which mea-
sures all the difference between two distributions; (2) Kullback-
Leibler divergence which captures the difference between the
two distributions accounting for the bulk of the distributions;
and (3) Kolmogorov-Smirnov statistic which captures the maxi-
mum vertical distance of the cumulative distribution function
of the two distributions. Zhang et al. [42] computed seven
statistical properties, namely, degree distribution, betweenness
centrality distribution, clustering coefficient distribution, aver-
age neighbor degree distribution, degree centrality distribution,
edge betweenness centrality distribution, and hop distribution,
to quantitatively compare different graph sampling methods.
Recently, Hong et al. [43] used five metrics, namely, degree
correlation assortativity, closeness centrality, clustering coeffi-
cient, largest connected component, and average neighbor de-

gree, to evaluate their graph sampling methods, which improve
random-based sampling by considering the block-cut tree.

A problem with the above statistical metrics and properties
is that they are not well-suited to capture the visual quality of
the corresponding graph layout. This is especially the case for
large social and biological networks where nodes and edges
could easily become “blobs” in the drawing of dense graphs
with a few hundred vertices or sparse graphs with a few thou-
sand vertices. Wu et al. [44] pointed out that quality metrics
based on statistical or topological properties do not translate to
visual quality. Their study shows that three visual factors sig-
nificantly influence the representativeness of sampled graphs:
cluster quality, high degree nodes, and coverage area. Eades et
al. [45] proposed a shape-based quality metric for large graph
visualization by treating the quality of a drawing D of a graph
G as the similarity between G and the “shape” of the set of ver-
tex locations of D. Nguyen et al. [46] generalized this metric
to compare proxy graphs using the shape-based quality met-
ric. In this paper, we use this so-called proxy quality metric
to evaluate the graph after spectral edge sparsification (where
only edges are removed) and employ statistical metrics to fur-
ther evaluate the graph after multilevel node reduction (where
nodes are aggregated to form pseudo-nodes).

3. Background

Consider a graph G = (N, E,w) where N and E are the node
set and edge set respectively, and w is a weight function that
assigns positive weights to all edges. The symmetric diagonally
dominant Laplacian matrix of G can be constructed as follows

—Wijj if €j € E,
Lg(nisnj) = Xepeewin  ifni=nj, (H
0 otherwise.

where n; is a node, e;; is the edge between n; and nj, and
w;; is the weight of e;;. Graph sparsification aims to find
G' = (N,E’,w'), a subgraph or sparsifier of G that maintains
the same set of nodes but fewer edges. To tell if two graphs
have similar spectra, we usually use the following Laplacian
quadratic form

x'Lgx = Z wij(x(n;) —x(nj))z, )

€jj c€E

where x € RY is a real vector. Two graphs G and G’ are
o—spectrally similar if the following condition holds for all
real vectors x € RV

TLo
X LoX < xTLGx < GXTLG/X. 3)

Defining the relative condition number to be k(Lg,Lg) =
Amax/Amin, Where Amax and Api, are the largest and smallest
nonzero generalized eigenvalues satisfying

LGll = )VL(;/U, (4)

where u is the generalized eigenvector of A. It can be further
shown that x(Lg,Lg/) < o2, which indicates that a smaller rel-
ative condition number or 62 corresponds to a higher spectral
similarity.

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4 Preprint submitted for review / Computers & Graphics (2020)

Spectral Edge Sparsification
(SES)

Input Graph }—*

%

(MNR)

Multilevel Node Reduction H Eigenvector Computation }—v Layout Computation

/

Spectral Clustering Multilevel Eigensolver Graph Drawing

Fig. 1: The diagram of our SPS framework. Layout computation could use the eigenvector-based layout, t-SNE-based layout, or any other graph drawing algorithm.

The state-of-the-art nearly-linear time spectral sparsifica-
tion algorithm leverages an edge sampling scheme that sets
sampling probabilities proportional to edge effective resis-
tances [14]. However, it becomes a chicken-and-egg problem
since even approximately computing edge effective resistances
by leveraging the Johnson-Lindenstrauss Lemma still requires
solving the original graph Laplacian matrix log|N| times and
thus can be extremely expensive for very large graphs, not to
mention directly computing the Moore-Penrose pseudo inverse
of graph Laplacians. For example, a recent work on graph
drawing using spectral sparsification shows the major computa-
tional bottleneck is due to estimating edge effective resistances
(by computing the Moore-Penrose pseudo inverse): even for
a relatively small graph with [N| = 7,885, |E| = 427,406, the
spectral sparsification procedure can take several hours to com-
plete [12].

4. Our Approach

Figure 1 shows an overview of our SPS framework. Given
the input graph, we first perform SES (Section 4.1) to reduce
the number of edges. Next, based on the edge sparsification
results, we perform MNR (Section 4.2) to further produce mul-
tiple levels of node simplification. This leads to a fairly small
graph that preserves spectrally-important nodes and edges, al-
lowing us to compute the eigenvectors of the graph Laplacian in
an efficient manner. We then use these eigenvectors as input for
dimensionality reduction using t-distributed stochastic neighbor
embedding (t-SNE) [47, 48] and for spectral clustering using k-
means. For spectral graph drawing (Section 4.3), we can layout
the most simplified level of the graph based on the eigenvectors,
t-SNE, and clustering results, where node positions are deter-
mined by either the leading eigenvectors or t-SNE projection
and node colors are determined by spectral cluster labels. To
obtain the graph drawing at a finer level, we can compute posi-
tions for newly-added nodes based on a multilevel eigensolver
without recomputing the layout. Note that our SPS framework
can readily work with other graph drawing algorithms by re-
placing the layout based on eigenvectors, t-SNE, or with an-
other one.

4.1. Spectral Edge Sparsification (SES)

We outline the key steps of the proposed method for spec-
tral graph sparsification of a given undirected graphs as fol-
lows: (1) low-stretch spanning tree extraction based on the orig-
inal graph [49, 50]; (2) spectral embedding and criticality rank-
ing of off-tree edges using approximate generalized eigenvec-
tors leveraging the recent spectral perturbation analysis frame-

work [29]; (3) subgraph densification by recovering a small por-
tion of the most “spectrally critical” off-tree edges to the span-
ning tree; and (4) subgraph edge weight scaling via stochastic
gradient descent (SGD) optimization.

In the following, we assume that G = (N, E,w) is a weighted,
undirected, and connected graph, whereas G' = (N,E’,w') is
its graph sparsifier. The descending generalized eigenvalues of
L, Lg are denoted by Amax = A1 > Ay > -+ > 4, > 0, where
Lg/ denotes the Moore-Penrose pseudoinverse of L.

Spectral distortion of spanning-tree sparsifiers. Spiel-
man [51] showed that there are not too many large generalized
eigenvalues for spanning tree sparsifiers: LZ,LG has at most k
generalized eigenvalues greater than stg (G)/k, where stg (G)
is the total stretch of the spanning-tree subgraph G’ with respect
to the original graph G that can be considered as the spectral dis-
tortion due to the spanning tree approximation. Recent research
shows that every graph has a low-stretch spanning tree (LSST)
such that the total stretch st (G) can be bounded by [15]

O(|Elog|N|loglog|N|) > st (G) = tr(L Lg) = XY} A > 02,

&)
where tr(Lé,Lg) is the trace of Lg,L(;. As a result, it is possi-
ble to construct an ultra-sparse yet spectrally similar sparsifier
by recovering only a small portion of spectrally critical off-
tree edges to the spanning tree. For example, o-similar spectral
sparsifiers with O(|E|log|N|loglog |N|/c?) off-tree edges can
be constructed in nearly linear time [29].

Edge embedding with generalized eigenvectors. To iden-
tify the off-tree edges that should be recovered to the spanning
tree to dramatically reduce spectral distortion (the total stretch),
Feng [29] introduced an off-tree edge embedding scheme using
generalized eigenvectors, which is based on the following spec-
tral perturbation framework. Considering the following first-
order eigenvalue perturbation problem

Lo (u; +6u;) = (A 4+ 64;) (Lo + 0L ) (w; + 6w;),  (6)

where a perturbation L is applied to L/, which results in
perturbations in generalized eigenvalues A; + 6 A; and eigenvec-

tors w; + ou; for i = 1,...,n, respectively. The first-order per-
turbation analysis shows that [29]
oA
—— =u dLgu;, (7
Ai

which indicates that the reduction of A; is proportional to the
Laplacian quadratic form of 8L with the generalized eigen-
vector u;. Consequently, if the eigenvector u; is applied, a sig-
nificant reduction of the largest generalized eigenvalue A; can
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be achieved. Once all large generalized eigenvalues are dra-
matically reduced, the subgraph G’ can serve as a very good
spectral sparsifier of G.

To achieve effective reductions of large generalized eigenval-
ues, we exploit the following two key steps: (1) recover a small
portion of most spectrally-critical off-tree edges into the span-
ning tree; (2) scale up edge weights in the subgraph G’ to further
improve the approximation. Additionally, the scaling factor ob-
tained for each edge can be treated as its spectral importance in
the subgraph: a larger scaling factor may indicate a more im-
portant role that the edge plays in mimicking the original graph.

Subgraph densification. If we denote ej; € R the vector
with only the j-th element being 1, the k-th element being —1,
and others being 0, then the eigenvalue perturbation due to the
inclusion of all off-tree edges can be expressed as follows

Kz
Ao

TSLG’ maxWi = Z W/k ]kul = Z ij lll
_kGE\E, ‘/‘EE\E,
®)

where 8L/ max = Lg — L denotes the Laplacian including
all off-tree edges, H ik (u;) denotes the Joule heat (power dissi-
pation) of edge ej; by considering the undirected graph G as
a resistor network and u; as the voltage vector. Equation (8)
can also be considered as a spectral off-tree edge embedding
scheme using generalized eigenvectors. It indicates that when
using the first few dominant generalized eigenvectors for off-
tree edge embedding, the top few generalized eigenvalues can
be dramatically reduced by recovering the most spectrally-
critical off-tree edges back to the spanning tree. In practice,
we can leverage approximate eigenvectors computed via a few
steps of generalized power iterations for good efficiency [29]:

e Step 1: Compute an approximate generalized eigenvector
h, from an initial random vector hy via 7-step generalized
power iterations

[N| [N|
h; = (LE/LG)Iho = (Lg/LG)t Z ou; = Z airfug; (9)
i=1

i=1

e Step 2: Compute the Joule heat of all off-tree edges with
hl‘ by

b 5L maxhy = XN (212 (A — 1)

2
N
= ZEjkEE\E/ W jk 21:‘1 aizlizt (efkui) =
(10)

Similar to Equation (8), Equation (10) also allows embedding
generalized eigenvalues into the Laplacian quadratic form of
each off-tree edge and thus ranking off-tree edges according
to their spectral criticality levels: recovering the off-tree edges
with the largest edge Joule heat values will most significantly
decrease the largest generalized eigenvalues. In practice, using
a small number (e.g., 0 <t < 3) of power iterations suffices for
the embedding purpose.

Subgraph edge scaling via SGD iterations. Once a suf-
ficient number (O(|E|log|N|loglog|N|/c?)) of off-tree edges
are selected and recovered to the spanning tree, the subgraph

ZejkGE\El ij(hl)'

can already well mimic the original graph by approximating its
first few Laplacian eigenvectors. To further mitigate the accu-
racy loss due to the missing edges in the subgraph, we introduce
a novel edge scaling procedure that scales up edge weights in
the subgraph so that A; can be substantially reduced. To this
end, we express the dominant eigenvalue perturbation 64, in
terms of edge weights perturbation dw as

oA 2
_)T—u1 [8Loui =Y Swi (efur)”, (11)
L/kEEl
which directly gives the sensitivity of A; with respect to each
edge weight w j; as

oA

2 2
ij = _)ul (ej-wklh) ~ —).,1 (e;kht) . (12)

With the weight sensitivity expressed in Equation (12), SGD
iterations can be performed for scaling up edge weights: dur-
ing each iteration of SGD, a random vector is first generated
and used to compute the approximate dominant eigenvector (h;)
using Equation (9) as well as edge weight sensitivities using
Equation (12) for the following edge scaling step; when the
edge weight sensitivities are small enough, we can terminate
the SGD iterations. Since edge weights in G’ will be updated
during each SGD iteration, we need to solve a new subgraph
Laplacian matrix L for updating the approximate eigenvec-
tor u; in Equation (12). This can be achieved by leverag-
ing recent graph-theoretic algebraic multigrid algorithms that
have shown highly scalable performance for solving large graph
Laplacians [52, 53, 32]. Since the subgraph structure remains
unchanged with only edge weights adjusted during the SGD it-
erations, it is also possible to incrementally update graph Lapla-
cian solvers for achieving better computation efficiency.

4.2. Multilevel Node Reduction (MNR)

To generate the reduced graph based on the original graph (in
our case, the graph after SES), our MNR framework applies a
spectrum-preserving node aggregation scheme where the node
affinity metric is considered [31]. Given neighboring nodes p
and ¢, the node affinity between them is defined as [53, 54]

(X, X, S )
tpy = hp Rl =y (x®.x®). (13)
PO (X0, X)Xy, Xy) kg’l( P )

where X = (x(I),...,x)) is a vector set with K test vec-
tors which are computed by applying a few Gauss-Seidel (GS)
relaxations to the linear system of equations Lox® = 0 for
i=1,...,K, starting with K random vectors that are orthogonal
to the all-one vector 1. If we consider &) to be the approximate
solution of Lgx() = 0 after a few GS relaxations, and x1) to be
the true solution, the error between () and x) can be expressed

ase!’ = x() —%(). Due to the smoothing property of GS relax-

ation, egi) will only contain the smooth (low-frequency) modes
of the initial error, while the oscillatory (high-frequency) modes
of the initial error will be effectively removed [55]. Based on

these K smoothed vectors in X, we are able to embed each node
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into a K-dimensional space such that nodes p and ¢ are con-
sidered spectrally-close to each other if their low-dimensional
embedding vectors, X, € RX and X4 € RX, are highly corre-
lated. Thus, spectrally-similar nodes p and g can be aggregated
together for node reduction purpose.

o

7 Multilevel Node »
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Se--- ';; Spectrally Reduced Graph

Fig. 2: The framework of multilevel node reduction and multilevel eigensolver.

The node affinity metric a,, also reflects the distance or
strength of the connection between nodes p and g. For example,
the algebraic distance d), ; can be expressed by dp ; = 1—a, 4,
which can be used to represent the geometric distance in grid-
structure graphs. Nodes with large affinity or small algebraic
distance should be aggregated together to form the nodes in
the reduced graph. Based on this node aggregation scheme,
we can generate the next coarser-level graph by applying it to
the original graph. To further reduce its size, we leverage a
multilevel procedure by repeatedly applying the above node re-
duction procedure to the current-level graph until the desired
size of the reduced graph at the coarsest level is reached, as
shown in Figure 2. Once the node aggregation scheme for
each level is determined, we can define the graph mapping op-
erators Hﬁ“ (fine-to-coarse) and H;: 1 (coarse-to-fine), which
can be further leveraged for constructing the spectrally-reduced
graph. For example, given the graph Laplacian L and the de-
fined mapping operators from the finest level 1 to the coars-
est level r, we can always uniquely compute the final reduced
Laplacian by Lg = HELGHG, where Hf = HIH3 ---H/_, and
HS =H!H3---H/ L.

The computational cost of node reduction scheme based on
the above spectral node affinities is linear. This allows us to
preserve the spectral properties of the original graph in a highly
efficient and effective manner: the node aggregation scheme
will preserve the smooth components in the first few Laplacian
eigenvectors well, which is key to preserving the first few eigen-
values and eigenvectors of the original graph Laplacian in the
reduced graphs.

Since only the first few nontrivial eigenvectors of the orig-
inal graph Laplacian are needed for graph visualization tasks,
they can efficiently and effectively be calculated by leveraging
a multilevel eigensolver procedure [31], as shown in Figure 2.
Instead of directly solving the eigenvalue problems on the orig-

inal graph G, we will first reduce G into a much smaller graph
R such that the eigenvectors of the reduced graph can be easily
calculated. Once we get the eigenvectors of graph R, we will
map them back to next finer level using the mapping operators
defined during the MNR process. To further improve the solu-
tion accuracy of the mapped eigenvectors, a weighted-Jacobi-
iteration-based eigenvectors smoothing (refinement) scheme is
applied. The eigenvector mapping and smoothing procedures
are recursively applied until the finest level graph is reached.
Finally, all the eigenvectors for the finest level will be orthonor-
malized using the Gram-Schmidt process.

OOQOQ0OO

level 2 ?

level 3 O O
(b)

Fig. 3: Comparison of different node reduction processes. (a) shows the node
reduction process taken by our SPS (or METIS) method where double-circled
nodes are pseudo-nodes newly created. (b) shows the node reduction process
taken by graph sampling methods (such as DSS and FF, refer to Section 5.1).

level 1

level 2

level 3

Note that the MNR process taken by SPS generates pseudo-
nodes that are not in the node set of the original graph. As
shown in Figure 3 (a), at each level of node reduction, our
process essentially aggregates nodes into groups and creates a
pseudo-node to represent each group. On the contrary, other
node reduction methods do not create pseudo-nodes. As shown
in Figure 3 (b), at each level of simplification, they simply sam-
ple the graph and output a subset of nodes from the node set of
the original graph. In this process, no pseudo-nodes are created.

4.3. Spectral Graph Drawing

SPS is a practically efficient solution for spectrum-preserving
graph sparsification and Laplacian eigenvalue computation.
This enables us to tackle much bigger graphs previously impos-
sible by creating spectrally-simplified graphs at various levels
of detail for graph drawing and interaction. We present two dif-
ferent layouts to use in conjunction with SPS: the eigenvector-
based (EIGEN) and t-SNE-based (t-SNE) layouts. The EIGEN
layout lays out the graph vertices using certain eigenvectors of
the related matrices (we use the two leading eigenvectors in this
paper). The t-SNE layout employs t-SNE to create a 2D embed-
ding based on the leading eigenvectors (we empirically use the
first 50 dominant eigenvectors in this paper).

Layout generation. To generate a layout for visualizing a
given graph, we propose the following steps as outlined below:

e Step 1: Apply SPS to simplify the graph Gy, yielding the
sparsified graphs G, Ga, ..., G, and their associated sparse
Laplacian matrix Lg,,i € {0,1,...,r} of size |N;|*>. Note
that Gy is the original graph and G, is its most simplified
form.

e Step 2: Perform an eigenanalysis [56, 57] on L, to obtain
the first &’ leading eigenvectors and their associated eigen-
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SPS FFg FFn
Data Set ‘ Nodes Edges } SES ‘ I ‘ 3 ‘ 3 ‘ 7 ‘ 3 } i ‘ 3 ‘ 3 ‘ 7 ‘ 3 } i ‘ 5 ‘ 3 ‘ 7 ‘ 3 } DSS
small data sets (DSS compatible)
FACEBOOK 4,039 88,234 | 030 | 1.19 | 0.11 | 0.16 | 0.05 | 0.15 0.27 0.20 0.13 | 0.11 0.10 0.30 0.31 0.11 0.16 | 0.10 | 802.8
AIRFOIL 4,253 12,289 0.07 | 294 | 0.24 | 0.19 | 0.11 | 0.27 0.15 0.11 0.05 0.03 0.02 0.11 0.13 0.05 0.05 0.07 947.4
ND3K 9,000 | 3,279,690 | 5.93 | 1.18 | 0.17 | 0.19 | 0.07 | 0.17 4.02 4.04 422 390 | 2.68 2.98 2.43 243 | 219 | 229 | 12,774
USPS10NN 9,298 136,762 | 092 | 1.33 | 0.15 | 0.17 | 0.07 | 0.15 0.89 1.07 0.65| 035 | 035 0.36 0.23 020 | 0.17 | 0.17 | 11,448
MYCIELSKIAN14 12,287 | 3,695,512 | 642 | 1.23 | 0.11 | 0.17 | 0.07 | 0.19 3.36 3.19 3.11 290 | 2.90 3.35 3.15 333 | 2381 2.69 | 27,181
APPU 14,000 | 1,839,104 | 11.60 | 1.33 | 0.14 | 0.21 | 0.06 | 0.14 2.86 2.30 2.79 1.96 | 2.69 5.00 6.32 755 | 5.66 | 4.78 | 34,236
big data sets (DSS incompatible)
VSP 21,996 | 1,221,028 5.36 | 1.30 | 0.17 | 0.20 | 0.08 | 0.15 8.85 5.57 5.40 3.90 2.72 2.38 2.14 2.09 2.09 1.94
PROTEIN_DB 36,417 | 2,154,174 | 11.19 | 1.36 | 0.18 | 0.20 | 0.08 | 0.15 16.30 9.15 643 | 4.77 | 4.06 6.38 4.04 3.09 | 3.01 3.05
MESH 40,000 79,600 | 0.64 | 1.31 | 0.15 | 0.21 | 0.08 | 0.16 6.43 3.10 1.86 1.09 | 0.49 4.47 2.18 090 | 0.62 | 026
CFD 70,656 878,854 | 1048 | 1.59 | 0.24 | 0.24 | 0.08 | 0.16 | 20.74 14.00 938 | 4.84 | 260 | 28.69 13.58 477 | 3.04 1.58
DBLP 317,080 | 1,049,866 | 19.08 | 3.63 | 0.50 | 0.26 | 0.18 | 0.11 | 306.12 | 164.19 63.47 | 31.07 | 19.03 63.87 19.48 7.58 5.55 5.50
ND 325,729 | 1,469,679 | 19.11 | 2.74 | 0.63 | 0.44 | 0.15 | 0.25 | 501.65 | 245.22 | 144.24 | 61.28 | 17.25 | 129.88 | 23.77 1146 | 489 | 251
1L.2010 451,554 | 1,082,232 | 9.47 | 3.06 | 0.91 | 0.53 | 0.20 | 0.20 | 855.67 | 388.49 | 202.90 | 97.24 | 51.84 | 773.92 | 300.86 | 130.06 | 60.46 | 25.30

Table 1: Timing results (in seconds) for the data sets experimented. The data sets are ordered according to the number of nodes in the original graphs, and split into
two groups (small and big data sets). The five levels of simplification under SPS is for the MNR step.

values (we set k' = 50). Each of these eigenvectors is |N,|-
dimensional and every graph node has a k’-dimensional
representation.

e Step 3: Identify the largest eigengap, i.e., the largest dif-
ference of two neighboring eigenvalues, among the first kK’
eigenvalues to determine the desired number of clusters k.
Perform spectral clustering using k-means to obtain cluster
labels for the k different clusters.

e Step 4: Either use the two leading eigenvectors as 2D po-
sitions of the nodes (for the EIGEN layout), or perform di-
mensionality reduction, which maps the graph’s node po-
sitions from k’D to 2D using t-SNE (for the t-SNE layout).

e Step 5: Map the cluster labels, eigenvectors, and t-SNE
results from G, to G,_1, and repeat this iteratively until
the mapping from G to Gy is obtained.

After these steps, we hold all the data needed (2D coordinates,
cluster labels, Laplacian matrix) to display the graph in 2D for
the various levels of detail from Gy to G,. Nodes are colored
to show their cluster memberships where neighboring clusters
shown in the layout use different colors. To draw the graph at
a given level of detail i, we position the nodes of G; according
to the selected layout and draw a straight line for each edge
present in Lg,. Note that our SPS algorithm is independent of
the choices of graph layout. Although our layout algorithm is
not interactive, the timing results in Table 1 show that the SPS
algorithm allows efficient layout generation for large graphs.

Graph interaction. For graph interaction, we allow users to
change the graph layout, the level of detail, and turn on or off
edge bundling. Edge bundling is computed in real time as we
avoid its pre-computation for every graph level by implement-
ing FFTEB, the state-of-the-art edge bundling technique using
the fast Fourier transform (FFT) [58].

5. Results and Discussion

5.1. Data Sets and Methods

We experimented our approach with the graph data sets from
different application domains as listed in Table 1. Among them,
FACEBOOK and DBLP are from the social network domain,
recording a friend network (FACEBOOK) and co-authorship
relations (DBLP). AIRFOIL is a mesh graph from finite ele-
ment analysis, ND3K is a graph generated from a 3D mesh

problem, and MESH is a 200 x 200 mesh graph with uniform
edge weights. USPSI0NN is a k-NN network for handwritten
digit recognition. MYCIELSKIAN14 represents a triangle-free
graph with the chromatic number of 14. APPU and VSP are
random graphs, representing the app benchmark from NASA
Ames Research Center and a graph with a star-like structure.
CFD is from computational fluid dynamics application repre-
senting a symmetric pressure matrix. ND is a web graph of
the webpages of Notre Dame. IL2010 is a geographic network
of the census blocks of Illinois. PROTEIN_DB is the protein
databank of an enzyme found in HIV.

To compare different graph sparsification methods, we evalu-
ated the results of four methods: SPS (ours), deterministic spec-
tral sparsification (DSS) [12], and two variants of a traversal-
based sampling method named forest fire (FF) [59]. DSS picks
edges with the largest effective resistances. Note that Eades
et al. [12] also introduced a second variant of spectral sparsifi-
cation, stochastic spectral sparsification (SSS). However, DSS
has been shown to perform better than SSS. Hence, we only use
DSS in our comparison, where the pseudoinverse is computed
using OpenIMAJ [60]. As a probabilistic version of snow-ball
sampling (SBS) [61], FF randomly selects a seed node with in-
cident edges and adjacent nodes getting “burned” away recur-
sively with a probability. In this work, we continue FF sam-
pling until a desired number of edges (FFg) or nodes (FFy) are
reached.

Besides DSS, the only other implementation publicly avail-
able is provided by Spielman, which is based on the effective-
resistance sampling approach [14] and has been recently avail-
able for download [62]. However, such an implementation
needs to set up input parameters carefully for each individual
input graph and thus does not allow effective control of spectral
approximation levels, such as the spectral similarity. In other
words, it is impossible to control the approximation quality or
sparsity of the sparsified graph using a common set of input pa-
rameters. In contrast, our SPS allows precise control of spectral
similarity or graph sparsity, thereby enabling effective trade-
offs between approximation quality and graph complexity. Our
latest extensive experiments carried out on a series of public-
domain graphs show that it is almost impossible to compare the
sparsified graphs obtained by using our SPS method and Spiel-
man’s approach due to the above reasons.
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(a) original (b) after SES

EIGEN

(d) after SES

(c) original

FM3

Fig. 4: Graph drawings of the AIRFOIL data set using the EIGEN ((a) and (b)) and FM3 ((¢) and (d)) layouts. The drawings show the original graph ((a) and (c))

and the reduced graph after SES ((b) and (b)).

(a) level 1 (b) level 2

(c)level 3

(d) level 4 (e) level 5

Fig. 5: Graph drawings of the AIRFOIL data set using the EIGEN layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification

using the SPS algorithm.

For multilevel graph drawing, we compare MNR against
METIS [63], a fast and high-quality multilevel scheme for
graph partitioning. The version of METIS provided by Karypis
and Kumar [63] is used, where we set the number of clusters
METIS should produce to the number of nodes of the equiva-
lent level of MNR. We merge a cluster i into a new node i’ and
add an edge between two new nodes i’ and j’ if there exists an
edge from any node in cluster i to any node in cluster j. In order
to make fair comparisons, we only use the graph after SES as
input for METIS.

The graph data sets experimented are split into two groups:
small data sets (< 15,000 nodes) and big data sets (> 15,000
nodes). This is due to the fact that DSS is not able to handle the
big data sets on the machines we used. Given a data set, after
edge sparsification, we produced five levels of node reduction
for SPS and used the resulting numbers of edges and nodes as
the targets to obtain the sparsification results for DSS (small
data sets only) and the two variants of FF.

5.2. Sparsification Timings

Table 1 reports the timing results in seconds for graph sparsi-
fication. For SPS, FFg, and FFy, we show the computation time
to achieve five different levels of sparsification. As the MNR
step of SPS is an iterative algorithm, the results only show the
time it takes from level i (finer) to level i + 1 (coarser), while
the entries for either FFg or FFy always show the total com-
putation time starting from the original graph. For DSS, only
a single computation time is reported for each data set, as the
algorithm computes the effective resistance for every edge and

then uses a desired number of edges with the highest resistance
values as the result. All the reported timing results were col-
lected from runs on Lenovo NeXtScale nx360 M5 Servers with
dual 12 core Intel Xeon CPU E5-2680 v3 @ 2.50GHz Haswell
processors and 256GB RAM.

Small data sets. The upper part of Table 1 shows that DSS
cannot keep up with the speed of the other algorithms. Even for
the smallest data sets (FACEBOOK and AIRFOIL), it already
takes more than 10 minutes to compute the effective resistance
value for the entire graph. In contrast, SPS and the two FF
methods, always complete the computation under 20 seconds,
with most of the cases below 10 seconds. When comparing SPS
against FFg and FFy, we can see that either FFg or FFy outper-
forms SPS for all the data sets, due to the time spent by SPS on
SES. However, the performance gap decreases with increasing
graph size.

Big data sets. The lower part of Table 1 shows the timing
results for the bigger data sets. Besides the spectral sparsifica-
tion, SPS stays consistent with its low computation time. On
the contrary, the computation time for FFg and FFy drastically
increases along with the input graph’s size. The first three data
sets (VSP, PROTEIN_DB, and MESH), still show a similar tim-
ing performance for all three methods, due to the time spent by
SPS on the SES step. After that, starting with CFD, the dif-
ference in computation time between SPS and the FF methods
increases drastically to more than 10 folds (DBLP and ND),
and about 70 folds (IL2010) at the finest level. At the coarsest
level, however, the difference between SPS and FFg vanishes
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N

(a) level 1 (b) level 2

(c) level 3

p:

X
X
b

(d) level 4 (e) level 5

Fig. 6: Graph drawings of the CFD data set using the t-SNE layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification. Top two
rows: MNR. Bottom two rows: METIS. For either method, the upper or lower row shows the drawing without or with edge bundling.

for DBLP and ND, and decreases to about five folds for IL2010.
At this sparse level, FFy outperforms any method except for the
IL2010 data set. This demonstrates the competitive advantage
of our SPS method in terms of computational scalability.

5.3. Graph Visualization

For graph drawing, we used the following methods: (1)
EIGEN (refer to Section 4.3), (2) t-SNE (refer to Section 4.3),
and (3) fast multipole multilevel method (FM?) [64]. Note
that we leveraged MATLAB for computing EIGEN and t-SNE,
and OGDF [65] for computing FM?. We chose FM?, a force-
directed layout for large graphs, because it has an efficient time
complexity of O(|N|log|N| + |E|) and was recently applied to
graph drawing with spectral sparification [12]. We did not draw
the original graphs, but only their sparsified or sampled ver-
sions, as it is often not possible to draw the full-size graph
due to the computational costs of EIGEN and t-SNE for large
graphs. To circumvent the problem of not drawing the original
big graph, we used the proxy quality metric [46] to evaluate the

quality of the graph’s proxy drawing. Our work demonstrates
the capability of drawing graphs with spectral sparsification on
data sets much larger than recently attempted by Eades et al.
[12]. We implemented FFTEB to reduce visual clutter. Based
on the spectral clustering result, we colored the nodes in differ-
ent clusters with different colors. To allow easier visual com-
parison, for the FF and DSS sampling results, we kept the col-
oring based on the SPS clusters and used black for all the nodes
that do not exist in the SPS results at the same sparsification
level.

Edge sparsification. Figure 4 shows the AIRFOIL data set
before and after SES. Ignoring the flip that occurred, we can see
that in (a) and (b), the graph structure remains the same using
the EIGEN layout, with (b) showing fewer edges. The draw-
ings in (c) and (d) reveal the same using the FM? layout. This
indicates that SES can successfully keep edges relevant for the
graph structure while removing non-essential edges. Addition-
ally, the spectral clusters are also well preserved in the drawing.
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N
(b) level 2

(a) level 1

ol

(c)level 3

(d) level 4

(e) level 5

Fig. 7: Graph drawings of the ND data set using the FM? layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification using the

SPS algorithm.

Comparison across simplification levels. In Figure 5, we
compare the five levels of sparsification using the AIRFOIL
data set using the EIGEN layout. We can see that although
the number of nodes halves at each level of simplification, the
overall graph structure remains the same. Even the coarsest
level (Figure 5 (e)) shows the two big circle-like structures as
the most distinguishable features of this data set. Similarly, the
first two rows of Figure 6 show the graph drawings for the five
sparsification levels of the CFD data set using the t-SNE layout.
Again we can see that the structure from the layout at the fifth
level is preserved through the multilevel eigensolver. For this
much bigger and denser data set, we do not observe an almost
bone-like structure like for the AIRFOIL one at the coarsest
level. However, we can still witness how the number of nodes
in each cluster reduces successively between the neighboring
levels without losing the inter-cluster connectivity. Figure 7
shows the drawing of the ND data set at its five sparsification
levels using the FM? layout. This even bigger graph does not
show much difference at the first four levels as the numbers of
nodes at these four levels remain pretty high. At the last level
(Figure 7 (e)), however, we can see a drastic skew in the lay-
out. Although this represents a strong change in the layout, the
graph features, especially the clusters, still remain easily distin-
guishable. These three examples show how well the multilevel
eigensolver allows using the layout from a coarser level and
map it back to the original one without changing the overall
graph structure.

Comparison across sparsification methods. Figure 8
shows a comparison of the three sparsification methods for the
ND3K (top row) and FACEBOOK (bottom row) data sets. We
use the t-SNE layout and the third level of sparsification. In Fig-
ure 8 (a) and (c), we can see that the two spectrum-based meth-
ods do a better job at preserving the underlying graph structure
compared to the FFg result shown in Figure 8 (b). The drawing
of the FFg method seems rather random and contains a large
number of small node clusters (shown in black) that do not ex-
ist in the SPS result. It is worth noting that the two spectrum-
based methods mostly agree on the chosen nodes, while the FFg
method contains many nodes that do not exist in the SPS vari-
ant. In the second row of Figure 8, we can see that the FFg
method needs more nodes than the other two methods for the
FACEBOOK data set to achieve the desired number of edges.
This shows that spectrum-based methods are better suited to
give an overview of the most important nodes of the graph than

the FFg sampling.

In Figure 9, we show similar comparisons for the PRO-
TEIN_DB and IL2010 data sets using the FM? layout. PRO-
TEIN_DB shows the finest level of sparsification while IL2010
shows the coarsest level. For the PROTEIN_DB data set, we can
see that the layout produced by FFg mixes the clusters together,
resulting in a confusing structure. The layout produced by SPS
shows a much smoother and nicer cluster separation and a more
revealing overall structure. When it comes to the IL2010 data
set, FFg results in a tree-like graph, while SPS shows a more
dispersed structure that looks similar to a flipped version of the
underlying geographical map of the state of Illinois. Captur-
ing and representing features like geographical and geometric
structures underlines the advantages of SPS over random sam-
pling methods.

Figure 10 shows the USPSIONN and MESH data sets us-
ing the EIGEN (top row) and t-SNE (bottom row) layouts.
USPS10NN uses the finest level of sparsification while MESH
uses the coarsest level. For the USPS10NN data set, FFg finds
one cluster instead of multiple ones like the SPS method. Thus
the resulting drawing for the FFg sample is very dense and clut-
tered into one corner (EIGEN) or a hairball (t-SNE) instead of
more evenly distributed like the drawing of SPS. For the MESH
data set, the drawing of the FFg sample again shows tree-like
and hairball-like structures for the EIGEN and t-SNE layouts,
respectively. The drawing of the SPS sample, on the other hand,
highlights the grid-like structure of the underlying mesh in ei-
ther layout. This shows that based on spectral analysis, SPS
can reveal the underlying structures well at both the finest and
coarsest levels.

Comparison of MNR and METIS. In Figure 11, we show a
comparison of the MNR and METIS methods. For both draw-
ings, we use the FM?> layout and keep the cluster labels from
SPS for easier comparison. Besides the different cluster or-
dering, there is no significant visual difference. Nevertheless,
we point out that unlike METIS, MNR preserves the spectrum
of the graph and does not require layout recomputation as we
move from the coarsest level to the finest level. This can be seen
in Figure 6, where we show the t-SNE layout for the five sparsi-
fication levels for MNR and METIS along with edge bundling
disabled and enabled. We can see that the graph structure in the
drawing is fairly consistent across the five levels with MNR,
which is certainly not the case with METIS. Since the t-SNE
layout is based on the leading eigenvectors resulting from SPS,
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Fig. 8: Graph drawings of the different sampling methods for the ND3K (top row) and FACEBOOK (bottom row) data set using the t-SNE layout. All drawings use

the third level of sparsification.

we can claim that MNR better preserves the spectrum of the
underlying graph. Furthermore, the MNR results show many
shorter edges, indicating a well-translated structure from the re-
duced graph into the drawing.

For edge bundling, clearly, it helps to reduce visual clut-
ter, especially for the five levels with METIS where edges are
longer. However, edge bundling introduces ambiguities at the
endpoints of thicker bundles.

Visual Quality of Spectral Graph. We point out that spec-
tral drawing of a graph may not necessarily lead to good vi-
sual quality. The general idea behind spectral graph drawing
is to translate the spectral properties of the graph to the visu-
alization. Prior works on graph drawing using spectral infor-
mation [34, 35, 36, 38, 37] do not necessarily generate visu-
ally pleasing or aesthetic layouts either. Our observations are
that spectral methods are good for drawing grid- or mesh-like
graphs, but could be bad for other graphs. In those cases, the
nodes in the spectral layout could overlap with each other (due
to the great similarity of their spectral properties) or form a lin-
earization pattern.

6. Quantitative Comparison

6.1. Quality Metrics

To evaluate the visual quality of graph samples, Nguyen et
al. [46] introduced the proxy quality metric, which compares
the drawing of a graph sample to the underlying graph in order
to express the faithfulness of the drawing. This metric com-
pares the similarity of each node in the drawing to the node
in the underlying graph using one-to-one correspondence. The
SPS algorithm, however, does not preserve such a correspon-
dence due to the introduction of pseudo-nodes in MNR (refer
to Section 4.2). Therefore, we use the proxy quality metric to
compare the samples after SES but before MNR. We employ
four other statistical metrics to quantify the sampling quality of
MNR.

The proxy quality metric obtains a shape graph from the sam-
pled graph drawing and then compares it to the original graph.
Formally

Qu.4(G,S(G)) = u(G,9(5(G))), (14)

where U is a comparison function that compares the two graphs
and returns a real number, ¢ is a shape graph function, and S(G)
is a sample of the original graph G. Examples of shape graphs
include the o-shape [66], k-nearest neighbor graph (k-NN
graph), Gabriel graph, relative neighborhood graph (RNG),
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(a) SPS

(b) FFg

S
s

(c) SPS (d) FFg

Fig. 9: Graph drawings of the different sampling methods using the FM?> layout. (a) and (b) are for the PROTEIN_DB data set at the finest level of sparsification.

(c) and (d) are for the IL2010 data set at the coarsest level of sparsification.

and Euclidean minimum spanning tree (EMST). The similar-
ity between two graphs of the same vertex set can be measured
efficiently using the mean Jaccard similarity (MJS). In this pa-
per, we used the Gabriel graph as the shape graph function ¢
and the MJS as the comparison function p. The MJS between
S(G) and G is defined as

|NS V
\Nl L INs(g) (v)

veN

NG(V)\
UNG(v)| 7

where Ng(g)(v) and Ng(v) are the neighborhoods of node v in
S(G) and G, respectively. For simplicity, we define Q(SPS),
O(DSS), and Q(FFg) for the MJS between the original graph
and its sample with SPS, DSS, and FFg, respectively.

To evaluate the quality of the MNR samples, we use four of
the five metrics used by Hong et al. [43]:

MIS(S(

s5)

e degree correlation assortativity (DCA) which describes
how well similar nodes are connected to each other [67];

e closeness centrality (CCe) which sums the lengths of the
shortest paths from each node to all other nodes [68];

o clustering coefficient (CCo) which measures how well
nodes cluster together within the graph [69];

e average neighborhood degree (AND) which averages the
degrees of neighboring nodes for each node [70].

We do not use the fifth metric, largest connected component
(LCC), as SPS and FF always yield a graph with a single con-
nected component. We compare the metric on a given sam-
ple and the original graph using the Kolmogorov-Smirnov (KS)
test. The KS-test computes the difference between two proba-
bility distributions and describes it as a result between 0 (same)
and 1 (completely dissimilar).

6.2. Comparison Results

Proxy quality metric. In Table 2, we report the averaged
MIS ratios Q(SPS)/Q(DSS) and Q(SPS)/Q(FFg) for the com-
parison between SPS and DSS, as well as SPS and FFg re-
spectively. Note that we only use FFg here, as we only com-
pare the results of SES, an edge-based sparsification technique.
We use the t-SNE, EIGEN, and FM? layouts for this compari-
son. The ratio values above 1.0 favor SPS over the comparing

method. We can see that SPS generally achieves a better qual-
ity than DSS and FFg, with the exception of the AIRFOIL and
USPS10NN data sets when compared to FFg. This is mainly
because for these two data sets, FFg sampling vastly outper-
forms SPS sampling with the t-SNE and FM? layouts. Further
worth mentioning are the high values of Q(SPS)/Q(DSS) for
ND3K and Q(SPS)/Q(FFg) for MESH. These are due to the
fact that SPS sampling vastly outperforms the sampling being
compared across all three layouts. With these results, we con-
clude that the SES step of SPS preserves the structure of the
original graph better than DSS and FFg.

Sampling quality metrics. Figure 12 shows the KS-test re-
sults between the original graph and a given sample for the
four different metrics (lower KS-test values are better). In the
charts, we can see that SPS (either SPSggs or SPSory) generally
outperforms the FFg sampling methods, but there is no clear
winner between SPS and DSS. METIS behaves very similar to
SPSsgs in terms of DCA and CCe, while it performs better in
terms of CCo and worse in terms of AND. While DCA remains
mostly stable among all methods and sample sizes, the other
metrics show interesting trends. CCe yields worse results for
SPSsgs than SPSogr;. This means that the shortest path lengths
after MNR are closer to the ones of the original graph than to
those after SES.

For the sake of argument, consider the average of the short-
est path lengths for each node to all other nodes. If we com-
pare the distribution of those average shortest path lengths (1)
between the sampled graph and the original graph and (2) be-
tween the sampled graph and the graph after SES, then the dif-
ference between the sampled graph and the graph after SES will
be smaller. This is because SES takes a graph as input and pro-
duces another graph that is similar to a spanning tree of the
original graph. Evaluating the average of the shortest paths (for
each node) in a spanning tree will be quite different from using
the original graph.

Now if we consider the distribution of the average of shortest
paths in a graph after applying the MNR procedure. As shown
in Figure 3 (a), MNR reduces the graph through node aggre-
gation: a pseudo-node at level i + 1 represents multiple nodes
at level i. Any edge between two nodes which are both repre-
sented by the same pseudo-node is removed. The pseudo-node
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Fig. 10: Graph drawings of the different sampling methods using the EIGEN (top row) and t-SNE (bottom row) layouts. (a) and (b) are for the USPS10NN data set

at the finest level of sparsification. (c) and (d) are for the MESH data set at the coarsest level of sparsification.

Data Set Edges after SES O(SPS)/Q(FFg) | Q(SPS)/Q(DSS) Data Set Edges after SES O(SPS)/Q(FFg)
FACEBOOK 7,872 1.03 2.84 VSP 42,752 2.30
AIRFOIL 4,934 0.72 3.19 PROTEIN_DB 70,491 2.49
ND3K 16,745 1.73 50.33 MESH 45,261 66.71
USPST0NN 12,900 0.89 2.96 CFD 106,879 1.64
MYCIELSKIAN14 14,060 1.34 * DBLP 358,226 6.25
APPU 16,366 2.34 3.65 ND 388,436 2.85

1L2010 504,465 7.60

Table 2: Averaged results over three layout algorithms of the quantitative comparison using MJS. Left table: small graphs. Right table: big graphs. The columns
show the number of edges after SES and the quality ratios (higher is better). The * denotes that DSS does not achieve a MJS within the machine precision, i.e., it is

very close to zero.

becomes incident to any edge that connects two nodes of which
only one of them is represented by the pseudo-node. As we ag-
gregate nodes together and take the edges from all their original
nodes, the graph at a coarser level is less similar to a spanning
tree of the original graph. The impact of this is the opposite
of what SES has on a graph. Therefore, comparing closeness
centrality after MNR with respect to the original graph shows
more similarity than that after SES.

For CCo, we see that typically after the third level of MNR,
the SPSsgs and SPSog; lines cross. The reason for this is ana-
log to what is discussed previously. The difference is that we
consider between-cluster and within-cluster edges in the graph.
Since MNR is applied after SES, it uses a spanning tree as in-
put. Therefore at the finer levels, it is more like a spanning
tree and less like the original graph, while at the coarser level,
MNR produces a graph that is less like a spanning tree. The
worse score for METIS in terms of CCo is due to the number of
edges. Over all data sets and all simplification levels, METIS
produces an average of 13% (20-70% for denser graphs, e.g.,
ND and VSP, and less than 10% for sparser graphs, e.g., AIR-
FOIL, 1IL2010) more edges compared to MNR. As the input

graph for this comparison is the graph after SES, i.e., a very
sparse graph, the denser output can translate into a different
CCo.

For AND, we can see that SPSsgs and SPSog; trend toward
similar values the more iterations of SPS we run. This is be-
cause, with a more reduced graph, there are only the impor-
tant nodes and their neighborhood relationships left to repre-
sent the original (sparsified) graph. Interestingly, METIS has
an AND value more similar to the graph after SES than MNR.
This shows that our MNR removes edges more aggressively to
preserve spectral properties.

7. Conclusions and Future Work

We have presented SPS, an effective solution for spectrum-
preserving sparsification of big graphs. The innovation of SPS
is that for the first time, it combines spectral graph sparsification
to achieve scalable visualization of large graphs while allowing
for spectral clustering analysis at the same time. Our SPS al-
gorithm includes two steps: spectral edge sparsification (SES)
followed by multilevel node reduction (MNR). The SES algo-
rithm is three to four orders of magnitude faster than the state-
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(a) level 1

(b) level 2

(c)level 3

(d) level 4 (e) level 5

Fig. 11: Graph drawings of the MESH data set using the FM? layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification. Top

row: MNR. Bottom row: METIS.

of-the-art DSS algorithm. The dramatic gain in speed perfor-
mance enables us to handle edge sparsification and subsequent
node reduction on big graphs with hundreds of thousands of
nodes and millions of edges, which was previously impossible.
Furthermore, using different graph drawing layouts (EIGEN/t-
SNE, FM3), we find that in general, SPS outperforms DSS and
FF under a proxy quality metric (for the SES step) and other sta-
tistical properties of the graphs (for the MNR step). We demon-
strate the effectiveness of our approach using results gathered
from a number of graph data sets of varying sizes and charac-
teristics. In the future, we will integrate advanced user inter-
actions (such as focus+context visualization) and evaluate this
graph visualization and exploration framework through a for-
mal user study.
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