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A B S T R A C T
We present a novel spectrum-preserving sparsification algorithm for visualizing big
graph data. Although spectral methods have many advantages, the high memory and
computation costs due to the involved Laplacian eigenvalue problems could immedi-
ately hinder their applications in big graph analytics. In this paper, we introduce a
practically efficient, nearly-linear time spectral sparsification algorithm for tackling
real-world big graph data. Besides spectral sparsification, we further propose a node
reduction scheme based on intrinsic spectral graph properties to allow more aggressive,
level-of-detail simplification. To enable effective visual exploration of the resulting
spectrally sparsified graphs, we implement spectral clustering and edge bundling. Our
framework does not depend on a particular graph layout and can be integrated into dif-
ferent graph drawing algorithms. We experiment with publicly available graph data of
different sizes and characteristics to demonstrate the efficiency and effectiveness of our
approach. To further verify our solution, we quantitatively compare our method against
different graph simplification solutions using a proxy quality metric and statistical prop-
erties of the graphs.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Spectral methods are playing an increasingly important role2

in many graph-based applications [1], such as scientific com-3

puting [2], numerical optimization [3], image processing [4],4

data mining [5], machine learning [6], and graph analytics [7].5

For example, classical spectral clustering algorithms leverage6

the eigenvectors corresponding to a few smallest nontrivial (i.e.,7

nonzero) eigenvalues of Laplacians for low-dimensional spec-8

tral graph embedding, which is followed by a k-means cluster-9

ing procedure that usually leads to high-quality clustering re-10

sults. Although spectral methods have many advantages, such11

as easy implementation, good solution quality, and rigorous the-12

oretical foundations [8, 9, 10], the high memory and compu-13

tation cost due to the involved Laplacian eigenvalue problems14

could hinder their applications in many emerging big graph an-15

alytical tasks [11, 7, 12].16

Graph sparsification refers to the approximation of a large17

graph using a sparse graph. Compared to the original graphs, 18

sparsified graphs provide a number of advantages for subse- 19

quent analysis and visualization. For example, sparsified trans- 20

portation networks allow for developing more scalable navi- 21

gation or routing algorithms for large transportation systems; 22

sparsified social networks enable more effective understanding 23

and prediction of information propagation in large social net- 24

works; and sparsified matrices can be leveraged to efficiently 25

compute the solution of a large linear system of equations. 26

Recent research efforts on spectral graph sparsification allow 27

computing nearly-linear-sized subgraphs or sparsifiers (i.e., the 28

number of edges is similar to the number of nodes in the sub- 29

graph) that can robustly preserve the spectrum (i.e., eigenval- 30

ues and eigenvectors) of the original graph Laplacian. This 31

leads to a series of “theoretically nearly-linear-time” numerical 32

and graph algorithms for solving sparse matrices, graph-based 33

semi-supervised learning, spectral graph clustering, and max- 34

http://www.sciencedirect.com
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flow problems [13, 14, 15, 16, 17, 18, 19, 3, 2]. However, the1

long-standing question of whether there exists a practically effi-2

cient spectral graph sparsification algorithm for tackling general3

large-scale, real-world graphs still remains. For instance, the4

state-of-the-art nearly-linear time spectral sparsification meth-5

ods leverage Johnson-Lindenstrauss Lemma to compute effec-6

tive resistances for the edge sampling procedure [14]. This7

requires solving the original graph Laplacian multiple times,8

thus making them impractical for handling real-world big graph9

problems.10

In this paper, we present spectrum-preserving sparsification11

(SPS), a spectrum-preserving framework for sparsification and12

visualization of big graph data. For sparsification, we real-13

ize the nearly-linear time, yet practically scalable spectrum-14

preserving big graph sparsification by leveraging a general-15

ized eigenvalue perturbation analysis framework. Our spectral16

graph sparsification framework will guarantee the preservation17

of the key eigenvalues and eigenvectors within nearly-linear-18

sized spectrally-similar graph sparsifiers, achieving more effi-19

cient and effective compression of arbitrarily complex big graph20

data. Furthermore, based on intrinsic spectral graph properties,21

we propose a multilevel scheme for node reduction at varying22

levels of detail, enabling interactive hierarchical visualization23

of big graph data at runtime. For visualization, we develop24

a framework that fluidly integrates edge and node reduction,25

spectral clustering, and level-of-detail exploration to support26

adaptive visual exploration of big graph data. This provides27

users previously unavailable capabilities to navigate the large28

graphs toward effective visual exploration and reasoning.29

To demonstrate the effectiveness of our approach, we con-30

duct extensive experiments using large graphs publicly avail-31

able at the Stanford Large Network Dataset Collection [20] and32

the University of Florida Sparse Matrix Collection [21]. The33

Stanford collection includes data sets from various applications34

(e.g., social networks, communication networks, citation net-35

works, collaboration networks, road networks) with data gath-36

ered from different platforms (e.g., Amazon, Flickr, Reddit,37

Twitter, Wikipedia). The Florida collection includes a growing38

set of sparse matrices that arise in real applications such as so-39

cial networks, web document networks, and geometric meshes.40

Graph data sets of different characteristics are selected to show-41

case the scalability and robustness of our spectral graph sparsi-42

fication and visualization techniques. In summary, the contri-43

butions of our work are the following:44

• First, we present an efficient spectral edge sparsification45

(SES) algorithm that preserves the most important spectral46

and structural properties within ultra-sparse graph sparsi-47

fiers, achieving superior speed performance compared to48

the state-of-the-art algorithms.49

• Second, we propose a multilevel node reduction (MNR)50

scheme to further simplify the spectrally-sparsified graph,51

enabling level-of-detail exploration and speeding up the52

subsequent layout computation.53

• Third, we integrate spectral clustering and edge bundling54

into graph drawing for effective visualization and explo-55

ration of the underlying big graph data.56

• Fourth, we demonstrate the effectiveness of our solution57

against other graph simplification solutions through an ob- 58

jective evaluation using a proxy quality metric derived 59

from the graphs and statistical properties of the graphs. 60

2. Related Work 61

2.1. Spectral Methods for Graph Application 62

To address the computational bottleneck of spectral methods 63

in graph-related applications, recent research efforts aimed to 64

reduce the complexity of the original graph Laplacian through 65

various kinds of approximations. For example, k-nearest neigh- 66

bor (kNN) graphs maintain k nearest neighbors for each node, 67

whereas ε-neighborhood graphs keep the neighbors within the 68

range of distance ε [22]. Williams and Seeger [23] introduced a 69

sampling-based approach for affinity matrix approximation us- 70

ing the Nyström method, while its error analysis has been pro- 71

posed in [24]. Chen and Cai [25] presented a landmark-based 72

method for representing the original data points for large-scale 73

spectral clustering. Yang et al. [26] proposed a general frame- 74

work for fast approximate spectral clustering by collapsing the 75

original data points into a small number of centroids using k- 76

means or random-projection trees. Liu et al. [27] introduced a 77

method for compressing the original graph into a sparse bipar- 78

tite graph by generating a small number of “supernodes”. Satu- 79

luri et al. [28] proposed a graph sparsification method for scal- 80

able clustering using a simple similarity-based heuristic. How- 81

ever, existing graph approximation methods cannot efficiently 82

and robustly preserve the spectrums of the original graphs, and 83

thus may lead to degraded or even misleading results. Re- 84

cently, spectral perturbation analysis was applied to spectral 85

graph sparsification and reduction in order to reduce the graph 86

to nearly-linear-sized with high spectral similarity [29, 30, 31]. 87

This progress makes it possible to develop much faster algo- 88

rithms such as the symmetric diagonally dominant (SDD) ma- 89

trix solvers [32] as well as spectral graph partitioning algo- 90

rithm [30]. Note that these recent works on graph sparsifica- 91

tion [29, 31, 32] only address spectral graph simplification but 92

not spectral graph drawing using a multilevel approach. To 93

our best knowledge, the integration of spectral sparsification, 94

multi-level spectral clustering, graph layouts, and state-of-the- 95

art edge bundling has not been attempted and thus poses a valid 96

scientific contribution. 97

2.2. Spectral Graph Drawing 98

Among the spectral methods for graph drawing, the eigen- 99

projection method uses the first few nontrivial eigenvectors of 100

the graph Laplacian matrix or the top dominant eigenvectors 101

of the adjacency matrix. Hall [33] used the eigenvectors of 102

the Laplacian to embed graph vertices in a space of arbitrary 103

dimension. The entries of the k eigenvectors related to the 104

smallest nonzero eigenvalues are used as a node’s coordinates. 105

This is referred to as k-dimensional graph spectral embedding. 106

Pisanski and Shawe-Taylor [34] took Hall’s method to gener- 107

ate pleasing drawings of symmetrical graphs such as fullerene 108

molecules in chemistry. Brandes and Willhalm [35] used eigen- 109

vectors of a modified Laplacian to draw bibliographic networks. 110

Note that for regular graphs (where every node has the same 111

degree), the eigenvectors of the Laplacian equal those of the 112
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adjacency matrix, but in a reversed order. This is not the case1

for non-regular graphs. Using the Laplacian is advantageous2

as it is rooted in a more solid theoretical basis and gives better3

results than those obtained using the adjacency matrix.4

Koren et al. [36, 37] proposed algebraic multigrid compu-5

tation of eigenvectors (ACE), an extremely fast algorithm for6

drawing very large graphs. ACE identifies an optimal drawing7

of the graph by minimizing a quadratic energy function, which8

is expressed as a general eigenvalue problem and efficiently9

solved using fast algebraic multigrid implementation. Harel and10

Koren [38, 39] designed high-dimensional embedding (HDE)11

for aesthetic drawing of undirected graphs. HDE first embeds12

the graph in a very high dimension and then projects it into the13

2D plane using principal component analysis. This algorithm is14

fast, exhibits the graph in various dimensions, and supports in-15

teractive exploration of large graphs. Koren [37, 40] presented a16

modified approach that uses degree-normalized eigenvectors to17

achieve aesthetic graph layouts. The degree normalized eigen-18

vectors adjust the edge weights to reflect their relative impor-19

tance in the related local scale. As such, the modified solu-20

tion can allocate each cluster an adequate area in the drawing21

and avoid drawing extremely dense clusters. Hu et al. [7] de-22

signed a spectral graph drawing algorithm that includes node23

projection, node dispersion, and sphere warping. They first24

projected nodes onto a k-dimensional sphere, then dispersed25

nodes around the sphere’s surface to separate apart densely con-26

nected clustered nodes, and finally warped the k-dimensional27

sphere’s surface to a 2D space using multidimensional scaling.28

Their algorithm can clearly show the topology and community29

structures of the graph.30

Most spectrum-based graph visualization techniques [34, 35,31

36, 38, 37] only place their focus on graph layout. Besides32

drawing the graph using spectral sparsification, we integrate33

spectral clustering and edge bundling to help users better ex-34

amine the graph for effective visual understanding. This is par-35

ticularly important when handling big graph data as visual un-36

derstanding of the complex and diverse graph relationships is37

the key.38

2.3. Quality Metrics for Graph Sampling39

An important question for graph sampling is how to evaluate40

the quality of the simplified graph. To evaluate the similarity41

between the original and sampled graphs, Hu and Lau [41] em-42

ployed three metrics: (1) total variation distance which mea-43

sures all the difference between two distributions; (2) Kullback-44

Leibler divergence which captures the difference between the45

two distributions accounting for the bulk of the distributions;46

and (3) Kolmogorov-Smirnov statistic which captures the maxi-47

mum vertical distance of the cumulative distribution function48

of the two distributions. Zhang et al. [42] computed seven49

statistical properties, namely, degree distribution, betweenness50

centrality distribution, clustering coefficient distribution, aver-51

age neighbor degree distribution, degree centrality distribution,52

edge betweenness centrality distribution, and hop distribution,53

to quantitatively compare different graph sampling methods.54

Recently, Hong et al. [43] used five metrics, namely, degree55

correlation assortativity, closeness centrality, clustering coeffi-56

cient, largest connected component, and average neighbor de-57

gree, to evaluate their graph sampling methods, which improve 58

random-based sampling by considering the block-cut tree. 59

A problem with the above statistical metrics and properties 60

is that they are not well-suited to capture the visual quality of 61

the corresponding graph layout. This is especially the case for 62

large social and biological networks where nodes and edges 63

could easily become “blobs” in the drawing of dense graphs 64

with a few hundred vertices or sparse graphs with a few thou- 65

sand vertices. Wu et al. [44] pointed out that quality metrics 66

based on statistical or topological properties do not translate to 67

visual quality. Their study shows that three visual factors sig- 68

nificantly influence the representativeness of sampled graphs: 69

cluster quality, high degree nodes, and coverage area. Eades et 70

al. [45] proposed a shape-based quality metric for large graph 71

visualization by treating the quality of a drawing D of a graph 72

G as the similarity between G and the “shape” of the set of ver- 73

tex locations of D. Nguyen et al. [46] generalized this metric 74

to compare proxy graphs using the shape-based quality met- 75

ric. In this paper, we use this so-called proxy quality metric 76

to evaluate the graph after spectral edge sparsification (where 77

only edges are removed) and employ statistical metrics to fur- 78

ther evaluate the graph after multilevel node reduction (where 79

nodes are aggregated to form pseudo-nodes). 80

3. Background 81

Consider a graph G = (N,E,w) where N and E are the node
set and edge set respectively, and w is a weight function that
assigns positive weights to all edges. The symmetric diagonally
dominant Laplacian matrix of G can be constructed as follows

LG(ni,n j) =


−wi j if ei j ∈ E,

∑eik∈E wik if ni = n j,

0 otherwise.
(1)

where ni is a node, ei j is the edge between ni and n j, and
wi j is the weight of ei j. Graph sparsification aims to find
G′ = (N,E ′,w′), a subgraph or sparsifier of G that maintains
the same set of nodes but fewer edges. To tell if two graphs
have similar spectra, we usually use the following Laplacian
quadratic form

xT LGx = ∑
ei j∈E

wi j(x(ni)−x(n j))
2, (2)

where x ∈ RN is a real vector. Two graphs G and G′ are
σ−spectrally similar if the following condition holds for all
real vectors x ∈ RN

xT LG′x
σ

≤ xT LGx≤ σxT LG′x. (3)

Defining the relative condition number to be κ(LG,LG′) =
λmax/λmin, where λmax and λmin are the largest and smallest
nonzero generalized eigenvalues satisfying

LGu = λLG′u, (4)

where u is the generalized eigenvector of λ . It can be further 82

shown that κ(LG,LG′)≤ σ2, which indicates that a smaller rel- 83

ative condition number or σ2 corresponds to a higher spectral 84

similarity. 85
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Layout Computation

Spectral Clustering Multilevel Eigensolver Graph Drawing

Input Graph
Spectral Edge Sparsification

(SES)

Multilevel Node Reduction

(MNR)
Eigenvector Computation

Fig. 1: The diagram of our SPS framework. Layout computation could use the eigenvector-based layout, t-SNE-based layout, or any other graph drawing algorithm.

The state-of-the-art nearly-linear time spectral sparsifica-1

tion algorithm leverages an edge sampling scheme that sets2

sampling probabilities proportional to edge effective resis-3

tances [14]. However, it becomes a chicken-and-egg problem4

since even approximately computing edge effective resistances5

by leveraging the Johnson-Lindenstrauss Lemma still requires6

solving the original graph Laplacian matrix log |N| times and7

thus can be extremely expensive for very large graphs, not to8

mention directly computing the Moore-Penrose pseudo inverse9

of graph Laplacians. For example, a recent work on graph10

drawing using spectral sparsification shows the major computa-11

tional bottleneck is due to estimating edge effective resistances12

(by computing the Moore-Penrose pseudo inverse): even for13

a relatively small graph with |N| = 7,885, |E| = 427,406, the14

spectral sparsification procedure can take several hours to com-15

plete [12].16

4. Our Approach17

Figure 1 shows an overview of our SPS framework. Given18

the input graph, we first perform SES (Section 4.1) to reduce19

the number of edges. Next, based on the edge sparsification20

results, we perform MNR (Section 4.2) to further produce mul-21

tiple levels of node simplification. This leads to a fairly small22

graph that preserves spectrally-important nodes and edges, al-23

lowing us to compute the eigenvectors of the graph Laplacian in24

an efficient manner. We then use these eigenvectors as input for25

dimensionality reduction using t-distributed stochastic neighbor26

embedding (t-SNE) [47, 48] and for spectral clustering using k-27

means. For spectral graph drawing (Section 4.3), we can layout28

the most simplified level of the graph based on the eigenvectors,29

t-SNE, and clustering results, where node positions are deter-30

mined by either the leading eigenvectors or t-SNE projection31

and node colors are determined by spectral cluster labels. To32

obtain the graph drawing at a finer level, we can compute posi-33

tions for newly-added nodes based on a multilevel eigensolver34

without recomputing the layout. Note that our SPS framework35

can readily work with other graph drawing algorithms by re-36

placing the layout based on eigenvectors, t-SNE, or with an-37

other one.38

4.1. Spectral Edge Sparsification (SES)39

We outline the key steps of the proposed method for spec-40

tral graph sparsification of a given undirected graphs as fol-41

lows: (1) low-stretch spanning tree extraction based on the orig-42

inal graph [49, 50]; (2) spectral embedding and criticality rank-43

ing of off-tree edges using approximate generalized eigenvec-44

tors leveraging the recent spectral perturbation analysis frame-45

work [29]; (3) subgraph densification by recovering a small por- 46

tion of the most “spectrally critical” off-tree edges to the span- 47

ning tree; and (4) subgraph edge weight scaling via stochastic 48

gradient descent (SGD) optimization. 49

In the following, we assume that G= (N,E,w) is a weighted, 50

undirected, and connected graph, whereas G′ = (N,E ′,w′) is 51

its graph sparsifier. The descending generalized eigenvalues of 52

L+
G′LG are denoted by λmax = λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0, where 53

L+
G′ denotes the Moore-Penrose pseudoinverse of LG. 54

Spectral distortion of spanning-tree sparsifiers. Spiel-
man [51] showed that there are not too many large generalized
eigenvalues for spanning tree sparsifiers: L+

G′LG has at most k
generalized eigenvalues greater than stG′(G)/k, where stG′(G)
is the total stretch of the spanning-tree subgraph G′ with respect
to the original graph G that can be considered as the spectral dis-
tortion due to the spanning tree approximation. Recent research
shows that every graph has a low-stretch spanning tree (LSST)
such that the total stretch stG′(G) can be bounded by [15]

O(|E| log |N| log log |N|)≥ stG′(G)= tr(L+
G′LG)=∑

|N|
i=1 λi≥σ2,

(5)
where tr(L+

G′LG) is the trace of L+
G′LG. As a result, it is possi- 55

ble to construct an ultra-sparse yet spectrally similar sparsifier 56

by recovering only a small portion of spectrally critical off- 57

tree edges to the spanning tree. For example, σ -similar spectral 58

sparsifiers with O(|E| log |N| log log |N|/σ2) off-tree edges can 59

be constructed in nearly linear time [29]. 60

Edge embedding with generalized eigenvectors. To iden-
tify the off-tree edges that should be recovered to the spanning
tree to dramatically reduce spectral distortion (the total stretch),
Feng [29] introduced an off-tree edge embedding scheme using
generalized eigenvectors, which is based on the following spec-
tral perturbation framework. Considering the following first-
order eigenvalue perturbation problem

LG(ui +δui) = (λi +δλi)(LG′ +δLG′)(ui +δui), (6)

where a perturbation δLG′ is applied to LG′ , which results in
perturbations in generalized eigenvalues λi+δλi and eigenvec-
tors ui + δui for i = 1, . . . ,n, respectively. The first-order per-
turbation analysis shows that [29]

−δλi

λi
= uT

i δLG′ui, (7)

which indicates that the reduction of λi is proportional to the 61

Laplacian quadratic form of δLG′ with the generalized eigen- 62

vector ui. Consequently, if the eigenvector u1 is applied, a sig- 63

nificant reduction of the largest generalized eigenvalue λ1 can 64
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be achieved. Once all large generalized eigenvalues are dra-1

matically reduced, the subgraph G′ can serve as a very good2

spectral sparsifier of G.3

To achieve effective reductions of large generalized eigenval-4

ues, we exploit the following two key steps: (1) recover a small5

portion of most spectrally-critical off-tree edges into the span-6

ning tree; (2) scale up edge weights in the subgraph G′ to further7

improve the approximation. Additionally, the scaling factor ob-8

tained for each edge can be treated as its spectral importance in9

the subgraph: a larger scaling factor may indicate a more im-10

portant role that the edge plays in mimicking the original graph.11

Subgraph densification. If we denote e jk ∈ RN the vector
with only the j-th element being 1, the k-th element being −1,
and others being 0, then the eigenvalue perturbation due to the
inclusion of all off-tree edges can be expressed as follows

−δλi

λi
=uT

i δLG′,maxui = ∑
e jk∈E\E ′

w jk
(
eT

jkui
)2

= ∑
e jk∈E\E ′

H jk(ui),

(8)
where δLG′,max = LG −LG′ denotes the Laplacian including12

all off-tree edges, H jk(ui) denotes the Joule heat (power dissi-13

pation) of edge e jk by considering the undirected graph G as14

a resistor network and ui as the voltage vector. Equation (8)15

can also be considered as a spectral off-tree edge embedding16

scheme using generalized eigenvectors. It indicates that when17

using the first few dominant generalized eigenvectors for off-18

tree edge embedding, the top few generalized eigenvalues can19

be dramatically reduced by recovering the most spectrally-20

critical off-tree edges back to the spanning tree. In practice,21

we can leverage approximate eigenvectors computed via a few22

steps of generalized power iterations for good efficiency [29]:23

• Step 1: Compute an approximate generalized eigenvector
ht from an initial random vector h0 via t-step generalized
power iterations

ht =
(
L+

G′LG
)t h0 =

(
L+

G′LG
)t
|N|

∑
i=1

αiui =
|N|

∑
i=1

αiλ
t
i ui; (9)

• Step 2: Compute the Joule heat of all off-tree edges with
ht by

hT
t δLG′,maxht = ∑

|N|
i=1 (αiλ

t
i )

2(λi−1)

= ∑e jk∈E\E ′ w jk ∑
|N|
i=1 α2

i λ 2t
i

(
eT

jkui

)2
= ∑e jk∈E\E ′H jk(ht).

(10)

Similar to Equation (8), Equation (10) also allows embedding24

generalized eigenvalues into the Laplacian quadratic form of25

each off-tree edge and thus ranking off-tree edges according26

to their spectral criticality levels: recovering the off-tree edges27

with the largest edge Joule heat values will most significantly28

decrease the largest generalized eigenvalues. In practice, using29

a small number (e.g., 0 < t < 3) of power iterations suffices for30

the embedding purpose.31

Subgraph edge scaling via SGD iterations. Once a suf-
ficient number (O(|E| log |N| log log |N|/σ2)) of off-tree edges
are selected and recovered to the spanning tree, the subgraph

can already well mimic the original graph by approximating its
first few Laplacian eigenvectors. To further mitigate the accu-
racy loss due to the missing edges in the subgraph, we introduce
a novel edge scaling procedure that scales up edge weights in
the subgraph so that λ1 can be substantially reduced. To this
end, we express the dominant eigenvalue perturbation δλ1 in
terms of edge weights perturbation δw as

−δλ1

λ1
= uT

1 δLG′u1 = ∑
e jk∈E ′

δw jk
(
eT

jku1
)2
, (11)

which directly gives the sensitivity of λ1 with respect to each
edge weight w jk as

δλ1

δw jk
=−λ1

(
eT

jku1
)2 ≈−λ1

(
eT

jkht
)2
. (12)

With the weight sensitivity expressed in Equation (12), SGD 32

iterations can be performed for scaling up edge weights: dur- 33

ing each iteration of SGD, a random vector is first generated 34

and used to compute the approximate dominant eigenvector (ht ) 35

using Equation (9) as well as edge weight sensitivities using 36

Equation (12) for the following edge scaling step; when the 37

edge weight sensitivities are small enough, we can terminate 38

the SGD iterations. Since edge weights in G′ will be updated 39

during each SGD iteration, we need to solve a new subgraph 40

Laplacian matrix LG′ for updating the approximate eigenvec- 41

tor u1 in Equation (12). This can be achieved by leverag- 42

ing recent graph-theoretic algebraic multigrid algorithms that 43

have shown highly scalable performance for solving large graph 44

Laplacians [52, 53, 32]. Since the subgraph structure remains 45

unchanged with only edge weights adjusted during the SGD it- 46

erations, it is also possible to incrementally update graph Lapla- 47

cian solvers for achieving better computation efficiency. 48

4.2. Multilevel Node Reduction (MNR) 49

To generate the reduced graph based on the original graph (in
our case, the graph after SES), our MNR framework applies a
spectrum-preserving node aggregation scheme where the node
affinity metric is considered [31]. Given neighboring nodes p
and q, the node affinity between them is defined as [53, 54]

ap,q =
‖(Xp,Xq)‖2

(Xp,Xp)(Xq,Xq)
, (Xp,Xq) =

K

∑
k=1

(
x(k)p ·x(k)q

)
, (13)

where X = (x(1), . . . ,x(K)) is a vector set with K test vec- 50

tors which are computed by applying a few Gauss-Seidel (GS) 51

relaxations to the linear system of equations LGx(i) = 0 for 52

i = 1, . . . ,K, starting with K random vectors that are orthogonal 53

to the all-one vector 1. If we consider x̃(i) to be the approximate 54

solution of LGx(i) = 0 after a few GS relaxations, and x(i) to be 55

the true solution, the error between x̃(i) and x(i) can be expressed 56

as e(i)s = x(i)− x̃(i). Due to the smoothing property of GS relax- 57

ation, e(i)s will only contain the smooth (low-frequency) modes 58

of the initial error, while the oscillatory (high-frequency) modes 59

of the initial error will be effectively removed [55]. Based on 60

these K smoothed vectors in X, we are able to embed each node 61
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into a K-dimensional space such that nodes p and q are con-1

sidered spectrally-close to each other if their low-dimensional2

embedding vectors, xp ∈ RK and xq ∈ RK , are highly corre-3

lated. Thus, spectrally-similar nodes p and q can be aggregated4

together for node reduction purpose.5

level 1 (finest)

level 2 (coarser)

level r (coarsest)

Eigensolver

Eigenvector Mapping

Eigenvector Smoothing

No

Yes

Vector Orthogonalization

Finest Level?

Final Eigenvectors

Spectrally Reduced Graph

Multilevel EigensolverMultilevel Node

Reduction

Fig. 2: The framework of multilevel node reduction and multilevel eigensolver.

The node affinity metric ap,q also reflects the distance or6

strength of the connection between nodes p and q. For example,7

the algebraic distance dp,q can be expressed by dp,q = 1−ap,q,8

which can be used to represent the geometric distance in grid-9

structure graphs. Nodes with large affinity or small algebraic10

distance should be aggregated together to form the nodes in11

the reduced graph. Based on this node aggregation scheme,12

we can generate the next coarser-level graph by applying it to13

the original graph. To further reduce its size, we leverage a14

multilevel procedure by repeatedly applying the above node re-15

duction procedure to the current-level graph until the desired16

size of the reduced graph at the coarsest level is reached, as17

shown in Figure 2. Once the node aggregation scheme for18

each level is determined, we can define the graph mapping op-19

erators Hi+1
i (fine-to-coarse) and Hi

i+1 (coarse-to-fine), which20

can be further leveraged for constructing the spectrally-reduced21

graph. For example, given the graph Laplacian LG and the de-22

fined mapping operators from the finest level 1 to the coars-23

est level r, we can always uniquely compute the final reduced24

Laplacian by LR = HR
GLGHG

R , where HR
G = H2

1H3
2 · · ·Hr

r−1 and25

HG
R = H1

2H2
3 · · ·Hr−1

r .26

The computational cost of node reduction scheme based on27

the above spectral node affinities is linear. This allows us to28

preserve the spectral properties of the original graph in a highly29

efficient and effective manner: the node aggregation scheme30

will preserve the smooth components in the first few Laplacian31

eigenvectors well, which is key to preserving the first few eigen-32

values and eigenvectors of the original graph Laplacian in the33

reduced graphs.34

Since only the first few nontrivial eigenvectors of the orig-35

inal graph Laplacian are needed for graph visualization tasks,36

they can efficiently and effectively be calculated by leveraging37

a multilevel eigensolver procedure [31], as shown in Figure 2.38

Instead of directly solving the eigenvalue problems on the orig-39

inal graph G, we will first reduce G into a much smaller graph 40

R such that the eigenvectors of the reduced graph can be easily 41

calculated. Once we get the eigenvectors of graph R, we will 42

map them back to next finer level using the mapping operators 43

defined during the MNR process. To further improve the solu- 44

tion accuracy of the mapped eigenvectors, a weighted-Jacobi- 45

iteration-based eigenvectors smoothing (refinement) scheme is 46

applied. The eigenvector mapping and smoothing procedures 47

are recursively applied until the finest level graph is reached. 48

Finally, all the eigenvectors for the finest level will be orthonor- 49

malized using the Gram-Schmidt process. 50

level 1

level 2

level 3

level 1

level 2

level 3

(a) (b)

Fig. 3: Comparison of different node reduction processes. (a) shows the node
reduction process taken by our SPS (or METIS) method where double-circled
nodes are pseudo-nodes newly created. (b) shows the node reduction process
taken by graph sampling methods (such as DSS and FF, refer to Section 5.1).

Note that the MNR process taken by SPS generates pseudo- 51

nodes that are not in the node set of the original graph. As 52

shown in Figure 3 (a), at each level of node reduction, our 53

process essentially aggregates nodes into groups and creates a 54

pseudo-node to represent each group. On the contrary, other 55

node reduction methods do not create pseudo-nodes. As shown 56

in Figure 3 (b), at each level of simplification, they simply sam- 57

ple the graph and output a subset of nodes from the node set of 58

the original graph. In this process, no pseudo-nodes are created. 59

4.3. Spectral Graph Drawing 60

SPS is a practically efficient solution for spectrum-preserving 61

graph sparsification and Laplacian eigenvalue computation. 62

This enables us to tackle much bigger graphs previously impos- 63

sible by creating spectrally-simplified graphs at various levels 64

of detail for graph drawing and interaction. We present two dif- 65

ferent layouts to use in conjunction with SPS: the eigenvector- 66

based (EIGEN) and t-SNE-based (t-SNE) layouts. The EIGEN 67

layout lays out the graph vertices using certain eigenvectors of 68

the related matrices (we use the two leading eigenvectors in this 69

paper). The t-SNE layout employs t-SNE to create a 2D embed- 70

ding based on the leading eigenvectors (we empirically use the 71

first 50 dominant eigenvectors in this paper). 72

Layout generation. To generate a layout for visualizing a 73

given graph, we propose the following steps as outlined below: 74

• Step 1: Apply SPS to simplify the graph G0, yielding the 75

sparsified graphs G1,G2, . . . ,Gr and their associated sparse 76

Laplacian matrix LGi , i ∈ {0,1, . . . ,r} of size |Ni|2. Note 77

that G0 is the original graph and Gr is its most simplified 78

form. 79

• Step 2: Perform an eigenanalysis [56, 57] on LGr to obtain 80

the first k′ leading eigenvectors and their associated eigen- 81
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Data Set Nodes Edges SPS FFE FFN DSSSES 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
small data sets (DSS compatible)

FACEBOOK 4,039 88,234 0.30 1.19 0.11 0.16 0.05 0.15 0.27 0.20 0.13 0.11 0.10 0.30 0.31 0.11 0.16 0.10 802.8
AIRFOIL 4,253 12,289 0.07 2.94 0.24 0.19 0.11 0.27 0.15 0.11 0.05 0.03 0.02 0.11 0.13 0.05 0.05 0.07 947.4
ND3K 9,000 3,279,690 5.93 1.18 0.17 0.19 0.07 0.17 4.02 4.04 4.22 3.90 2.68 2.98 2.43 2.43 2.19 2.29 12,774
USPS10NN 9,298 136,762 0.92 1.33 0.15 0.17 0.07 0.15 0.89 1.07 0.65 0.35 0.35 0.36 0.23 0.20 0.17 0.17 11,448
MYCIELSKIAN14 12,287 3,695,512 6.42 1.23 0.11 0.17 0.07 0.19 3.36 3.19 3.11 2.90 2.90 3.35 3.15 3.33 2.81 2.69 27,181
APPU 14,000 1,839,104 11.60 1.33 0.14 0.21 0.06 0.14 2.86 2.30 2.79 1.96 2.69 5.00 6.32 7.55 5.66 4.78 34,236

big data sets (DSS incompatible)
VSP 21,996 1,221,028 5.36 1.30 0.17 0.20 0.08 0.15 8.85 5.57 5.40 3.90 2.72 2.38 2.14 2.09 2.09 1.94
PROTEIN DB 36,417 2,154,174 11.19 1.36 0.18 0.20 0.08 0.15 16.30 9.15 6.43 4.77 4.06 6.38 4.04 3.09 3.01 3.05
MESH 40,000 79,600 0.64 1.31 0.15 0.21 0.08 0.16 6.43 3.10 1.86 1.09 0.49 4.47 2.18 0.90 0.62 0.26
CFD 70,656 878,854 10.48 1.59 0.24 0.24 0.08 0.16 20.74 14.00 9.38 4.84 2.60 28.69 13.58 4.77 3.04 1.58
DBLP 317,080 1,049,866 19.08 3.63 0.50 0.26 0.18 0.11 306.12 164.19 63.47 31.07 19.03 63.87 19.48 7.58 5.55 5.50
ND 325,729 1,469,679 19.11 2.74 0.63 0.44 0.15 0.25 501.65 245.22 144.24 61.28 17.25 129.88 23.77 11.46 4.89 2.51
IL2010 451,554 1,082,232 9.47 3.06 0.91 0.53 0.20 0.20 855.67 388.49 202.90 97.24 51.84 773.92 300.86 130.06 60.46 25.30

Table 1: Timing results (in seconds) for the data sets experimented. The data sets are ordered according to the number of nodes in the original graphs, and split into
two groups (small and big data sets). The five levels of simplification under SPS is for the MNR step.

values (we set k′ = 50). Each of these eigenvectors is |Nr|-1

dimensional and every graph node has a k′-dimensional2

representation.3

• Step 3: Identify the largest eigengap, i.e., the largest dif-4

ference of two neighboring eigenvalues, among the first k′5

eigenvalues to determine the desired number of clusters k.6

Perform spectral clustering using k-means to obtain cluster7

labels for the k different clusters.8

• Step 4: Either use the two leading eigenvectors as 2D po-9

sitions of the nodes (for the EIGEN layout), or perform di-10

mensionality reduction, which maps the graph’s node po-11

sitions from k′D to 2D using t-SNE (for the t-SNE layout).12

• Step 5: Map the cluster labels, eigenvectors, and t-SNE13

results from Gr to Gr−1, and repeat this iteratively until14

the mapping from G1 to G0 is obtained.15

After these steps, we hold all the data needed (2D coordinates,16

cluster labels, Laplacian matrix) to display the graph in 2D for17

the various levels of detail from G0 to Gr. Nodes are colored18

to show their cluster memberships where neighboring clusters19

shown in the layout use different colors. To draw the graph at20

a given level of detail i, we position the nodes of Gi according21

to the selected layout and draw a straight line for each edge22

present in LGi . Note that our SPS algorithm is independent of23

the choices of graph layout. Although our layout algorithm is24

not interactive, the timing results in Table 1 show that the SPS25

algorithm allows efficient layout generation for large graphs.26

Graph interaction. For graph interaction, we allow users to27

change the graph layout, the level of detail, and turn on or off28

edge bundling. Edge bundling is computed in real time as we29

avoid its pre-computation for every graph level by implement-30

ing FFTEB, the state-of-the-art edge bundling technique using31

the fast Fourier transform (FFT) [58].32

5. Results and Discussion33

5.1. Data Sets and Methods34

We experimented our approach with the graph data sets from35

different application domains as listed in Table 1. Among them,36

FACEBOOK and DBLP are from the social network domain,37

recording a friend network (FACEBOOK) and co-authorship38

relations (DBLP). AIRFOIL is a mesh graph from finite ele-39

ment analysis, ND3K is a graph generated from a 3D mesh40

problem, and MESH is a 200× 200 mesh graph with uniform 41

edge weights. USPS10NN is a k-NN network for handwritten 42

digit recognition. MYCIELSKIAN14 represents a triangle-free 43

graph with the chromatic number of 14. APPU and VSP are 44

random graphs, representing the app benchmark from NASA 45

Ames Research Center and a graph with a star-like structure. 46

CFD is from computational fluid dynamics application repre- 47

senting a symmetric pressure matrix. ND is a web graph of 48

the webpages of Notre Dame. IL2010 is a geographic network 49

of the census blocks of Illinois. PROTEIN DB is the protein 50

databank of an enzyme found in HIV. 51

To compare different graph sparsification methods, we evalu- 52

ated the results of four methods: SPS (ours), deterministic spec- 53

tral sparsification (DSS) [12], and two variants of a traversal- 54

based sampling method named forest fire (FF) [59]. DSS picks 55

edges with the largest effective resistances. Note that Eades 56

et al. [12] also introduced a second variant of spectral sparsifi- 57

cation, stochastic spectral sparsification (SSS). However, DSS 58

has been shown to perform better than SSS. Hence, we only use 59

DSS in our comparison, where the pseudoinverse is computed 60

using OpenIMAJ [60]. As a probabilistic version of snow-ball 61

sampling (SBS) [61], FF randomly selects a seed node with in- 62

cident edges and adjacent nodes getting “burned” away recur- 63

sively with a probability. In this work, we continue FF sam- 64

pling until a desired number of edges (FFE) or nodes (FFN) are 65

reached. 66

Besides DSS, the only other implementation publicly avail- 67

able is provided by Spielman, which is based on the effective- 68

resistance sampling approach [14] and has been recently avail- 69

able for download [62]. However, such an implementation 70

needs to set up input parameters carefully for each individual 71

input graph and thus does not allow effective control of spectral 72

approximation levels, such as the spectral similarity. In other 73

words, it is impossible to control the approximation quality or 74

sparsity of the sparsified graph using a common set of input pa- 75

rameters. In contrast, our SPS allows precise control of spectral 76

similarity or graph sparsity, thereby enabling effective trade- 77

offs between approximation quality and graph complexity. Our 78

latest extensive experiments carried out on a series of public- 79

domain graphs show that it is almost impossible to compare the 80

sparsified graphs obtained by using our SPS method and Spiel- 81

man’s approach due to the above reasons. 82
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(a) original (b) after SES (c) original (d) after SES
EIGEN FM3

Fig. 4: Graph drawings of the AIRFOIL data set using the EIGEN ((a) and (b)) and FM3 ((c) and (d)) layouts. The drawings show the original graph ((a) and (c))
and the reduced graph after SES ((b) and (b)).

(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Fig. 5: Graph drawings of the AIRFOIL data set using the EIGEN layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification
using the SPS algorithm.

For multilevel graph drawing, we compare MNR against1

METIS [63], a fast and high-quality multilevel scheme for2

graph partitioning. The version of METIS provided by Karypis3

and Kumar [63] is used, where we set the number of clusters4

METIS should produce to the number of nodes of the equiva-5

lent level of MNR. We merge a cluster i into a new node i′ and6

add an edge between two new nodes i′ and j′ if there exists an7

edge from any node in cluster i to any node in cluster j. In order8

to make fair comparisons, we only use the graph after SES as9

input for METIS.10

The graph data sets experimented are split into two groups:11

small data sets (< 15,000 nodes) and big data sets (> 15,00012

nodes). This is due to the fact that DSS is not able to handle the13

big data sets on the machines we used. Given a data set, after14

edge sparsification, we produced five levels of node reduction15

for SPS and used the resulting numbers of edges and nodes as16

the targets to obtain the sparsification results for DSS (small17

data sets only) and the two variants of FF.18

5.2. Sparsification Timings19

Table 1 reports the timing results in seconds for graph sparsi-20

fication. For SPS, FFE, and FFN, we show the computation time21

to achieve five different levels of sparsification. As the MNR22

step of SPS is an iterative algorithm, the results only show the23

time it takes from level i (finer) to level i+ 1 (coarser), while24

the entries for either FFE or FFN always show the total com-25

putation time starting from the original graph. For DSS, only26

a single computation time is reported for each data set, as the27

algorithm computes the effective resistance for every edge and28

then uses a desired number of edges with the highest resistance 29

values as the result. All the reported timing results were col- 30

lected from runs on Lenovo NeXtScale nx360 M5 Servers with 31

dual 12 core Intel Xeon CPU E5-2680 v3 @ 2.50GHz Haswell 32

processors and 256GB RAM. 33

Small data sets. The upper part of Table 1 shows that DSS 34

cannot keep up with the speed of the other algorithms. Even for 35

the smallest data sets (FACEBOOK and AIRFOIL), it already 36

takes more than 10 minutes to compute the effective resistance 37

value for the entire graph. In contrast, SPS and the two FF 38

methods, always complete the computation under 20 seconds, 39

with most of the cases below 10 seconds. When comparing SPS 40

against FFE and FFN, we can see that either FFE or FFN outper- 41

forms SPS for all the data sets, due to the time spent by SPS on 42

SES. However, the performance gap decreases with increasing 43

graph size. 44

Big data sets. The lower part of Table 1 shows the timing 45

results for the bigger data sets. Besides the spectral sparsifica- 46

tion, SPS stays consistent with its low computation time. On 47

the contrary, the computation time for FFE and FFN drastically 48

increases along with the input graph’s size. The first three data 49

sets (VSP, PROTEIN DB, and MESH), still show a similar tim- 50

ing performance for all three methods, due to the time spent by 51

SPS on the SES step. After that, starting with CFD, the dif- 52

ference in computation time between SPS and the FF methods 53

increases drastically to more than 10 folds (DBLP and ND), 54

and about 70 folds (IL2010) at the finest level. At the coarsest 55

level, however, the difference between SPS and FFE vanishes 56
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Fig. 6: Graph drawings of the CFD data set using the t-SNE layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification. Top two
rows: MNR. Bottom two rows: METIS. For either method, the upper or lower row shows the drawing without or with edge bundling.

for DBLP and ND, and decreases to about five folds for IL2010.1

At this sparse level, FFN outperforms any method except for the2

IL2010 data set. This demonstrates the competitive advantage3

of our SPS method in terms of computational scalability.4

5.3. Graph Visualization5

For graph drawing, we used the following methods: (1)6

EIGEN (refer to Section 4.3), (2) t-SNE (refer to Section 4.3),7

and (3) fast multipole multilevel method (FM3) [64]. Note8

that we leveraged MATLAB for computing EIGEN and t-SNE,9

and OGDF [65] for computing FM3. We chose FM3, a force-10

directed layout for large graphs, because it has an efficient time11

complexity of O(|N| log |N|+ |E|) and was recently applied to12

graph drawing with spectral sparification [12]. We did not draw13

the original graphs, but only their sparsified or sampled ver-14

sions, as it is often not possible to draw the full-size graph15

due to the computational costs of EIGEN and t-SNE for large16

graphs. To circumvent the problem of not drawing the original17

big graph, we used the proxy quality metric [46] to evaluate the18

quality of the graph’s proxy drawing. Our work demonstrates 19

the capability of drawing graphs with spectral sparsification on 20

data sets much larger than recently attempted by Eades et al. 21

[12]. We implemented FFTEB to reduce visual clutter. Based 22

on the spectral clustering result, we colored the nodes in differ- 23

ent clusters with different colors. To allow easier visual com- 24

parison, for the FF and DSS sampling results, we kept the col- 25

oring based on the SPS clusters and used black for all the nodes 26

that do not exist in the SPS results at the same sparsification 27

level. 28

Edge sparsification. Figure 4 shows the AIRFOIL data set 29

before and after SES. Ignoring the flip that occurred, we can see 30

that in (a) and (b), the graph structure remains the same using 31

the EIGEN layout, with (b) showing fewer edges. The draw- 32

ings in (c) and (d) reveal the same using the FM3 layout. This 33

indicates that SES can successfully keep edges relevant for the 34

graph structure while removing non-essential edges. Addition- 35

ally, the spectral clusters are also well preserved in the drawing. 36
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Fig. 7: Graph drawings of the ND data set using the FM3 layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification using the
SPS algorithm.

Comparison across simplification levels. In Figure 5, we1

compare the five levels of sparsification using the AIRFOIL2

data set using the EIGEN layout. We can see that although3

the number of nodes halves at each level of simplification, the4

overall graph structure remains the same. Even the coarsest5

level (Figure 5 (e)) shows the two big circle-like structures as6

the most distinguishable features of this data set. Similarly, the7

first two rows of Figure 6 show the graph drawings for the five8

sparsification levels of the CFD data set using the t-SNE layout.9

Again we can see that the structure from the layout at the fifth10

level is preserved through the multilevel eigensolver. For this11

much bigger and denser data set, we do not observe an almost12

bone-like structure like for the AIRFOIL one at the coarsest13

level. However, we can still witness how the number of nodes14

in each cluster reduces successively between the neighboring15

levels without losing the inter-cluster connectivity. Figure 716

shows the drawing of the ND data set at its five sparsification17

levels using the FM3 layout. This even bigger graph does not18

show much difference at the first four levels as the numbers of19

nodes at these four levels remain pretty high. At the last level20

(Figure 7 (e)), however, we can see a drastic skew in the lay-21

out. Although this represents a strong change in the layout, the22

graph features, especially the clusters, still remain easily distin-23

guishable. These three examples show how well the multilevel24

eigensolver allows using the layout from a coarser level and25

map it back to the original one without changing the overall26

graph structure.27

Comparison across sparsification methods. Figure 828

shows a comparison of the three sparsification methods for the29

ND3K (top row) and FACEBOOK (bottom row) data sets. We30

use the t-SNE layout and the third level of sparsification. In Fig-31

ure 8 (a) and (c), we can see that the two spectrum-based meth-32

ods do a better job at preserving the underlying graph structure33

compared to the FFE result shown in Figure 8 (b). The drawing34

of the FFE method seems rather random and contains a large35

number of small node clusters (shown in black) that do not ex-36

ist in the SPS result. It is worth noting that the two spectrum-37

based methods mostly agree on the chosen nodes, while the FFE38

method contains many nodes that do not exist in the SPS vari-39

ant. In the second row of Figure 8, we can see that the FFE40

method needs more nodes than the other two methods for the41

FACEBOOK data set to achieve the desired number of edges.42

This shows that spectrum-based methods are better suited to43

give an overview of the most important nodes of the graph than44

the FFE sampling. 45

In Figure 9, we show similar comparisons for the PRO- 46

TEIN DB and IL2010 data sets using the FM3 layout. PRO- 47

TEIN DB shows the finest level of sparsification while IL2010 48

shows the coarsest level. For the PROTEIN DB data set, we can 49

see that the layout produced by FFE mixes the clusters together, 50

resulting in a confusing structure. The layout produced by SPS 51

shows a much smoother and nicer cluster separation and a more 52

revealing overall structure. When it comes to the IL2010 data 53

set, FFE results in a tree-like graph, while SPS shows a more 54

dispersed structure that looks similar to a flipped version of the 55

underlying geographical map of the state of Illinois. Captur- 56

ing and representing features like geographical and geometric 57

structures underlines the advantages of SPS over random sam- 58

pling methods. 59

Figure 10 shows the USPS10NN and MESH data sets us- 60

ing the EIGEN (top row) and t-SNE (bottom row) layouts. 61

USPS10NN uses the finest level of sparsification while MESH 62

uses the coarsest level. For the USPS10NN data set, FFE finds 63

one cluster instead of multiple ones like the SPS method. Thus 64

the resulting drawing for the FFE sample is very dense and clut- 65

tered into one corner (EIGEN) or a hairball (t-SNE) instead of 66

more evenly distributed like the drawing of SPS. For the MESH 67

data set, the drawing of the FFE sample again shows tree-like 68

and hairball-like structures for the EIGEN and t-SNE layouts, 69

respectively. The drawing of the SPS sample, on the other hand, 70

highlights the grid-like structure of the underlying mesh in ei- 71

ther layout. This shows that based on spectral analysis, SPS 72

can reveal the underlying structures well at both the finest and 73

coarsest levels. 74

Comparison of MNR and METIS. In Figure 11, we show a 75

comparison of the MNR and METIS methods. For both draw- 76

ings, we use the FM3 layout and keep the cluster labels from 77

SPS for easier comparison. Besides the different cluster or- 78

dering, there is no significant visual difference. Nevertheless, 79

we point out that unlike METIS, MNR preserves the spectrum 80

of the graph and does not require layout recomputation as we 81

move from the coarsest level to the finest level. This can be seen 82

in Figure 6, where we show the t-SNE layout for the five sparsi- 83

fication levels for MNR and METIS along with edge bundling 84

disabled and enabled. We can see that the graph structure in the 85

drawing is fairly consistent across the five levels with MNR, 86

which is certainly not the case with METIS. Since the t-SNE 87

layout is based on the leading eigenvectors resulting from SPS, 88
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(a) SPS (b) FFE (c) DSS

Fig. 8: Graph drawings of the different sampling methods for the ND3K (top row) and FACEBOOK (bottom row) data set using the t-SNE layout. All drawings use
the third level of sparsification.

we can claim that MNR better preserves the spectrum of the1

underlying graph. Furthermore, the MNR results show many2

shorter edges, indicating a well-translated structure from the re-3

duced graph into the drawing.4

For edge bundling, clearly, it helps to reduce visual clut-5

ter, especially for the five levels with METIS where edges are6

longer. However, edge bundling introduces ambiguities at the7

endpoints of thicker bundles.8

Visual Quality of Spectral Graph. We point out that spec-9

tral drawing of a graph may not necessarily lead to good vi-10

sual quality. The general idea behind spectral graph drawing11

is to translate the spectral properties of the graph to the visu-12

alization. Prior works on graph drawing using spectral infor-13

mation [34, 35, 36, 38, 37] do not necessarily generate visu-14

ally pleasing or aesthetic layouts either. Our observations are15

that spectral methods are good for drawing grid- or mesh-like16

graphs, but could be bad for other graphs. In those cases, the17

nodes in the spectral layout could overlap with each other (due18

to the great similarity of their spectral properties) or form a lin-19

earization pattern.20

6. Quantitative Comparison 21

6.1. Quality Metrics 22

To evaluate the visual quality of graph samples, Nguyen et 23

al. [46] introduced the proxy quality metric, which compares 24

the drawing of a graph sample to the underlying graph in order 25

to express the faithfulness of the drawing. This metric com- 26

pares the similarity of each node in the drawing to the node 27

in the underlying graph using one-to-one correspondence. The 28

SPS algorithm, however, does not preserve such a correspon- 29

dence due to the introduction of pseudo-nodes in MNR (refer 30

to Section 4.2). Therefore, we use the proxy quality metric to 31

compare the samples after SES but before MNR. We employ 32

four other statistical metrics to quantify the sampling quality of 33

MNR. 34

The proxy quality metric obtains a shape graph from the sam-
pled graph drawing and then compares it to the original graph.
Formally

Qµ,φ (G,S(G)) = µ(G,φ(S(G))), (14)

where µ is a comparison function that compares the two graphs
and returns a real number, φ is a shape graph function, and S(G)
is a sample of the original graph G. Examples of shape graphs
include the α-shape [66], k-nearest neighbor graph (k-NN
graph), Gabriel graph, relative neighborhood graph (RNG),
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(a) SPS (b) FFE (c) SPS (d) FFE

Fig. 9: Graph drawings of the different sampling methods using the FM3 layout. (a) and (b) are for the PROTEIN DB data set at the finest level of sparsification.
(c) and (d) are for the IL2010 data set at the coarsest level of sparsification.

and Euclidean minimum spanning tree (EMST). The similar-
ity between two graphs of the same vertex set can be measured
efficiently using the mean Jaccard similarity (MJS). In this pa-
per, we used the Gabriel graph as the shape graph function φ

and the MJS as the comparison function µ . The MJS between
S(G) and G is defined as

MJS(S(G),G) =
1
|N| ∑v∈N

|NS(G)(v)∩NG(v)|
|NS(G)(v)∪NG(v)|

, (15)

where NS(G)(v) and NG(v) are the neighborhoods of node v in1

S(G) and G, respectively. For simplicity, we define Q(SPS),2

Q(DSS), and Q(FFE) for the MJS between the original graph3

and its sample with SPS, DSS, and FFE, respectively.4

To evaluate the quality of the MNR samples, we use four of5

the five metrics used by Hong et al. [43]:6

• degree correlation assortativity (DCA) which describes7

how well similar nodes are connected to each other [67];8

• closeness centrality (CCe) which sums the lengths of the9

shortest paths from each node to all other nodes [68];10

• clustering coefficient (CCo) which measures how well11

nodes cluster together within the graph [69];12

• average neighborhood degree (AND) which averages the13

degrees of neighboring nodes for each node [70].14

We do not use the fifth metric, largest connected component15

(LCC), as SPS and FF always yield a graph with a single con-16

nected component. We compare the metric on a given sam-17

ple and the original graph using the Kolmogorov-Smirnov (KS)18

test. The KS-test computes the difference between two proba-19

bility distributions and describes it as a result between 0 (same)20

and 1 (completely dissimilar).21

6.2. Comparison Results22

Proxy quality metric. In Table 2, we report the averaged23

MJS ratios Q(SPS)/Q(DSS) and Q(SPS)/Q(FFE) for the com-24

parison between SPS and DSS, as well as SPS and FFE re-25

spectively. Note that we only use FFE here, as we only com-26

pare the results of SES, an edge-based sparsification technique.27

We use the t-SNE, EIGEN, and FM3 layouts for this compari-28

son. The ratio values above 1.0 favor SPS over the comparing29

method. We can see that SPS generally achieves a better qual- 30

ity than DSS and FFE, with the exception of the AIRFOIL and 31

USPS10NN data sets when compared to FFE. This is mainly 32

because for these two data sets, FFE sampling vastly outper- 33

forms SPS sampling with the t-SNE and FM3 layouts. Further 34

worth mentioning are the high values of Q(SPS)/Q(DSS) for 35

ND3K and Q(SPS)/Q(FFE) for MESH. These are due to the 36

fact that SPS sampling vastly outperforms the sampling being 37

compared across all three layouts. With these results, we con- 38

clude that the SES step of SPS preserves the structure of the 39

original graph better than DSS and FFE. 40

Sampling quality metrics. Figure 12 shows the KS-test re- 41

sults between the original graph and a given sample for the 42

four different metrics (lower KS-test values are better). In the 43

charts, we can see that SPS (either SPSSES or SPSORI) generally 44

outperforms the FFE sampling methods, but there is no clear 45

winner between SPS and DSS. METIS behaves very similar to 46

SPSSES in terms of DCA and CCe, while it performs better in 47

terms of CCo and worse in terms of AND. While DCA remains 48

mostly stable among all methods and sample sizes, the other 49

metrics show interesting trends. CCe yields worse results for 50

SPSSES than SPSORI. This means that the shortest path lengths 51

after MNR are closer to the ones of the original graph than to 52

those after SES. 53

For the sake of argument, consider the average of the short- 54

est path lengths for each node to all other nodes. If we com- 55

pare the distribution of those average shortest path lengths (1) 56

between the sampled graph and the original graph and (2) be- 57

tween the sampled graph and the graph after SES, then the dif- 58

ference between the sampled graph and the graph after SES will 59

be smaller. This is because SES takes a graph as input and pro- 60

duces another graph that is similar to a spanning tree of the 61

original graph. Evaluating the average of the shortest paths (for 62

each node) in a spanning tree will be quite different from using 63

the original graph. 64

Now if we consider the distribution of the average of shortest 65

paths in a graph after applying the MNR procedure. As shown 66

in Figure 3 (a), MNR reduces the graph through node aggre- 67

gation: a pseudo-node at level i+ 1 represents multiple nodes 68

at level i. Any edge between two nodes which are both repre- 69

sented by the same pseudo-node is removed. The pseudo-node 70
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(a) SPS (b) FFE (c) SPS (d) FFE

Fig. 10: Graph drawings of the different sampling methods using the EIGEN (top row) and t-SNE (bottom row) layouts. (a) and (b) are for the USPS10NN data set
at the finest level of sparsification. (c) and (d) are for the MESH data set at the coarsest level of sparsification.

Data Set Edges after SES Q(SPS)/Q(FFE) Q(SPS)/Q(DSS) Data Set Edges after SES Q(SPS)/Q(FFE)
FACEBOOK 7,872 1.03 2.84 VSP 42,752 2.30
AIRFOIL 4,934 0.72 3.19 PROTEIN DB 70,491 2.49
ND3K 16,745 1.73 50.33 MESH 45,261 66.71
USPS10NN 12,900 0.89 2.96 CFD 106,879 1.64
MYCIELSKIAN14 14,060 1.34 * DBLP 358,226 6.25
APPU 16,366 2.34 3.65 ND 388,436 2.85

IL2010 504,465 7.60

Table 2: Averaged results over three layout algorithms of the quantitative comparison using MJS. Left table: small graphs. Right table: big graphs. The columns
show the number of edges after SES and the quality ratios (higher is better). The * denotes that DSS does not achieve a MJS within the machine precision, i.e., it is
very close to zero.

becomes incident to any edge that connects two nodes of which1

only one of them is represented by the pseudo-node. As we ag-2

gregate nodes together and take the edges from all their original3

nodes, the graph at a coarser level is less similar to a spanning4

tree of the original graph. The impact of this is the opposite5

of what SES has on a graph. Therefore, comparing closeness6

centrality after MNR with respect to the original graph shows7

more similarity than that after SES.8

For CCo, we see that typically after the third level of MNR,9

the SPSSES and SPSORI lines cross. The reason for this is ana-10

log to what is discussed previously. The difference is that we11

consider between-cluster and within-cluster edges in the graph.12

Since MNR is applied after SES, it uses a spanning tree as in-13

put. Therefore at the finer levels, it is more like a spanning14

tree and less like the original graph, while at the coarser level,15

MNR produces a graph that is less like a spanning tree. The16

worse score for METIS in terms of CCo is due to the number of17

edges. Over all data sets and all simplification levels, METIS18

produces an average of 13% (20-70% for denser graphs, e.g.,19

ND and VSP, and less than 10% for sparser graphs, e.g., AIR-20

FOIL, IL2010) more edges compared to MNR. As the input21

graph for this comparison is the graph after SES, i.e., a very 22

sparse graph, the denser output can translate into a different 23

CCo. 24

For AND, we can see that SPSSES and SPSORI trend toward 25

similar values the more iterations of SPS we run. This is be- 26

cause, with a more reduced graph, there are only the impor- 27

tant nodes and their neighborhood relationships left to repre- 28

sent the original (sparsified) graph. Interestingly, METIS has 29

an AND value more similar to the graph after SES than MNR. 30

This shows that our MNR removes edges more aggressively to 31

preserve spectral properties. 32

7. Conclusions and Future Work 33

We have presented SPS, an effective solution for spectrum- 34

preserving sparsification of big graphs. The innovation of SPS 35

is that for the first time, it combines spectral graph sparsification 36

to achieve scalable visualization of large graphs while allowing 37

for spectral clustering analysis at the same time. Our SPS al- 38

gorithm includes two steps: spectral edge sparsification (SES) 39

followed by multilevel node reduction (MNR). The SES algo- 40

rithm is three to four orders of magnitude faster than the state- 41
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Fig. 11: Graph drawings of the MESH data set using the FM3 layout. The drawings from left (finest) to right (coarsest) show the five levels of simplification. Top
row: MNR. Bottom row: METIS.

of-the-art DSS algorithm. The dramatic gain in speed perfor-1

mance enables us to handle edge sparsification and subsequent2

node reduction on big graphs with hundreds of thousands of3

nodes and millions of edges, which was previously impossible.4

Furthermore, using different graph drawing layouts (EIGEN/t-5

SNE, FM3), we find that in general, SPS outperforms DSS and6

FF under a proxy quality metric (for the SES step) and other sta-7

tistical properties of the graphs (for the MNR step). We demon-8

strate the effectiveness of our approach using results gathered9

from a number of graph data sets of varying sizes and charac-10

teristics. In the future, we will integrate advanced user inter-11

actions (such as focus+context visualization) and evaluate this12

graph visualization and exploration framework through a for-13

mal user study.14
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Fig. 12: Averaged KS-test values (lower is better) between the original graph and the sample. Top row: small graphs. Bottom row: big graphs. SPSSES denotes the
comparison between MNR and the graph after SES. SPSORI denotes the comparison between MNR and the original graph.

[21] Davis, TA, Hu, Y. The University of Florida sparse matrix collection.1

ACM Transaction on Mathematical Software 2011;38(1):1:1–1:25.2

[22] Muja, M, Lowe, DG. Scalable nearest neighbor algorithms for high3

dimensional data. IEEE Transactions on Pattern Analysis and Machine4

Intelligence 2014;36(11):2227–2240.5

[23] Williams, C, Seeger, M. Using the Nyström method to speed up kernel6

machines. In: Proceedings of Advances in Neural Information Processing7

Systems. 2001, p. 682–688.8

[24] Zhang, K, Tsang, IW, Kwok, JT. Improved Nyström low-rank approx-9

imation and error analysis. In: Proceedings of International Conference10

on Machine Learning. 2008, p. 1232–1239.11

[25] Chen, X, Cai, D. Large scale spectral clustering with landmark-based12

representation. In: Proceedings of AAAI Conference on Artificial Intelli-13

gence. 2011, p. 313–318.14

[26] Yan, D, Huang, L, Jordan, MI. Fast approximate spectral clustering. In:15

Proceedings of ACM SIGKDD Conference. 2009, p. 907–916.16

[27] Liu, J, Wang, C, Danilevsky, M, Han, J. Large-scale spectral clustering17

on graphs. In: Proceedings of International Joint Conference on Artificial18

Intelligence. 2013, p. 1486–1492.19

[28] Satuluri, V, Parthasarathy, S, Ruan, Y. Local graph sparsification for20

scalable clustering. In: Proceedings of ACM SIGMOD Conference. 2011,21

p. 721–732.22

[29] Feng, Z. Spectral graph sparsification in nearly-linear time lever-23

aging efficient spectral perturbation analysis. In: Proceedings of24

ACM/EDAC/IEEE Conference on Design Automation. 2016, p. 1–6.25

[30] Feng, Z. Similarity-aware spectral sparsification by edge filtering. In:26

Proceedings of ACM/EDAC/IEEE Conference on Design Automation.27

2018, p. 152:1–152:6.28

[31] Zhao, Z, Wang, Y, Feng, Z. Nearly-linear time spectral graph reduc-29

tion for scalable graph partitioning and data visualization. arXiv preprint30

arXiv:181208942 2018;.31

[32] Zhao, Z, Wang, Y, Feng, Z. SAMG: Sparsified graph theoretic alge-32

braic multigrid for solving large symmetric diagonally dominant (SDD)33

matrices. In: Proceedings of ACM/IEEE International Conference on34

Computer-Aided Design. 2017, p. 601–606.35

[33] Hall, KM. An r-dimensional quadratic placement algorithm. Manage-36

ment Science 1970;17(3):219–229.37

[34] Pisanski, T, Shawe-Taylor, J. Characterizing graph drawing with38

eigenvectors. Journal of Chemical Information and Computer Sciences39

2000;40(3):567–571.40

[35] Brandes, U, Willhalm, T. Visualizing bibliographic networks with a41

reshaped landscape metaphor. In: Proceedings of Eurographics - IEEE42

TCVG Symposium on Visualization. 2002, p. 159–164.43

[36] Koren, Y, Carmel, L, Harel, D. ACE: A fast multiscale eigenvectors44

computation for drawing huge graphs. In: Proceedings of IEEE Sympo- 45

sium on Information Visualization. 2002, p. 137–144. 46

[37] Koren, Y. On spectral graph drawing. In: Proceedings of International 47

Conference on Computing and Combinatorics. 2003, p. 496–508. 48

[38] Harel, D, Koren, Y. Graph drawing by high-dimensional embedding. 49

In: Proceedings of International Symposium on Graph Drawing. 2002, p. 50

207–219. 51

[39] Harel, D, Koren, Y. Graph drawing by high-dimensional embedding. 52

Journal of Graph Algorithms and Applications 2004;8(2):195–214. 53

[40] Koren, Y. Drawing graphs by eigenvectors: Theory and practice. Com- 54

puters & Mathematics with Applications 2005;49(11-12):1867–1888. 55

[41] Hu, P, Lau, WC. A survey and taxonomy of graph sampling. 56

arXiv:1308.5865; 2013. 57

[42] Zhang, F, Zhang, S, Wong, PC, Swan, JE, Jankun-Kelly, T. A visual 58

and statistical benchmark for graph sampling methods. In: Proceedings 59

of IEEE VIS Workshop on Exploring Graphs at Scale. 2015,. 60

[43] Hong, SH, Nguyen, Q, Meidiana, A, Li, J, Eades, P. BC tree-based 61

proxy graphs for visualization of big graphs. In: Proceedings of IEEE 62

Pacific Visualization Symposium. 2018, p. 11–20. 63

[44] Wu, Y, Cao, N, Archambault, D, Shen, Q, Qu, H, Cui, W. Evaluation 64

of graph sampling: A visualization perspective. IEEE Transactions on 65

Visualization and Computer Graphics 2017;23(1):401–410. 66

[45] Eades, P, Hong, SH, Nguyen, A, Klein, K. Shape-based quality metrics 67

for large graph visualization. Journal of Graph Algorithms and Applica- 68

tions 2017;21(1):29–53. 69

[46] Nguyen, QH, Hong, SH, Eades, P, Meidiana, A. Proxy graph: Visual 70

quality metrics of big graph sampling. IEEE Transactions on Visualiza- 71

tion and Computer Graphics 2017;23(6):1600–1611. 72

[47] van der Maaten, LJP, Hinton, GE. Visualizing high-dimensional data 73

using t-SNE. Journal of Machine Learning Research 2008;9:2579–2605. 74

[48] van der Maaten, LJP. Accelerating t-SNE using tree-based algorithms. 75

Journal of Machine Learning Research 2014;15:1–21. 76

[49] Elkin, M, Emek, Y, Spielman, DA, Srivastava, N. Lower-stretch span- 77

ning trees. SIAM Journal on Computing 2008;38(2):608–628. 78

[50] Abraham, I, Neiman, O. Using petal-decompositions to build a low 79

stretch spanning tree. In: Proceedings of ACM Symposium on Theory of 80

Computing. 2012, p. 395–406. 81

[51] Spielman, DA, Woo, J. A note on preconditioning by low-stretch span- 82

ning trees. arXiv:0903.2816; 2009. 83

[52] Koutis, I, Miller, G, Tolliver, D. Combinatorial preconditioners and 84

multilevel solvers for problems in computer vision and image processing. 85

Computer Vision and Image Understanding 2011;115(12):1638–1646. 86

[53] Livne, O, Brandt, A. Lean algebraic multigrid (LAMG): Fast 87

graph Laplacian linear solver. SIAM Journal on Scientific Computing 88



16 Preprint submitted for review / Computers & Graphics (2020)

2012;34(4):B499–B522.1

[54] Chen, J, Safro, I. Algebraic distance on graphs. SIAM Journal on2

Scientific Computing 2011;33(6):3468–3490.3

[55] Briggs, WL, Van Emden, H, McCormick, SF. A Multigrid Tutorial.4

Second ed.; SIAM; 2000.5

[56] Lehoucq, RB, Sorensen, DC, Yang, C. ARPACK Users’ Guide:6

Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted7

Arnoldi Methods. Society for Industrial and Applied Mathematics; 1998.8

[57] Stewart, GW. A Krylov-Schur algorithm for large eigenproblems. SIAM9

Journal on Matrix Analysis and Applications 2002;23(3):601–614.10

[58] Lhuillier, A, Hurter, C, Telea, A. FFTEB: Edge bundling of huge11

graphs by the fast Fourier transform. In: Proceedings of IEEE Pacific12

Visualization Symposium. 2017, p. 190–199.13

[59] Leskovec, J, Kleinberg, J, Faloutsos, C. Graphs over time: Densification14

laws, shrinking diamaters and possible explanations. In: Proceedings of15

ACM SIGKDD Conference. 2005, p. 177–187.16

[60] Hare, J, Samangooei, S, Dupplaw, D. Open Intelligent Multimedia17

Analysis for Java (OpenIMAJ). http://openimaj.org/; 2019.18

[61] Thomson, SK. Sampling. Second ed.; Wiley-Interscience; 2002.19

[62] Spielman, D. A., . Laplacians.jl: Algorithms inspired by graph Lapla-20

cians: linear equation solvers, sparsification, clustering, optimization, etc.21

https://github.com/danspielman/Laplacians.jl; 2019.22

[63] Karypis, G, Kumar, V. A fast and high quality multilevel scheme for23

partitioning irregular graphs. SIAM Journal on Scientific Computing24

1999;20(1):359–392.25
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