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We describe the signatures of a circularly polarized gravitational-wave background on the timing
residuals obtained with pulsar-timing arrays. Most generally, the circular polarization will depend
on the gravitational-wave direction, and we describe this angular dependence in terms of spherical
harmonics. While the amplitude of the monopole (the overall chirality of the gravitational-wave
background) cannot be detected, measures of the anisotropy are theoretically conceivable. We
provide expressions for the minimum-variance estimators for the circular-polarization anisotropy.
We evaluate the smallest detectable signal as a function of the signal-to-noise ratio with which the
isotropic GW signal is detected and the number of pulsars (assumed to be roughly uniformly spread
throughout the sky) in the survey. We find that the overall dipole of the circular polarization and
a few higher overall multipoles, are detectable in a survey with & 100 pulsars if their amplitude
is close to maximal and once the isotropic signal is established with a signal-to-noise ratio & 400.
Even if the anisotropy can be established, though, there will be limited information on its direction.
Similar arguments apply to astrometric searches for gravitational waves.

I. INTRODUCTION

A gravitational wave passing between the Earth and a
pulsar is known to affect the periodicity of the observed
pulses [1, 2]. The effect can be encoded in the timing
residual, defined as the relative difference between the ob-
served period of pulses and the one produced by the pul-
sar. The explorable frequency range roughly goes from a
few nHz to 1 µHz, the lower limit being determined by
the time span of observations and the upper limit by the
data sampling rate. Monitoring and correlating the ir-
regularities in the signals emitted by different pulsars al-
lows an indirect study of gravitational waves (GWs) and
has led to the idea of pulsar timing arrays (PTAs) [3–13]
to detect gravitational waves at ∼nHz–µHz frequencies.
In particular it may be possible to extract information
on the stochastic gravitational-wave background due to
supermassive-black-hole (SMBH) mergers [14, 15]. There
are also prospects to augment PTA measurements with
information from stellar astrometry [16–20].

A stochastic background from SMBH mergers may well
be anisotropic, given the uneven distribution of SMBH
mergers on the sky [21–25] and prior work [26–29] has de-
veloped tools to seek and characterize anisotropies in the
intensity of the GW background with PTAs/astrometry.
However, GWs from SMBH mergers will most generally
be circularly polarized. Therefore, the stochastic GW
background is likely to be circularly polarized, with an
amplitude that varies across the sky. Ref. [30] discussed
techniques to seek this circular polarization with PTAs.

In this paper we re-visit the PTA search for circular
polarization with a simple augmentation of recent work
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[29] on the detection of angular GW-intensity fluctua-
tions. Unlike most prior related work, Ref. [29] discussed
angular fluctuations in harmonic space, rather than con-
figuration space, an alternative approach that provides
elegant/economical mathematical expressions, simple es-
timates for signal detectability, and some novel insights.
Here, we show how that work is easily altered to allow a
search for circular polarization. While the results are for-
mally equivalent to what was presented in Ref. [30], the
formalism here allows for more compact mathematical
expressions and some associated insights.

Ref. [29] idealized measurements of a timing-residual
z(n̂, t) as a function of position n̂ on the sky and time
t. The time dependence was then described in terms of
its Fourier amplitudes for frequency f (one real ampli-
tude for the sine, with respect to some nominal t = 0
time, and another for the cosine for each f), The result-
ing Fourier maps zf (n̂) were then decomposed in terms of
spherical-harmonic coefficients zf,`m. Estimators for an-
gular intensity fluctuations were then constructed from
bipolar spherical harmonics (BiPoSHs) [31–33], and in
particular from BiPoSHs of even parity.

In this paper, estimators for the circular polarization
of the GW background will be similarly constructed but
with a few notable differences: First, a circularly polar-
ized GW is a linear combination of two linear polariza-
tions that are out of phase. Thus, a circular-polarization
estimator requires that we consider the sine and cosine
amplitudes together for any given frequency f , which
we do here by allowing zf (n̂) to be complex. We then
show that circular-polarization estimators look identi-
cal to those for intensity fluctuations, but for odd-parity
(rather than even-parity) BiPoSHs [34].

The plan of the paper is as follows: We review in Sec-
tion II the expansion of the timing residuals in terms of
spherical harmonics and review the BiPoSH formalism
that will be used to construct estimators for circular-
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polarization anisotropies. Section III presents the model
we assume for the stochastic background and obtains pre-
dictions for the observables for this background. Section
IV presents the estimators for the circular-polarization
anisotropies, and formal expressions for the variances
with which these estimators can be measured. Section
V then presents quantitative results for the smallest de-
tectable circular-polarization anisotropies, and conclud-
ing remarks are presented in Section VI.

II. SPHERICAL-HARMONIC EXPANSION AND
BIPOLAR SPHERICAL HARMONICS (BIPOSHS)

We imagine a set of pulsars spread roughly uniformly
across the sky so that the GW-induced timing residual
z(n̂, t) can be obtained as a function of time t and po-
sition n̂. The time sequence can then be represented
equivalently in terms of the Fourier components zf (n̂) for
frequency f , and the angular pattern can then be repre-
sented in terms of the spherical-harmonics components
as

zf (n̂) =
∞∑
`=0

L∑
m=−`

zf,`mY`m(n̂). (1)

In Ref. [29], it was presumed that zf (n̂) could be taken to
be real: the intensity-fluctuation analysis therein could
be performed independently on either the real or the
imaginary part (or equivalently, on the amplitudes of the
cosine or sine of any particular f mode). Thus, in that
work (as in work on CMB temperature fluctuations), we
had z∗f,`m = (−1)mzf,`,−m. Put another way, the 2` + 1
independent coefficients for any given ` could be taken to
be zf,`0, the ` real parts

√
2 Re zf,`m of zf,`m for m > 0,

and the ` imaginary components
√

2 Im zf,`m for m > 0.
For the analysis here, however, the complexity of

zf (n̂)—i.e., the relative amplitudes of the cosine and sine
mode for a given f—is essential. Thus, in this paper,
zf (n̂) is most generally complex, and so z∗f,`m is not nec-

essarily equal to (−1)mzf,`m. For any given `, there are
now 2(2` + 1) components of zf,`m which can be taken
to be the real and imaginary parts for all −` ≤ m ≤ `.

Also, for notational economy, we suppress below the
subscripts f on the map, the spherical-harmonic coeffi-
cients, and power spectra. It should be understood that
throughout the rest of the paper, it is assumed that the
analysis is done for this one frequency component f . We
then discuss in the Conclusions how to incorporate mul-
tiple frequencies.

A model for the stochastic background makes no pre-
dictions for the specific values of z`m. Rather, it makes
predictions for their correlations. The most general two-
point correlation between any two z`m takes the form

(see, e.g., Refs. [34, 35]),

〈z`mz∗`′m′〉 = C`δ``′δmm′

+
∞∑

L=1

L∑
M=−L

(−1)m
′
〈`m `′, −m′|LM〉ALM

``′ ,

(2)

where the ALM
``′ are bipolar spherical harmonics (Bi-

PoSH) coefficients [31–33]. If the stochastic background
is statistically isotropic and unpolarized, then ALM

``′ = 0
for all L ≥ 1. Ref. [29] found that anistropies in the inten-
sity of the GW background resulted in nonzero BiPoSH
coefficients of even parity (i.e., L + ` + `′ =even) only.
We will see that circular polarization induces odd-parity
BiPoSHs, those with L+ `+ `′ =odd.

A. Estimators of BiPoSH coefficients

The measured timing-residual coefficients are assumed
to be zdataf,`m = zf,lm + znoisef,`m with〈

znoisef,`mz
∗ noise
f,`′m′

〉
= Nzz

f δ``′δmm′ , (3)

with the noise power spectrum Nzz
f independent of ` (as

will arise in the idealized scenario of pulsars distributed
roughly uniformly on the sky, with comparable timing
noises). The BiPoSH coefficients are estimated from data
as

ALM
``′

∧

=
∑
mm′

zdatalm z∗ datal′m′ (−1)m
′
〈l m l′, −m′|LM〉. (4)

The variance of this estimator was evaluated under the
null hypothesis of a Gaussian and isotropic map, in
Ref. [34]. That analysis assumed, however, a real map,
whereas we are now taking z(n̂) to be complex. As a re-
sult there is no requirement for ALM

``′ to be antisymmetric
(for L + ` + `′ =odd) under ` ↔ `′ nor for the ALM

`` to
vanish for ` + `′ + L=odd. For a complex map and for
L+ `+ `′=odd,〈∣∣∣ALM

``′

∧∣∣∣2〉 = Cdata
` Cdata

`′ , (5)

where Cdata
` = C` +Nzz includes both the signal and the

noise power spectra.
The estimator for the isotropic power spectrum C` is

C`

∧
=
∑̀

m=−`

|zdata`m |2

2`+ 1
−Nzz, (6)

and its variance is〈
(∆C`)

2
〉

=
1

2`+ 1

(
Cdata

`

)2
. (7)

Note that this expression differs from that, more com-
monly seen, for the case where z(n̂) is real. As dis-
cussed above, in that case, each C` is estimated from the
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2`+1 independent components of z`m. If z(n̂) is complex,
though, then there are 2(2`+1) independent components
of z`m yielding a replacement 2`+ 1→ 2(2`+ 1) relative
to the more familiar equation.

III. A POLARIZED BACKGROUND AND ITS
TIMING RESIDUALS

A. Spherical-harmonic coeffcients

Eq. (18) in Ref. [29] provides the spherical-harmonic
coefficients, induced by a single gravitational wave of fre-

quency f propagating in the k̂ direction. Identifying the
GW circular-polarization amplitudes hR = 2−1/2(h+ +
ih×) and hL = 2−1/2(h+ − ih×) in terms of the linear-
polarization amplitudes h+ and h×, that expression can
be written 1

z`m(k̂) = 2−1/2z`

[
hLD

(`)
m2 + hRD

(`)
m,−2

]
, (8)

where D
(`)
mm′(φk, θk, 0) are the Wigner rotation functions

specified by the three Euler angles φk, θk and ψk = 0 in
the z-y-z convention, and

z` ≡ (−1)`

√
4π(2`+ 1)(`− 2)!

(`+ 2)!
. (9)

Only harmonics coefficients with ` ≥ 2 are generated in
the timing residuals map.

The most general gravitational-wave background is
then described by a superposition of plane waves prop-

agating along any direction k̂. The spherical-harmonic
coefficients for this background are then

z`m(k̂) = 2−1/2z`

∫
d3k

(2π)3

[
hL(~k)D

(`)
m2(~k) + hR(~k)D

(`)
m,−2(~k)

]
,

(10)

where we have summed over all GW wavevectors ~k =
2πfk̂.

B. A circularly polarized gravitational-wave
background

We now consider a gravitational-wave background de-
scribed by the following wave-amplitude correlations:〈

hR(~k)h∗R(~k′)
〉

=
1

4
(2π)3δD(~k − ~k′)Ph(k)

[
1− ε(k̂)

]
,〈

hL(~k)h∗L(~k′)
〉

=
1

4
(2π)3δD(~k − ~k′)Ph(k)

[
1 + ε(k̂)

]
,〈

hR(~k)h∗L(~k′)
〉

= 0. (11)

1 We correct here a missing factor of two in Eqs. (14) and (15) of
Ref. [29] (that does not affect the final quantitative results for
anisotropy estimators presented there in terms of the signal-to-
noise ratio SNR with which the isotropic signal is detected.)

The “chirality function” ε(k̂) is assumed to depend only
on the direction of propagation, and it parametrizes the
degree of circular polarization for GWs moving in direc-

tion k̂. It can be decomposed in spherical harmonics as

ε(k̂) =
∞∑

L=0

L∑
M=−L

εLMYLM (k̂). (12)

Comparing to Eq. (13) of [29], where the index L is
constrained to assume strictly positive values (i.e., L ≥
1), here the L = 0 term is in principle allowed because
it cannot be reabsorbed into a redefinition of Ph(k) for
both the right-handed and left-handed power spectra in
Eq. (11). However, we will see that the monopole gives
no contribution to the correlators of timing residuals and
is therefore not detectable.

Positivity of power spectra imposes the restrictions
εL0 ≤

√
4π/(2L+ 1) (with similar bounds for

√
2 Re εLM

and
√

2 Im εLM for M 6= 0). The correlators between tim-
ing residual-coeffcients are then evaluated using Eq. (10)
and are given by

〈z`mz∗`′m′〉 =
1

8
z`z`′

∫
d3k

(2π)3
Ph(k)

{
D

(`)
m2(k̂)

(
D

(`′)
m′2(k̂)

)∗
×

[
1 +

∑
LM

εLMYLM (k̂)

]
+D

(`)
m,−2(k̂)

(
D

(`′)
m′,−2(k̂)

)∗
×

[
1−

∑
LM

εLMYLM (k̂)

]}
.

The integration over directions k̂ leads to correlators of
the form in Eq. (2) with

C` =
z2`

4(2`+ 1)
I, (13)

and

ALM
``′ =

1− (−1)`+`′+L

2
(−1)`−`

′
(4π)−1/2εLM

1

4
z`z`′H

L
``′I,

(14)
where

HL
``′ ≡

(
` `′ L
2 −2 0

)
, (15)

and I ≡ [4π/(2π)3]
∫
k2 dk Ph(k).

The coefficient
[
1− (−1)`+`′+L

]
/2 selects only odd-

parity BiPoSHs (odd values of ` + `′ + L). Comparing
to Eq. (22) of Ref. [29] and the discussion therein, we
see that the correlations induced by circular-polarization
anisotropies differ from those of intensity anisotropies in
the parity of the BiPoSHs allowed (odd for circular po-
larization and even for intensity). The other difference is
that ALM

``′ is not degenerate here with ALM
`′` (as it is for

the intensity estimator), as z(n̂) here is taken to be the
complex sum of the amplitudes of the sine and cosine of
the frequency f .
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IV. CHIRALITY ESTIMATORS

Estimators for the chirality coefficients εLM are ob-
tained in direct analogy with Ref. [29] for a survey
parametrized by the signal-to-noise ratio (SNR) with
which the isotropic GW background is detected and the
maximum multipole moment `max (which is `max ∼

√
Np

for a sky map with Np pulsars distributed roughly uni-
formly on the sky) accessible with the survey. The SNR
is obtained by summing in quadrature the SNRs for each
accessible multipole `, assuming an error on C` given
by Eq. (7) with Cdata

` = Nzz, corresponding to the null
hypothesis of no gravitational-wave background. The re-
sulting SNR for the frequency channel f is [29, 36] (noting
the extra factor of 2 for the complexity of z(n̂)),

SNR =

[
`max∑
`=2

(2`+ 1)

(
C`

Nzz

)2
]1/2

' πI

6
√

3Nzz
. (16)

The approximation holds for any `max given that the sum
is dominated very heavily by the lowest-` terms.

Following the analysis in Ref. [29], the minimum-
variance estimator for each chirality amplitude εLM is

εLM

∧
=

∑
``′(εLM

∧
)``′(∆εLM )−2``′∑

``′(∆εLM )−2``′
, (17)

where

(εLM

∧
)``′ = (−1)`−`

′
4
√

4π
ALM

``′

∧

z`z`′HL
``′I

, (18)

is the contribution of each ``′ pair to the estimator, and

(∆εLM )2``′ =
64πCdata

` Cdata
`′

(z`z`′HL
``′I)2

=
16π3

27

Cdata
` Cdata

`′(
z`z`′HL

``′

)2
(SNR)2(Nzz)2

, (19)

is the variance of each of these contributions. The vari-
ance of the combined estimator εLM

∧
is then

(∆εLM )−2 =
∑
``′

(∆εLM )−2``′ . (20)

It is independent of M . The `, `′ sums here are over
`+ `′ + L=odd. Since the ALM

``′ are not necessarily anti-
symmetric in `, `′ (since z(n̂) is not real here), the sums
are over all `, `′ pairs (not just those with `′ ≥ ` as in
Ref. [29]).

Using Eqs. (13) and (16) we can express Eq. (20) in
terms of the SNR for the detection of the isotropic unpo-
larized signal and, furthermore, the noise power spectrum
Nzz cancels out from the final result, leaving us with

(∆εLM )−2 =
27

16π3

∑
``′

(
z`z`′H

L
``′
)2( 1

SNR
+

3
√

3

2π

z2`
2`+ 1

)−1

×

(
1

SNR
+

3
√

3

2π

z′2`
2`′ + 1

)−1
. (21)

This expression can then be evaluated for any nominal
SNR with which the isotropic signal is detected and tak-

ing the sums up to `max ∼ N1/2
p , with Np the number of

pulsars.
This expression evaluates, in the limit SNR→∞, to

(∆εLM )−2 → 1

4π

∑
``′

(2`+ 1)(2`′ + 1)
(
HL

``′
)2
, (22)

and in the limit SNR→ 0 to

(∆εLM )−2 → 27

16π3
SNR2

∑
``′

(
z`z`′H

L
``′
)2
. (23)

V. RESULTS

A. Monopole is not observable

As anticipated in Section III, the monopole term ε00 is
not observable. This is because the L = M = 0 BiPoSH
coefficients, A00

`` = (−1)`
√

2`+ 1C`, all have ` = `′ and
therefore always have L+ `+ `′ =even. This agrees with
a similar conclusion in Ref. [30] obtained using overlap
reduction functions.

B. Dipole anisotropy

We now consider the lowest observable multipole, the
dipole L = 1. Given the triangle constraint |` − `′| ≤ L
and ` + `′ + L=odd, only ` = `′ contributes to the sum.
We then use (H1

``)
2 = 4 [`(`+ 1)(2`+ 1)]

−1
to obtain for

the smallest detectable (at 3σ) signal,

ε1M,min = 3∆ε1M =
1

2

√
π

3

{
`max∑
`=2

2`+ 1

[(`+ 2)(`− 1)]
2

[`(`+ 1)]
3

×
[

1

SNR
+ 6
√

3
(`− 2)!

(`+ 2)!

]−2}−1/2
. (24)

We can understand this result analytically by consid-
ering the asymptotic behaviors in the limits of high and
low signal-to-noise. When SNR → ∞ and `max � 1 the
sum in Eq. (24) converges to 2

ε1M,min '
3
√
π√

2 ln `max + 2γE − 5/2
, as SNR→∞.

(25)
In the low-SNR limit we find

ε1M,min '
13.2

SNR
, as SNR→ 0. (26)

2 Here, γE is Euler’s constant and the finite correction 2γE−5/2 '
−1.35 is relevant as it gives a 13.6% correction on ε1M,min for
`max = 20.
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ℓmax=3

ℓmax=4

ℓmax=8

ℓmax=20

1 100 104 106
0.5
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10
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3
/(
4
π
)
ϵ
1
M
,m

in

FIG. 1. The smallest detectable (at the 3σ level) circular-
polarization dipole ε1M (normalized to its maximum allowed

value ε1M,max =
√

4π/3), as a function of the SNR with which
the isotropic GW background is detected, for several values
of the maximum timing-residual multipole moment `max.

Fig. 1 shows the smallest detectable dipole coefficient
ε1M,min as a function of the isotropic signal SNR, for a
few values of `max. The value (SNR)high at which ε1M,min

reaches its aymptotic value can be evaluated by looking
at the second line of Eq. 24 and estimating the mini-
mum value of SNR such that the addend 1/SNR can be
neglected. This simple guess leads to 3

(SNR)high '
(`max + 2)!

(`max − 2)!
. (27)

The sensitivity of a PTA to a circular-polarization dipole
is maximized once an SNR of this value is reached.

If we surmise (optimistically) an `max ' 20 (corre-
sponding to Np ∼ 400 pulsars), then Eq. (25) evaluates
to ε1M,min ' 2.5, which is about 1.2 times the largest

value, ε1M,max =
√

4π/3, that this amplitude can have.
We thus conclude that an individual component ε1M of
the circular-polarization dipole is not detectable.

However, if we simply want to establish the existence
of a circular-polarization dipole, without any constraint
to its direction, we will evaluate the overall dipole ampli-
tude,

dc =

[∑
M

|ε1M |2
]1/2

. (28)

Since this is obtained as the sum, in quadrature, of the
three ε1M s, the smallest detectable dc is about a factor
of
√

3 smaller, implying (with `max ' 20) that a dipole
as small as 0.7 times the maximal dipole can actually be
detected. If the local GW background, at the frequency

3 The value of ε1M,min at (SNR)high differs from the true asymp-
totic value only by 1% for `max = 20 and 5% for `max = 3.

considered, is dominated by a single source or handful
of sources, such a circular-polarization dipole is certainly
conceivable and so worth seeking. On the other hand, the
results discussed so far only hold for very large SNR, such
that ε1M,min reaches its asymptotic value (for example,
when `max ' 20, Eq. 27 gives (SNR)high ' 1.8×105). For
lower values of SNR there is less room for the observation
of the dipole and one can establish numerically a thresh-
old for the overall dipole detection. The corresponding
minimal conditions for detection are a number of pulsars
Np & 100 (i.e. `max & 10) and a very clear detection of
the isotropic GW background with SNR & 400. More
precisely, for `max = 10 and SNR = 400 only an over-
all dipole equal to 0.98 times the maximal value can be
detected.

C. Other multipoles

Results for the detectability of higher order multipoles
can be inferred by numerically evaluating the general ex-
pression in Eq. (21). Fig. 2 shows the smallest detectable
multipole coefficients εLM,min (normalized to their max-

imum possible values εLM,max =
√

4π/(2L+ 1)) as a
function of the isotropic signal SNR, for several values
of the multipole L and assuming `max = 20.

L=1, ℓmax=20

L=2, ℓmax=20

L=8, ℓmax=20

L=20, ℓmax=20

1 100 104 106
0.5

1

5

10

SNR

(2
L
+
1
)/
(4

π
)
ϵ
L
M
,m

in

FIG. 2. The smallest detectable (at the 3σ level) circular-
polarization multipoles εLM (normalized to their maximal val-

ues εLM,max =
√

4π/(2L+ 1)), as a function of the SNR with
which the isotropic GW background is detected, for several
values of L and assuming a maximum timing-residual multi-
pole moment `max = 20.

The plot and the numerical analyis seem to imply
that, for a given `max, some of the higher-order multi-
poles have a better detectability than the dipole in the
high-SNR regime, because their ratio εLM,min/εLM,max

reaches a lower asymptotic value. For `max = 20 the
asymptotic value for the minimum quadrupole ε2M,min

(for any given M component) is just above the maxi-

mal ε2M,max =
√

4π/5, while for the overall quadrupole
(defined similarly to Eq. 28) an amount as small as 0.45
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times the maximal quadrupole can be detected. As for
the dipole, also higher order multipoles reach the asymp-
totic regime only at very large SNR, of the order of
(SNR)high defined in Eq. 27. It can be seen from Fig. 2
that, assuming `max = 20, when SNR . 100 (certainly
including more realistic values of SNR) the dipole has the
lower, and thus the best, value of εLM,min/εLM,max for a
single M component, although such SNR is not good
enough for single M detections. For `max = 10 (corre-
sponding to Np = 100) and SNR = 400, which are the
threshold values mentioned at the end of Section V B,
an overall quadrupole equal to 0.72 times the maximal
value is observable, and overall multipoles up to L = 8
and close to their respective maximal values can also be
detected. Unless the isotropic signal SNR is increased to
even more non-realistic values, the conclusions about de-
tectability of dipole and higher multipoles presented here
could be altered only with an exponentially large number
of pulsars (or, as alluded to below, by co-adding multiple
frequencies in the event that multiple frequencies have
similar SNR).

VI. CONCLUSIONS

We have augmented prior work [29] to develop es-
timators and evaluate the detectability with PTAs of
circular-polarization anisotropies in the stochastic GW
background. We confirm with this new formalism ear-
lier findings [30] that the circular-polarization monopole
is not detectable. We evaluate the smallest detectable
circular-polarization dipole anisotropy and find that its
overall amplitude (i.e. without constraints to the direc-
tion) is conceivably detectable if it is close to maximal, if
the isotropic signal is detected at the & 400σ level, and
at least Np ∼ 100 pulsars are observed. In those condi-
tions also a few higher overall multipoles can be detected.
The results suggest an only logarithmic improvement in
the sensitivity with the number of pulsars. A certain im-
provement can be obtained with increased overall signal,
but it would be pushed to even more non-realistic values.

We have throughout assumed that the analysis was
performed with just one frequency f , whereas in practice
there may be many frequency channels available. The
analysis can, however, be done individually for each avail-
able frequency and the results then added in quadrature.
If the stochastic background is assumed to be uncor-

related at different frequencies, then the signal-to-noise
with which a circular-polarization anisotropy can be de-
tected will be the sum, in quadrature, of the signal-to-
noise for each individual channel f . If these signal-to-
noises are comparable for all of the available frequencies,
then the SNR could conceivably be increased by a factor
of the square root of the number of frequencies (a number
of order 100 for 10 years of observations with a two-week
cadence). In practice, though, the signal (the stochas-
tic GW background) and noise are likely to have differ-
ent frequency dependences, and if so, the overall SNR
is dominated by only one, or perhaps a handful, of fre-
quencies. In this case, the estimates of the detectability
of the circular-polarization dipole (and higher moments)
presented here might be improved, but probably by no
more than a factor of a few.

On the other hand, we have considered an idealization
of the measurements in which pulsars are roughly uni-
formly distributed on the sky and observed with compa-
rable timing-residual noise. In practice, the distribution
is not uniform, and the timing-residual noises vary from
one pulsar to another. These complications are straight-
forward to deal with using techniques [30] already de-
veloped. These complications will, however, degrade the
sensitivities to circular polarization relative to those ob-
tained with the idealizations adopted here.

Finally, we have focussed here on the PTA charac-
terization of a stochastic GW background. There is,
however, a close correspondence between PTA searches
and astrometry searches (see, e.g., Ref. [20]). Circular-
polarization estimators for astrometry searches should
thus be similarly obtained, and the quantitative con-
clusions about detectability similar. It may also be in-
teresting in future work to investigate the possibility to
co-add information on circular-polarization and intensity
anisotropies that may arise if the local signal is due to a
handful of nearby SMBH pairs.
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