nature
neuroscience

ARTICLES

https://doi.org/10.1038/541593-019-0533-x

Corrected: Author Correction

Unsupervised identification of the internal states
that shape natural behavior

Adam J. Calhoun, Jonathan W. Pillow and Mala Murthy ©*

Internal states shape stimulus responses and decision-making, but we lack methods to identify them. To address this gap, we
developed an unsupervised method to identify internal states from behavioral data and applied it to a dynamic social interac-
tion. During courtship, Drosophila melanogaster males pattern their songs using feedback cues from their partner. Our model
uncovers three latent states underlying this behavior and is able to predict moment-to-moment variation in song-patterning
decisions. These states correspond to different sensorimotor strategies, each of which is characterized by different mappings
from feedback cues to song modes. We show that a pair of neurons previously thought to be command neurons for song pro-
duction are sufficient to drive switching between states. Our results reveal how animals compose behavior from previously
unidentified internal states, which is a necessary step for quantitative descriptions of animal behavior that link environmental

cues, internal needs, neuronal activity and motor outputs.

nternal states can have a profound effect on behavioral decisions.

For example, we are more likely to make correct choices when

attending versus when distracted, and will consume food when
hungry but suppress eating when sated. A number of studies in
animals highlight that the nervous system encodes these context-
dependent effects by remodeling sensorimotor activity at every
level, from sensory processing to decision-making, all the way to
motor activity'~. For instance, recordings from rodent cortical neu-
rons revealed that neural activity is more strongly correlated with
the state of body motion versus the statistics of sensory stimuli dur-
ing sensory-driven tasks®. Across model systems, locomotion can
also change the gain of sensory neurons, causing them to be more or
less responsive and leading to the production of distinct behavioral
outputs when these neurons are activated’™"’. It is not simply action
that modulates neural activity but also internal goals and needs. For
example, circuits involved in driving courtship or aggression behav-
iors in rodents and flies show different patterns of activity as the
motivation to court or fight, respectively, changes''~"". Neurons can
be modulated via multiple mechanisms to promote these goals. For
example, during hunger states, chemosensory neurons that detect
desirable stimuli are facilitated and enhance their response to these
cues'*"”. Downstream from sensory neurons, the needs of an animal
can cause the same neurons to produce different behaviors—for-
aging instead of eating, for instance—when ensembles of neurons
are excited or inhibited by neuromodulators that relay information
about state'*™'%.

Despite evidence to indicate that internal states affect both
behavior and sensory processing, we lack methods to identify the
changing internal states of an animal over time. While some states,
such as nutritional status or walking speed, can be controlled for
or measured externally, animals are also able to switch between
internal states that are difficult to identify, measure or control. One
approach to solving this problem is to identify states in a manner
that is agnostic to the sensory environment of an animal. These
approaches attempt to identify whether the behavior an animal
produces can be explained by some underlying state, for exam-
ple, with a hidden Markov Model (HMM)"-*>. However, in many
cases, the repertoire of behaviors produced by an animal may stay

the same, while what changes is either the way in which sensory
information patterns these behaviors or patterns the transitions
between behaviors. Studies that dynamically predict behavior
using past sensory experiences have provided important insight
into sensorimotor processing, but typically assume that an animal
is in a single state”*. These techniques make use of regression
methods such as generalized linear models (GLMs) that iden-
tify a filter’ that describes how a given sensory cue is integrated
over time to best predict future behavior. Here, we take a novel
approach to understanding behavior by using a combination of
hidden state models (that is, HMMs) and sensorimotor models
(that is, GLMs) to investigate the acoustic behaviors of the vinegar
fly D. melanogaster.

Acoustic behaviors are particularly well suited for testing mod-
els of state-dependent behavior. During courtship, males generate
time-varying songs?, the structure of which can in part be predicted
by dynamic changes in feedback cues over timescales of tens to hun-
dreds of milliseconds*****. Receptive females respond to attractive
songs by reducing locomotor speed and eventually mating with
suitable males™. Previous GLMs of male song structure did not
predict song decisions across the entire courtship time*. We do so
here and found that by inferring hidden states, we captured 84.6%
of all remaining information about song patterning and 53% of all
remaining information about transitions between song modes, both
relative to a ‘Chance’ model that only knows about the distribution
of song modes. This represents an increase of 70% for all song and
110% for song transitions compared with a GLM. The hidden states
of the HMM rely on sensorimotor transformations, represented as
GLM:s, that govern not only the choice between song outputs during
each state but also the probability of transitioning between states.
Using GLM filters from the wrong state worsened predictive per-
formance. We then used this model to identify neurons that induce
state switching and found that the neuron pIP10, which was previ-
ously identified as a part of the song motor pathway”, additionally
changes how the male uses feedback to modulate song choice. Our
study highlights how unsupervised models that identify internal
states can provide insight into nervous system function and the pre-
cise control of behavior.
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Results

A combined GLM and HMM effectively captures the variation
in song production behavior. During courtship, Drosophila males
sing to females in bouts composed of the following three distinct
modes (Fig. 1a): a sine song and two types of pulse song”. Previous
studies have used GLMs to predict song-patterning choices (about
whether and when to produce each song mode) from the feedback
available to male flies during courtship**. Inputs to the models
were male and female movements in addition to his changing dis-
tance and orientation to the female (Fig. 1b). This led to the discov-
ery that males use fast-changing feedback from the female to shape
their song patterns over time. Moreover, these models identified the
time course of cues derived from male and female trajectories that
were predictive of song decisions. While these models accurately
predicted up to of 60% of song-patterning choices, they still left a
large proportion of variability unexplained when averaged across
the data.

Leveraging a previously collected dataset of 2,765 min of court-
ship interactions from 276 wild-type pairs*, we trained a mul-
tinomial GLM (Fig. 1c) to predict song behavior over the entire
courtship time (we predicted the following four song modes: sine,
fast pulses (Py,), slow pulses (Py,,) and no song) (Fig. 1a) from the
time histories of 17 potential feedback cues defined by male and
female movements and interactions (Fig. 1b)—what we will refer to
as ‘feedback cues. The overall prediction of this model (Fig. le-h,
GLM) was similar to prior work?, which used a smaller set of both
feedback cues and song modes and a different modeling framework
(Extended Data Fig. 1a,b, compare ‘Coen 2014’ with “This study’
and ‘GLM’). We compared this model to one in which we examined
only the mean probability of observing each song mode across the
entire courtship (Chance).

We next created a model that incorporated hidden states (also
known as latent states) when predicting song from feedback cues;
this model is derived from the family of input-output HMM:s that
we term the GLM-HMM?* (Fig. 1d). A standard HMM has fixed
probabilities of transitioning from one state to another, and fixed
probabilities of emitting different actions in each state. The GLM-
HMM allows each state to have an associated multinomial GLM to
describe the mapping from feedback cues to the probability of emit-
ting a particular action (one of the three types of song or no song).
Each state also has a multinomial GLM that produces a mapping
from feedback cues to the transition probabilities from the cur-
rent state to the next state (Extended Data Fig. 1c,d). This allows
the probabilities to change from moment to moment in a manner
that depends on the feedback that the male receives and allows us
to determine which feedback cues affect the probabilities at each
moment. This model was inspired by previous work that modeled
neural activity”, but we use multinomial categorical outputs to
account for the discrete nature of male singing behavior. One major
difference between this GLM-HMM and other models that predict
behavior** is that our model allows each state to predict behavioral
outputs with a different set of regression weights.

We used the GLM-HMM to predict song behavior (Extended
Data Fig. 2a,b) and compared its predictive performance on held-
out data to a Chance model, which only captures the marginal dis-
tribution over song modes (for example, males produce no song
68% of the time). We quantified model performance using the dif-
ference between the log-likelihood of the model and the log-like-
lihood of the Chance model (see Methods). For all models with a
HMM, we used the feedback cue and song mode history to estimate
the probability of being in each state. We then predicted the song
mode in the next time bin using this probability distribution over
states (see Methods). For predicting all song, or every bin across the
held-out data, a three-state GLM-HMM outperformed the GLM
(Fig. le,f, compare middle and lower rows). We found an improve-
ment of 32bitss™ relative to the Chance model for the three-state
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GLM-HMM (versus 6Dbitss™ for the GLM). Given the song-bin-
ning rate (30binss™) and knowledge of the mean song probability,
a performance of 40.3 bits s would indicate that our model has the
information to predict every bin with 100% accuracy. Therefore, the
three-state GLM-HMM captured 84.6% of the remaining informa-
tion as opposed to only 14.6% with a GLM (Fig. 1g). The three-state
GLM-HMM also offered a significant improvement even when
only the history of feedback cues (not song mode history) was used
for predictions (Extended Data Fig. 2e,f; see Methods); however,
fitting models with additional states did not significantly improve
performance and tended to decrease the predictive power, which
was likely due to overfitting (Fig. 1g).

Nevertheless, a HMM was nearly as good at predicting all song,
because the HMM largely predicts in the next time bin what occurred
in the previous time bin (see Methods), and song consists of runs of
each song mode (Fig. 1g; Extended Data Fig. 2c). A stronger test
then is to examine song transitions (for example, times at which the
male transitions from sine to Py, )—in other words, predicting when
the male changes what he sings. The three-state GLM-HMM offers
1.02 bits per transition over a Chance model (capturing 53% of the
remaining information about song transitions, an increase of 110%
compared to the GLM), while the HMM was significantly worse
than the Chance model at -2.7 bits per transition (Fig. 1h; Extended
Data Fig. 2d). Such events were rare and therefore not well cap-
tured when examining the performance across all song. Moreover,
the three-state GLM-HMM outperformed previous models*, even
considering that those models were fitted to subsets of courtship
data (for example, only times when the male was close to and ori-
ented toward the female) (Extended Data Fig. 1b). Thus, the GLM-
HMM can account for much of the moment-to-moment variation
in song patterning by allowing for three distinct sensorimotor strat-
egies or states. We next investigated what these states correspond to
and how they affect behavior.

Three distinct sensorimotor strategies during song production.
We next determined how the 17 feedback cues and 4 song modes
differed across the 3 states of the GLM-HMM. We examined mean
feedback cues (Fig. 1b) during each state. We found that in the first
state, the male, on average, is closer to the female and moving slowly in
her direction; we therefore termed this state the ‘Close’ state (Fig. 2a;
Extended Data Fig. 3a,d). In the second state, the male is, on aver-
age, moving toward the female at higher speed while still close,
and so we called this the ‘Chasing’ state (Fig. 2b; Extended Data
Fig. 3b,e). In the third state, the male is, on average, farther from the
female, moving slowly and oriented away from her, and so we called
this the “Whatever’ state (Fig. 2¢; Extended Data Fig. 3¢,f). However,
there was also substantial overlap in the distribution of feedback
cues that describe each state (Fig. 2d-g), which indicates that the
distinction between each state is more than just these descriptors.
Another major difference between the states is the song output that
dominates—the Close state mostly generates sine song, while the
Chasing state mostly generates pulse song and the Whatever state
mostly no song (Fig. 2a—c). However, we note that there is not a
simple one-to-one mapping between states and song outputs. All
four outputs (no song, PPy, and sine) were emitted in all three
states, and the probability of observing each output depended on
the feedback cues that the animal received at that moment. We
compared this model to a GLM-HMM with four states, and it per-
formed nearly as well as the three-state GLM-HMM (Fig. 1g,h). We
found that three out of the four states corresponded closely to the
three-state model, while the fourth state was rarely entered and best
matched the Whatever state (Extended Data Fig. 3g-i). We conclude
that the three-state model is the most parsimonious description of
Drosophila song-patterning behavior.

HMMs are memoryless and thus exhibit dwell times that fol-
low exponential distributions. However, natural behavior exhibits
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Fig. 1| A model with hidden states effectively predicts song patterning. a, The fly song modes analyzed: no song (black), P, (orange), P,,,, (red) and sine
(blue). Song is organized into trains of a particular type of song in a sequence (multiple pulses in a row constitute a pulse train) as well as bouts (multiple
trains followed by no song, represented here by a black line). b, The fly feedback cues analyzed: mFV and female forward velocity (fFV); male lateral
speed (mLS), fLS, male rotational speed (mRS) and female rotational speed (fRS); male forward lateral accelerations (mFA), female forward accelerations
(fFA), male lateral accelerations (mLA) and female lateral accelerations (fLA); the component of male forward and lateral velocity in the direction of the
female (mfFV and mfLS) and the component of the female forward and lateral velocity in the direction of the male (fmFV and fmLS); the distance between
the animals (mfDist) and the absolute angle from female/male heading to male/female center (mfAngle and fmAngle). ¢, Schematic illustrating the
multinomial GLM, which takes feedback cues as input and passes these cues through a linear filtering stage. There is a separate set of linear filters for
each possible song mode. These filters are passed through a nonlinearity step, and the relative probability of observing each output (no song, P, Pyow
sine song) gives the overall likelihood of song production. d, Schematic illustrating the GLM-HMM. At each time point t, the model is in a discrete hidden
state. Each hidden state has a distinct set of multinomial GLMs that predict the type of song that is emitted, as well as the probability of transitioning to

a new state. e, Top: 10's of natural courtship song consisting of no song (black), P, P, and sine. Middle: the conditional probability of each output type
for this stretch of song under the standard GLM. Bottom: the conditional probability of the same song data under the three-state GLM-HMM,; predictions
are made one step forward at a time using past feedback cues and song mode history (see Methods). f, Top: 100 ms of natural song. Middle and bottom:
conditional probability of each song mode under GLM (middle) and GLM-HMM (bottom), as in e. g, Normalized log-likelihood (LL) on test data (in
bitss™; see Methods). The GLM outperforms the Chance model (P=2.9 x10%), but the three-state GLM-HMM produces the best performance (each
open circle represents predictions from one courtship pair (only 100 of the 276 pairs shown for visual clarity); filled circles represent the mean+s.d.). The
three-state model outperformed a two-state GLM-HMM (P=2.2 x10-%) and a five-state GLM-HMM (P=4.1x10-3), but was not significantly different
from a four-state model (P=0.16). On the basis of this same metric, the three-state GLM-HMM slightly outperformed a HMM (1bit s improvement,
P=1.8%107). All P values from Mann-Whitney U-tests. h, Normalized test log-likelihood during transitions between song modes (for example, transition
from sine to Py,). The three-state GLM-HMM outperformed the GLM (P<2.55x10-3*) and the two-state GLM-HMM (P=2.3x10-3*), and substantially
outperformed the HMM (P <2.55x10-34). Filled circles represent the mean +s.d., 100 of the 276 pairs shown. All P values from Mann-Whitney U-tests.

very different distributions>****. In our model, which is no lon-  which indicates that males switch between states even within
ger stationary (memoryless), we found that the dwell times in  song bouts (Fig. 2h, middle). In addition, we found that the mean
each state followed a nonexponential distribution (Fig. 2h, upper;  probability of being in each of the three states was either steady
Extended Data Fig. 3j). Moreover, the majority of dwell times throughout courtship (Fig. 2i, upper) or aligned to successful
were on the order of hundreds of milliseconds to a few seconds, copulation (Fig. 2i, lower). The only exception was that just before
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Fig. 2 | Three sensorimotor strategies. a-c, Left: the five feedback cues that are most different from the mean when the animal is in the Close (a), Chasing
(b) or Whatever (c) state (see Methods for details on z-scoring). lllustration of flies is a representation of each state according to these feedback cues.
Right: the probability of observing each type of song when the animal is in that state. Filled circles represent individual animals (n=276 animals, small
black circles with lines are the mean +s.d.). d-g, Distributions of values (z-scored, see Methods) for four of the feedback cues (see Fig. 1b) and for each
state. Although a state may have features that are larger or smaller than average, the distributions are highly overlapping (the key in g also applies to d-f).
h, Top: the dwell times of the Close, Chasing and Whatever states across all of the data (including both training and validation sets). Bottom: the dwell
times of sine trains, pulse trains and stretches of no song (see Fig. 1a for definition of song modes; Py, and P, are grouped together here) across all of the
data are dissimilar from the dwell times of the states with which they are most associated. Data from all 276 animals. i, Top: the mean probability across
flies of being in each state fluctuated only slightly over time when aligned to absolute time (bottom) or the time of copulation (bottom). Immediately
before copulation, there was a slight increased probability of being in the Chasing state (bottom, zoomed-in area). Data are from all 276 animals. j, Areas
of circles represent the mean probability of being in each state and the width of each line represents the fixed probability of transitioning from one state to
another. The filters that best predicted transitioning between states (and modify the transition probabilities) label each line, with the up arrow representing
feedback cues that increase the probability and the down arrow representing feedback cues that decrease the probability.

copulation, males were more likely to sing. Accordingly, the prob-  Feedback cues possess different relationships to song behavior in
ability of the Chasing state increases while the probability of the each state. The fact that each song mode is produced in each state of
Whatever state decreases (Fig. 2i, inset) when males stay close to  the three-state GLM-HMM (Fig. 2a—c) suggests that the difference
females (Fig. 2g). We next examined which feedback cues (Fig. 1b)  between each state is not the type of song that is produced but is
predicted the transitions between states (Fig. 2j; Extended Data  the GLM filters that predict the output of each state (which we will
Fig. 4a—c). These were different from the feedback cues that had  refer to as the ‘output filters’). To test this hypothesis, we generated
the largest magnitude mean value in each state (Fig. 2a-c), which  song based on either the full GLM-HMM model or used output
suggests that the dynamics of what drives an animal out of a state  filters from only one of the three states (Fig. 3a). This confirmed two
is different from the dynamics that are ongoing during the produc-  features of the model. First, that each set of output filters can pre-
tion of a state. dict all possible song outputs depending on the input. Second, the
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Fig. 3 | Internal states are defined by distinct mappings between feedback cues and song behavior. a, A stretch of 500 ms of song production from

the natural courtship dataset, with the prediction of states indicated above in colored squares. The prediction of the full GLM-HMM model (third row)

is very different from the prediction if we assume that the animal is always in the Close state, Chasing state or Whatever state. The output using the
song prediction filters from only that state is illustrated in the lower three rows. b, The conditional probability (across all data, n=276 animals, error bars
represent the s.e.m.) of observing a song mode in each state (predicted by the full three-state GLM-HMM), but using output filters from only one of

the states. Conditional probability of the appropriate state is larger than the conditional probability of the out-of-state prediction (largest P=6.7 x 10-¢
across all comparisons, Mann-Whitney U-test). Song-mode predictions were highest when using output filters from the correct state. Center lines of box
plots represent the median, the bottom and top edges represent the 25th and 75th percentiles, respectively. Whiskers extend to +2.7 times the standard
deviation. ¢, The five most predictive output filters for each state and for prediction of each of the three of the types of song. Filters for types of song

are relative to no-song filters, which are set to a constant term (see Methods). d, Example output filters for each state revealed that even for the same
feedback cues, the GLM-HMM shows distinct patterns of integration. Plotted here are the mFV, mfDist and the mfFV; filters can change sign and shape
between states. e, Transfer functions (the conditional probability of observing song choice (y axis) as a function of the magnitude of each feedback cue
(x axis)) for producing pulse (both P, and Py,.) versus sine have distinct patterns based on state. For mFV (upper), fLS (middle) and mfDist (lower),
the average relationship or transfer function between song choice and the movement cue (black line) differs with transfer functions separated by state
(blue, green and purple). f, Output filters that predict pulse versus sine song for each of the following three feedback cues: mFV (upper), fLS (middle) and

mfDist (lower).
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song prediction from any one state is insufficient for capturing the
overall moment-to-moment changes in song patterning. To quan-
tify this, we performed a similar analysis over 926 min of courtship
data. In this way, we determined what the conditional probability
was of observing that song either using only the output filters of
that state or only using the output filters of one of the other states
(Fig. 3b). We found that the predictions were highly state-specific
and that performance degraded dramatically when using filters
from the wrong state. For example, even though the Close state was
mostly associated with the production of sine song (Fig. 2a), the
production of both types of pulse song and no song during the Close
state was best predicted using the output filters from the Close state.
The same was true for the Chasing and Whatever states, whereby
the dynamic patterning by feedback cues showed that the distinc-
tion between states was not merely based on the different types
of song. Taken together, the highly divergent predictions by state
(Fig. 3a) and the lack of explanatory power from other output filters
of the states (Fig. 3b) suggest that Close, Chasing and Whatever are
in fact distinct states.

Which feedback cues (Fig. 1b) are most predictive of song deci-
sions in each state? We examined all feedback cues of each song type
in each state in rank order (Extended Data Fig. 5; Fig. 3c plots the
top five most predictive feedback cues per state and per song type).
This revealed that the most predictive feedback cues were strongly
reweighted by state; for instance, male lateral velocity (mLV) was the
largest predictor of both P, and P, in the Chasing and Whatever
states, but was not one of the top five predictors in the Close state.
By comparing the output filters of the same feedback cues for dif-
ferent states, we observed that both the temporal dynamics (Fig. 3d;
Extended Data Fig. 6a-c) and the sign of the output filters changed
according to state (Fig. 3d; Extended Data Fig. 6d,f). Taken together,
these observations suggest that state switching occurs due to both
the reweighting of which feedback cues are important and the
reshaping of the output filters themselves.

We next determined whether the state-specific sensorimotor
transformations uncovered relationships between feedback cues
(Fig. 1b) and song behaviors that were previously hidden. Previous
work on song patterning identified male forward velocity (mFV),
female lateral speed (fLS) and male-female distance (mfDist) as
important predictors of song structure*, with, for example, increases
in mFV and mLS predicting pulse song, while decreases predicted
sine song. By contrast, our model revealed that while, on average,
the amount of pulse song increased with male velocity (Fig. 3e,

upper, black), this was only true for the Close state, and the rela-
tionship (or transfer function) was actually inverted in the Chasing
state (Fig. 3e, upper, green and blue). Increased fLS was previously
shown to increase the probability of switching from pulse to sine
song”; however, when we examined the fLS by state, we found that
this feature was positively correlated with the production of pulse
song in the Close state (Fig. 3e, middle, blue), but negatively corre-
lated with the production of pulse song in the Chasing state (Fig. 3e,
middle, green). Finally, the mfDist was previously shown to predict
the choice to sing pulse (at greater distances) over sine (at shorter
distances), whereby the relatively quieter sine song is produced
when males and females are in close proximity”. Again, we found
this to be true only when the animals were in the Close state (Fig. 3e,
lower), but the relationship between distance and song type (pulse
versus sine) was inverted in the Chasing state. Interestingly, when
we examined the feedback cue filters (Fig. 3f), we found that while
mFV and fLS were cumulatively summed to predict song type, the
distance filter was a long-timescale differentiator across different
timescales in each state, as opposed to the short-timescale integra-
tor as previously found**. Our GLM-HMM therefore reveals unique
relationships between input and output that were not uncovered
when data are aggregated across states.

Activation of pIP10 neurons biases males toward the Close state.
Having uncovered three distinct sensorimotor-patterning strategies
via the GLM-HMM, we next used the model to identify neurons
that modulate state switching. To do this, we optogenetically acti-
vated candidate neurons that might be involved in driving changes
in state specifically during acoustic communication; we reasoned
that such a neuron might have already been identified as part of
the song motor pathway'>*>. The goal was to perturb the circuitry
underlying state switching, thereby changing the mapping between
feedback cues and song modes. We focused on the following three
classes of neurons that, when activated, produce song in solitary
males: Pla, a cluster of neurons in the central brain; pIP10, a pair
of descending neurons; and vPR6, a cluster of ventral nerve cord
premotor neurons (Fig. 4a). Across a range of optogenetic stimulus
intensities, Pla and pIP10 activation in solitary males induces the
production of all three (P, Py, and sine) types of song, whereas
VvPR6 activation induces only pulse song (Pg, and Pg,)”. We
hypothesized that activation of these neurons produces changes in
song either through directly activating motor pathways or through
changing the transformation between sensory information and

>
>

Fig. 4 | Optogenetic activation of song pathway neurons and state switching. a, Schematic of the three classes of neurons in the Drosophila song-
production pathway. b, Protocol for optogenetically activating song-pathway neurons using csChrimson targeted to each of the neuron types in a. ¢, Left:
the observed probability of each song mode aligned to the onset of the optogenetic stimulus. Right: the difference between the mean during LED on from
the mean during LED off before stimulation. The numbers of flies tested are indicated in parentheses; error bars represent the s.e.m. Control males are

of the same genotype but have not been fed ATR, the required co-factor for csChrimson. Center lines of box plots represent the median, the bottom and
top edges represent the 25th and 75th percentiles, respectively. Whiskers extend to +2.7 times the standard deviation. d, Left: the posterior probability of
each state given the feedback cues and observed song (under the three-state GLM-HMM trained on wild-type data), aligned to the onset of optogenetic
stimulation; error bars are the s.e.m. Right: activation of pIP10 neurons biases males to the Close state and away from the Chasing and Whatever states.
The difference between the mean during LED on from the mean during LED off before stimulation is shown on the right. The numbers of flies are listed in
parentheses in ¢. Center lines of box plots represent the median, while the bottom and top edges represent the 25th and 75th percentiles, respectively.
Whiskers extend to +2.7 times the standard deviation. e, Comparison of transfer functions (the conditional probability of observing song choice (y axis)
as a function of the magnitude of each feedback cue (x axis; see also Fig. 3e). Shown here are transfer functions for four feedback cues (mFV, fLS, fFA

and fFV). Average across all states (dark gray) represents the transfer function from all data without regard to the state assigned by the model. Transfer
functions are calculated from all data. f, Transfer functions for the same four feedback cues shown in e, but in animals expressing csChrimson in pIP10
while the LED is off (black) or on (red); transfer functions for data from wild-type animals across all states (dark gray) reproduced from e. g, For all 17
feedback cues, median Pearson’s correlation between transfer functions between all states and the four conditions (pIP10 and ATR* (LED off or on) or
ATR- (LED off or on). Error bars represent the median absolute deviation. h, The number of feedback cues with the highest correlation between the wild-
type transfer functions (separated by state) and the transfer functions for each of the conditions (pIP10 and ATR* (LED off or on) and pIP10 and ATR" (LED
off or on). Blue represents transfer functions most similar to the Close state, green to the Chasing state, and purple to the Whatever state. i, Unpacking the
data in h for the ATR* condition. j, Top: schematic of the previous view of pIP10 neuron function. Bottom: pIP10 activation both drives song production and
state switching; this revised view of pIP10 neuron function would not have been possible without the computational model.
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motor output. Previous work has demonstrated that visual infor-
mation related to estimating the distance between animals is likely
relayed to the song pathway between pIP10 neurons and ventral
nerve cord song premotor neurons®. pIP10 neurons could therefore
influence how sensory information modulates the song premotor

network, and consequently affect the mapping between feedback
cues and song modes.

We expressed the light-sensitive opsin csChrimson using driver
lines targeting Pla, vPR6 and pIP10 (see Methods), and chose
a light intensity level, duration and inter-stimulus interval that
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reliably produces song in solitary males for these genotypes®. Here,
we activated neurons in the presence of a female, with varying
pauses between stimuli to induce a change in state without com-
pletely overriding the role of feedback cues (Fig. 4b). We recorded
song via an array of microphones tiling the floor of the chamber and
wrote new software, called DeepFlyTrack, for tracking the centroids
of flies on such difficult image backgrounds (see Methods). Using
this stimulation protocol, Pla activation drove a general increase in
song during courtship (Extended Data Fig. 7a—c), while pIP10 and
vPR6 activation reliably drove song production during the optoge-
netic stimulus (Fig. 4c; Extended Data Fig. 7c). The activation of
Pla during courtship is different from previous findings in solitary
males, which showed stimulus-locked changes in song production®
(Extended Data Fig. 7b), while the type and quantity of song pro-
duction from pIP10 and vPR6 activation were more similar”. To
determine whether optogenetic activation affected state switching,
we fitted our GLM-HMM to recordings from males of all three gen-
otypes (including both experimental animals and controls not fed
the csChrimson channel co-factor all trans-retinal (ATR™ animals;
see Methods).

To account for the possibility that activating these neurons
directly drives song production, we supplemented the GLM-HMM
model (Fig. 1) with a filter encoding the presence or absence of
the optogenetic light-emitting diode (LED) stimulus. This filter
(termed the ‘opto filter’) was fitted separately for each genotype
(Supplementary Table 1) and accounted for the change in probabil-
ity of producing song that was unrelated to sensory information.
The opto filters for each output type were similar across all states
in ATR-fed flies (Extended Data Fig. 7e,f), which indicates that any
differences we found between states could be attributable to other
aspects of the model (not the presence or absence of the LED light).
As expected, flies not fed ATR had opto filters that showed no influ-
ence of the LED stimulus on song (Extended Data Fig. 7f). We found
that there was a large increase in the probability of entering the Close
state when pIP10 neurons were activated, but little effect on state
when Pla or vPR6 neurons were activated (Fig. 4d; Extended Data
Fig. 7d,g). We found a consistent effect when we tested another line
that labeled pIP10* (data not shown). The Close state was typically
associated with an abundance of sine song, although it also produced
all other song modes during natural behavior (Fig. 2a); nonetheless,
in this case, pIP10 activation was associated with increased pulse
song (Fig. 4c; Extended Data Fig. 7e). Even though the male mostly
sang pulse song during optogenetic activation of pIP10, the dynam-
ics of the feedback cues that predict song were better matched to
the output filters of the Close state of the GLM-HMM. Activation
of pIP10 neurons always increased the probability that the animal
would transition into the Close state, independent of which state
the animal was in previously; however, if the male was already in
the Close state, there was no significant change in state (Extended
Data Fig. 8a) whether the animal was close to or far away from the
female (Extended Data Fig. 8b) or singing or not singing (Extended
Data Fig. 8c).

We next explored the possibility that the effect was somehow
due to nuances of model fitting. Because vPR6 activation resulted
in changes in song that were similar in aggregate to pIP10 activa-
tion (Fig. 4c) without a change in state (Fig. 4d), we concluded that
changing state is not synonymous with changing song production.
We removed male and female feedback cues from the GLM-HMM
by zeroing out their values (see Methods) and found that a model
without feedback cues poorly predicted song choice, which sug-
gests that the prediction of the Close state relies on the moment-
to-moment variation in these features (Extended Data Fig. 9a). In
addition, we examined individual feedback cues and found that
the vast majority were more like the Close state (Extended Data
Fig. 9b,c). We finally tested whether activation of pIP10 neurons
puts the animal in a different behavioral context with respect to the
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female (for example, driving him closer to the female). By looking at
the six feedback cues that were the strongest predictors of being in
the Close state, we found that the dynamics were indistinguishable
from ATR" controls and could not explain the observed difference
in state (Extended Data Fig. 9d). Instead, our data point to the fact
that pIP10 neurons affect the way in which feedback cues (Fig. 1b)
modulate song choice.

We next tested whether we could observe, following pIP10 acti-
vation, a change in song strategy independent of the GLM-HMM
model. As in Fig. 3e, we examined the choice by males to produce
pulse versus sine song. Because pIP10 directly drove an overall
increase in pulse song (Fig. 4c), we normalized the data to the high-
est and lowest pulse rate to more easily visualize the transfer func-
tion (the relationship between feedback cues and song choice) used
by the male (Fig. 4e). The relationship between feedback cues and
the probability of producing pulse song was reversed between the
Close and the Chasing state. We examined the correlation between
these transfer functions from wild-type males and males with pIP10
activation during LED on or LED off (see Methods). We found that
these transfer functions were similar to wild type (combining across
all three states) for pIP10-activated flies during LED off, but were
highly dissimilar when the LED is on, which suggests that song
patterning changed during these times (Fig. 4f,g; Extended Data
Fig. 10a). We then tested whether these transfer functions are
shifted in a particular direction, such as toward the functions from
the Close state in the wild-type data (Extended Data Fig. 10b, blue
lines). During periods when the LED is off, the transfer function
resembled a mix of states (Fig. 4h). However, transfer functions dur-
ing LED on shifted toward Close state transfer functions (Fig. 4).
This was true across 13 out of 17 feedback cues (Fig. 4i; Extended
Data Fig. 10d-f). This analysis, independent of the GLM-HMM,
confirms that pIP10 activation biases the nervous system toward
the Close state set of sensorimotor transformations that shape song
output. pIP10 neurons therefore play a dual role in the acoustic
communication circuit during courtship (Fig. 4j) in that they both
directly drive pulse song production (Fig. 4c) and bias males toward
the Close state (Fig. 4i). These results highlight the value of the
GLM-HMM for identifying the neurons that influence dynamically
changing internal states and are critical for shaping behavior.

Discussion

Here, we developed a model (the GLM-HMM) that allows experi-
menters to identify, in an unsupervised manner, dynamically
changing internal states that influence decision-making and, ulti-
mately, behavior. Using this model, we found that during court-
ship, Drosophila males utilize three distinct sensorimotor strategies
(the three states of the model). Each strategy corresponded to a
different relationship between inputs (17 feedback cues that affect
male singing behavior) and outputs (three types of song and no
song). While previous work had revealed that fly feedback cues
predict song-patterning decisions®”’, the discovery of distinct
state-dependent sensorimotor strategies was only possible with the
GLM-HMM. This represents an increase in information captured
of 70% for all song and 110% for song transitions compared to a
GLM. While we have accounted for much of the variability in song
patterning, we speculate that the remaining variability is due to
either noise in our segmentation of song’ or the fact that we did
not measure some male behaviors that are known to be part of the
courtship interaction, including tapping of the female via the fore-
legs and proboscis extension**. The use of new methods that esti-
mate the full pose of each fly*” combined with acoustic recordings
should address this possibility.

Several recent studies have used latent state models to describe
with incredible accuracy what an animal is doing over time'*->"***.
These models take continuous variables (for example, the angles
between the joints of an animal) and discretize them into a set of
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outputs or behavioral actions. This generates maps of behavioral
actions (such as grooming, fast walking and rearing) and the like-
lihood of transitions between actions. In this study, the behavior
we focused on can also be considered as a continuous variable: the
song waveform of the male, which is generated by the vibration of
his wing. This variable can be discretized into three separate types
of song in addition to no song. We show here that it is crucial to
sort these actions according to how feedback cues bias choices
between behavioral outputs. In other words, we demonstrated the
importance of considering how changes in feedback cues affected
the choice of behavioral outputs and the transitions between these
choices. Animals do not typically switch between behaviors at ran-
dom, and the GLM of our GLM-HMM provides a solution for
determining how feedback cues modulate the choice of behavioral
outputs over time. This will be useful not only for the study of natu-
ral behaviors, as we illustrate here, but also for identifying when ani-
mals switch strategies during task-based behavior'®*". The broader
framework presented here can also flexibly incorporate continuous
internal states with state-dependent dynamics*. Alternatively, states
themselves may operate along multiple timescales that necessitate
hierarchical models in which higher-order internal states modulate
lower-order internal states, which in turn modulate the actions of
the animal®.

In our study, differences in internal state corresponded to dif-
ferences in how feedback cues pattern song. This is analogous to
moving toward someone and engaging in conversation when in a
social mood and avoiding eye contact or turning away when not.
In both cases, the feedback cues remain the same (the approach-
ing presence of another individual), but what changes is the map-
ping from sensory input to behavior. Previous studies of internal
state have focused mostly on states that can either be controlled
by an experimenter (for example, hunger and satiety) or easily
observed (for example, locomotor status). By using an unsupervised
approach to identify states, we expand these studies to states that
animals themselves control and are difficult to measure externally.
This opens the door to finding the neural basis of these states. We
provide an example of this approach by investigating how the acti-
vation of neurons previously identified to drive song production in
Drosophila affect the state predictions from the GLM-HMM. We
found that activation of a pair of neurons known as pIP10 not only
robustly drove the male to produce two types of song (P, and P,,),
as shown previously”, but also drove males into the Close state, a
state that is mostly associated with the production of sine, not pulse,
song in wild-type flies. pIP10 neurons are hypothesized to be post-
synaptic to P1 neurons that control the courtship drive of male
flies'>*>*. Previous work® found that dynamic modulation of pulse
song amplitude likely occurred downstream of pIP10 neurons, in
agreement with what we have found here. In other words, activation
of pIP10 neurons both directly drives pulse song production (likely
via VPR6; see Fig. 4) and affects the way feedback cues modulate
song choice. While we do not yet know how this is accomplished,
our work suggests that pIP10 neurons affect the routing of sensory
information into downstream song premotor circuits in a manner
analogous to that of amygdala neurons, which gate sensory infor-
mation and suppress or promote particular behaviors'”*.

What insight does our model provide to studies of Drosophila
courtship more broadly? We expect that internal state also affects
the production of other behaviors produced during courtship, such
as tapping, licking, orienting and mounting. This includes not only
states such as hunger'>*, sexual satiety”, or circadian time*, but also
states that change on much faster timescales, as we have observed
for acoustic signal generation. Identifying these states will require
the monitoring of feedback cues that animals have access to during
all behaviors produced during courtship. The feedback cues govern-
ing these behaviors may extend beyond the ones described here and
may include direct contact between the male and the female or the

2048

dynamics of pheromonal experience. The existence of these states
may indicate that traditional ethograms detailing the relative transi-
tions between behaviors exhibit additional complexity or that there
are potentially overlapping ‘state’ ethograms.

Why does the male fly possess the three states that we identi-
fied? What is striking about the three states is that feedback cues in
one state have a completely different relationship with song outputs
versus in another state. For example, increases in mFV correlated
with increased pulse song in the Close state, but increased sine song
in the Chasing state. These changes in relationship may be due to
changing female preferences over time (that is, the female may pre-
fer different types of song at different times depending on changes
in her state), changing goals of the male (potentially to signal the
female to slow down when she is moving quickly or to prime her
for copulation if she is already moving slow) or changes in ener-
getic demands (that is, the male balancing conserving energy with
producing the right song for the female). The existence of differ-
ent states may also generate more variable song over time, which
may be more attractive to the female®, a behavior that is consistent
with work in birds®. Future studies that investigate the impact of
state switching on male courtship success and mating decisions may
address some of these hypotheses.

In conclusion, in comparison to classical descriptions of behav-
ior as fixed action patterns™, even instinctive behaviors such as
courtship displays are continuously modulated by feedback signals.
We also show here that the relationship between feedback signals
and behavior is not fixed, but varies continuously as animals switch
between strategies. Instead, just as feedback signals vary over time,
so too do the algorithms that convert these feedback cues into
behavior outputs. Our computational models provide a method for
estimating these changing strategies and serve as essential tools for
understanding the origins of variability in behavior.
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Methods

Flies. For all experiments, we used 3-7-day-old virgin flies collected from density-
controlled bottles seeded with 8 males and 8 females. Fly bottles were kept at 25°C
and 60% relative humidity. Male virgined flies were then housed individually
across all experiments, while female virgined flies were group-housed in wild-type
experiments and individually housed in the transgenic experiments (Fig. 4), and
kept in behavioral incubators under a 12-12h light-dark cycle. Before recording
with a female, males were painted with a small spot of opaque ultraviolet-cured
glue (Norland Optical and Electronic Adhesives) on the dorsal mesothorax to
facilitate identification during tracking. All wild-type data were collected in a
previous study** and consisted of either a random subset of 100 flies not used for
model training (Fig. 1g,h; Extended Data Fig. 2c-g) or all wild-type flies in the
dataset. In Fig. 4, we collected additional data using transgenic flies. Asterisks
indicate previously published data*.

Behavioral chambers. Behavioral chambers were constructed as previously
described”***. For optogenetic activation experiments, we used a modified
chamber in which the floor was lined with white plastic mesh and equipped
with 16 recording microphones and video recorded at 60 Hz. To prevent the
LED from interfering with the video recording and tracking, we used a short-
pass filter (ThorLabs FESH0550, cut-off wavelength of 550 nm). Flies were
introduced gently into the chamber using an aspirator. Recordings were timed
to be within 150 min of the behavioral incubator lights switching on to catch

the morning activity peak. Recordings were stopped after 30 min or after
copulation, whichever was sooner. If males did not sing during the first 5min of
the recording, the experiment was discarded. In Fig. 4, all ATR* animals (flies
fed ATR) that did not vibrate their wings when tested under red LED light the
day before the experiment were excluded from analysis. The dataset of wild-type
flies (Figs. 1-3) came from a previous study®’; for that study, data from flies that
moved 1.5mmmin-! or sang at low amplitudes relative to other flies of the same
strain were excluded on the basis of possible poor health (this criterion applied to
25 out of 679 males).

Optogenetic activation. Flies were maintained for at least 5 days before the
experiment on either regular fly flood or fly food supplemented with retinal (1 ml
ATR solution (100 mM in 95% ethanol) per 100 ml of food). CsChrimson®' was
activated using a 627-nm LED (Luxeon Star) at an intensity of 0.46 mW mm™

for pIP10 neuron activation. Light stimuli were delivered for 500 ms of constant
LED illumination, randomized to occur every 5-25s. Sound recording and

video were synchronized by positioning a red LED that turned on and off with

a predetermined temporal pattern in the field of view of the camera and whose
driving voltage was recorded on the same device as the song recording.

Data collection and analyses were not performed blinded to the conditions
of the experiments, but all analyses of song and tracking of flies was automated
using custom-written software. No statistical methods were used to predetermine
sample sizes, but our sample sizes were similar to those reported in previous
publications****’. Animals were randomly assigned to the ATR* or ATR" groups
following collection.

Statistical methods. Data were checked for normality using the Lilliefors test and
found to be non-normal. As such, all pairwise comparisons were made using the
Mann-Whitney U-test. All reported correlations were calculated using Pearson’s
correlation.

Fly tracking via DeepFlyTrack. Data from a previous study** were previously
tracked.

For new data, tracking was performed using a custom neural network tracker
we call DeepFlyTrack. The tracker has the following three components: identifying
fly centroids, orienting flies and tracking fly identity across frames. Frames were
first annotated to indicate the position of a blinking LED, which was then used for
synchronization with the acoustic signal and to indicate the portion of the video
frame containing the fly arena.

We designed a neural network trained on 200 frames containing fly bodies
annotated with the centroid, the head and the tail. These annotations were
convolved with a two-dimensional Gaussian with a standard deviation of five.
The network was trained to reconstruct this annotated data from grayscale
video frames using a categorical cross entropy loss function. The neural network
contained five 4x 4 convolutional layers. The first four layers passed through
a ReLu activation function and the final layer passed through a sigmoidal
nonlinearity. The network was trained using Keras with the input frames being a
192192 % 3 patch containing 0, 1 or 2 flies. After training, the network predicted
entire video frames. These were thresholded, and points were fit with k-means,
where k=2. To keep track of fly identity, we used the Hungarian algorithm to
minimize the distance between flies identified in subsequent frames. The points
were fit to an ellipse to extract putative body center and orientation. We used this
ellipse for the centroid and an angle of £180°. To fully orient flies, we assumed that
the fly typically moves forward and rarely turns more than 90° per frame. In 1,000
frame chunks, we found the 360° orientation that best fit these criteria. Position
and orientation were smoothed every two frames to downsample from 60 Hz to

the 30 Hz used in previous work?". Fly identity and orientation were then manually
fixed (average 4.5 identity flips per 30 min).

Song segmentation. Song data from a previous study”* was resegmented to
separate Py, and Py, according to another previous study”. New song data (Fig. 4)
were also segmented using this new pipeline.

Chance model. The probability of observing each of the four song modes (no
song, Pp, Py, and sine) in a given frame was calculated from a random sample
of 40 wild-type flies, which we denote as p (song type). We used two Chance

o Chance ;
models: one drawn from song statistics averaged across all of the courtship and one
drawn from song only at transitions between output types. Thus, the probability of
observing a particular song mode was determined as follows:

i

Ppance (S0ng mode i) = % "

where N;is the number of time bins during the courtship with song mode i, and N
is the total number of time bins, either during the entire courtship or only at the
time of song transitions, averaged across all 40 flies. The likelihood of observed
song sequences under the Chance models (Fig. 1g,h) was computed using 100
additional flies that were sampled from the wild-type dataset.

Cross-validation. All hyperparameters were inferred by cross-validation from
held-out data not used for fitting. Across all analyses, models were fitted using
one dataset consisting of 40 flies, and performance was validated on data from
individual flies that were not used in the fitting or the hyperparameter fitting.
Because performance was cross-validated on test data, increasing the number of
parameters did not necessarily give higher performance values. See, for instance,
Fig. 1g, whereby the five-state model achieved lower performance than the three-
or four-state model despite more free parameters.

Feedback cues. Data from tracked fly trajectories were transformed into a set of
17 feedback cues that were considered as inputs to the model for male singing
behavior. For each cue, we extracted 4 s of data before the current frame, sampled
at 30 Hz (120 time samples for each cue), which results in a feature vector of length
of 17x120=2,040. We augmented this vector with a ‘1’ to incorporate an offset or
bias, yielding a vector of length 2,041 as input to the model in each time bin.

For model fitting, we formed a design matrix of size Tx 2,041, where T'is the
number of time bins in the dataset from a single fly after discarding the initial 4s.
We concatenated these design matrices across flies so that a single GLM-HMM
could be fitted to the data from an entire population.

Multinomial GLM. Previous work*! used a Bernoulli GLM (also known as a
logistic regression model) to predict song from a subset of the feedback cues that
we consider here. That model sought to predict which of two types of song (pulse
or sine) a fly would sing at the start of a song bout during certain time windows
(for example, times when the two flies were less than 8-mm apart, and the male
had an orientation <60° from the centroid of the female).

Here, we instead use a multinomial GLM (also known as multinomial logistic
regression) to predict which of four types of song (no song, P, Py, and sine) a
fly will sing at an arbitrary moment in time. The model was parameterized by a set
of four filters {F;}, i € {1, 2, 3,4}, which map the vector of feedback cues to the non-
normalized log-probability of each song mode.

The probability of each song mode given under the model given feedback cue
vector s, can be written as follows:

exp(F;-s,)
4
Tr ik

P(song mode=ils,) =

@

Note that we can set the first filter to all-zeros without loss of generality, since
probabilities must sum to 1. We fit the model via numerical optimization of

the log-likelihood function to find its maximum and used a penalty on the

sum of squared differences between adjacent coefficients to impose smoothness.
See the description of the GLM-HMM below for more details (this is a one-state
GLM-HMM).

GLM-HMM. The simplest form of a HMM has discrete hidden states that change
according to a set of fixed transition probabilities. At each discrete time step, the
model is in one of the hidden states and has a fixed probability of transitioning to
another state or staying in the same state. If the outputs are discrete, the HMM has
a fixed matrix of emission probabilities, which specifies the probability over the set
of possible observations for each hidden state.

The GLM-HMM we introduce in this paper differs from a standard HMM
in two ways. First, the probability over observations is parameterized by a GLM,
with a distinct GLM for each latent state. This allows for a dynamic modulation
of output probabilities based on an input vector, s, at each time bin. Second,
transition probabilities are also parameterized by GLMs, one for the vector of
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transitions out of each state. Thus, the probability of transitioning from the current
state to another state also depends dynamically on a vector of external inputs
(feedback cues) that vary over time.

A similar GLM-HMM has been previously described”, although that model
used Poisson GLMs to describe probability distributions over spike train outputs.
Here, we considered a GLM-HMM with multinomial GLM outputs that provides a
probability over the four song modes (as described above).

Fitting. To fit the GLM-HMM to data, we used the expectation-maximization
(EM) algorithm™ to compute maximum-likelihood estimates of the model
parameters. EM is an iterative algorithm that converges to a local optimum of
the log-likelihood. The log-likelihood (which may also be referred to as the log-
marginal likelihood) is given by

logP(Y|0) =log (3)

Z P(Y,Z|0)
VA
whereY=y,...

>+ --» ), are the observations at each time pointand Z=z,,. .., zy are
the hidden states that the model enters at each time point. The joint probability
distribution over data and latents, known as the complete-data log-likelihood, can
be written as follows:

P(Y,Z|0) = P(z)]6,)

T T
11 P(z,|z[1,o")] [ | § 2 09] )

t=2 t=1

where 0, is a parameter vector specifying the probability over the initial latent state
z,, 0, denotes the transition model parameters and §, denotes the observation
model parameters. We abbreviate as follows:

nzlzp(zllel) (5)
az,_l,z[ZP(Ztlzt—l’ 0,) (6)
1,5, =P 012 80) @)

P(z,10,) is initialized to be uniformly distributed across states and then fit on
successive E-steps.

E-step. The E-step of the EM algorithm involves computing the posterior
distribution P(Z|Y, 0) over the hidden variables given the data and model
parameters. We use the adapted version of the Baum-Welch algorithm as
previously described”. The Baum-Welch algorithm has two components: a
forward step and a backward step. The forward step identifies the probability
a(t)=P(Y,=y,...,Y,=y,Z,=il0) of observing Y=y, ...,y and, assuming
there are N total states, of being in state i at time ¢ by iteratively computing as
follows:

N

aft+1) :”i'y:+1 Z aj(t)ajyi (8)

j=1

where a,(1) =, The backward step does the reverse in that it identifies the
conditional probability of future observations given the latent state, as follows:

N
b =P(Y =y, o Y=y, |2,=0,0)= Z b+, ©)

j=1

where b(T) = 1. These allow us to compute the marginal posterior distribution over
the latent state at every time step, which we denote y(Z,) = P(Z,|Y, 0), and over pairs
of adjacent latent states, denoted £(Z,, Z,, ) = P(Z,, Z, ;| Y, 0), which are given by

L2y PO b
TRYe ¥ awb (10
pZ,Z,,,,Y|0) a(t)b(t+1)an
EZp 2,0 = =
41 p(Y|0) > zj’:l a OB+ Daygy, (11)
7=p(Z||Y,0) = a(1) (12)

In practice, for larger datasets, it is common to run into underflow errors due
to the repeated multiplication of small probabilities in the equations above. Thus, it
is typical to compute {a,,(t)} and {b,,(t)} in scaled form. See ref. ** for details.
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M-step. The M-step of the EM algorithm involves maximizing the expected
complete-data log-likelihood for the model parameters, whereby the expectation
is with respect to the distribution over the latents computed during the E-step, as
follows:

N
LOIY)= Y PZIY.OLOY.2)= Y 1(Z, )log(x)

VA i=1
T N N
+ XYY 7,2 oglar) (13)
=2 i=1 j=1
T N
+ Z r(Z,)og(n, )
t=1 i=1

As noted above, our model describes transition and emission probabilities with
multinomial GLMs, each of which is parameterized by a set of filters. Because these
GLMs contribute independently to the a, 7 and & terms above, we can optimize the
filters for each model separately. Maximizing the 7 term is equivalent to finding
n;=P(Z,=i|Y, ). We maximize the & term as previously described” (in appendix
B of that publication) with the addition of a regularization parameter. The
transition probability from state i to state j at time ¢ is defined as

exp(F;;-s,)
G= e (14)
Zk:l exp(F,;-s,)

where we define all filters from one state to itself F; ; to be 0 without loss of
generality.

Additionally, we added regularization penalties into the model to avoid
overfitting. We used both Tikhonov regularization and difference smoothing and
found difference smoothing to provide both better out-of-sample performance
and filters that were less noisy. Difference smoothing adds a penalty for large
differences in adjacent bins in each filter. However, because each filter was applied
across U features of length L, we did not apply a penalty between bins across
features. For some regularization coefficient r, the model that we fit became

exp(E;;-s,) O X )
@ = ——————+r Z Z (B, (r+1)—F,; (1)) (15)
2 oPEges) T T

In the previous study”, both the gradient and Hessian for fitting the transition
filters during the M-step were provided. In our hands, we found that computing
the Hessian was computationally more expensive for the large datasets that we are
working with and did not speed up the fitting procedure. We computed the inverse
Hessian at the end of each stage of fitting to provide an estimate of the standard
error of the fit.

The previously described GLM-HMM?* was formulated for neural data, in
which the outputs at each time were Poisson or Bernoulli random variables (binned
spike counts). As noted above, we modified the model to use categorical outputs
to predict the discrete behaviors that the animal was performing. Similar to the
transition filters, for emission filters, one filter may be chosen to be the ‘baseline’
filter set to 0. We used a multinomial model that assumes coefficients F=F, ..., E,
where the filter F, is assumed to be the baseline filter equal to 0. The probability of
observing some output y (out of O possible outputs) is governed by the equation

X (Fy,~st)
PO =G —— (16)
Y0 el s)
We then maximize the following:
TN TN
DD vz, ogPi0)= Y Y 1(z,=i)
=1 i=1 =1 i=1 a7)

0
[log(exp(Fiyyr- ) — log(z exp(F, -s))]
n=1
To avoid overfitting, we increased the smoothness between bins by penalizing
differences between subsequent bins for each feature using the difference operator
D multiplied by the regularization coefficient r as described for the transition filter.
No smoothing penalty was applied at the boundary between features. The objective
function to optimize becomes

T o
Z Z 7(Z,=)llog(exp(E,, -s,) —log(z exp(E,,-s,))]
t=1 i=1 n=1 (18)

U L
r Y. Y F,, +D-E, (0

u=1 =1
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which has the gradient
T .
Zt—l y(Z=i)[1- exp(Fiyy -s,.)]
VF,, = = s
i ZO exp(F,,-s,) [
n=1 ’ (19)
UL
+2r 30 Y, (t+D=F,, ()
u=1 =1

After the M-step was completed, we ran the E-step to find the new posterior
given the parameters found in the M-step, and continued alternating E and M steps
until the log-likelihood increased by less than a given threshold amount.

We used the minfunc function in Matlab to minimize the negative expected
complete-data log-likelihood in the M-step, and used cross-validation to select
the regularization penalty r over a grid of values. The selected penalty for the
three-state model was r = 0.05. Because the EM algorithm is not guaranteed to find
the local maximum, we performed the fit many times with different parameter
initializations. We used the model with the best cross-validated log-likelihood (see
the section “Testing” below).

Testing. We assessed model performance by calculating the log-likelihood of data
held-out from training. In particular, we assessed how well the model predicted
the next output given knowledge of all the data up to the present moment. This
allowed for an accurate estimate of the state up to time ¢ and then evaluated how
well the transition and output filters explain what happens at time ¢+ 1. We can
write this as logP(Y,,,|Y,=)},. .., Y,=},0), which can be calculated in the same
manner as the forward pass of the E-step described in the previous section. The
prediction for ¢+ 1is then

N

PO, D S1ae) = 2 PO, NZ11=18141,0)
i=1

N (20)

2 P(Z,,=ilZ,=}, sz+1>0)P(Zz:j|J’1;,’ $1.09)

=1

Note that this equivalent to the scaling factor was used when fitting the forward
step of the model in the preceding section. The mean forward log-likelihood that
we report is then

.
1
LLjarg(model) = - 3 logPlyly, ) (21)

t=1

To report the log-likelihood in more interpretable units, we normalized by
subtracting the log-likelihood under the Chance model (described above; Fig. 1g;
Extended Data Fig. 2c,e), as follows:

LL,m(model) =LLg . s(model) —LLg ... +(chance) (22)

The Chance model was either drawn from the entirety of the courtship (Fig.
1g) or only at transitions between outputs (Fig. 1h) (see the static Chance model
above). To place these in appropriate units, we present either as bitss™' (dividing
(model) by the number of seconds of courtship) or as bitsbin! (dividing
L, orm(model) by the number of bins). While this provides a bound on the level
of uncertainty of each model, we do not have a way of estimating the intrinsic
variability in the song-patterning system of the male fly (to do so, would require
presenting the identical feedback cue history twice in a row, with the animal in the
same set of states).

An alternative metric that we report is the log-likelihood of the model where
we did not use the past song output to estimate the current state. In other words,
logP(Y,_,|0). This alternative required us to use only the feedback cues s, to
predict the current state and its output. Recall from the previous section that
P(z|z,_,,s,,0,) is the probability of transitioning using only the transition model.
Then we can compute the probability of being in each state at time ¢ without
conditioning on past output observations, as follows:

Lnorm

N
Pgen(}’,:+1|sl:t+l) = Z P()’,HIZtH: i,8,,1,0)

i=1

N (23)
Z P(Zt+l: i|Zt=j, St+1’0)P(Zt=j|Sl:t’6)
j=1
and the log-likelihood of the output is
T
LL,., (model) =% 3 logB() (24)
t=1

Giving a normalized log-likelihood measure similar to before as follows:

LL_ .. (model)=LL_ _(model)—LL

norm ‘gen gen(Chance) (25)

The normalized log-likelihood of the forward model reports improvements over
the Chance model for predicting the song mode given knowledge of the song history
to improve the prediction of the current state. The normalized log-likelihood using
only the feedback cues reports improvements over the Chance model for predicting
song mode, without accurately estimating the state of the animal; in other words,
model performance that comes only from dynamics of the feedback cues.

Binning of song. We discretized the acoustic recording data to fit the GLM-
HMM. Song was recorded at a sampling rate of 10kHz, segmented into 4 song
modes (sine, P, Py, and no song) and then discretized into time bins of uniform
width (33 ms), which corresponds to roughly the inter-event interval between
pulse events. We used the modal type of song in each bin to define the song mode
in that bin. Because some song pulses have an inter-event interval of >33 ms, we
artificially introduced no-song bins within trains of pulses. To correct this error,
we identified the start and end of a run of song as either a transition between types
of song (sine, Py, or Py,,) or as the transition between a song type and no song if
the quiet period lasted for >80 ms. We then corrected no-song bins that occurred
within runs of each song type. To up-sample and down-sample song (Extended
Data Fig. 2a,c), we use the modal song per interpolated bin.

Applying filters from only one state. The likelihood of observing song is
typically calculated by applying the filters for each state and multiplying that by
the probability of being in each of those states P(state|data)P(emission, state). To
calculate the probability of being in a given state, we used the Viterbi algorithm
used in HMMs to find the most likely state. We then applied the filter for state i
when the most likely state at time # is j to find the mean likelihood of observing an
emission k (Fig. 3a,b), as follows:

exp(F,;-s,)

P(kIZ,=,0) = —o 20
zl=1 exp(F;;-s,)

(26)

Predictions of pulse versus sine. When fitting multinomial GLM filters, one set of
filters is set to 0 and is used as a reference point for other filters (since it is always
possible to scale all filters together). In our model, the no-song output was the filter
set to 0. To visualize the filter that represented the probability of observing pulse
versus sine, we took the average of the P, and Py, filters and subtracted that from
the sine filter.

We then computed the raw data by taking the histogram of z-scored feedback
cues that occur just before pulse and divided it by the histogram of z-scored
feedback cues that occur immediately before both pulse and sine. This gave us the
probability of observing pulse versus sine at each feature value (Fig. 3e).

Fit of GLM-HMM to optogenetic activation. Optogenetic activation (driven by
a LED stimulus) of previously identified song pathway neurons can, as expected,
directly drive song production. To account for this, we add in an additional offset
term (because each genotype produces different distributions of types of song)
and an extra filter for the LED (that is, the LED stimulus pattern is another input
to the model, similar to the 17 feedback cues) and then refit the GLM-HMM. The
offset term and the additional LED filter were fit using expectation maximization
(see above); no other filters (for the 17 feedback cues) were refit from the original
GLM-HMM (Fig, 4).

Normalization of pulse/sine ratio. Optogenetic activation of courtship neurons
dramatically changes the fixed probability of observing pulse song. To visualize
the song output during this activation in spite of the decreased dynamic range, we
normalized the output by subtracting the minimal probability of observing pulse
versus sine song and dividing by the maximum. This maintained the shape and
relationship of the pulse versus sine data to be constant but compressed it to be
between 0 and 1 (Fig. 4).

Comparison of GLM-HMM to previous data. pCorr values were taken from a
previous study*. To generate a fair comparison, we took equivalent song events
in our data (for example, ‘pulse start’ compared times at which the male was close
to and oriented toward the female and either started a song bout in pulse mode
or did not start a song bout) and found (with either the multinomial GLM or the
three-state GLM-HMM) the song mode (pulse, sine or no song) that generated
the maximum-likelihood value. Similarly to the previous study*, we adjusted

the sampling of song events to calculate pCorr. P, and P,,,, events were both
counted as pulse. The pCorr values reported for the multinomial GLM and three-
state GLM-HMM are the percentage of time that the highest likelihood value
corresponded to the actual song event (Extended Data Fig. 1b).

Zeroing out filters. To assess the performance of the model without key features
(male feedback cues or female feedback cues), the filters were set to 0. This
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removes the ability of the model to perform any prediction with this feature. We
then inferred the likelihood of the data using this new model (Fig. 4).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Data are available at http://arks.princeton.edu/ark:/88435/dsp01rv042w888.
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The code for tracking flies (DeepFlyTrack) is available at https://github.com/
murthylab/DeepFlyTrack. The code for running the GLM-HMM algorithm is
available at https://github.com/murthylab/ GLMHMM.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Activation of song pathway neurons. a, Solitary ATR-fed P1a males produce song when exposed to the same LED stimulus used
in Figure 4. In solitary males, song production is both long-lasting and time-locked to the LED stimulus. Number of animals in parentheses (n=5), heavy
line represents mean, shading represents SEM. b, ATR-fed P1a males courting a female produce significantly more Pfast (p = 1e-4), Pslow (p = 1e-3),

and significantly-different amounts of sine song (p = 0.009). All p-values from Mann-Whitney U-test. Animals from (a) (n=5), center lines of box plots
represent median, the bottom and top edges represent the 25th and 75th percentiles (respectively). Whiskers extend to +/- 2.7 times the standard
deviation. ¢, The probability of observing each song mode aligned to the opto stimulus shows that LED activation of flies not fed ATR does not increase
song production. Number of animals in parentheses, heavy line represents mean, shading represents SEM. d, The probability of the model being in each
state aligned to the opto stimulus shows that LED activation of flies not fed ATR does not change state residence. Error bars represent SEM. Number of
animals in parentheses, heavy line represents mean, shading represents SEM. e-f, ‘Opto’ filters represent the contribution of the LED to the production of
each type of song for (e) ATR+ and (f) ATR- flies. Number of animals in parentheses, heavy line represents mean, shading represents SEM. The filters for
each strain and song type are not significantly different between states. g, Measuring the maximal change in state probability between LED ON and LED
OFF shows that only pIP10 activation produces a significant difference between ATR+ and ATR- flies (two-tailed t test). Number of animals in parentheses
in (e-f), center lines of box plots represent median, the bottom and top edges represent the 25th and 75th percentiles (respectively). Whiskers extend to
+/- 2.7 times the standard deviation. All p-values from two-tailed t test.
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Extended Data Fig. 8 | Activating pIP10 biases males toward the close state. a, Conditioning on which state the animal is in prior to the light being on
(left, ATR-fed plIP10 flies, n=41; middle ATR-free pIP10 flies, n=28; right, ratio of ATR-fed to ATR-free state dwell time), activation of pIP10 results in an
increase in the probability of being in the close state unless the animal was already in the close state. Shaded area is SEM. b, When the male was both
close (<5mm) and far (> 8mm), pIP10 activation increases the probability that the animal will enter the close state. Shaded area is SEM. €. When the male
was already either singing or not singing, pIP10 activation increases the probability that the animal will enter the close state. Shaded area is SEM.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Bias toward close state is due to the altered use of feedback cues. a, Predictive performance is not significantly different between
light ON and light OFF conditions for both ATR-fed (n=41, p=0.08) and ATR-free animals (n=28, p=0.46). Performance suffers without male (+ATR
p=4e-12, -ATR p=Te-9) or female feedback cues (+ATR p=1e-10, -ATR p=1e-9), suggesting these state-specific features are needed to predict animal
behavior. Dots represent individual flies, center line is mean and lines are +/- SD. All statistical tests are Mann-Whitney U-test. b, The similarity between
each feedback cue and the filters for the ‘close’ state are subtracted by the similarity of that feedback cue to the filters for the ‘chasing’ state during LED
activation of ATR-fed pIP10 flies. This reveals song patterning is more similar to the ‘close’ state than the ‘chasing’ state for most feedback cues. ¢, Animals
that were not fed ATR (n=28) do not show a change in the contribution of the feedback cues to being in a given state, while animals that are fed ATR
(n=41) do show a change in feedback cue contribution. Shaded area is SEM. d, Most aspects of the animal trajectory do not differ in response to red light
when males are either fed (black, n=41) or not fed (gray, n=28) ATR food. Plotted are the six strongest contributors from (b). p-values are p=0.056 for
mFV, p=0.11for fmFV, 9.7e-5 for mLS, p=0.64 for fLS, p=0.67 for fFV, p=0.009 for mfAngle Mann-Whitney U-test, significance at p = 0.05 corrected to p
= 0.0083 by Bonferroni. * represents p < 0.0083, n.s. p > 0.008. Shaded area is SEM.
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Extended Data Fig. 10 | The relationship between feedback cues and song patterns changes when LED is ON in pIP10 +ATR flies. a, The transfer
functions of each feedback cue when the LED is OFF (black) and when the LED is ON (red) compared to the wild-type average (dark gray). b-c, lllustration
of Pearson's correlation between transfer functions of two feedback cues (mFV (g) and fLS (h)) when the LED is off (top, black) and on (bottom, red) and
the transfer function in each state (not the average as in Fig. 4f). The feature is considered most similar to the state with which it has the highest Pearson’s
correlation. All ATR-fed pIP10 animals were used (n=41). d, The state transfer function that is closest to the wild-type average for each feedback cue. For
instance, the mFV average is closest to the ‘whatever’ state and the fLS average is closest to the ‘chasing’ state. e-f, Same as (d), but for pIP10 - ATR flies
when the LED is off (e) or on (f).

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience


http://www.nature.com/natureneuroscience

natureresearch

Last updated by author(s): 09-25-2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

& A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
& A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O O O00000ds%

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code
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Data exclusions  No data was excluded.

Replication Each experiment presented in the paper was repeated in multiple animals. The effects identified were consistent across animals. Analysis was
performed with code that is freely available to promote replication.

Randomization  Animals of the same genotype were randomly placed into experimental groups (+/- ATR).

Blinding Blinding was not performed. All experiments were analyzed and data analysis performed by automatic tracking methods.
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Laboratory animals D. melanogaster strains CM07, CarM03, N30, NM91, TZ58, ZH23, ZW109 (provided by Peter Andolfatto or the Drosophila species
stock center), and Canton S (lab stock).
UAS-CsChrimson was obtained from the Bloomington stock center (UAS-CsChrimson was contributed to the stock center by
Vivek Jayaraman)).
Pla: UASCsChrimson/+; GMR15A01-AD (attp40)/+; GMR71G01-DBD (attp2)/+ (GMR15A01-AD (attp40); GMR71G01-DBD (attp2)
kindly provided by David Anderson.
pplP10: w/+; UAS>stop>CsChrimson/+; VT40556, Fru-FLP/+ (VT40556 and FruFLP were kindly provided by Barry Dickson and
UAS>stop>CsChrimson was kindly provided by Vivek Jayaraman.
VPR6: w/+; UAS>stop>CsChrimson/+; VT57239, FruFLP/+ (VT57239)
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