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Internal states can have a profound effect on behavioral decisions. 
For example, we are more likely to make correct choices when 
attending versus when distracted, and will consume food when 

hungry but suppress eating when sated. A number of studies in 
animals highlight that the nervous system encodes these context-
dependent effects by remodeling sensorimotor activity at every 
level, from sensory processing to decision-making, all the way to 
motor activity1–4. For instance, recordings from rodent cortical neu-
rons revealed that neural activity is more strongly correlated with 
the state of body motion versus the statistics of sensory stimuli dur-
ing sensory-driven tasks5,6. Across model systems, locomotion can 
also change the gain of sensory neurons, causing them to be more or 
less responsive and leading to the production of distinct behavioral 
outputs when these neurons are activated7–10. It is not simply action 
that modulates neural activity but also internal goals and needs. For 
example, circuits involved in driving courtship or aggression behav-
iors in rodents and flies show different patterns of activity as the 
motivation to court or fight, respectively, changes11–13. Neurons can 
be modulated via multiple mechanisms to promote these goals. For 
example, during hunger states, chemosensory neurons that detect 
desirable stimuli are facilitated and enhance their response to these 
cues14,15. Downstream from sensory neurons, the needs of an animal 
can cause the same neurons to produce different behaviors—for-
aging instead of eating, for instance—when ensembles of neurons 
are excited or inhibited by neuromodulators that relay information 
about state16–18.

Despite evidence to indicate that internal states affect both 
behavior and sensory processing, we lack methods to identify the 
changing internal states of an animal over time. While some states, 
such as nutritional status or walking speed, can be controlled for 
or measured externally, animals are also able to switch between 
internal states that are difficult to identify, measure or control. One 
approach to solving this problem is to identify states in a manner 
that is agnostic to the sensory environment of an animal. These 
approaches attempt to identify whether the behavior an animal 
produces can be explained by some underlying state, for exam-
ple, with a hidden Markov Model (HMM)19–22. However, in many 
cases, the repertoire of behaviors produced by an animal may stay 

the same, while what changes is either the way in which sensory 
information patterns these behaviors or patterns the transitions 
between behaviors. Studies that dynamically predict behavior 
using past sensory experiences have provided important insight 
into sensorimotor processing, but typically assume that an animal 
is in a single state23–26. These techniques make use of regression 
methods such as generalized linear models (GLMs) that iden-
tify a ‘filter’ that describes how a given sensory cue is integrated 
over time to best predict future behavior. Here, we take a novel 
approach to understanding behavior by using a combination of 
hidden state models (that is, HMMs) and sensorimotor models 
(that is, GLMs) to investigate the acoustic behaviors of the vinegar 
fly D. melanogaster.

Acoustic behaviors are particularly well suited for testing mod-
els of state-dependent behavior. During courtship, males generate 
time-varying songs27, the structure of which can in part be predicted 
by dynamic changes in feedback cues over timescales of tens to hun-
dreds of milliseconds24,28,29. Receptive females respond to attractive 
songs by reducing locomotor speed and eventually mating with 
suitable males30,31. Previous GLMs of male song structure did not 
predict song decisions across the entire courtship time24. We do so 
here and found that by inferring hidden states, we captured 84.6% 
of all remaining information about song patterning and 53% of all 
remaining information about transitions between song modes, both 
relative to a ‘Chance’ model that only knows about the distribution 
of song modes. This represents an increase of 70% for all song and 
110% for song transitions compared with a GLM. The hidden states 
of the HMM rely on sensorimotor transformations, represented as 
GLMs, that govern not only the choice between song outputs during 
each state but also the probability of transitioning between states. 
Using GLM filters from the wrong state worsened predictive per-
formance. We then used this model to identify neurons that induce 
state switching and found that the neuron pIP10, which was previ-
ously identified as a part of the song motor pathway32, additionally 
changes how the male uses feedback to modulate song choice. Our 
study highlights how unsupervised models that identify internal 
states can provide insight into nervous system function and the pre-
cise control of behavior.
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Results
A combined GLM and HMM effectively captures the variation 
in song production behavior. During courtship, Drosophila males 
sing to females in bouts composed of the following three distinct 
modes (Fig. 1a): a sine song and two types of pulse song29. Previous 
studies have used GLMs to predict song-patterning choices (about 
whether and when to produce each song mode) from the feedback 
available to male flies during courtship24,28. Inputs to the models 
were male and female movements in addition to his changing dis-
tance and orientation to the female (Fig. 1b). This led to the discov-
ery that males use fast-changing feedback from the female to shape 
their song patterns over time. Moreover, these models identified the 
time course of cues derived from male and female trajectories that 
were predictive of song decisions. While these models accurately 
predicted up to of 60% of song-patterning choices, they still left a 
large proportion of variability unexplained when averaged across 
the data24.

Leveraging a previously collected dataset of 2,765 min of court-
ship interactions from 276 wild-type pairs24, we trained a mul-
tinomial GLM (Fig. 1c) to predict song behavior over the entire 
courtship time (we predicted the following four song modes: sine, 
fast pulses (Pfast), slow pulses (Pslow) and no song) (Fig. 1a) from the 
time histories of 17 potential feedback cues defined by male and 
female movements and interactions (Fig. 1b)—what we will refer to 
as ‘feedback cues’. The overall prediction of this model (Fig. 1e–h, 
GLM) was similar to prior work24, which used a smaller set of both 
feedback cues and song modes and a different modeling framework 
(Extended Data Fig. 1a,b, compare ‘Coen 2014’ with ‘This study’ 
and ‘GLM’). We compared this model to one in which we examined 
only the mean probability of observing each song mode across the 
entire courtship (Chance).

We next created a model that incorporated hidden states (also 
known as latent states) when predicting song from feedback cues; 
this model is derived from the family of input–output HMMs that 
we term the GLM–HMM33 (Fig. 1d). A standard HMM has fixed 
probabilities of transitioning from one state to another, and fixed 
probabilities of emitting different actions in each state. The GLM–
HMM allows each state to have an associated multinomial GLM to 
describe the mapping from feedback cues to the probability of emit-
ting a particular action (one of the three types of song or no song). 
Each state also has a multinomial GLM that produces a mapping 
from feedback cues to the transition probabilities from the cur-
rent state to the next state (Extended Data Fig. 1c,d). This allows 
the probabilities to change from moment to moment in a manner 
that depends on the feedback that the male receives and allows us 
to determine which feedback cues affect the probabilities at each 
moment. This model was inspired by previous work that modeled 
neural activity33, but we use multinomial categorical outputs to 
account for the discrete nature of male singing behavior. One major 
difference between this GLM–HMM and other models that predict 
behavior20,34 is that our model allows each state to predict behavioral 
outputs with a different set of regression weights.

We used the GLM–HMM to predict song behavior (Extended 
Data Fig. 2a,b) and compared its predictive performance on held-
out data to a Chance model, which only captures the marginal dis-
tribution over song modes (for example, males produce no song 
68% of the time). We quantified model performance using the dif-
ference between the log-likelihood of the model and the log-like-
lihood of the Chance model (see Methods). For all models with a 
HMM, we used the feedback cue and song mode history to estimate 
the probability of being in each state. We then predicted the song 
mode in the next time bin using this probability distribution over 
states (see Methods). For predicting all song, or every bin across the 
held-out data, a three-state GLM–HMM outperformed the GLM 
(Fig. 1e,f, compare middle and lower rows). We found an improve-
ment of 32 bits s–1 relative to the Chance model for the three-state 

GLM–HMM (versus 6 bits s–1 for the GLM). Given the song-bin-
ning rate (30 bins s–1) and knowledge of the mean song probability, 
a performance of 40.3 bits s–1 would indicate that our model has the 
information to predict every bin with 100% accuracy. Therefore, the 
three-state GLM–HMM captured 84.6% of the remaining informa-
tion as opposed to only 14.6% with a GLM (Fig. 1g). The three-state 
GLM–HMM also offered a significant improvement even when 
only the history of feedback cues (not song mode history) was used 
for predictions (Extended Data Fig. 2e,f; see Methods); however, 
fitting models with additional states did not significantly improve 
performance and tended to decrease the predictive power, which 
was likely due to overfitting (Fig. 1g).

Nevertheless, a HMM was nearly as good at predicting all song, 
because the HMM largely predicts in the next time bin what occurred 
in the previous time bin (see Methods), and song consists of runs of 
each song mode (Fig. 1g; Extended Data Fig. 2c). A stronger test 
then is to examine song transitions (for example, times at which the 
male transitions from sine to Pfast)—in other words, predicting when 
the male changes what he sings. The three-state GLM–HMM offers 
1.02 bits per transition over a Chance model (capturing 53% of the 
remaining information about song transitions, an increase of 110% 
compared to the GLM), while the HMM was significantly worse 
than the Chance model at –2.7 bits per transition (Fig. 1h; Extended 
Data Fig. 2d). Such events were rare and therefore not well cap-
tured when examining the performance across all song. Moreover, 
the three-state GLM–HMM outperformed previous models24, even 
considering that those models were fitted to subsets of courtship 
data (for example, only times when the male was close to and ori-
ented toward the female) (Extended Data Fig. 1b). Thus, the GLM–
HMM can account for much of the moment-to-moment variation 
in song patterning by allowing for three distinct sensorimotor strat-
egies or states. We next investigated what these states correspond to 
and how they affect behavior.

Three distinct sensorimotor strategies during song production. 
We next determined how the 17 feedback cues and 4 song modes 
differed across the 3 states of the GLM–HMM. We examined mean 
feedback cues (Fig. 1b) during each state. We found that in the first 
state, the male, on average, is closer to the female and moving slowly in 
her direction; we therefore termed this state the ‘Close’ state (Fig. 2a;  
Extended Data Fig. 3a,d). In the second state, the male is, on aver-
age, moving toward the female at higher speed while still close, 
and so we called this the ‘Chasing’ state (Fig. 2b; Extended Data  
Fig. 3b,e). In the third state, the male is, on average, farther from the 
female, moving slowly and oriented away from her, and so we called 
this the ‘Whatever’ state (Fig. 2c; Extended Data Fig. 3c,f). However, 
there was also substantial overlap in the distribution of feedback 
cues that describe each state (Fig. 2d–g), which indicates that the 
distinction between each state is more than just these descriptors. 
Another major difference between the states is the song output that 
dominates—the Close state mostly generates sine song, while the 
Chasing state mostly generates pulse song and the Whatever state 
mostly no song (Fig. 2a–c). However, we note that there is not a 
simple one-to-one mapping between states and song outputs. All 
four outputs (no song, Pfast,Pslow and sine) were emitted in all three 
states, and the probability of observing each output depended on 
the feedback cues that the animal received at that moment. We 
compared this model to a GLM–HMM with four states, and it per-
formed nearly as well as the three-state GLM–HMM (Fig. 1g,h). We 
found that three out of the four states corresponded closely to the 
three-state model, while the fourth state was rarely entered and best 
matched the Whatever state (Extended Data Fig. 3g–i). We conclude 
that the three-state model is the most parsimonious description of 
Drosophila song-patterning behavior.

HMMs are memoryless and thus exhibit dwell times that fol-
low exponential distributions. However, natural behavior exhibits 
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very different distributions20,34,35. In our model, which is no lon-
ger stationary (memoryless), we found that the dwell times in 
each state followed a nonexponential distribution (Fig. 2h, upper; 
Extended Data Fig. 3j). Moreover, the majority of dwell times 
were on the order of hundreds of milliseconds to a few seconds,  

which indicates that males switch between states even within 
song bouts (Fig. 2h, middle). In addition, we found that the mean 
probability of being in each of the three states was either steady 
throughout courtship (Fig. 2i, upper) or aligned to successful 
copulation (Fig. 2i, lower). The only exception was that just before  
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copulation, males were more likely to sing. Accordingly, the prob-
ability of the Chasing state increases while the probability of the 
Whatever state decreases (Fig. 2i, inset) when males stay close to 
females (Fig. 2g). We next examined which feedback cues (Fig. 1b) 
predicted the transitions between states (Fig. 2j; Extended Data 
Fig. 4a–c). These were different from the feedback cues that had 
the largest magnitude mean value in each state (Fig. 2a–c), which 
suggests that the dynamics of what drives an animal out of a state 
is different from the dynamics that are ongoing during the produc-
tion of a state.

Feedback cues possess different relationships to song behavior in 
each state. The fact that each song mode is produced in each state of 
the three-state GLM–HMM (Fig. 2a–c) suggests that the difference 
between each state is not the type of song that is produced but is 
the GLM filters that predict the output of each state (which we will 
refer to as the ‘output filters’). To test this hypothesis, we generated 
song based on either the full GLM–HMM model or used output 
filters from only one of the three states (Fig. 3a). This confirmed two 
features of the model. First, that each set of output filters can pre-
dict all possible song outputs depending on the input. Second, the 
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Fig. 3 | Internal states are defined by distinct mappings between feedback cues and song behavior. a, A stretch of 500 ms of song production from 
the natural courtship dataset, with the prediction of states indicated above in colored squares. The prediction of the full GLM–HMM model (third row) 
is very different from the prediction if we assume that the animal is always in the Close state, Chasing state or Whatever state. The output using the 
song prediction filters from only that state is illustrated in the lower three rows. b, The conditional probability (across all data, n = 276 animals, error bars 
represent the s.e.m.) of observing a song mode in each state (predicted by the full three-state GLM–HMM), but using output filters from only one of 
the states. Conditional probability of the appropriate state is larger than the conditional probability of the out-of-state prediction (largest P = 6.7 × 10–6 
across all comparisons, Mann–Whitney U-test). Song-mode predictions were highest when using output filters from the correct state. Center lines of box 
plots represent the median, the bottom and top edges represent the 25th and 75th percentiles, respectively. Whiskers extend to ±2.7 times the standard 
deviation. c, The five most predictive output filters for each state and for prediction of each of the three of the types of song. Filters for types of song 
are relative to no-song filters, which are set to a constant term (see Methods). d, Example output filters for each state revealed that even for the same 
feedback cues, the GLM–HMM shows distinct patterns of integration. Plotted here are the mFV, mfDist and the mfFV; filters can change sign and shape 
between states. e, Transfer functions (the conditional probability of observing song choice (y axis) as a function of the magnitude of each feedback cue 
(x axis)) for producing pulse (both Pslow and Pfast) versus sine have distinct patterns based on state. For mFV (upper), fLS (middle) and mfDist (lower), 
the average relationship or transfer function between song choice and the movement cue (black line) differs with transfer functions separated by state 
(blue, green and purple). f, Output filters that predict pulse versus sine song for each of the following three feedback cues: mFV (upper), fLS (middle) and 
mfDist (lower).
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song prediction from any one state is insufficient for capturing the 
overall moment-to-moment changes in song patterning. To quan-
tify this, we performed a similar analysis over 926 min of courtship 
data. In this way, we determined what the conditional probability 
was of observing that song either using only the output filters of 
that state or only using the output filters of one of the other states  
(Fig. 3b). We found that the predictions were highly state-specific 
and that performance degraded dramatically when using filters 
from the wrong state. For example, even though the Close state was 
mostly associated with the production of sine song (Fig. 2a), the 
production of both types of pulse song and no song during the Close 
state was best predicted using the output filters from the Close state. 
The same was true for the Chasing and Whatever states, whereby 
the dynamic patterning by feedback cues showed that the distinc-
tion between states was not merely based on the different types 
of song. Taken together, the highly divergent predictions by state  
(Fig. 3a) and the lack of explanatory power from other output filters 
of the states (Fig. 3b) suggest that Close, Chasing and Whatever are 
in fact distinct states.

Which feedback cues (Fig. 1b) are most predictive of song deci-
sions in each state? We examined all feedback cues of each song type 
in each state in rank order (Extended Data Fig. 5; Fig. 3c plots the 
top five most predictive feedback cues per state and per song type). 
This revealed that the most predictive feedback cues were strongly 
reweighted by state; for instance, male lateral velocity (mLV) was the 
largest predictor of both Pfast and Pslow in the Chasing and Whatever 
states, but was not one of the top five predictors in the Close state. 
By comparing the output filters of the same feedback cues for dif-
ferent states, we observed that both the temporal dynamics (Fig. 3d; 
Extended Data Fig. 6a–c) and the sign of the output filters changed 
according to state (Fig. 3d; Extended Data Fig. 6d,f). Taken together, 
these observations suggest that state switching occurs due to both 
the reweighting of which feedback cues are important and the 
reshaping of the output filters themselves.

We next determined whether the state-specific sensorimotor 
transformations uncovered relationships between feedback cues 
(Fig. 1b) and song behaviors that were previously hidden. Previous 
work on song patterning identified male forward velocity (mFV), 
female lateral speed (fLS) and male–female distance (mfDist) as 
important predictors of song structure24, with, for example, increases 
in mFV and mLS predicting pulse song, while decreases predicted 
sine song. By contrast, our model revealed that while, on average, 
the amount of pulse song increased with male velocity (Fig. 3e,  

upper, black), this was only true for the Close state, and the rela-
tionship (or transfer function) was actually inverted in the Chasing 
state (Fig. 3e, upper, green and blue). Increased fLS was previously 
shown to increase the probability of switching from pulse to sine 
song24; however, when we examined the fLS by state, we found that 
this feature was positively correlated with the production of pulse 
song in the Close state (Fig. 3e, middle, blue), but negatively corre-
lated with the production of pulse song in the Chasing state (Fig. 3e, 
middle, green). Finally, the mfDist was previously shown to predict 
the choice to sing pulse (at greater distances) over sine (at shorter 
distances), whereby the relatively quieter sine song is produced 
when males and females are in close proximity29. Again, we found 
this to be true only when the animals were in the Close state (Fig. 3e, 
lower), but the relationship between distance and song type (pulse 
versus sine) was inverted in the Chasing state. Interestingly, when 
we examined the feedback cue filters (Fig. 3f), we found that while 
mFV and fLS were cumulatively summed to predict song type, the 
distance filter was a long-timescale differentiator across different 
timescales in each state, as opposed to the short-timescale integra-
tor as previously found24. Our GLM–HMM therefore reveals unique 
relationships between input and output that were not uncovered 
when data are aggregated across states.

Activation of pIP10 neurons biases males toward the Close state. 
Having uncovered three distinct sensorimotor-patterning strategies 
via the GLM–HMM, we next used the model to identify neurons 
that modulate state switching. To do this, we optogenetically acti-
vated candidate neurons that might be involved in driving changes 
in state specifically during acoustic communication; we reasoned 
that such a neuron might have already been identified as part of 
the song motor pathway13,32. The goal was to perturb the circuitry 
underlying state switching, thereby changing the mapping between 
feedback cues and song modes. We focused on the following three 
classes of neurons that, when activated, produce song in solitary 
males: P1a, a cluster of neurons in the central brain; pIP10, a pair 
of descending neurons; and vPR6, a cluster of ventral nerve cord 
premotor neurons (Fig. 4a). Across a range of optogenetic stimulus 
intensities, P1a and pIP10 activation in solitary males induces the 
production of all three (Pfast, Pslow and sine) types of song, whereas 
vPR6 activation induces only pulse song (Pfast and Pslow)29. We 
hypothesized that activation of these neurons produces changes in 
song either through directly activating motor pathways or through 
changing the transformation between sensory information and 

Fig. 4 | Optogenetic activation of song pathway neurons and state switching. a, Schematic of the three classes of neurons in the Drosophila song-
production pathway. b, Protocol for optogenetically activating song-pathway neurons using csChrimson targeted to each of the neuron types in a. c, Left: 
the observed probability of each song mode aligned to the onset of the optogenetic stimulus. Right: the difference between the mean during LED on from 
the mean during LED off before stimulation. The numbers of flies tested are indicated in parentheses; error bars represent the s.e.m. Control males are 
of the same genotype but have not been fed ATR, the required co-factor for csChrimson. Center lines of box plots represent the median, the bottom and 
top edges represent the 25th and 75th percentiles, respectively. Whiskers extend to ±2.7 times the standard deviation. d, Left: the posterior probability of 
each state given the feedback cues and observed song (under the three-state GLM–HMM trained on wild-type data), aligned to the onset of optogenetic 
stimulation; error bars are the s.e.m. Right: activation of pIP10 neurons biases males to the Close state and away from the Chasing and Whatever states. 
The difference between the mean during LED on from the mean during LED off before stimulation is shown on the right. The numbers of flies are listed in 
parentheses in c. Center lines of box plots represent the median, while the bottom and top edges represent the 25th and 75th percentiles, respectively. 
Whiskers extend to ±2.7 times the standard deviation. e, Comparison of transfer functions (the conditional probability of observing song choice (y axis) 
as a function of the magnitude of each feedback cue (x axis; see also Fig. 3e). Shown here are transfer functions for four feedback cues (mFV, fLS, fFA 
and fFV). Average across all states (dark gray) represents the transfer function from all data without regard to the state assigned by the model. Transfer 
functions are calculated from all data. f, Transfer functions for the same four feedback cues shown in e, but in animals expressing csChrimson in pIP10 
while the LED is off (black) or on (red); transfer functions for data from wild-type animals across all states (dark gray) reproduced from e. g, For all 17 
feedback cues, median Pearson’s correlation between transfer functions between all states and the four conditions (pIP10 and ATR+ (LED off or on) or 
ATR– (LED off or on). Error bars represent the median absolute deviation. h, The number of feedback cues with the highest correlation between the wild-
type transfer functions (separated by state) and the transfer functions for each of the conditions (pIP10 and ATR+ (LED off or on) and pIP10 and ATR– (LED 
off or on). Blue represents transfer functions most similar to the Close state, green to the Chasing state, and purple to the Whatever state. i, Unpacking the 
data in h for the ATR+ condition. j, Top: schematic of the previous view of pIP10 neuron function. Bottom: pIP10 activation both drives song production and 
state switching; this revised view of pIP10 neuron function would not have been possible without the computational model.
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motor output. Previous work has demonstrated that visual infor-
mation related to estimating the distance between animals is likely 
relayed to the song pathway between pIP10 neurons and ventral 
nerve cord song premotor neurons28. pIP10 neurons could therefore 
influence how sensory information modulates the song premotor 

network, and consequently affect the mapping between feedback 
cues and song modes.

We expressed the light-sensitive opsin csChrimson using driver 
lines targeting P1a, vPR6 and pIP10 (see Methods), and chose 
a light intensity level, duration and inter-stimulus interval that  
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reliably produces song in solitary males for these genotypes29. Here, 
we activated neurons in the presence of a female, with varying 
pauses between stimuli to induce a change in state without com-
pletely overriding the role of feedback cues (Fig. 4b). We recorded 
song via an array of microphones tiling the floor of the chamber and 
wrote new software, called DeepFlyTrack, for tracking the centroids 
of flies on such difficult image backgrounds (see Methods). Using 
this stimulation protocol, P1a activation drove a general increase in 
song during courtship (Extended Data Fig. 7a–c), while pIP10 and 
vPR6 activation reliably drove song production during the optoge-
netic stimulus (Fig. 4c; Extended Data Fig. 7c). The activation of 
P1a during courtship is different from previous findings in solitary 
males, which showed stimulus-locked changes in song production29 
(Extended Data Fig. 7b), while the type and quantity of song pro-
duction from pIP10 and vPR6 activation were more similar29. To 
determine whether optogenetic activation affected state switching, 
we fitted our GLM–HMM to recordings from males of all three gen-
otypes (including both experimental animals and controls not fed 
the csChrimson channel co-factor all trans-retinal (ATR– animals; 
see Methods).

To account for the possibility that activating these neurons 
directly drives song production, we supplemented the GLM–HMM 
model (Fig. 1) with a filter encoding the presence or absence of 
the optogenetic light-emitting diode (LED) stimulus. This filter 
(termed the ‘opto filter’) was fitted separately for each genotype 
(Supplementary Table 1) and accounted for the change in probabil-
ity of producing song that was unrelated to sensory information. 
The opto filters for each output type were similar across all states 
in ATR-fed flies (Extended Data Fig. 7e,f), which indicates that any 
differences we found between states could be attributable to other 
aspects of the model (not the presence or absence of the LED light). 
As expected, flies not fed ATR had opto filters that showed no influ-
ence of the LED stimulus on song (Extended Data Fig. 7f). We found 
that there was a large increase in the probability of entering the Close 
state when pIP10 neurons were activated, but little effect on state 
when P1a or vPR6 neurons were activated (Fig. 4d; Extended Data  
Fig. 7d,g). We found a consistent effect when we tested another line 
that labeled pIP1036 (data not shown). The Close state was typically 
associated with an abundance of sine song, although it also produced 
all other song modes during natural behavior (Fig. 2a); nonetheless, 
in this case, pIP10 activation was associated with increased pulse 
song (Fig. 4c; Extended Data Fig. 7e). Even though the male mostly 
sang pulse song during optogenetic activation of pIP10, the dynam-
ics of the feedback cues that predict song were better matched to 
the output filters of the Close state of the GLM–HMM. Activation 
of pIP10 neurons always increased the probability that the animal 
would transition into the Close state, independent of which state 
the animal was in previously; however, if the male was already in 
the Close state, there was no significant change in state (Extended 
Data Fig. 8a) whether the animal was close to or far away from the 
female (Extended Data Fig. 8b) or singing or not singing (Extended 
Data Fig. 8c).

We next explored the possibility that the effect was somehow 
due to nuances of model fitting. Because vPR6 activation resulted 
in changes in song that were similar in aggregate to pIP10 activa-
tion (Fig. 4c) without a change in state (Fig. 4d), we concluded that 
changing state is not synonymous with changing song production. 
We removed male and female feedback cues from the GLM–HMM 
by zeroing out their values (see Methods) and found that a model 
without feedback cues poorly predicted song choice, which sug-
gests that the prediction of the Close state relies on the moment-
to-moment variation in these features (Extended Data Fig. 9a). In 
addition, we examined individual feedback cues and found that 
the vast majority were more like the Close state (Extended Data  
Fig. 9b,c). We finally tested whether activation of pIP10 neurons 
puts the animal in a different behavioral context with respect to the 

female (for example, driving him closer to the female). By looking at 
the six feedback cues that were the strongest predictors of being in 
the Close state, we found that the dynamics were indistinguishable 
from ATR– controls and could not explain the observed difference 
in state (Extended Data Fig. 9d). Instead, our data point to the fact 
that pIP10 neurons affect the way in which feedback cues (Fig. 1b) 
modulate song choice.

We next tested whether we could observe, following pIP10 acti-
vation, a change in song strategy independent of the GLM–HMM 
model. As in Fig. 3e, we examined the choice by males to produce 
pulse versus sine song. Because pIP10 directly drove an overall 
increase in pulse song (Fig. 4c), we normalized the data to the high-
est and lowest pulse rate to more easily visualize the transfer func-
tion (the relationship between feedback cues and song choice) used 
by the male (Fig. 4e). The relationship between feedback cues and 
the probability of producing pulse song was reversed between the 
Close and the Chasing state. We examined the correlation between 
these transfer functions from wild-type males and males with pIP10 
activation during LED on or LED off (see Methods). We found that 
these transfer functions were similar to wild type (combining across 
all three states) for pIP10-activated flies during LED off, but were 
highly dissimilar when the LED is on, which suggests that song 
patterning changed during these times (Fig. 4f,g; Extended Data  
Fig. 10a). We then tested whether these transfer functions are 
shifted in a particular direction, such as toward the functions from 
the Close state in the wild-type data (Extended Data Fig. 10b, blue 
lines). During periods when the LED is off, the transfer function 
resembled a mix of states (Fig. 4h). However, transfer functions dur-
ing LED on shifted toward Close state transfer functions (Fig. 4). 
This was true across 13 out of 17 feedback cues (Fig. 4i; Extended 
Data Fig. 10d–f). This analysis, independent of the GLM–HMM, 
confirms that pIP10 activation biases the nervous system toward 
the Close state set of sensorimotor transformations that shape song 
output. pIP10 neurons therefore play a dual role in the acoustic 
communication circuit during courtship (Fig. 4j) in that they both 
directly drive pulse song production (Fig. 4c) and bias males toward 
the Close state (Fig. 4i). These results highlight the value of the 
GLM–HMM for identifying the neurons that influence dynamically 
changing internal states and are critical for shaping behavior.

Discussion
Here, we developed a model (the GLM–HMM) that allows experi-
menters to identify, in an unsupervised manner, dynamically 
changing internal states that influence decision-making and, ulti-
mately, behavior. Using this model, we found that during court-
ship, Drosophila males utilize three distinct sensorimotor strategies 
(the three states of the model). Each strategy corresponded to a 
different relationship between inputs (17 feedback cues that affect 
male singing behavior) and outputs (three types of song and no 
song). While previous work had revealed that fly feedback cues 
predict song-patterning decisions24,29, the discovery of distinct 
state-dependent sensorimotor strategies was only possible with the 
GLM–HMM. This represents an increase in information captured 
of 70% for all song and 110% for song transitions compared to a 
GLM. While we have accounted for much of the variability in song 
patterning, we speculate that the remaining variability is due to 
either noise in our segmentation of song37 or the fact that we did 
not measure some male behaviors that are known to be part of the 
courtship interaction, including tapping of the female via the fore-
legs and proboscis extension38. The use of new methods that esti-
mate the full pose of each fly39 combined with acoustic recordings  
should address this possibility.

Several recent studies have used latent state models to describe 
with incredible accuracy what an animal is doing over time19–21,34,40. 
These models take continuous variables (for example, the angles 
between the joints of an animal) and discretize them into a set of 
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outputs or behavioral actions. This generates maps of behavioral 
actions (such as grooming, fast walking and rearing) and the like-
lihood of transitions between actions. In this study, the behavior 
we focused on can also be considered as a continuous variable: the 
song waveform of the male, which is generated by the vibration of 
his wing. This variable can be discretized into three separate types 
of song in addition to no song. We show here that it is crucial to 
sort these actions according to how feedback cues bias choices 
between behavioral outputs. In other words, we demonstrated the 
importance of considering how changes in feedback cues affected 
the choice of behavioral outputs and the transitions between these 
choices. Animals do not typically switch between behaviors at ran-
dom, and the GLM of our GLM–HMM provides a solution for 
determining how feedback cues modulate the choice of behavioral 
outputs over time. This will be useful not only for the study of natu-
ral behaviors, as we illustrate here, but also for identifying when ani-
mals switch strategies during task-based behavior16,41. The broader 
framework presented here can also flexibly incorporate continuous 
internal states with state-dependent dynamics42. Alternatively, states 
themselves may operate along multiple timescales that necessitate 
hierarchical models in which higher-order internal states modulate 
lower-order internal states, which in turn modulate the actions of 
the animal43.

In our study, differences in internal state corresponded to dif-
ferences in how feedback cues pattern song. This is analogous to 
moving toward someone and engaging in conversation when in a 
social mood and avoiding eye contact or turning away when not. 
In both cases, the feedback cues remain the same (the approach-
ing presence of another individual), but what changes is the map-
ping from sensory input to behavior. Previous studies of internal 
state have focused mostly on states that can either be controlled 
by an experimenter (for example, hunger and satiety) or easily 
observed (for example, locomotor status). By using an unsupervised 
approach to identify states, we expand these studies to states that 
animals themselves control and are difficult to measure externally. 
This opens the door to finding the neural basis of these states. We 
provide an example of this approach by investigating how the acti-
vation of neurons previously identified to drive song production in 
Drosophila affect the state predictions from the GLM–HMM. We 
found that activation of a pair of neurons known as pIP10 not only 
robustly drove the male to produce two types of song (Pfast and Pslow), 
as shown previously29, but also drove males into the Close state, a 
state that is mostly associated with the production of sine, not pulse, 
song in wild-type flies. pIP10 neurons are hypothesized to be post-
synaptic to P1 neurons that control the courtship drive of male 
flies12,32,44. Previous work28 found that dynamic modulation of pulse 
song amplitude likely occurred downstream of pIP10 neurons, in 
agreement with what we have found here. In other words, activation 
of pIP10 neurons both directly drives pulse song production (likely 
via vPR6; see Fig. 4) and affects the way feedback cues modulate 
song choice. While we do not yet know how this is accomplished, 
our work suggests that pIP10 neurons affect the routing of sensory 
information into downstream song premotor circuits in a manner 
analogous to that of amygdala neurons, which gate sensory infor-
mation and suppress or promote particular behaviors17,45.

What insight does our model provide to studies of Drosophila 
courtship more broadly? We expect that internal state also affects 
the production of other behaviors produced during courtship, such 
as tapping, licking, orienting and mounting. This includes not only 
states such as hunger15,46, sexual satiety47, or circadian time48, but also 
states that change on much faster timescales, as we have observed 
for acoustic signal generation. Identifying these states will require 
the monitoring of feedback cues that animals have access to during 
all behaviors produced during courtship. The feedback cues govern-
ing these behaviors may extend beyond the ones described here and 
may include direct contact between the male and the female or the 

dynamics of pheromonal experience. The existence of these states 
may indicate that traditional ethograms detailing the relative transi-
tions between behaviors exhibit additional complexity or that there 
are potentially overlapping ‘state’ ethograms.

Why does the male fly possess the three states that we identi-
fied? What is striking about the three states is that feedback cues in 
one state have a completely different relationship with song outputs 
versus in another state. For example, increases in mFV correlated 
with increased pulse song in the Close state, but increased sine song 
in the Chasing state. These changes in relationship may be due to 
changing female preferences over time (that is, the female may pre-
fer different types of song at different times depending on changes 
in her state), changing goals of the male (potentially to signal the 
female to slow down when she is moving quickly or to prime her 
for copulation if she is already moving slow) or changes in ener-
getic demands (that is, the male balancing conserving energy with 
producing the right song for the female). The existence of differ-
ent states may also generate more variable song over time, which 
may be more attractive to the female31, a behavior that is consistent 
with work in birds49. Future studies that investigate the impact of 
state switching on male courtship success and mating decisions may 
address some of these hypotheses.

In conclusion, in comparison to classical descriptions of behav-
ior as fixed action patterns50, even instinctive behaviors such as 
courtship displays are continuously modulated by feedback signals. 
We also show here that the relationship between feedback signals 
and behavior is not fixed, but varies continuously as animals switch 
between strategies. Instead, just as feedback signals vary over time, 
so too do the algorithms that convert these feedback cues into 
behavior outputs. Our computational models provide a method for 
estimating these changing strategies and serve as essential tools for 
understanding the origins of variability in behavior.
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Methods
Flies. For all experiments, we used 3–7-day-old virgin flies collected from density-
controlled bottles seeded with 8 males and 8 females. Fly bottles were kept at 25 °C 
and 60% relative humidity. Male virgined flies were then housed individually 
across all experiments, while female virgined flies were group-housed in wild-type 
experiments and individually housed in the transgenic experiments (Fig. 4), and 
kept in behavioral incubators under a 12–12 h light–dark cycle. Before recording 
with a female, males were painted with a small spot of opaque ultraviolet-cured 
glue (Norland Optical and Electronic Adhesives) on the dorsal mesothorax to 
facilitate identification during tracking. All wild-type data were collected in a 
previous study24 and consisted of either a random subset of 100 flies not used for 
model training (Fig. 1g,h; Extended Data Fig. 2c–g) or all wild-type flies in the 
dataset. In Fig. 4, we collected additional data using transgenic flies. Asterisks 
indicate previously published data24.

Behavioral chambers. Behavioral chambers were constructed as previously 
described24,28,29. For optogenetic activation experiments, we used a modified 
chamber in which the floor was lined with white plastic mesh and equipped 
with 16 recording microphones and video recorded at 60 Hz. To prevent the 
LED from interfering with the video recording and tracking, we used a short-
pass filter (ThorLabs FESH0550, cut-off wavelength of 550 nm). Flies were 
introduced gently into the chamber using an aspirator. Recordings were timed 
to be within 150 min of the behavioral incubator lights switching on to catch 
the morning activity peak. Recordings were stopped after 30 min or after 
copulation, whichever was sooner. If males did not sing during the first 5 min of 
the recording, the experiment was discarded. In Fig. 4, all ATR+ animals (flies 
fed ATR) that did not vibrate their wings when tested under red LED light the 
day before the experiment were excluded from analysis. The dataset of wild-type 
flies (Figs. 1–3) came from a previous study24; for that study, data from flies that 
moved 1.5 mm min–1 or sang at low amplitudes relative to other flies of the same 
strain were excluded on the basis of possible poor health (this criterion applied to 
25 out of 679 males).

Optogenetic activation. Flies were maintained for at least 5 days before the 
experiment on either regular fly flood or fly food supplemented with retinal (1 ml 
ATR solution (100 mM in 95% ethanol) per 100 ml of food). CsChrimson51 was 
activated using a 627-nm LED (Luxeon Star) at an intensity of 0.46 mW mm–2 
for pIP10 neuron activation. Light stimuli were delivered for 500 ms of constant 
LED illumination, randomized to occur every 5–25 s. Sound recording and 
video were synchronized by positioning a red LED that turned on and off with 
a predetermined temporal pattern in the field of view of the camera and whose 
driving voltage was recorded on the same device as the song recording.

Data collection and analyses were not performed blinded to the conditions 
of the experiments, but all analyses of song and tracking of flies was automated 
using custom-written software. No statistical methods were used to predetermine 
sample sizes, but our sample sizes were similar to those reported in previous 
publications24,28,29. Animals were randomly assigned to the ATR+ or ATR– groups 
following collection.

Statistical methods. Data were checked for normality using the Lilliefors test and 
found to be non-normal. As such, all pairwise comparisons were made using the 
Mann–Whitney U-test. All reported correlations were calculated using Pearson’s 
correlation.

Fly tracking via DeepFlyTrack. Data from a previous study24 were previously 
tracked.

For new data, tracking was performed using a custom neural network tracker 
we call DeepFlyTrack. The tracker has the following three components: identifying 
fly centroids, orienting flies and tracking fly identity across frames. Frames were 
first annotated to indicate the position of a blinking LED, which was then used for 
synchronization with the acoustic signal and to indicate the portion of the video 
frame containing the fly arena.

We designed a neural network trained on 200 frames containing fly bodies 
annotated with the centroid, the head and the tail. These annotations were 
convolved with a two-dimensional Gaussian with a standard deviation of five. 
The network was trained to reconstruct this annotated data from grayscale 
video frames using a categorical cross entropy loss function. The neural network 
contained five 4 × 4 convolutional layers. The first four layers passed through 
a ReLu activation function and the final layer passed through a sigmoidal 
nonlinearity. The network was trained using Keras with the input frames being a 
192 × 192 × 3 patch containing 0, 1 or 2 flies. After training, the network predicted 
entire video frames. These were thresholded, and points were fit with k-means, 
where k = 2. To keep track of fly identity, we used the Hungarian algorithm to 
minimize the distance between flies identified in subsequent frames. The points 
were fit to an ellipse to extract putative body center and orientation. We used this 
ellipse for the centroid and an angle of ±180°. To fully orient flies, we assumed that 
the fly typically moves forward and rarely turns more than 90° per frame. In 1,000 
frame chunks, we found the 360° orientation that best fit these criteria. Position 
and orientation were smoothed every two frames to downsample from 60 Hz to 

the 30 Hz used in previous work24. Fly identity and orientation were then manually 
fixed (average 4.5 identity flips per 30 min).

Song segmentation. Song data from a previous study24 was resegmented to 
separate Pfast and Pslow according to another previous study29. New song data (Fig. 4) 
were also segmented using this new pipeline.

Chance model. The probability of observing each of the four song modes (no 
song, Pfast, Pslow and sine) in a given frame was calculated from a random sample 
of 40 wild-type flies, which we denote as p (song type)Chance

. We used two Chance 
models: one drawn from song statistics averaged across all of the courtship and one 
drawn from song only at transitions between output types. Thus, the probability of 
observing a particular song mode was determined as follows:

=p i
N
N

(song mode ) (1)i
Chance

where Ni is the number of time bins during the courtship with song mode i, and N  
is the total number of time bins, either during the entire courtship or only at the 
time of song transitions, averaged across all 40 flies. The likelihood of observed 
song sequences under the Chance models (Fig. 1g,h) was computed using 100 
additional flies that were sampled from the wild-type dataset.

Cross-validation. All hyperparameters were inferred by cross-validation from 
held-out data not used for fitting. Across all analyses, models were fitted using 
one dataset consisting of 40 flies, and performance was validated on data from 
individual flies that were not used in the fitting or the hyperparameter fitting. 
Because performance was cross-validated on test data, increasing the number of 
parameters did not necessarily give higher performance values. See, for instance, 
Fig. 1g, whereby the five-state model achieved lower performance than the three- 
or four-state model despite more free parameters.

Feedback cues. Data from tracked fly trajectories were transformed into a set of 
17 feedback cues that were considered as inputs to the model for male singing 
behavior. For each cue, we extracted 4 s of data before the current frame, sampled 
at 30 Hz (120 time samples for each cue), which results in a feature vector of length 
of 17 × 120 = 2,040. We augmented this vector with a ‘1’ to incorporate an offset or 
bias, yielding a vector of length 2,041 as input to the model in each time bin.

For model fitting, we formed a design matrix of size T × 2,041, where T is the 
number of time bins in the dataset from a single fly after discarding the initial 4 s. 
We concatenated these design matrices across flies so that a single GLM–HMM 
could be fitted to the data from an entire population.

Multinomial GLM. Previous work24 used a Bernoulli GLM (also known as a 
logistic regression model) to predict song from a subset of the feedback cues that 
we consider here. That model sought to predict which of two types of song (pulse 
or sine) a fly would sing at the start of a song bout during certain time windows 
(for example, times when the two flies were less than 8-mm apart, and the male 
had an orientation <60° from the centroid of the female).

Here, we instead use a multinomial GLM (also known as multinomial logistic 
regression) to predict which of four types of song (no song, Pfast, Pslow and sine) a 
fly will sing at an arbitrary moment in time. The model was parameterized by a set 
of four filters F{ }i , ∈i {1, 2, 3, 4}, which map the vector of feedback cues to the non-
normalized log-probability of each song mode.

The probability of each song mode given under the model given feedback cue 
vector st can be written as follows:

∑
= ∣ =

⋅

⋅
=

P i s
F s

F s
(song mode )

exp( )

exp( ) (2)
j

t
i t

j t1

4

Note that we can set the first filter to all-zeros without loss of generality, since 
probabilities must sum to 1. We fit the model via numerical optimization of  
the log-likelihood function to find its maximum and used a penalty on the  
sum of squared differences between adjacent coefficients to impose smoothness. 
See the description of the GLM–HMM below for more details (this is a one-state 
GLM–HMM).

GLM–HMM. The simplest form of a HMM has discrete hidden states that change 
according to a set of fixed transition probabilities. At each discrete time step, the 
model is in one of the hidden states and has a fixed probability of transitioning to 
another state or staying in the same state. If the outputs are discrete, the HMM has 
a fixed matrix of emission probabilities, which specifies the probability over the set 
of possible observations for each hidden state.

The GLM–HMM we introduce in this paper differs from a standard HMM 
in two ways. First, the probability over observations is parameterized by a GLM, 
with a distinct GLM for each latent state. This allows for a dynamic modulation 
of output probabilities based on an input vector, st, at each time bin. Second, 
transition probabilities are also parameterized by GLMs, one for the vector of 
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transitions out of each state. Thus, the probability of transitioning from the current 
state to another state also depends dynamically on a vector of external inputs 
(feedback cues) that vary over time.

A similar GLM–HMM has been previously described33, although that model 
used Poisson GLMs to describe probability distributions over spike train outputs. 
Here, we considered a GLM–HMM with multinomial GLM outputs that provides a 
probability over the four song modes (as described above).

Fitting. To fit the GLM–HMM to data, we used the expectation–maximization 
(EM) algorithm33 to compute maximum-likelihood estimates of the model 
parameters. EM is an iterative algorithm that converges to a local optimum of 
the log-likelihood. The log-likelihood (which may also be referred to as the log-
marginal likelihood) is given by












∑θ θ∣ = ∣P PY Y Zlog ( ) log ( , ) (3)

Z

where = . . .y yY , , T1
 are the observations at each time point and = . . .z zZ , , T1  are 

the hidden states that the model enters at each time point. The joint probability 
distribution over data and latents, known as the complete-data log-likelihood, can 
be written as follows:










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










∏ ∏θ θ θ θ∣ = ∣ ∣ ∣

=
−

=

P P z P z z P y zY Z( , ) ( ) ( , ) ( , ) (4)
t

T

t t
t

T

t t1 1
2

1 tr
1

o

where θ1 is a parameter vector specifying the probability over the initial latent state 
z1, θtr denotes the transition model parameters and θo denotes the observation 
model parameters. We abbreviate as follows:

θπ = ∣P z( ) (5)z 1 11

α θ= ∣ −−
P z z( , ) (6)z z t t, 1 trt t1

η θ= ∣P y z( , ) (7)z y t t, ot t

θ∣P z( )1 1  is initialized to be uniformly distributed across states and then fit on 
successive E-steps.

E-step. The E-step of the EM algorithm involves computing the posterior 
distribution θ∣P Z Y( , ) over the hidden variables given the data and model 
parameters. We use the adapted version of the Baum–Welch algorithm as 
previously described33. The Baum–Welch algorithm has two components: a 
forward step and a backward step. The forward step identifies the probability 

θ= = . . . = = ∣a t P Y y Y y Z i( ) ( , , , )i t t t1 1
 of observing = . . .y y yY , , , t1 2

 and, assuming 
there are N  total states, of being in state i at time t by iteratively computing as 
follows:

∑η α+ =
=

+
a t a t( 1) ( ) (8)i i y

j

N

j j i,
1

,t 1

where = πa (1)i i. The backward step does the reverse in that it identifies the 
conditional probability of future observations given the latent state, as follows:

∑ η αθ= = . . . = ∣ = = ++ +
=

+
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where =b T( ) 1i . These allow us to compute the marginal posterior distribution over 
the latent state at every time step, which we denote γ θ= ∣Z P Z Y( ) ( , )t t , and over pairs 
of adjacent latent states, denoted ξ θ= ∣+ +Z Z P Z Z Y( , ) ( , , )t t t t1 1 , which are given by
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π θ= ∣ =p Z aY( , ) (1) (12)1

In practice, for larger datasets, it is common to run into underflow errors due 
to the repeated multiplication of small probabilities in the equations above. Thus, it 
is typical to compute a t{ ( )}m  and b t{ ( )}m  in scaled form. See ref. 52 for details.

M-step. The M-step of the EM algorithm involves maximizing the expected 
complete-data log-likelihood for the model parameters, whereby the expectation 
is with respect to the distribution over the latents computed during the E-step, as 
follows:
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As noted above, our model describes transition and emission probabilities with 
multinomial GLMs, each of which is parameterized by a set of filters. Because these 
GLMs contribute independently to the α, η and π terms above, we can optimize the 
filters for each model separately. Maximizing the π term is equivalent to finding 

θπ = = ∣P Z i Y( , )i 1 . We maximize the α term as previously described33 (in appendix 
B of that publication) with the addition of a regularization parameter. The 
transition probability from state i to state j at time t is defined as

∑
α =

⋅

⋅
=
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where we define all filters from one state to itself Fi i,  to be 0 without loss of 
generality.

Additionally, we added regularization penalties into the model to avoid 
overfitting. We used both Tikhonov regularization and difference smoothing and 
found difference smoothing to provide both better out-of-sample performance 
and filters that were less noisy. Difference smoothing adds a penalty for large 
differences in adjacent bins in each filter. However, because each filter was applied 
across U features of length L, we did not apply a penalty between bins across 
features. For some regularization coefficient r, the model that we fit became

∑ ∑
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In the previous study33, both the gradient and Hessian for fitting the transition 
filters during the M-step were provided. In our hands, we found that computing 
the Hessian was computationally more expensive for the large datasets that we are 
working with and did not speed up the fitting procedure. We computed the inverse 
Hessian at the end of each stage of fitting to provide an estimate of the standard 
error of the fit.

The previously described GLM–HMM33 was formulated for neural data, in 
which the outputs at each time were Poisson or Bernoulli random variables (binned 
spike counts). As noted above, we modified the model to use categorical outputs 
to predict the discrete behaviors that the animal was performing. Similar to the 
transition filters, for emission filters, one filter may be chosen to be the ‘baseline’ 
filter set to 0. We used a multinomial model that assumes coefficients = …F F F, , n1 ,  
where the filter F1 is assumed to be the baseline filter equal to 0. The probability of 
observing some output yt

 (out of O possible outputs) is governed by the equation
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We then maximize the following:
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To avoid overfitting, we increased the smoothness between bins by penalizing 
differences between subsequent bins for each feature using the difference operator 
D multiplied by the regularization coefficient r as described for the transition filter. 
No smoothing penalty was applied at the boundary between features. The objective 
function to optimize becomes

∑ ∑ ∑

∑ ∑

γ

τ τ

= ⋅ − ⋅

+ + −
τ

= = =

= =

Z i

r

F s F s

F F

( )[log(exp( )) log( exp( ))]

( ( 1) ( ))

(18)t

T

i

N

t i y t
n

O

i n t

u

U L

i y u i y u

1 1
,

1
,

1 1
, , , ,

2

t

t t

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Articles NaTurE NEurOScIEncE

which has the gradient
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After the M-step was completed, we ran the E-step to find the new posterior 
given the parameters found in the M-step, and continued alternating E and M steps 
until the log-likelihood increased by less than a given threshold amount.

We used the minfunc function in Matlab to minimize the negative expected 
complete-data log-likelihood in the M-step, and used cross-validation to select 
the regularization penalty r over a grid of values. The selected penalty for the 
three-state model was = .r 0 05. Because the EM algorithm is not guaranteed to find 
the local maximum, we performed the fit many times with different parameter 
initializations. We used the model with the best cross-validated log-likelihood (see 
the section “Testing” below).

Testing. We assessed model performance by calculating the log-likelihood of data 
held-out from training. In particular, we assessed how well the model predicted 
the next output given knowledge of all the data up to the present moment. This 
allowed for an accurate estimate of the state up to time t and then evaluated how 
well the transition and output filters explain what happens at time +t 1. We can 
write this as θ∣ = . . . =+P Y Y y Y ylog ( , , , )t t t1 1 1

, which can be calculated in the same 
manner as the forward pass of the E-step described in the previous section. The 
prediction for +t 1 is then
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Note that this equivalent to the scaling factor was used when fitting the forward 
step of the model in the preceding section. The mean forward log-likelihood that 
we report is then

∑= ∣
=

−T
P y yLL (model) 1 log ( ) (21)
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t tforward
1

1: 1

To report the log-likelihood in more interpretable units, we normalized by 
subtracting the log-likelihood under the Chance model (described above; Fig. 1g; 
Extended Data Fig. 2c,e), as follows:

= −LL (model) LL (model) LL (chance) (22)norm forward forward

The Chance model was either drawn from the entirety of the courtship (Fig. 
1g) or only at transitions between outputs (Fig. 1h) (see the static Chance model 
above). To place these in appropriate units, we present either as bits s–1 (dividing 
L (model)norm  by the number of seconds of courtship) or as bits bin–1 (dividing 
L (model)norm  by the number of bins). While this provides a bound on the level 
of uncertainty of each model, we do not have a way of estimating the intrinsic 
variability in the song-patterning system of the male fly (to do so, would require 
presenting the identical feedback cue history twice in a row, with the animal in the 
same set of states).

An alternative metric that we report is the log-likelihood of the model where 
we did not use the past song output to estimate the current state. In other words, 

θ∣+P Ylog ( )t 1 . This alternative required us to use only the feedback cues st to 
predict the current state and its output. Recall from the previous section that 

θ∣ −P z z s( , , )t t t1 tr  is the probability of transitioning using only the transition model. 
Then we can compute the probability of being in each state at time t without 
conditioning on past output observations, as follows:
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and the log-likelihood of the output is

∑=
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Giving a normalized log-likelihood measure similar to before as follows:

= −LL (model) LL (model) LL (Chance) (25)norm gen gen

The normalized log-likelihood of the forward model reports improvements over 
the Chance model for predicting the song mode given knowledge of the song history 
to improve the prediction of the current state. The normalized log-likelihood using 
only the feedback cues reports improvements over the Chance model for predicting 
song mode, without accurately estimating the state of the animal; in other words, 
model performance that comes only from dynamics of the feedback cues.

Binning of song. We discretized the acoustic recording data to fit the GLM–
HMM. Song was recorded at a sampling rate of 10 kHz, segmented into 4 song 
modes (sine, Pfast, Pslow and no song) and then discretized into time bins of uniform 
width (33 ms), which corresponds to roughly the inter-event interval between 
pulse events. We used the modal type of song in each bin to define the song mode 
in that bin. Because some song pulses have an inter-event interval of >33 ms, we 
artificially introduced no-song bins within trains of pulses. To correct this error, 
we identified the start and end of a run of song as either a transition between types 
of song (sine, Pfast or Pslow) or as the transition between a song type and no song if 
the quiet period lasted for >80 ms. We then corrected no-song bins that occurred 
within runs of each song type. To up-sample and down-sample song (Extended 
Data Fig. 2a,c), we use the modal song per interpolated bin.

Applying filters from only one state. The likelihood of observing song is 
typically calculated by applying the filters for each state and multiplying that by 
the probability of being in each of those states ∣P P(state data) (emission, state). To 
calculate the probability of being in a given state, we used the Viterbi algorithm 
used in HMMs to find the most likely state. We then applied the filter for state i 
when the most likely state at time t is j to find the mean likelihood of observing an 
emission k (Fig. 3a,b), as follows:
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Predictions of pulse versus sine. When fitting multinomial GLM filters, one set of 
filters is set to 0 and is used as a reference point for other filters (since it is always 
possible to scale all filters together). In our model, the no-song output was the filter 
set to 0. To visualize the filter that represented the probability of observing pulse 
versus sine, we took the average of the Pfast and Pslow filters and subtracted that from 
the sine filter.

We then computed the raw data by taking the histogram of z-scored feedback 
cues that occur just before pulse and divided it by the histogram of z-scored 
feedback cues that occur immediately before both pulse and sine. This gave us the 
probability of observing pulse versus sine at each feature value (Fig. 3e).

Fit of GLM–HMM to optogenetic activation. Optogenetic activation (driven by 
a LED stimulus) of previously identified song pathway neurons can, as expected, 
directly drive song production. To account for this, we add in an additional offset 
term (because each genotype produces different distributions of types of song) 
and an extra filter for the LED (that is, the LED stimulus pattern is another input 
to the model, similar to the 17 feedback cues) and then refit the GLM–HMM. The 
offset term and the additional LED filter were fit using expectation maximization 
(see above); no other filters (for the 17 feedback cues) were refit from the original 
GLM–HMM (Fig. 4).

Normalization of pulse/sine ratio. Optogenetic activation of courtship neurons 
dramatically changes the fixed probability of observing pulse song. To visualize 
the song output during this activation in spite of the decreased dynamic range, we 
normalized the output by subtracting the minimal probability of observing pulse 
versus sine song and dividing by the maximum. This maintained the shape and 
relationship of the pulse versus sine data to be constant but compressed it to be 
between 0 and 1 (Fig. 4).

Comparison of GLM–HMM to previous data. pCorr values were taken from a 
previous study24. To generate a fair comparison, we took equivalent song events 
in our data (for example, ‘pulse start’ compared times at which the male was close 
to and oriented toward the female and either started a song bout in pulse mode 
or did not start a song bout) and found (with either the multinomial GLM or the 
three-state GLM–HMM) the song mode (pulse, sine or no song) that generated 
the maximum-likelihood value. Similarly to the previous study24, we adjusted 
the sampling of song events to calculate pCorr. Pfast and Pslow events were both 
counted as pulse. The pCorr values reported for the multinomial GLM and three-
state GLM–HMM are the percentage of time that the highest likelihood value 
corresponded to the actual song event (Extended Data Fig. 1b).

Zeroing out filters. To assess the performance of the model without key features 
(male feedback cues or female feedback cues), the filters were set to 0. This 
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removes the ability of the model to perform any prediction with this feature. We 
then inferred the likelihood of the data using this new model (Fig. 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available at http://arks.princeton.edu/ark:/88435/dsp01rv042w888.

Code availability
The code for tracking flies (DeepFlyTrack) is available at https://github.com/
murthylab/DeepFlyTrack. The code for running the GLM–HMM algorithm is 
available at https://github.com/murthylab/GLMHMM.
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Extended Data Fig. 1 | Comparison of GLMs and GLM-HMM. a, Fly feedback cues used for prediction in (Coen et al. 2014) (left) or the current study 
(right). b, Comparison of model performance using probability correct (‘pCorr’) (see Methods) for predictions from (Coen et al. 2014) (reproduced from 
that paper) for the single-state GLM (See Fig. 1c) and 3-state GLM-HMM (see Fig. 1d). Each open circle represents predictions from one courtship pair. 
The same pairs were used when calculating the pCorr value for each condition (GLM and 3-state GLM-HMM); filled circles represent mean +/- SD; 100 
shown for visualization purposes. c, Schematic of standard HMM, which has fixed transition and emission probabilities. d, Schematic of GLM-HMM in the 
same format, with static probabilities replaced by dynamic ones. Example filters from the GLM are indicated with the purple and light brown lines.
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Extended Data Fig. 2 | Assessing model predictions. a, Illustration of how song is binned for model predictions. Song traces (top) are discretized by 
identifying the most common type of song in between two moments in time, allowing for either fine (middle) or coarse (bottom) binning - see Methods. 
b, Illustration of how model performance is estimated, using one step forward predictions (see Methods). c, 3-state GLM-HMM performance at predicting 
each bin (measured in bits/bin) when song is discretized or binned at different frequencies (60 Hz, 30 Hz, 15 Hz, 5 Hz) and compared to a static HMM 
- all values normalized to a ‘Chance’ model (see Methods). Each open circle represents predictions from one courtship pair. Note that the performance 
at 30Hz represents a re-scaled version of the performance shown in Fig. 1g. Filled circles represent mean +/- SD, n=100. d, Comparison of the 3-state 
GLM-HMM with a static HMM for specific types of transitions when song is sampled at 30 Hz (in bits/transition, equivalent to bits/bin; compare with 
panel (c)) - all values normalized to a ‘Chance’ model (see Methods). The HMM is worse than the ‘Chance’ model at predicting transitions. Filled circles 
represent mean +/- SD, n=100. e, Performance of models when the underlying states used for prediction are estimated ignoring past song mode history 
(see b) and only using the the GLM filters - all values normalized to a ‘Chance’ model (see Methods). The 3-state GLM-HMM significantly improves 
prediction over ‘Chance’ (p = 6.8 e-32, Mann-Whitney U-test) and outperforms all other models. Filled circles represent mean +/- SD, n=100. f, Example 
output of GLM-HMM model when the underlying states are generated purely from feedback cues (e).
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Extended Data Fig. 3 | Evaluating the states of the GLM-HMM. a-c. The mean value for each feedback cue in the (a) ‘close’, (b) ‘chasing’, or (c) 
‘whatever’ state (see Methods for details on z-scoring). d-f. Representative traces of male and female movement trajectories in each state. Male 
trajectories are in gray and female trajectories in magenta. Arrows indicate fly orientation at the end of 660 ms. g. In the 4-state GLM-HMM model, the 
probability of observing each type of song when the animal is in that state. Filled circles represent individual animals (n=276 animals, small black circles 
with lines are mean +/- SD). h. The correspondence between the 3-state GLM-HMM and the 4-state GLM-HMM. Shown is the conditional probability 
of the 3-state model being in the ‘close’, ‘chasing’, or ‘whatever’ states given the state of the 4-state model. i. The mean probability across flies of being in 
each state of the 4-state model when aligned to absolute time (top) or the time of copulation (bottom). j. Probability of state dwell times generated from 
feedback cues. These show non-exponential dwell times on a y-log plot.
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Extended Data Fig. 4 | State transition filters. a-c, State-transition filters that predict transitions from one state to another for each feedback cue (see Fig. 
1B for list of all 17 feedback cues used in this study).
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Extended Data Fig. 5 | Amplitude of output filters. The amplitude of output filters (see Methods) for each state/output pair. Output filter amplitudes were 
normalized between 0 (smallest filter amplitude) and 1 (largest filter amplitude).
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Extended Data Fig. 6 | Output filters. a-c, Output filters for each feedback cue (see Fig. 1b) that predict the emission of each song type for a given state. 
‘No song’ filters are not shown as these are fixed to be constant, and song type filters are in relation to these values (see Methods). Heavy line represents 
mean, shading represents SEM. d-e, Sign of filter for each emission filter shows the same feature can be excitatory or inhibitory depending on the state.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Activation of song pathway neurons. a, Solitary ATR-fed P1a males produce song when exposed to the same LED stimulus used 
in Figure 4. In solitary males, song production is both long-lasting and time-locked to the LED stimulus. Number of animals in parentheses (n=5), heavy 
line represents mean, shading represents SEM. b, ATR-fed P1a males courting a female produce significantly more Pfast (p = 1e-4), Pslow (p = 1e-3), 
and significantly-different amounts of sine song (p = 0.009). All p-values from Mann-Whitney U-test. Animals from (a) (n=5), center lines of box plots 
represent median, the bottom and top edges represent the 25th and 75th percentiles (respectively). Whiskers extend to +/- 2.7 times the standard 
deviation. c, The probability of observing each song mode aligned to the opto stimulus shows that LED activation of flies not fed ATR does not increase 
song production. Number of animals in parentheses, heavy line represents mean, shading represents SEM. d, The probability of the model being in each 
state aligned to the opto stimulus shows that LED activation of flies not fed ATR does not change state residence. Error bars represent SEM. Number of 
animals in parentheses, heavy line represents mean, shading represents SEM. e-f, ‘Opto’ filters represent the contribution of the LED to the production of 
each type of song for (e) ATR+ and (f) ATR- flies. Number of animals in parentheses, heavy line represents mean, shading represents SEM. The filters for 
each strain and song type are not significantly different between states. g, Measuring the maximal change in state probability between LED ON and LED 
OFF shows that only pIP10 activation produces a significant difference between ATR+ and ATR- flies (two-tailed t test). Number of animals in parentheses 
in (e-f), center lines of box plots represent median, the bottom and top edges represent the 25th and 75th percentiles (respectively). Whiskers extend to 
+/- 2.7 times the standard deviation. All p-values from two-tailed t test.
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Extended Data Fig. 8 | Activating pIP10 biases males toward the close state. a, Conditioning on which state the animal is in prior to the light being on 
(left, ATR-fed pIP10 flies, n=41; middle ATR-free pIP10 flies, n=28; right, ratio of ATR-fed to ATR-free state dwell time), activation of pIP10 results in an 
increase in the probability of being in the close state unless the animal was already in the close state. Shaded area is SEM. b, When the male was both 
close (<5mm) and far (> 8mm), pIP10 activation increases the probability that the animal will enter the close state. Shaded area is SEM. c. When the male 
was already either singing or not singing, pIP10 activation increases the probability that the animal will enter the close state. Shaded area is SEM.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Bias toward close state is due to the altered use of feedback cues. a, Predictive performance is not significantly different between 
light ON and light OFF conditions for both ATR-fed (n=41, p=0.08) and ATR-free animals (n=28, p=0.46). Performance suffers without male (+ATR 
p=4e-12, -ATR p=1e-9) or female feedback cues (+ATR p=1e-10, -ATR p=1e-9), suggesting these state-specific features are needed to predict animal 
behavior. Dots represent individual flies, center line is mean and lines are +/- SD. All statistical tests are Mann-Whitney U-test. b, The similarity between 
each feedback cue and the filters for the ‘close’ state are subtracted by the similarity of that feedback cue to the filters for the ‘chasing’ state during LED 
activation of ATR-fed pIP10 flies. This reveals song patterning is more similar to the ‘close’ state than the ‘chasing’ state for most feedback cues. c, Animals 
that were not fed ATR (n=28) do not show a change in the contribution of the feedback cues to being in a given state, while animals that are fed ATR 
(n=41) do show a change in feedback cue contribution. Shaded area is SEM. d, Most aspects of the animal trajectory do not differ in response to red light 
when males are either fed (black, n=41) or not fed (gray, n=28) ATR food. Plotted are the six strongest contributors from (b). p-values are p=0.056 for 
mFV, p=0.11 for fmFV, 9.7e-5 for mLS, p=0.64 for fLS, p=0.67 for fFV, p=0.009 for mfAngle Mann-Whitney U-test, significance at p = 0.05 corrected to p 
= 0.0083 by Bonferroni. * represents p < 0.0083, n.s. p > 0.008. Shaded area is SEM.
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Extended Data Fig. 10 | The relationship between feedback cues and song patterns changes when LED is ON in pIP10 +ATR flies. a, The transfer 
functions of each feedback cue when the LED is OFF (black) and when the LED is ON (red) compared to the wild-type average (dark gray). b-c, Illustration 
of Pearson’s correlation between transfer functions of two feedback cues (mFV (g) and fLS (h)) when the LED is off (top, black) and on (bottom, red) and 
the transfer function in each state (not the average as in Fig. 4f). The feature is considered most similar to the state with which it has the highest Pearson’s 
correlation. All ATR-fed pIP10 animals were used (n=41). d, The state transfer function that is closest to the wild-type average for each feedback cue. For 
instance, the mFV average is closest to the ‘whatever’ state and the fLS average is closest to the ‘chasing’ state. e-f, Same as (d), but for pIP10 – ATR flies 
when the LED is off (e) or on (f).
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