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Compensated isocurvature perturbations (CIPs) are modulations of the relative baryon and dark
matter density that leave the total matter density constant. The best current constraints from
the primary cosmic microwave background (CMB) are consistent with CIPs some two orders of
magnitude larger in amplitude than adiabatic perturbations, suggesting that there may be a huge
gap in our knowledge of the early Universe. However, it was recently suggested by Barreira et. al.
that CIPs which are correlated with the primordial curvature perturbation, as arises in some versions
of the curvaton model, lead to a new observable: scale dependent galaxy bias. Combining a galaxy
survey with an unbiased tracer of the density field facilitates a measurement of the amplitude of
correlated CIPs that is free from cosmic variance, the main limitation on constraints from the
primary CMB. Among the most promising tracers to use for this purpose is the remote dipole field,
reconstructed using the technique of kinetic Sunyaev Zel’dovich (kSZ) tomography. In this paper, we
evaluate the detection significance on the amplitude of correlated CIPs possible with next-generation
CMB and galaxy surveys using kSZ tomography. Our analysis includes all relativistic contributions
to the observed galaxy number counts and allows for both CIPs and primordial non-Gaussianity,
which also gives rise to a scale dependent galaxy bias. We find that kSZ tomography can probe
CIPs of comparable amplitude to the adiabatic fluctuations, representing an improvement of over
two orders of magnitude upon current constraints, and an order of magnitude over what will be
possible using future CMB or galaxy surveys alone.

I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) provide the bedrock for the standard cosmo-
logical model, ΛCDM. A central feature of ΛCDM is
that perturbations are adiabatic, with inhomogeneities
in dark matter, baryons, neutrinos, and photons all
uniquely determined by the primordial curvature pertur-
bations. Theories of the early Universe which have one
degree of freedom, such as single field inflation, natu-
rally predict purely adiabatic fluctuations. More gener-
ally, theories with multiple degrees of freedom can source
isocurvature (entropy) perturbations, where the relative
mixture of dark matter, baryons, neutrinos, and pho-
tons become independent degrees of freedom. While
most forms of isocurvature perturbations are tightly con-
strained by existing measurements of the CMB [1], there
is a notable exception: compensated isocurvature per-
turbations (CIPs). CIPs are fluctuations of baryons and
cold dark matter that leave the total matter perturba-
tions unchanged and adiabatic. CIPs leave an imprint
on the CMB only through terms that appear at second
order in the matter density contrast, making them chal-
lenging to constrain [2–8]. Current measurements from
Planck [1] allow for an amplitude of CIPs roughly 580
times larger than the amplitude of the adiabatic modes! 1

1 More recently, constraints on CIPs from their effect on baryon
acoustic oscillations [9] (BAO) were analyzed. It was shown that

This is a surprisingly large gap in our knowledge of the
early Universe. A detection of CIPs can provide insight
into both the number of primordial fields that contribute
to the observed density fluctuations, as well as their de-
cay channels [10–12], strongly motivating new ways of
searching for CIPs.

Variations of the ratio between baryons and cold dark
matter changes how structure is distributed in the Uni-
verse, altering how galaxies trace the total matter den-
sity [13–15]. This leads to a spatially varying galaxy-bias
that relates the observed galaxy over-density to the total
matter over-density. In particular, CIPs that are cor-
related with the primordial curvature perturbation (as
arises in e.g. curvaton scenarios [10]) will introduce a
scale-dependent galaxy-bias [15], similar to the effect of
local-type primordial non-Gaussianity [16]. Because cor-
related CIPs induce a scale dependent galaxy bias, given
an unbiased tracer of the total matter density, it is pos-
sible to use sample variance cancellation [17, 18] to mea-
sure the amplitude of CIPs without cosmic variance, as
suggested in Ref. [15]. While it is possible to use differ-
ent populations within a galaxy survey itself to measure
scale-dependent bias, sample variance cancellation is in
principle more powerful when using the technique of kSZ
tomography [19, 20]. The primary goal of this paper is to

constraints comparable to those from the CMB are possible with
future galaxy surveys.
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explore the potential for kSZ tomography to probe CIPs
using future CMB and galaxy surveys.

The technique of kSZ tomography [21–25] uses the cor-
relation between redshift-binned galaxy number counts
and the small-angular scale kSZ contribution to the CMB
to reconstruct the three dimensional remote dipole field,
the CMB dipole as observed at different locations in our
Universe. The remote dipole field, which at any location
is dominated by the Doppler effect associated with radial
peculiar velocities, can be reconstructed with high fidelity
on large angular scales using future surveys such as Si-
mons Observatory [26] or CMB-S4 [27] and LSST [28] or
DESI [29]. The reconstruction is in principle of such high
quality that it is superior to direct measurements of the
density field from the galaxy survey itself, making kSZ
tomography a powerful probe of inhomogeneities on the
largest scales. These measurements can facilitate strong
constraints on primordial non-Gaussianity [19, 20], the
physics of cosmic acceleration [30], and inflationary cos-
mology [22, 31].

Previous work [19, 20] has found that future experi-
ments will be able to detect local-type non-Gaussianity
of order σfNL ∼ O(1) by utilizing sample variance can-
cellation between the reconstructed remote dipole field
and galaxy number counts. Depending on assumptions,
priors on various bias parameters, and whether internal
sample variance cancellation is employed, this can repre-
sent up to an order of magnitude improvement on what
is possible using the galaxy survey alone. Below, we find
a similar level of improvement on the amplitude of CIPs
when utilizing kSZ tomography. In particular, it will be
possible to probe CIPs comparable in amplitude to the
adiabatic perturbations, which can be thought of as a
well-motivated target for future measurements.

The plan of the paper is as follows. In Sec. II we de-
scribe potential sources of and observable consequences
of CIPs. In Sec. III we review kSZ tomography, and then
examine how well future surveys can measure correlated
CIPs in Sec IV. We conclude in Sec. V.

II. CIPS AND THEIR OBSERVABLE
CONSEQUENCES

In the early Universe, standard single-field inflation
produces purely adiabatic curvature perturbations. If the
fluctuations seeded in the early Universe were sourced by
multiple fields, however, some fraction of these may be
entropic (or isocurvature) perturbations where the frac-
tional densities of baryons or dark matter vary with re-
spect to radiation. Isocurvature perturbations can be
parameterized by a quantity Siγ , with γ for photons and
i = {b, c, ν} for baryons, cold-dark-matter (CDM) and
neutrinos respectively, and

Siγ =
δni
ni
− δnγ

nγ
, (1)

where n and δn are the mean number density of a species
and its fluctuations, respectively.

The compensated isocurvature perturbations between
baryons and CDM studied in this paper is a particular
combination of these perturbations which leaves the total
matter density fluctuations unchanged, where the baryon
number density fluctuations are exactly compensated by
those of CDM. We will define the compensated isocurva-
ture mode with ∆ as in the literature. The baryon and
CDM isocurvature perturbations are then defined as

Sbγ = ∆, Scγ = −ρb
ρc

∆ (2)

where ρi is the energy density of species i.
Compensated isocurvature perturbations may be

sourced, for example, by a spectator scalar field that
is subdominant in the early Universe with respect to
the inflaton field driving the inflationary dynamics [32].
In this scenario, after inflation ends, the inflaton decays
into relativistic particles and its energy density scales like
radiation, while the spectator field (curvaton) oscillates
around its potential minimum, its energy density scaling
like matter e.g. [10–12, 33–35]. Depending on the dura-
tion of this era, the curvaton may contribute significantly
to curvature fluctuations of the Universe upon its decay
into relativistic particles.

If the curvaton decays into baryon number and CDM
and also dominates the energy density of the Universe
at its decay, the CIPs will be fully correlated with the
adiabatic curvature fluctuations ζ, satisfying

∆ = Aζ , (3)

while any residual isocurvature perturbations other than
CIPs that are uncorrelated with the adiabatic curva-
ture fluctuations are well constrained by the CMB ob-
servations [1]. Similar to earlier works in the litera-
ture, e.g. [9, 32, 36], we will focus on these “correlated
CIPs” and evaluate the detection significance of the am-
plitude A below. The two distinct curvaton decay scenar-
ios that produce observationally relevant CIP amplitudes
are either A ' 16, if baryon (CDM) number is produced
by (before) curvaton decay; or A = −3, if CDM (baryon)
number is produced by (before) curvaton decay. Further-
more, in the former curvaton decay model where A ' 16,
the local non-Gaussianity is found to be relatively large,
fNL ' 6 [32, 37], suggesting future experiments may dis-
favor the scenarios where CDM preceded the decay of
curvaton. Note that an unambiguous statement along
these lines will require constraining both the CIP ampli-
tude and fNL simultaneously, as we discuss in Sec. IV.

In the absence of primordial isocurvature perturba-
tions after recombination, baryons and CDM can be ap-
proximated to move together as a single fluid on large
scales where non-gravitational forces can be neglected.
However, both before recombination and in the presence
of primordial isocurvature perturbations, there can be
important differences in the distribution of baryons and
CDM. For example, before recombination baryons are
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tightly coupled to photons while CDM is not. This leads
to a modulation in the relative fraction of baryons and
CDM on large scales while keeping the total matter den-
sity fixed, and therefore is a source of CIPs [13–15]. In
addition, we may have the primordially sourced CIPs dis-
cussed above. As we will see shortly, primordial corre-
lated CIPs can be distinguished from these more mun-
dane sources of CIPs by their characteristic scale depen-
dent imprint on the distribution of galaxies.

There are a few potential imprints of CIPs on the ob-
served galaxy distribution. First, the sound horizon be-
comes spacetime dependent, altering the BAO feature in
different regions of the Universe [9]. Second, modulating
the density of baryons can modulate the strength of var-
ious feedback effects in the formation and evolution of
galaxies. Finally, because only dark matter can cluster
efficiently prior to recombination, modulating the density
of dark matter will lead to a modulation in the growth of
structure. It is this last effect that provides the dominant
contribution on large scales, and which we focus on.

As shown in Ref. [15], the leading effect of CIPs on
galaxy density perturbations can be folded into a linear
bias bbc(z):

δg(k, τ) ' b(z) δm(k, τ) + bbc(z) [δbc(k, τ) + f∆(k)] ,

(4)

where we have allowed for both pre-recombination CIPs
δbc, as well as primordially sourced correlated CIPs, f ≡
1 + Ωb/Ωc, and we can relate ∆(k) to the total density
perturbation by:

∆ =
5H2Ωm

2ak2
A δm. (5)

Therefore, we see that primordially sourced correlated
CIPs lead to a scale-dependent galaxy bias, becoming
increasingly important on the largest scales. This scale
dependence can be contrasted with the imprint of δbc,
which is expected to be very small on scales larger than
the BAO feature [15]. Indeed, on the scales of interest
(∼ Gpc), δbc is many orders of magnitude smaller than
δm and can be safely neglected.

The bias bbc(z) can be estimated in the separate Uni-
verse approximation by simply computing the effect of
changing the baryon-CDM fraction on the number den-
sity of galaxies. We define

bbc(z) =

∫
dm n(m, z)bbc(m, z)

〈N(m)〉
n̄g

, (6)

where n(m, z) is the halo mass function, 〈N(m)〉 is the
average number of galaxies per halo of mass m, n̄g is the
comoving number density of galaxies at fixed redshift,
and

bbc(m, z) =
1

δbc

[
ñ(m, z)

n(m, z)
− 1

]
, (7)

with

δbc =

(
1 +

Ωb
Ωc

)
∆b , (8)
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FIG. 1. Relative contributions to the angular galaxy number
counts power spectrum, as labeled in the figure, in a tophat
redshift bin from redshift z = 1.6 to z = 1.7. Shot noise from
a galaxy survey is shown in dashed gray.

and the mass function ñ is evaluated with parameters:

Ω̃b = (1 + ∆b) Ωb, Ω̃c =

(
1− Ωb

Ωc
∆b

)
Ωc . (9)

To evaluate bbc(z), we use the mass function and Halo
Occupation Distribution (HOD) model for 〈N(m)〉 and
n̄g described in Ref. [25]. For parameters consistent with
the LSST gold sample used in the forecast below, we find
that a quadratic polynomial provides a good fit over the
relevant range of redshifts:

bbc(z) ' −(0.16 + 0.2z + 0.083z2) . (10)

The total observed galaxy number counts receive con-
tributions not only from CIPs and intrinsic density per-
turbations (D), but from all linear-order general rela-
tivistic and lightcone projection effects, including redshift
space distortions (RSDs), lensing (L), and additional rel-
ativistic contributions (GR) that are important on large
scales [38, 39]. The spectrum of the total observed galaxy
number counts

CN,N` = 4π

∫
dk

k
P(k)|∆N

` (k)|2 (11)

is defined by the transfer function

∆N
` (k) = ∆D

` (k) + ∆RSD
` (k) + ∆L

` (k) + ∆GR
` (k) . (12)

The power spectrum is defined by P(k) = As(k/k0)ns−1,
and the transfer function for the intrinsic galaxy pertur-
bations in a redshift bin is explicitly given by

∆D
` (k) =

∫
dχW̃ (χ)

[
5f

3
Abcb(z)Sψ(k, χ) + (bG(z)

− bA(z)/3 + bNG(z))SδM ,syn(k, χ)

]
j`(kχ), (13)

with W̃ (χ) a window function selecting the relevant red-
shift bin, SδM ,syn the time-evolution function for cold
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dark matter in comoving-synchronous gauge, and Sψ
the time-evolution function for the Newtonian poten-
tial. Galaxy bias (bG) and alignment bias [40] (bA) are
marginalized over, and non-Gaussianities are also mod-
eled as an effective scale-dependent bias, bNG ∝ fNL.
These bias functions, as well as the remaining contribu-
tions to the number counts transfer function, are modeled
identically to [20]. We show the relative contributions
from each of these effects to the total power in Fig 1.

III. KSZ TOMOGRAPHY

The kinetic Sunyaev Zel’dovich (kSZ) effect, Thomson
scattering of CMB photons from free electrons in the late
Universe, provides the dominant source of temperature
anisotropies on small angular scales (corresponding to
` & 4000). The temperature anisotropy induced by the
kSZ effect in the n̂ direction is

T (n̂)

TCMB

∣∣∣
kSZ

= −σT
∫

dχ a(χ)ne(χn̂) veff(χn̂), (14)

where TCMB is the mean CMB temperature, χ is the co-
moving distance, σT is the Thomson cross section, a is
the scale factor, ne is the free electron number density,
and veff = 3

∫
d2n̂eΘ1(n̂, n̂e)n̂ · n̂e/(4π) is the remote

CMB dipole field projected along the line of sight. On
small scales, the remote dipole field can be approximated
by the Doppler term induced by Newtonian peculiar ve-
locities, veff ' ~vpec · n̂. However, to probe the large scales
we consider here it is important to include the contribu-
tions from the Sachs Wolfe, Integrated Sachs Wolfe, and
primordial Doppler effects. A complete description of the
contributions to the remote dipole field can be found in
Refs. [23, 24]. Most of the cosmological information is
contained in veff , while ne depends primarily on astro-
physics and non-linear large scale structure; see Ref. [25]
for a detailed discussion of this point.

Kinetic Sunyaev Zel’dovich tomography aims to ex-
tract the cosmological information from the kSZ effect
by using measurements of the CMB and a tracer of the
electron density, such as a galaxy survey, to reconstruct
the remote dipole field. The reconstructed dipole field,
in cross-correlation with the galaxy survey or primary
CMB, can then be used to estimate cosmological param-
eters. In the present context, it is important to note that
the remote dipole field is an unbiased tracer of the to-
tal density. Cross-correlation with a galaxy survey can
therefore take full advantage of sample variance cancel-
lation in order to extract (scale dependent) galaxy bias
to high precision.

More specifically, we can write a quadratic estimator
for the remote dipole field averaged in a set of tophat

redshift bins labeled by index α as:

v̂αeff,`m = bαvN
vv
α`

×
∑

`1m1`2m2

(−1)m Γα`1`2`

(
`1 `2 `
m1 m2 −m

)
aT`1m1

δαg,`2m2

CTT`1 Cggα`2
,

(15)

where

Γα`1`2` =

√
(2`1 + 1)(2`2 + 1)(2`+ 1)

4π

(
`1 `2 `
0 0 0

)
Cτgα,`2 ,

(16)
and the reconstruction noise (e.g. variance of the estima-
tor) is defined by

1

Nvv
α`

=
1

(2`+ 1)

∑
`1`2

Γα`1`2` Γα`1`2`
CTT`1 Cggα`2

. (17)

In these expressions, CTT`1 is the measured CMB temper-

ature power spectrum, Cggα`2 is the measured spectrum

of the galaxy number counts in each bin, and Cτgα,`2 is
the cross-power of the optical depth and galaxy num-
ber counts in each bin. In the absence of an external
tracer of the electron distribution [41], there is in princi-
ple a significant model uncertainty in Cτgα,`2 . This uncer-
tainty manifests itself as a multiplicative “optical depth
bias” bαv on the reconstructed dipole field which must be
marginalized over in any cosmological analysis (see e.g.
Refs. [25, 41–43] for further discussion). The reconstruc-
tion noise can in principle become arbitrarily small in the
limit where the CMB and number counts can be probed
on arbitrarily small angular scales. In reality, the re-
construction noise is limited by the instrumental noise of
the CMB experiment and shot noise of the galaxy survey,
since this places an effective upper limit in ` on the sum
in Eq. 17. The expected bin-averaged dipole field signal
is computed as in Ref. [24].

IV. FORECASTS

We now examine how well future experiments will be
able to measure A, assuming an LSST-“gold sample”-
like galaxy survey, and kSZ reconstruction from a CMB-
S4-like survey. We follow the prescription used in [20]
in order to compute galaxy number densities, the kSZ
remote dipole field, and the corresponding noise for
each tracer. The galaxy number densities follow from
earlier work, e.g. [38, 39, 44, 45], and the kSZ sig-
nal from e.g. [24]. We make use of information from
each of these tracers individually, as well as the cross-
correlations. The Fisher matrix we compute thus has
the form

Fαβ =

`max∑
`=`min

2`+ 1

2
Tr
[
(∂αC`)C

−1
` (∂βC`)C

−1
`

]
+FCMB

αβ ,

(18)
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Parameter A 109As ns Ωb Ωc h τ bv(z) bG(z) bA(z) fevo(z) s(z) bbc(z)

Fiducial value 0 2.2 0.96 0.0528 0.2647 0.675 0.06 1 † 0 † † Eq. 10

TABLE I. Various parameters, bias functions, and their fiducial values. The biases bv, bG, bA, fevo, s, that we refer to through-
out are, respectively, the optical depth bias, the galaxy bias, the alignment bias, the evolution bias, and the magnification bias.
The fiducial values of bias functions indicated with a † vary with redshift, the modeling of which is described in [20].

where the covariance matrix C` is given by

C` =

(
CN,N
` CN,kSZ

`

CkSZ,N
` CkSZ,kSZ

`

)
+N` . (19)

The individual contributions to the covariance matrix are
the spectra CX,Y

` , where X,Y ∈ {N, kSZ}, and are the
angular power spectra and cross-spectra of the galaxy
number counts and kSZ remote dipole field. The noise
computed for each tracer is denoted by N`. For the
galaxy number counts, we assume the dominant source
of noise is shot noise from an LSST-like survey. Calibra-
tion errors may also exist on large scales that we do not
explicitly model [46], although we do explore the depen-
dence of detection prospects on a maximum available `
in Fig. 3. For the kSZ reconstruction, the noise is the
reconstruction noise given by Eq. 17, which we assume is
uncorrelated with the galaxy shot noise. The CMB con-
tribution to the Fisher matrix, FCMB

αβ , is computed using
information from the lensed CMB temperature and po-
larization power spectra, and is not cross-correlated with
the galaxy survey nor remote dipole field. This term acts
as an effective prior on standard cosmological parameters
only. Lastly, we compute derivatives of the covariance
matrices analytically for all cosmological parameters and
bias functions, except for the cosmological parameters
Ωb, Ωc, and h, which we compute numerically. We test
for numerical convergence by varying all relevant numer-
ical parameters.

For our fiducial results, we sum over 1 ≤ ` ≤ 60; the
vast majority of constraining power on A and fNL comes
from ` . 30. We assume information from a galaxy sur-
vey is available in 30 (tophat) redshift bins from z = 0 to
z = 3 (so σz . 0.05), and a magnitude limit correspond-
ing to the LSST gold sample, rmax = 25.3. For recon-
struction of the remote dipole field, we assume modes up
to ` of 9000 are available for reconstruction, subject to
a 1.0 µK-arcmin noise and 1 arcmin beam for the CMB
experiment. We explore the implications of varying this
noise, and do not find our constraints change substan-
tially: most of our signal comes from the largest angular
scales, where the remote dipole field reconstruction noise
is sufficiently low even for a much larger instrument noise.

The main quantity we report is σα =
√
F−1
αα . We

marginalize over standard cosmological parameters, as
well as different bias functions. The full list of cosmolog-
ical parameters we marginalize over, as well as the bias
functions, are described in Table I unless stated other-
wise. We examine σA as a function of different ingredi-
ents in the forecast, in order to assess how much addi-

Forecast ingredients σA

N only 3.8

N + CMB 3.2

N + CMB + kSZ 0.25

N + CMB + kSZ + fixed cosmology 0.23

N + CMB + kSZ + variable fNL 0.49

TABLE II. The fiducial uncertainty in A from the model
described in the text is bold. Lines above this exclude the
cross- and auto-correlation with the kSZ remote dipole field,
and additionally exclude the high-` CMB prior on standard
cosmological parameters. Lines below fix all cosmological pa-
rameters and bias functions, or additionally marginalize over
fNL with a fiducial value of zero.

tional constraining power is available once new probes are
added and theoretical considerations modified. The con-
straints we find on A for our “fiducial” model described
above, as well as for different combinations probes, are
shown in Table II. Notably, the remote dipole field im-
proves constraining power over galaxy number densities
alone by over an order of magnitude. Fixing standard
cosmological parameters and bias functions in addition
does not considerably improve constraining power, how-
ever we do find a moderate degeneracy of A with the ef-
fects of non-Gaussianity, such that additionally marginal-
izing over fNL worsens constraining power by a factor of
order 2. There is also a minor degeneracy with general
relativistic and lightcone projection effects: although less
important, we find a parameter bias of order 1.5σ in A
when these effects (excluding lensing) are not modeled,
suggesting such effects should be properly accounted for
when studying isocurvature perturbations using large-
scale survey data.

In order to check how robust the uncertainties we re-
port are to the fiducial values we choose, as well as to
draw a connection to a specific model, we re-evaluate
our results for a value of A = 16 and fNL = 6, corre-
sponding to particular curvaton decay models. Because
the fiducial value of A is no longer zero, the bias func-
tion bbc(z) should be marginalized over. Changes in this
bias function are highly degenerate with changes in A, so
we must place a prior on the function in order to obtain
meaningful results. Enforcing a condition on the sign of
bbc, or adding a “100%” prior σ(bbc) = bbc on the func-
tion in each redshift bin, results in an uncertainty in A
of σA = 5.8. The constraint scales down to σA = 0.89
for a 10% prior, and σA = 0.53 for a 1% prior, nearly
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recovering the results reported in Table II. As primor-
dial non-Gaussianity may be sourced through other ad-
ditional mechanisms, we have marginalized over fNL and
A separately. The degeneracy between these two param-
eters can be explicitly seen in Fig 2 as a function of the
prior on bbc. Even with the weakest prior, we see that
a definitive detection of this scenario can be made with
future datasets.

3.0 6.0 9.0
fNL

13.0

16.0

19.0

A

1% prior
10% prior

100% prior

FIG. 2. Parameter covariance between A and fNL, given sev-
eral choices for a prior on bbc.

We lastly show how the uncertainty σA varies due to
experimental parameters that have not been marginal-
ized over. In particular, we vary: the ` summed over in
Eq. 18, the number and width of the redshift bins we con-
sider (which stand in as an effective redshift uncertainty),
the galaxy survey magnitude limit, and CMB experiment
noise. These results are summarized in Figure 3. The re-
sults generally do not change significantly as these are
varied, with two exceptions. First, improving the mag-
nitude limit from the LSST gold sample (r = 25.3) to
a less conservative cut (r = 27.3) can improve things by
another possible factor of order 2. Second, without a reli-
able survey or remote dipole field reconstruction on large
angular scales, low-` multipoles may not be accessible,
degrading our constraint by a similar factor.

V. DISCUSSION

In this paper, we have shown that by measuring the
scale-dependent galaxy bias with the sample variance
cancellation technique using kSZ tomography from up-
coming CMB experiments and galaxy-surveys, constrain-
ing the correlated CIP amplitude at order one at high sig-
nificance will be possible in the near future. We also con-
sidered a curvaton model of inflation and demonstrated
that our method will be able to constrain the CIP am-
plitude and the local non-Gaussianity predicted by this

model at high significance.

As our understanding of the fundamental characteris-
tics of the Universe advances, we might find it generally
useful to know whether baryon and CDM fluctuations
trace the total matter, or whether CIPs produced at early
times correspond to a significant source of fluctuations in
the Universe. From a phenomenological perspective, bet-
ter constraints on the CIPs may rule out generic models
of many field inflation, for example, or allow for less am-
biguous measurements of early Universe signatures, such
as primordial non-Gaussianity which may be degenerate
with the CIPs. Constraints from the CMB measurements
currently allow for CIPs to be up to a few orders of mag-
nitude larger than the adiabatic fluctuations [8], while
forecasts that use the upcoming CMB and galaxy sur-
veys alone suggest it will still be hard to rule out scenarios
where CIPs dominate over adiabatic fluctuations, or to
distinguish between the different CIP scenarios discussed
above, for example, with high significance. With an order
of magnitude improvement on CIP constraints, here, we
have been able to show that these issues may be resolved
by measuring the galaxy-bias through sample-variance
cancellation using the reconstructed remote dipole field
from kSZ tomography.

In addition to the kSZ effect considered in this pa-
per, one can also consider cross-correlating with other
tracers of large-scale structure such as the remote
quadrupole field from measurements of the polarized
Sunyaev Zel’dovich effect e.g. [24, 47–50], and the trans-
verse velocity fields from the moving lens effect e.g. [51–
53]. Including these effects in our forecasts, we do not
see a significant improvement upon the constraints pre-
sented in this work, although we note that using these
effects without kSZ can still considerably improve upon
past constraints. We leave considering additional probes
of large-scale structure, such as galaxy-galaxy lensing, to
future work.

Our study focused on isocurvature perturbations
modes that are correlated with the adiabatic fluctua-
tions, as predicted by the curvaton models we consider.
In principle, CIPs can be partially correlated (or uncorre-
lated) with the adiabatic perturbations. In relation to the
galaxy-bias studied here, uncorrelated CIPs result in a
halo over-density that is not fully correlated with matter
over-density, inducing a so-called ‘stochastic’ halo-bias
on large scales [54]. The stochastic halo-bias can arise
in many field models of inflation, for example, where the
small-scale matter power may get redistributed in the
presence of an additional field that do not contribute to
the curvature fluctuations, and is not correlated with the
gravitational potential. In these cases, the bias inferred
from the cross-correlations of the halo over-density and
matter over-density will differ from the bias inferred from
halo auto-correlations, where the latter will see a boost
compared to the former, which will be unaffected from
uncorrelated fluctuations. The sample-variance cancella-
tion method we use with the kSZ tomography will fail to
detect the contribution from a stochastic contribution,
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FIG. 3. The impact of changing various parameters relevant for, or related to, experiments for the “fiducial” forecast we
perform.

as it utilizes the cross-correlations of the remote dipole
field (an unbiased tracer of the matter over-density) and
the galaxy over-density, in order to constrain the scale-
dependent galaxy-bias. Moreover, any uncorrelated bias
contributes as noise to this measurement, further wors-
ening the significance of our constraints. It is thus hard
to imagine taking advantage of the sample-variance can-
cellation in the case of uncorrelated CIPs. Nevertheless,
depending on the scale dependence of the uncorrelated
modes, it may still be possible to get competitive con-
straints on the CIP amplitude from measurement of the
scale-dependent galaxy-bias using galaxy number-counts
only, for example, compared to using CMB and BAO
reconstruction alone, as can be seen from Table II. We
leave a more detailed study of the stochastic bias to fu-
ture work.

Lastly, we note that the current competitive studies of
the scale-dependent galaxy-bias such as the one afforded
by photometric quasar searches report stringent con-
straints on local non-Gaussianity, e.g. −49 < fNL < 31
[55], which can be translated into similar constraints on
the CIP amplitude, A, by comparing the contribution
to the transfer function of the intrinsic galaxy perturba-
tions from local non-Gaussianity and the CIPs. We find
that these contributions are similar at ∼ O(1), suggesting
that photometric quasar studies can already improve on
current CMB constraints significantly. We leave a more
careful analysis to an upcoming work.

Advances in the precision of small-scale cosmology
measurements from the near-future CMB and galaxy sur-
veys will provide new opportunities to study the funda-

mental nature of the Universe on largest scales. We have
used kSZ reconstruction and sample-variance cancella-
tion in order to constrain correlated compensated isocur-
vature fluctuations on large scales and showed that our
method will improve the detection significance by over
an order of magnitude.
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