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ABSTRACT 38 

Maize is one of the most important crops in the world. However, few agronomically 39 

important maize genes have been cloned and used for trait improvement, due to its 40 

complex genome and genetic architecture. Here we integrated multiplexed 41 

CRISPR/Cas9-based high-throughput targeted mutagenesis with genetic mapping and 42 

genomic approaches to successfully target 743 candidate genes corresponding to traits 43 

relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing, 44 

412 edited sequences covering 118 genes were precisely identified from individuals 45 

showing clear phenotypic changes. The profiles of the associated gene editing events 46 

were similar to those identified in human cell lines, and consequently are predictable 47 

using an existing algorithm originally designed for human studies. We observed 48 

unexpected but frequent homology-directed repair through endogenous templates that 49 

was likely caused by spatial contact between distinct chromosomes. Based on the 50 

characterization and interpretation of gene function from several examples, we 51 

demonstrate that the integration of forward- and reverse-genetics via a targeted 52 

mutagenesis library promises rapid validation of important agronomic genes for crops 53 

with complex genomes. Beyond specific findings, this study also guides further 54 

optimization of high-throughput CRISPR experiments in plants. 55 

 56 

  57 
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Introduction 58 

Global crop production will need to double by 2050 in order to feed the 59 

increasing world population. As one of the most important crops for food, feed, and 60 

fuel in agriculture, raising the yield of maize (Zea mays) will need to contribute to 61 

meeting our needs for food production beyond current projections (Ray et al, 2013). 62 

Most maize yield traits are quantitative, and cloning the causal genes and dissecting 63 

the underlying mechanisms affecting these traits are both key to continuous genetic 64 

improvement. 65 

As a classical model system for genetic studies, hundreds of quantitative trait loci 66 

(QTL) for many traits have already been mapped in maize (Xiao et al., 2017; Liu et 67 

al., 2019). Nonetheless, the number of causal genes confirmed within these QTL 68 

regions is relatively small compared to rice and Arabidopsis. Large-scale efforts 69 

aimed at genome-wide mutagenesis based on the random insertion of various 70 

elements in the genome (transposon, transfer DNA (T-DNA) or the Tos17 71 

retrotransposon) have been a key resource employed widely in rice and Arabidopsis 72 

over the last two decades (Jeon et al, 2000; Alonso et al, 2003; Wang et al, 2013). 73 

Although transposon tagging and mutagenesis by the Activator (Ac) and Dissociation 74 

(Ds) transposable elements (Cowperthwaite et al, 2002; Vollbrecht et al, 2010) and 75 

UniformMu (May et al, 2003; McCarty et al, 2005; Hunter et al., 2007), or chemical 76 

mutagens such as ethyl-methanesulfonate (EMS) (Lu et al, 2018) have all been used 77 

in maize, the exact identification of causal gene(s) among the tens or even hundreds 78 

of loci within a line that might have been mutated but are not responsible for the 79 

phenotype under question is still costly due to the complexity of the maize genome. 80 

The laborious and low-throughput nature of classical forward genetics approaches that 81 

rely on the segregation of the causal mutation(s) in a mapping population hinders the 82 

successful and rapid application of these resources in many plant species. 83 

The RNA-guided CRISPR/Cas9 (Clustered Regularly Interspaced Short 84 

Palindromic Repeats and CRISPR-Associated protein 9) system represents a massive 85 

breakthrough both in terms simplicity and efficiency (Cong et al, 2013; Mali et al, 86 
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2013), and has been extensively applied in plant genome-editing since 2013 (Li et al, 87 

2013a; Nekrasov et al, 2013; Shan et al, 2013). Although more difficult to apply to 88 

plant species than to human cell lines (Yin et al, 2017), CRISPR/Cas9-based genome 89 

editing has recently been successfully applied to large-scale mutagenesis efforts in 90 

rice (Lu et al, 2017; Meng et al., 2017) and soybean (Bai et al., 2019). Due to its 91 

convenience, low-cost, high specificity and high-throughput scalability, 92 

CRISPR/Cas9-based editing therefore holds great promise for functional crop 93 

genomics. However, a proof-of concept study that demonstrates the feasibility and 94 

efficiency of such an approach is so far lacking for complex genomes such as maize.  95 

In the present study, we report the development of a CRISPR/Cas9-based editing 96 

platform adapted to high-throughput gene targeting in maize, and its application in 97 

functional gene identification by integrating over one thousand candidate genes 98 

derived from genetic mapping and comparative genomic analysis (Figure 1). Through 99 

the use of state-of-the-art sequencing technologies and validation by Sanger 100 

sequencing, we established low-cost optimized and quality-controlled pipelines for 101 

each step, from the design of guide RNAs (sgRNAs) to the identification of targeted 102 

genes and edited sequences. Our study also expands on two key aspects that are 103 

critical during large-scale plant genome editing research. First, general properties and 104 

insights for outcomes of plant genome editing were obtained and could serve as a 105 

reference for other crops. Second, knowledge-driven candidate genes were selected 106 

and a large number of mutants were screened using lines from T1 or follow-up 107 

generations. Our results indicate that the integration of high-throughput gene editing 108 

and forward-genetic approaches has great potential in rapid functional gene cloning 109 

and validation. 110 

 111 

RESULTS 112 

Establishment of CRISPR/Cas9-Based Batch Targeting System 113 

Based on existing and tested vectors for maize (Li et al, 2017) and rice (Lu et al, 114 

2017) transformation, three vectors were optimized to allow one-step construction via 115 
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overlapping PCR combining homologous recombination or T4 DNA ligase ligation 116 

(Supplemental Figure 1; see Methods). These vectors are suitable for pooled 117 

CRISPR/Cas9-based knockout (pCKO), for individual sgRNAs or paired sgRNAs in 118 

each plasmid. 119 

For all three vector types (Supplemental Figure 1), we used the maize inbred line 120 

KN5585 for Agrobacterium-mediated transformation of immature embryos, with an 121 

average 14% transformation efficiency (Supplemental Table 1). To explore the gene 122 

targeting efficiency of our constructs, we designed four sgRNAs within a single 123 

plasmid to target the ZmPLA1 (PHOSPHOLIPASE A; Liu et al, 2017a), resulting in a 124 

mutation rate ranging from 79% (23/29) to 83% (24/29) in the T0 generation 125 

(Supplemental Figure 2). This high targeting frequency is consistent with a previous 126 

study (51%–91%; Li et al, 2017) and may be a consequence of using a maize 127 

endogenous RNA polymerase III promoter to drive the expression of the guide RNA 128 

(Qi et al., 2018). Even though the relatively low transformation efficiency in maize 129 

presents a massive challenge, the high targeting efficiencies of these vectors rendered 130 

subsequent experiments possible. 131 

 132 

Choice of Candidate Genes for Batch Editing 133 

A total of 1,244 candidate genes were collected for pooled knockout experiments 134 

and functional validation. The candidates were divided into two sets. Set #1 included 135 

98 genes that had been either 1) fine-mapped to regions with one to a few candidate 136 

genes by linkage mapping, or 2) derived from comparative genomics, as each 137 

individual gene showed a high probability of being associated with various traits. Set 138 

#2 was made up of 1,181 genes, mainly from 70 mapped QTL regions corresponding 139 

to 27 agronomically-relevant traits, and including 35 genes that overlapped with those 140 

from Set #1 (see Methods; Supplemental Figure 3). These candidate genes served as a 141 

springboard for building the batch editing pipeline. This study also intended to 142 

establish a preliminary targeted mutant library for maize functional genomic studies. 143 

Since the KN5585 line originates from the tropics, its genome differs 144 

significantly from the B73 reference genome. We therefore established a new 145 
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pseudo-reference by deep sequencing of genomic DNA (to ~60x coverage) and RNA 146 

samples collected from seven diverse tissues. Assembled contigs were used for 147 

genotype-specific sgRNA design (Figure 1B; see Methods). sgRNAs obtained by this 148 

method were confirmed by Sanger sequencing on all Set #1 candidates, ensuring high 149 

reliability of sgRNA design. Double sgRNAs in one vector were designed primarily 150 

for Set #1 genes (double-sgRNAs pool, DSP), with the expectation that this would 151 

increase the probability of obtaining knock-out lines. Individual sgRNAs per vector 152 

were used for Set #2 genes (single-sgRNA pool, SSP). These two sets were used 153 

separately, leading to a total of 1,290 vectors consisting of 1,368 sgRNAs for 1,244 154 

genes. 155 

 156 

High Uniformity and Coverage of sgRNAs During Pooled Construction and 157 

Transformation 158 

Coverage and uniformity are two key factors during pooled transformations, so 159 

that all cloned vectors are represented within pools. Since only the spacer sequences 160 

(e.g., 20 bp) of sgRNAs differed between vectors, primers from flanking sequences 161 

were used to amplify these sequences for next-generation sequencing (NGS), in order 162 

to evaluate the relative presence of different sgRNAs. No significant differences were 163 

observed between the two pooling strategies, that is either pooling after construction 164 

for the DSP gene set (mixing the vectors separately), or pooling after ligation for the 165 

SSP gene set (mixing ligation reagents first, followed by pooled construction). Indeed, 166 

both had acceptable uniformity and coverage for sgRNA distribution. Nevertheless, 167 

pooling after ligation was easier to implement. The uniformity and high coverage for 168 

sgRNA distribution was also stable following different culture periods, and after 169 

Agrobacterium transfection (Figure 2A, 2B). 170 

The coverage of pooled sgRNAs was high, 98% on average. Only a few sgRNAs 171 

could not be detected at any given stage. This may be caused by sequencing bias, 172 

since undetected sequences usually could be found at other stages. For example, 52 of 173 

the 1,181 gRNAs from SSP were not detected before the transformation, but were 174 
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subsequently identified in T0 plants. Together, these results implied that coverage was 175 

uniform and sufficient to construct a mutant library. 176 

 177 

A Barcode-Based NGS Approach Reveals the Uniformity and Coverage of 178 

sgRNAs in T0 plants 179 

Six CRISPR libraries of sgRNAs were separately transformed into immature 180 

embryos via co-cultivation with Agrobacterium tumefaciens (Agrobacterium), and a 181 

total of 4,356 T0 seedlings resistant to the herbicide glyphosate were transplanted 182 

(Table 1). DNA from leaves of each T0 seedling was sampled at least in duplicate, and 183 

sgRNA-specific PCR followed by barcode-based deep sequencing was performed to 184 

identify the corresponding target(s) within each plant (Figure 1D; Supplemental 185 

Figure 4). Care was taken to ensure high reliability of target determination 186 

(Supplemental Figure 5; see Methods). In total, 3,695 (or 85%) of T0 plants were 187 

reliably assigned to 778 vectors corresponding to 743 target genes and used for 188 

further analysis, while unconfirmed plants were verified in additional experiments. 189 

Most positive T0 plants (2,704, or 73.2%) carried a single gRNA, while double and 190 

triple co-infections were found in 21.5% and 3.8% of cases (Figure 2C), respectively. 191 

The number of T0 plants isolated for a given sgRNA was positively correlated 192 

(P<2.0E-5) with the amount of each sgRNA in the plasmid pool, although differences 193 

were slightly magnified in the transgenic lines (Figure 2D), implying a balanced 194 

vector pool is necessary to obtain a balanced maize mutant library. On average, 4.3 T0 195 

individuals were obtained for each target sgRNA (Table 1). We used a simulation 196 

analysis to model that 4 to 10 T0 plants (relative to gene/vector number) were required 197 

to cover at least 98% of the chosen candidate genes (see Methods). Interestingly, our 198 

simulation analysis suggested that the number of mixed vectors in each batch should 199 

be over 50 in order to avoid large deviations from the expected coverage 200 

(Supplemental Figure 6). 201 

 202 

Efficient Identification of Sequence Variation in Edited Plants. 203 

Identification of induced sequence variants with high sensitivity and accuracy 204 
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remains a challenge for high-throughput experiments. Using Sanger sequencing, we 205 

found 449 (out of a total of 531, or ~85%) T0 individuals from the DSP with 206 

mutations at target loci, and 118 (26%) had large deletions between two sgRNAs. 207 

Sanger sequencing was inadequate for accurate variant identification, especially for 208 

individuals with multiple variants, and was also time-consuming and labor-intensive 209 

when many lines and/or genes were analyzed. 210 

We therefore developed an improved method based on the MassARRAY® System, 211 

which is usually used for genotyping known variants (Ellis and Ong, 2017), with 212 

sequential primer combinations to infer the as yet unknown mutated alleles. This 213 

method was particularly suitable for efficient medium-scale (20 to 50) gene 214 

identifications (Supplemental Figure 7-8; Supplemental Table 2) and was used in a 215 

single experiment to successfully identify 24 lines with exact mutations among 30 216 

randomly selected T0 individuals from the SSP experiments. These results were 217 

consistent with Sanger sequencing. The observed mutation rate in the SSP was 218 

estimated to be around 80% (24 of 30), slightly lower than that of DSP (83%~85%). 219 

In order to scale up the method to allow for high-resolution detection of induced 220 

mutations to many genes, and to render the method capable of estimating 221 

allele-specific mutation efficiency, we turned to target-region capture based 222 

sequencing (TRC-seq, see Methods). We designed 113 primers for 106 genes to 223 

capture regions flanking sgRNA target sites from T1 lines with obvious morphological 224 

changes. Since we had already identified their respective individual target genes 225 

during the T0 generation, 20-25 individuals with different targets could be combined 226 

into a batch for TRC-seq without compromising on sensitivity. A total of 1,208 unique 227 

T1 lines from 60 pools were assayed by this method, of which 656 were also 228 

characterized by Sanger sequencing. We used the improved biologically-informed 229 

alignment algorithm CRISPResso2 (Clement et al., 2019) for deconvolution of edited 230 

alleles from deep sequencing data. Mutated alleles identified by TRC-seq included all 231 

the homozygous mutations that we had identified by Sanger sequencing, indicating its 232 

high sensitivity. 233 

While a median of 81% of edited genes identified by TRC-seq was consistent 234 
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with previous target assignment, the remaining 19% of mutations, from 19 genes, 235 

were newly identified, compared with previously assigned individuals/targets. These 236 

results demonstrated 1) the highly reliable but conservative target assignment, and 2) 237 

the superior efficacy of the TRC-seq method in mutation identification. Even though 238 

CRISPResso2 has multiple advantages in the identification of mutant alleles, it also 239 

had a propensity for false-negative discovery, since a large number (130 of 292, or 240 

39%) of lines, covering a total of 32 genes, were identified as homologous alleles 241 

exclusively by the Sanger method. To explore the contribution of rigorous filtering 242 

and alignment procedures, a standard variant calling pipeline followed by global 243 

mapping of short reads to the pseudo-genome was additionally integrated in order to 244 

detect mutant alleles (see Methods). With an acceptable reliability of only three lines 245 

(out of 166, ~2%) differing from the overlapped homologs called by Sanger method, 246 

this method remedied nearly 40% (51 of 130) of the CRISPResso2 false negatives. 247 

However, 27% (79 of 292) false-negative discoveries (compared to Sanger 248 

sequencing) still remained, possibly caused by the biased mixing of individuals and 249 

asymmetrical capture during deep sequencing. 250 

 251 

Pattern and Predictability of Mutations Generated by Editing 252 

Considering the complementary ways in which our different methods addressed 253 

mosaicism (described below in detail), the mutations identified from SSP and DSP 254 

pools using Sanger sequencing and TRC-seq were merged for further analysis. A total 255 

of 326 unique mutant sequences in 109 genes corresponding to 135 individual 256 

sgRNAs were collected. An additional 86 non-redundant structural variants between 257 

paired sgRNAs of 53 genes were also identified (Supplemental Data Set 1), providing 258 

a representative resource to understand the genome-wide distribution of editing in 259 

maize. 260 

For the individual target mutated sequences, most (60%) were deletions (DEL) of 261 

1 bp to 65 bp, with a median of 3 bp. Breakpoints were enriched within a 4 bp 262 

window 3 to 6 bp upstream of the NGG PAM (Protospacer Adjacent Motif ) sequence. 263 

Insertion-type (INS) mutants accounted for nearly one-third (32.5%), with 90% being 264 
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single bp insertions and usually occurring within the predicted nuclease cleavage site 265 

(3 to 4 nucleotides upstream of the PAM; Figure 3A). Most of the remaining 266 

mutations (8%) were single nucleotide polymorphisms (SNPs), transversions being 267 

twice as frequent as transitions. Individual sgRNAs sometimes produced large 268 

deletions or insertions. In contrast, when using paired sgRNAs, we often observed 269 

structural variants between the target sites, with deletions being the most frequent 270 

(91%) (Supplemental Figure 9A). For genes targeted with two sgRNAs, whether a 271 

large deletion between the two sgRNAs or a small deletion at each individually 272 

sgRNA target site was induced could not be predicted (Supplemental Figure 9B), 273 

although the distance between paired sgRNAs was found to slightly affect the 274 

outcomes (Supplemental Figure 9C, 9D). 275 

Recent studies suggest high predictability of genome editing in human cell lines 276 

(Shou et al., 2018; Chakrabarti et al., 2019), and an algorithm to predict mutational 277 

outcomes using only flanking DNA sequences has been described (Allen et al., 2019). 278 

Interestingly, even though the algorithm was refined using human cell line data, it was 279 

able to predict the outcome of 72% of the observed alleles in the present study, and 280 

this increased to 85% for DEL (Figure 3C). Furthermore, the algorithm estimated 281 

allele frequencies for true observed variants much better than background (P=2.3E-16; 282 

Figure 3D), suggesting that primary alleles were readily captured. Despite the fact that 283 

many of the mutants not predicted by the algorithm were large (for example, 24% of 284 

such non-predicted DEL were longer than 10 bp) and the presence of 285 

cell-line-dependent bias (Allen et al., 2019), the predictions developed from human 286 

data are therefore largely transferable to plants. Even though plants have unique 287 

mechanisms for repair of double-strand breaks (Spampinato, 2017) and somewhat 288 

different mutation signatures are observed between animals and plants (Bortesi et al., 289 

2016), our study provides the justification to apply animal guide sgRNA design 290 

guidelines for precise editing in plants. 291 

We next used a tree-based Random Forest algorithm to test the effect of sgRNA 292 

sequences in predicting the outcomes produced in the current study. Given the limited 293 

data size, the general accuracy on classifying the mutant types (INS, DEL or SNP) 294 
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from sgRNA sequences was low (Supplemental Figure 10). To ask what additional 295 

factors beyond sgRNAs and their flanking DNA sequences might affect editing 296 

outcomes, we also considered the expression patterns of the candidate genes as an 297 

additional explanatory variable (Supplemental Figure 10A). Interestingly, the 298 

expression variability of target genes along diverse tissues affected the size of 299 

insertion or deletion (InDels) events and the position of DELs, as higher expression 300 

variability was associated with smaller mutations that were more proximal to the 301 

predicted nuclease cleavage site (Supplemental Figure 10D, 10G). SNPs in target 302 

genes with higher expression in the shoot apical meristem also appeared to be more 303 

proximal to the predicted nuclease cleavage region (Supplemental Figure 10F, 10G). 304 

Previous studies also found that chromatin states and active transcription affect Cas9 305 

binding (Verkuijl and Rots, 2019) and editing mutant profiles (Chakrabarti et al., 306 

2019), and thus further exploration on how expression changes influence mutational 307 

outcomes could lead to improved predictability. 308 

 309 

Homology-Directed Repair with Endogenous Templates as a Means of Mutant 310 

Generation 311 

Programmable nucleases introduce DNA double-strand breaks at user-defined 312 

target sites and thus engage the inherent repair systems such as error-prone 313 

non-homologous end joining (NHEJ) or, in the presence of a DNA template, 314 

homology-directed repair (HDR). Among the mutants identified from TRC-seq of 315 

SSP T1 lines, we identified two clear cases of HDR that used inter-chromosomal 316 

endogenous templates (Supplemental Figure 11). Given the total of 154 mutated 317 

InDels covering 63 genes, these two cases accounted for 1.3% and 3.2% of total 318 

mutations and genes, respectively, suggesting a much higher frequency than previous 319 

reports in plants (Puchta, 1999; Ayar et al., 2013). Evidence for the hypothesis that 320 

NHEJ repair occurred sequentially after initial cleavage, resulting in HDR, was also 321 

observed (Supplemental Figure 11B). The estimated mutant frequencies caused by 322 

HDR were 1% and 20% for these two genes, respectively. These ratios were 323 

comparable to studies that improved HDR efficiency using exogenous templates in 324 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Chakrabarti%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=30554945
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plants (Wang et al., 2017a; Gil-Humanes et al., 2017; Li et al., 2019a). An improved 325 

genome assembly of the maize transformation recipient line used here (KN5585) will 326 

improve the detection of more endogenous HDR events. 327 

The targets and corresponding templates for the two documented cases of HDR 328 

were homologues with highly correlated expression patterns (Supplemental Figure 329 

11C). Interestingly, for one case, the chromatin bearing the homologous template and 330 

the target gene were shown to come in close proximity to each other, although they 331 

are located on different chromosomes (Supplemental Figure 11C, 11D; Peng et al, 332 

2019), suggesting that higher-order chromatin structure contributes to the high 333 

frequency of endogenous HDR. This finding supports the hypothesis that low 334 

frequency of precise gene replacement through HDR in plants might be due to an 335 

inefficient targeting of exogenous templates, as opposed to a difference in endogenous 336 

repair mechanisms compared to mammals (Schuermann et al., 2005; 337 

Lieberman-Lazarovich and Levy, 2011; Fauser et al., 2012). Further study of these 338 

endogenous HDR events might provide clues towards optimizing HDR efficiency, and 339 

thus improving the efficiency of precise introduction of specific variants. 340 

 341 

Rare Off-Target vs. Common Mosaic Mutations 342 

Consistent with previous studies that found rare off-target events in plants when 343 

using CRISPR/Cas9 (Tang et al., 2018; Li et al., 2019), we identified only 10 InDels 344 

among a total of 39,328 potential off-target genes via Whole-Exome-Sequencing 345 

(WES) in 19 mixed T1 blocks covering 25 mutated genes (see Methods). Thus 346 

off-target effects will likely have only a small effect on plant editing, at least under 347 

our conditions. By contrast, mosaic mutations were observed widely in the present 348 

study. Evidence from SSP T1 lines indicated that: 1) most heterozygous alleles called 349 

from Sanger sequencing were bi-allelic and only 1.4% (2 of 148) included one 350 

wild-type copy; 2) only 46% of variants from capture sequencing (TRC-seq) were 351 

matched to one of the heterozygous alleles detected by Sanger sequencing, while the 352 

remaining 54% were different; 3) different homozygous mutations were observed 353 

among T1 individuals from the same self-crossed T0 ear and 4) base-calls with Sanger 354 
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sequencing of 41 lines were completely impossible to interpret, most likely a 355 

co-existence of more than two alleles at a given locus. Such chimeras can impair 356 

mutant characterization and inference of any genotype-phenotype links. For example, 357 

even though a large deletion was identified for one flowering time candidate in a T0 358 

event, no mutation was found in a large number of derived T1 lines. This finding calls 359 

for higher scrutiny not only for mutation identification but also for further validation 360 

of genotype-phenotype association. 361 

362 

Knowledge-Driven Gene Editing Accelerates the Exploration of Gene Function 363 

The edited lines provided reliable evidence in causal gene validations for selected 364 

candidates that were previously fine-mapped to individual genes (DSP set). For 365 

example, they provided confirmation for the validation of ZmDXS2 366 

(1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE 2; GRMZM2G493395) in 367 

affecting kernel color and carotenoid contents (Fang et al., 2020). Although lines 368 

carrying only 32% of the mutated genes were planted, some phenotypes were found to 369 

be consistent with predictions from forward genetics or comparative genomics, even 370 

though a large fraction of candidates (~40%) from the SSP set were not mutated. We 371 

planted 639 T1 families from 445 SSP T0 events covering 246 genes and observed 119 372 

T1 families representing 107 genes with significant morphological phenotypes. 373 

Importantly, we observed 13 genes showing altered phenotypes that were consistent 374 

with their QTL mapping predictions. Each QTL interval covers multiple genes, only 375 

one or very few of which might be expected to be responsible for the underlying 376 

phenotypes. We may have therefore missed the causal locus when designing our gene 377 

editing constructs. 378 

In addition, the mutants we generated are also valuable to identify new gene 379 

functions within classical QTL intervals. Taking flowering time as an example, the 380 

maize anti-florigen gene ZEA CENTRORADIALIS 8 (ZCN8) is usually assumed to be 381 

the causal locus behind the largest effect QTL on chromosome 8 that was mapped in 382 

various maize populations (Buckler et al., 2009; Coles et al., 2010; Liu et al., 2016; 383 

Guo et al., 2018), given this gene’s role in flowering regulation (Meng et al., 2011; 384 
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Lazakis et al., 2011). However, this QTL region covers 1 Mbp (Figure 4A) and 385 

suggests that variation in genes outside of ZCN8 might participate in the underlying 386 

QTL. Interestingly, mutants in ZmTPS14.1 (TREHALOSE-6-PHOSPHATE 387 

SYNTHASE 1, GRMZM2G068943, ~100 kbp downstream of ZCN8) also displayed a 388 

significant delay in flowering time (Figure 4B; Supplemental Figure 12A, 12B), 389 

consistent with a previously study in Arabidopsis (Wahl et al., 2013). Another 390 

flowering time QTL on chromosome 3 was also associated with ear height (Figure 4A; 391 

Supplemental Figure 12A), and while the MADS-box transcription factor ZmMADS69 392 

(GRMZM2G171650) located within this region was recently validated as a gene 393 

underlying flowering time regulation in maize (Liang et al., 2019), we obtained many 394 

mutated alleles of SQUAMOSA promoter BINDING PROTEIN gene ZmSBP22 395 

(GRMZM5G878561, ~370 kbp upstream of ZmMADS69) in this study, and all showed 396 

late flowering (Figure 4C; Supplemental Figure 12C, 12D). These findings raise the 397 

possibility that multiple causal genes might map to the same QTL regions, and might 398 

contribute, alone or in combination, to the underlying phenotype, which is not easily 399 

addressed by routine genetic mapping analyses. 400 

A loss of function allele induced by CRISPR-mediated gene editing may have 401 

different phenotypes from a subtle difference in protein function resulting from the 402 

underlying variation between naturally occurring alleles at a QTL. For example, 403 

GRMZM2G331652 (a gene encoding an aminotransferase-like protein) was located 404 

within a plant height QTL interval, but falls outside of a small effect flowering QTL 405 

interval on chromosome 1 (Supplemental Figure 13A). Interestingly, in addition to the 406 

expected plant height changes, mutants in this candidate were also characterized by 407 

flowering time differences and varied responses to day-length (Supplemental Figure 408 

13B-D). Finally, as was our hope, we obtained lines with a large number of 409 

unexpected phenotypic changes, including traits not previously studied (Supplemental 410 

Figure 14) affecting plant size and morphology, reproductive structures or 411 

susceptibility to disease, demonstrating that our library of edited genes provides an 412 

unprecedented resource for further detailed functional genomics. 413 

The mutant library may also refute standing hypotheses of gene function, and 414 
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together would promote a new perspective on underlying regulatory mechanisms. An 415 

interesting case was for the BARELY ANY MERISTEM 1d gene ZmBAM1d 416 

(GRMZM2G043584), which was previously found to affect kernel weight and 417 

validated by results from a NIL population and over-expression (Yang et al., 2019). 418 

However, our CRISPR/Cas9 edited lines had no obvious phenotypic differences 419 

compared to the parental line (Figure 4D, 4E). RNA-sequencing revealed the 420 

up-regulation of two BAM1d homologues as potential cause for the lack of visible 421 

phenotypes (Figure 4F), suggesting that a compensatory mechanism might be the 422 

reason for the lack of trait changes in the genome-edited lines. While gene 423 

redundancy is widely recognized as an obstacle to identifying gene function in plants, 424 

gene editing can be multiplexed to address this issue. 425 

426 

DISCUSSION 427 

The CRISPR/Cas9 system is a simple, effective method for generating targeted 428 

mutations, and its capacity for high-throughput has fueled its popularity in large-scale 429 

mutagenesis libraries, first in animals (Shalem et al., 2015; Peng et al., 2015) and now 430 

in plant systems (Lu et al, 2017; Meng et al., 2017; Bai et al., 2019). These benefits 431 

make the CRISPR-based system far outweigh other classical plant mutant libraries 432 

generated by transposon insertion of chemical mutagens. Here, we provide a practical 433 

workflow for high-throughput genome editing in maize, with optimized bioinformatic 434 

analysis, that should circumvent problems associated with its large and complex 435 

genome and difficulty of transformation (Figure 1). We anticipate that our approach is 436 

also applicable to other species. In contrast to human cell line screening, large-scale 437 

exploration of mutants and corresponding phenotypic analysis in plants is challenging, 438 

mainly due to the lower associated throughput, labor-intensive phenotyping and 439 

environmental impact during phenotyping in the field. This is especially true when 440 

large field trials are needed to detect small quantitative changes, and when different 441 

environmental conditions (stress, nutrition) may reveal additional phenotypes. 442 

However, this will likely be addressed in the future via innovations in high-throughput 443 
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phenotyping methods. As technologies for genome editing rapidly advance, emerging 444 

toolkits will be integrated into such future experiments. While recent studies offer 445 

high transformation efficiency for a wide variety of maize genotypes (Lowe et al., 446 

2016; Lowe et al., 2018; Jones et al., 2019), new methods in sgRNA delivery by viral 447 

vectors (Wang et al., 2017a) or by clay nanosheets (Mitter et al., 2017) that avoid the 448 

time-consuming tissue culture may be critical in accelerating functional genomics. 449 

Here, we explored the CRISPR-Cas mutational profiles of a representative set of 450 

genes. Interestingly, the patterns of repair outcomes in our study were in line with 451 

those seen in human cell lines (Allen et al., 2019). Genome editing events in the form 452 

of deletions and insertions largely dominated over SNPs, and the size of deletions 453 

varied more widely than that of insertions. This similarity allowed a good 454 

predictability of mutational outcomes in maize using an algorithm refined for human 455 

cell lines using only local sequences as input. Our findings suggest that the 456 

mechanisms of both Cas9-induced double-strand break and subsequent DNA repair 457 

are highly conserved between humans and plants. The prediction algorithm can be 458 

thus be incorporated with sgRNA design and variant effect prediction to help 459 

prioritize sgRNAs based on expected mutant alleles and/or expected effect (such as 460 

frameshift or missense) on the target gene. This is important, since the precise 461 

introduction of given variants through repair of exogenous templates is still difficult, 462 

and a pre-screening step of all possible sgRNAs for accurate prediction followed by 463 

screening of a smaller pool of mutated descendants is more tractable. Furthermore, the 464 

present study provides evidence that the chromatin state (open chromatin being 465 

associated with higher expression and accessibility) at a targeted gene may have an 466 

impact on editing efficiency and on mutational outcomes, which can be further 467 

integrated for prediction improvement. 468 

Cloning and validating genes affecting important agronomic traits remains key to 469 

crop genetic improvement, especially when implemented to target multiple traits each 470 

with multiple candidate regions; it is essential to meet future food demand. Mutants 471 

created by CRISPR/Cas9 are highly valuable in functional genomics, especially when 472 

used in a multiplex fashion. As screening phenotypic changes in a genome-wide 473 
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mutant library is challenging in crops, access to candidate regions for corresponding 474 

traits identified by forward-genetic approaches is thus highly valuable. In the present 475 

study, we integrated candidates from genotype-phenotype associations and 476 

CRISPR/Cas9 early on in our pipeline, and we provide a practical roadmap for the 477 

rapid detection of gene function through an informed mutagenesis library. In addition 478 

to the validation of high-confidence candidates, the approach may allow to rule out 479 

other predicted candidates. At the same time, other mutants derived from the present 480 

design will be a valuable resource in functional gene discovery. Since candidates from 481 

natural variation have greater utility in crop improvement, such knowledge-driven 482 

targeted mutagenesis based on QTLs, pathways, and gene families will dramatically 483 

improve future studies. We anticipate that all candidate genes from a given QTL 484 

region can thus be mutated simultaneously in one implementation. Of course, 485 

complete gene loss of function alleles induced by genome editing may display drastic 486 

phenotypes that go beyond the range conferred by natural alleles: these validation 487 

experiments should be interpreted carefully. The heritable transmission ratio is also an 488 

important issue to test genotype-to-phenotype links, but could not be explored in the 489 

current study since the T0 and T1 populations were descended from unrelated 490 

individuals. However, previous studies in maize indicate that CRISPR/Cas9-derived 491 

mutation in T0 individuals were stably transmitted to the next generation (Li et al, 492 

2017; Zhu et al, 2016), one of which used the same vector we did (Li et al, 2017). We 493 

also found that off-target mutations may not be common in plants, although editing at 494 

non-target homologous sequences deserves attention, and stresses the need for 495 

high-quality genomes of the parent lines. 496 

The knowledge-informed mutagenesis design we present here is not only helpful 497 

in accelerating gene discovery; it will also be valuable to characterize the effects of 498 

specific genes or alleles, to study regulation mechanisms, to evaluate pleiotropic 499 

effects and to create novel useful haplotypes. A multitude of CRISPR-derived alleles, 500 

with effects other than complete loss of function (a non-exhaustive list includes 501 

knock-in, knock-down or -up at specific developmental stages, base editing, or 502 

modifying epigenomic, transcriptional, or post-transcriptional processes) can be 503 
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flexibly incorporated into fine-tuning of regulatory networks (Chen et al., 2019; Hua 504 

et al., 2019; Zhang et al., 2019). The knowledge and materials available here therefore 505 

represent important tools in the acceleration of high precision crop breeding (Fernie 506 

and Yan, 2019).  507 
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METHODS 508 

Collection of Candidate Genes. 509 

The candidates selected for the present study were from multiple sources: 510 

1) Genes that have been fine-mapped using various recombinant inbred line (RIL)511 

populations. Most traits mapped to single genes, and a few mapped to intervals512 

with several (less than five) genes. Additional genes included four related to513 

tocopherol content, four to carotenoid content/composition, three to kernel514 

dehydration rate, three to corn leaf blight susceptibility, three related to ear yield515 

and one to tassel length.516 

2) 19 genes from the CCT family with high potential for affecting maize flowering517 

time (14 of which were orthologs from rice and Arabidopsis), located within518 

QTLs for flowering time identified by genome-wide association mapping studies519 

(GWAS) in a recently developed population (Liu et al., 2020). Together with 14520 

genes associated with ear leaf width and length, 25 genes were associated with521 

plant height. One other ortholog for a gene shown to affect phosphorus content in522 

rice (Yamaji et al., 2017) was also included in the present study.523 

3) A large number of candidates derived from initially mapped QTLs for 23524 

important agronomic traits, identified by GWAS using the recently developed525 

population (Liu et al., 2020). For each trait, the top one or two larges- effect QTLs526 

were integrated, and genes were filtered if additional evidence (expression527 

relevance, expression QTL associations, or ortholog information) was available;528 

all candidates within the QTL interval were included if there was no other reliable529 

evidence and if the interval contained less than ten candidates. These included 243530 

genes associated with flowering times, 540 genes related to plant architecture531 

traits, another 229 and 422 genes affecting the ear and kernel-related yield traits,532 

respectively.533 

4) 270 genes from QTLs associated with dehydration rate and another seven genes534 

potentially affecting lipid content identified by association mapping. These two535 
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studies were performed using a natural population consisting of over 500 536 

unrelated individuals (Liu et al., 2017b). 537 

Genes from sources 1) and 2) formed Set #1, and two sgRNAs were designed for 538 

each gene to form the double-sgRNAs pool (DSP). Genes from sources 2), 3), 4) 539 

comprised Set #2, with individual sgRNA per gene for 3) and 4), and the two sgRNAs 540 

per gene for 2) with individually constructed, all were mixed as individual sgRNA per 541 

vector to form the single-sgRNAs pool (SSP). 542 

543 

Non-Reference Based sgRNA Design. 544 

The sgRNA oligo design criteria were fully implemented according to Lu et. al. 545 

(2017) to obtain an initial sgRNA library based on the B73 reference genome. 546 

However, due to the large genetic difference between the B73 and the transformation 547 

receptor KN5585 (a tropical line) used here, we required an additional filtering step to 548 

select those sgRNAs also suitable for KN5585. Whole-genome sequencing (WGS, 549 

~60x) and deep mRNA-sequencing (RNA-seq) on a mixture of seven tissues were 550 

used to obtain the de novo assembled contigs of KN5585, based on canonical 551 

pipelines using ABySS (Jackman et al., 2017; contig N50 = 3,162) and Platanus 552 

(Kajitani et al., 2014; N50 = 565) for WGS and Trinity (Grabherr et al., 2011) for 553 

RNA-seq (N50 = 2,167). These raw assembled contigs can be available at 554 

http://maizego.org/Resources.html (see the section of “High-throughput 555 

CRISPR/Cas9 gene editing”). All sgRNAs designed from the B73 genome with 556 

acceptable on-target scores were filtered by Basic Local Alignment Search Tool 557 

(BLAST, Camacho et al., 2008) against the locally assembled contigs to obtain the 558 

uniquely matched set. When the alignment between gene and sgRNA did not fully 559 

match, the sgRNAs with only one SNV or InDel were retained after replacing the 560 

given variants from KN5585. In addition, the nearly complete genomic sequences for 561 

all Set #1 genes were PCR-amplified and sequenced by the Sanger method, providing 562 

confirmation for all of their sgRNAs using this filtered method. To make this analysis 563 

friendly to a broad range of users, we developed a tool (Sun et al., 2018) with both a 564 

command-line and graphical user interface (GUI) (implemented in Java) that can be 565 

http://maizego.org/Resources.html
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easily implemented. 566 

 567 

Vector Design, Construction, and Pooling.  568 

Three different vectors (Supplemental Figure 1) were used in the present study: 1) 569 

pCPB-ZmUbi-hspCas9 came from Dr. Chuanxiao Xie (Li et al, 2017). We modified 570 

the vector construction by combining overlapping PCR and homologous 571 

recombination to obtain a single- or double-sgRNAs vector (SSV or DSV) in one step 572 

(Supplemental Figure 1A and 1B). In detail, pCPB-ZmUbi-hspCas9 was first 573 

linearized by HindIII. Separately, ZmU6 and the sgRNA scaffold of insertion elements 574 

were amplified through overlapping PCR with a homologous arm, or sgRNA scaffold 575 

and/or 20b p gene-specific target-attached primers. Additionally, homologous arms 576 

that match linearized pCPB-ZmUbi-hspCas9 were also added to the insertion 577 

fragment in the overlap PCR. Finally, different gene-specific insertion fragments were 578 

incorporated into pCPB-ZmUbi-hspCas9 as SSV and DSV. It is worth noting that the 579 

HindIII restriction enzyme recognition site was maintained in each construct so that 580 

gene-specific elements can be inserted (Li et al, 2017). pCXB052 was modified from 581 

a vector designed for genome-wide editing in rice (Lu et al, 2017) by replacing the 582 

rice promoters with the RNA polymerase II promoter of the maize ubiquitin gene 583 

(ZmUbi) and the RNA polymerase III promoter ZmU6 (Supplemental Figure 1C). 584 

pCXB053 was extended from pCPB-ZmUbi-hspCas9 through the pre-assembled 585 

ZmU6 and sgRNA scaffold. The difference between pCXB052 and pCXB053 was that 586 

both hspCas9 and the selection marker Basta gene (BlpR) are expressed by ZmUbi in 587 

pCXB052, and alternatively expressed by ZmUbi and enhanced Cauliflower Mosaic 588 

Virus CaMV 35S promoters in pCXB053. Unlike the construction approach in DSP, 589 

SSV of SSP was produced by oligo annealing and T4 Ligase ligation. pCXB052 or 590 

pCXB053 was cleaved by BsaI to ligate with the sgRNA anneal products. Only the 591 

positive strains survive since the toxin ccdB gene was replaced by sgRNA. 592 

Self-ligated vectors were eliminated, which ensured that all of the clones obtained 593 

were positive and allowed for a pooled plasmid cloning. In brief, 594 

CPB-ZmUbi-hspCas9 was used for DSP, which was suitable for a single vector 595 
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containing one or multiple sgRNAs. Thus, DSP was a uniform concentration mixture 596 

of each Sanger-validated plasmid. The pCXB052 and pCXB053 vectors were 597 

designed for pCKO since this allowed pooled ligation reaction cloning, so SSP was 598 

pooled prior to E. coli transformation. 599 

600 

Plasmid Pool Sequencing. 601 

The Tn5 transposase (Nanjing Vazyme Company of China, cat. No. TD501) was 602 

used to fragment mixed plasmids. For each reaction, 50 ng DNA was aliquoted with 603 

10 μL 5×TTBL Buffer, 5 μL Tn5. Double-distilled water was added to 50 μL, mixed 604 

well, then incubated at 55°C for 10 min. DNA was purified with VAHTS DNA Clean 605 

Beads (Nanjing Vazyme Company of China, cat. No. N411-03-AA). For PCR 606 

amplification, we mixed 24 μL purified DNA, 10 μL 5×TAB Buffer, 5 μL PPM, 5 μL 607 

N5 primer, and 5 μL N7 primer, added 1 μL TAE amplification enzyme and mixed 608 

well. The PCR program consisted of (1) 72ºC for 3 min, (2) 98ºC for 30 sec, (3) 609 

6-cycle of 98ºC for 15 sec, 60ºC for 30 sec, 72ºC for 1 min, (4) 72ºC for 5 min and610 

hold at 4ºC. Finally, purification was done with two rounds of VAHTS DNA Clean 611 

Beads (Nanjing Vazyme Company of China, cat. No. N411-03-AA), first-round with 612 

0.6× (30 μL) and second-round 0.15× (7.5μL) to collect the 300~700 bp PCR 613 

products. The beads were eluted in 16 μL double-distilled water. The libraries that 614 

passed quality checks were subjected to the Illumina X-Ten sequencer with pair-end 615 

150 bp. 616 

617 

Agrobacterium-Mediated Pooled Transformation. 618 

The plasmids were electroporated into Agrobacterium tumefaciens strain 619 

EHA105. Agrobacterium-mediated maize transformation is illustrated in 620 

Supplemental Figure 15. Maize immature embryos (IEs) of 1.5-1.8 mm were isolated 621 

from ears harvested 10 d after pollination into 2.0 mL tubes with 1.8 mL Inoculation 622 

Medium (Sidorov and Duncan, 2009), and were infected with Agrobacterium 623 

suspension (Inoculation medium with 200 μM of acetosyringone and Agrobacterium 624 

cells) for 5 min, then poured onto co-cultivation medium. The extra liquid was 625 
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removed with pipettes. IEs were placed with scutellum-side up on the medium and 626 

incubated in the dark at 23ºC for 48-72 h of co-cultivation. After co-cultivation, 627 

immature embryos were transferred to the resting medium and cultured for 5-7 d. 628 

Calluses were then transferred to the selection medium (glufosinate-ammonium 629 

10mg/L), incubated in the dark at 28ºC for 2 weeks and transferred to fresh selection 630 

medium for another 2 weeks. Resistant calluses obtained were placed on the 631 

regeneration medium, incubated under 5000 lx at 25ºC for 14-21 d. Regenerated 632 

shoots were transferred to rooting medium under 5,000 lux at 25ºC for 14 d. Leaves 633 

were sampled for PCR analysis before the plantlets were planted into greenhouse. The 634 

transformation experiments were conducted by the Wimi Biotechnology company. 635 

636 

Assigning Associated Targets to T0 Plants. 637 

The minimum number of T0 plants was determined to be about 4 times of the 638 

number of vectors to cover most of the targets, as below simulation analysis suggested. 639 

For high-throughput detection of gene-edited plants (T0 generation), we added 640 

different barcode sequences (at least two mismatches between any two) to the ends of 641 

the universal primers (Forward primer: CGTTTTGTCCCACCTTGACT; Reverse 642 

primer: TTCAAGTTGATAACGGACTA) to produce amplicons, and the length of 643 

PCR amplification products was 165 bp (Supplemental Figure 4). A total of 30 644 

forward and 96 reverse amplification primers ligated with barcodes designed to 645 

represent a maximum of 2,880 lines for each batch (Supplemental Data Set 2). A 646 

forward amplification primer and 96 reverse amplification primers were used to 647 

amplify the DNA of gene-edited plants in a 96-well PCR plate. PCR products purified 648 

with DNA clean kit (ZYMO RESEARCH Cat. No. D4013) were used for library 649 

construction. DNA libraries were constructed according to the Truseq DNA LT sample 650 

preparation kit (Illumina: FC-121-3001), end repair, ‘A’ base addition, Illumina 651 

adapters ligation and PCR enrichment following with purification by AMPure XP 652 

beads (Supplemental Figure 4). All the DNA was extracted from seedling leaves 653 

unless otherwise specified. 654 

The matched barcode sequences and amplified sgRNA were obtained by pair-end 655 
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short-reads sequencing, so that the T0 individuals can be associated with their 656 

corresponding candidate genes, as long as contamination is avoided. To reduce the 657 

potential for contamination, we have focused on experimental design and 658 

bioinformatic analysis parameters affecting the reliability. Through mixing several 659 

lines with individually transformed sgRNA and negative controls (wild type tissue, 660 

water, and empty wells), iterative sequencing with various coverage was performed. 661 

Four parameters were considered (Supplemental Figure 5A), including supported 662 

reads (count_cutoff from 5 to 200), relative ratio of supported reads at given well 663 

(ratio_cutoff, from 0.01 to 0.2), inflection point of relative amount (fold change 664 

between ratios) between sorted targets (the largest fold change of N+1th target 665 

compared to the Nth target for all targets that meet the requirements of count_cutoff 666 

and ratio_cutoff, named as peakFC), and the fold enrichment of target among the 667 

whole 96-plates, relative to mean (measured as contamination, the targets would be 668 

iteratively removed with cutoff decreasing from 5 decreases to 1.5 with a step of 0.5). 669 

Adequate sequencing coverage is essential for eliminating background noise. 670 

While the false negative rates were usually low, the false-positive rate is sensitive to 671 

floating count- and ratio- cut-offs and highly correlated to total effective discovery 672 

number (Supplemental Figure 5B-E). That is, a strict cut-off would lead to lower false 673 

positives, but at the cost of reducing total effective assignments. By sequencing 674 

multiple biological and technical replicates, a stricter cut-off is possible, increasing 675 

reproducibility. Taken together, targets passed the relatively strict cut-offs 676 

(count_cutoff = 100, ratio_cutoff = 10%, targets ranked above the peakFC, 677 

contamination_cutoff = 2×mean coverage of each individual) and identified in at 678 

least two repeats were used to ensure high-confidence assignments. However, all of 679 

the remaining sgRNAs identified in only one experiment were also incorporated in 680 

mutated sequence detection, even though very few were validated by mutants. 681 

682 

Simulation of Target Coverage as a Function of the Number of T0 Individuals. 683 

Considering the transformation and planting limitation, it is important to balance 684 

the plant pool size and gene/target coverage of each pooled transformation assay. To 685 
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decide how many genes/vectors (Vn) should be mixed in a pool, we performed a 686 

simulation, with Vn from 1 to 200 and the number of T0 individuals (Pn) from 1 to 10 687 

times Vn. Fifty replicates of the primary vector pool were created as follows. Vectors 688 

were randomly selected from the amplified vector pool without replacement, to obtain 689 

Vns. Finally, the coverage was calculated as the ratio to Vn. The simulation for a given 690 

vector pool and plant library was repeated 100 times and three values (mean, 691 

minimum and standard value) were considered to select the primary vector mixture 692 

size and the number of plants needed. 693 

    From the simulation analysis and the observed cases of coverage of sgRNAs 694 

along various T0 lines, four times the number of T0 plants (relative to gene/vector 695 

number) were required to cover most of the candidates, comparable with observed 696 

results. Given a 50-vector pool as an example, 98.7% of genes on average (with a min 697 

of 94%) can be covered by 200 (4x) T0 lines (Supplemental Figure 6), and the 698 

coverage was better for a larger number of vector pools. However, over half of the 699 

genes (or vectors) were present in fewer than three plants and 30% were represented 700 

by a single individual. This distribution represented a risk in further experiments 701 

(including the identification of effective mutant alleles, independent cross-validations, 702 

or even collection of sufficient seeds for next generation); ten times the number of T0 703 

plants would then be needed to represent more than 85% of genes by at least three 704 

lines. 705 

706 

Identification of Mutated Alleles by Sanger Sequencing. 707 

Sanger sequencing was applied for all amplicons to obtain “.ab1” files, and the R 708 

package sangerseqR (Hill et al., 2014) was used for base-calls and plotting 709 

chromatograms. By using the Poly Peak Parser, this package can separate ambiguous 710 

base calls into two sequences. A ratio = 0.2 was set for separating signal and noise 711 

base-calls, and the 20 bp at the beginning and end of the sequence were trimmed 712 

when generating chromatogram plots. The obtained primary and secondary sequences 713 

were considered as two haplotypes, which are identical for homozygous mutations. 714 

Further analyses were the same for homozygous or heterozygous mutations. The 715 
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primary and secondary sequences together with the wild-type genomic and sgRNA 716 

sequences were used as input to multiple sequence alignment (MSA) by Clustal 717 

programs (Larkin et al., 2007) to call specific variants. It is important to note that both 718 

the forward and reverse amplicons help identify exact alleles, or at least to clarify the 719 

mutated position/intervals. However, for those lines containing more than two 720 

mutated alleles, this method will not uncover separate alleles. 721 

722 

Identification of Mutated Alleles by MassARRAY. 723 

We used MassARRAY technology to genotype known variants for multiple loci 724 

in large populations. An introduction to MassARRAY, laboratory protocol and 725 

analysis is available at http://agenabio.com/products/massarray-system. Based on the 726 

conventional MassARRAY process, we applied a sequential primer combination 727 

strategy (Supplemental Figures 7 and 8) to detect if given nucleotides are altered, 728 

resulting in an opportunity to infer the likely mutants by integrating all the sequential 729 

outcomes. All the experiments in the present study were performed by Agena 730 

Bioscience in Beijing. Based on the design of a primer covering the predicted 731 

nuclease cleavage region (3 to 6 bp upstream of the NGG PAM sequence), this 732 

method is preferable to the determination of whether individuals of interest were 733 

mutated at given genes, or to the identification of known variants at the T1 or later 734 

generations in a large number of individuals. A full comparison of the advantages and 735 

disadvantages of Sanger sequencing, the MassARRAY method, and 736 

Capture-sequencing are described in Supplemental Table 2. 737 

738 

Identification of Mutated alleles by Capture-Sequencing. 739 

Targeted capture was realized by GenoPlexs technology, which captures multiple 740 

target regions using a set of primer pairs and a single polymerase chain reaction. All 741 

the capture primers were designed by the MOLBREEDING company (in 742 

Shijiazhuang, Hebei). After removing genes with difficulties in primer design and 743 

primers with low efficiency or non-specificity, we retained a total of 106 genes with 744 

113 primer pairs (Supplemental Data Set 3) for further analysis. Deep pair-end (PE) 745 

http://agenabio.com/products/massarray-system
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sequencing (> 500X) on the captured products was performed on an Illumina HiSeq 746 

3000. All reads were trimmed by Trimmomatic (Bolger et al., 2014) with the 747 

following parameters: LEADING:5 TRAILING:5 SLIDINGWINDOW:3:20 748 

MINLEN:50, and only clean PE reads were used in the next analysis. 749 

As all the T0 individuals had been assigned to corresponding targets, lines with 750 

different targets can be mixed in capture-sequencing to reduce library construction 751 

cost. By applying modeling with 3 wild-type line repeats, and varying numbers (5~50) 752 

of mixed individuals, we found a mix of 20~25 lines would be best, with a 0.3% ratio 753 

of background mutant error, presumably because of aerosol contamination and PCR 754 

or sequencing errors. 755 

The CRISPResso2 software (Clement et al., 2019) was applied for the 756 

identification of mutated alleles and estimation of their frequencies. Only the 757 

mutations that overlapped with the 20 bp-window before the NGG PAM were 758 

considered unless the subsequent analysis detected likely alleles caused by 759 

homology-directed repair, in which case flanking variants were also considered. The 760 

abridged sequences within the 20 bp window were merged when identical. The alleles 761 

supported by less than 3 reads and those present in wild samples (including 3 762 

technical repeats) were discarded in further analysis, and allele-specific frequencies 763 

were re-estimated when there was more than one allele. A variant-calling pipeline was 764 

also integrated in allele identification: the clean PE reads were first mapped to 765 

pseudo-genome (derived from replacing specific variants to B73 genome) by 766 

bwa-mem (Li, 2013b), followed by SNP and InDel calling using the mpileup 767 

command from samtools (Li et al., 2009) at all target regions. 768 

    To avoid assigning identical mutants to different alleles as a result of ambiguous 769 

alignments, entire mutated sequences were used to determine whether the alleles 770 

called were consistent between different methods. All the different alignments from 771 

the identical alleles were assumed to be the one with overlap (or close) to the 772 

predicted nuclease cleavage site, as CRISPResso2 (Clement et al., 2019) suggested. 773 

774 

Testing the Predictability of Edited Outcomes. 775 
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All of the alleles with precise variant sequences from both SSP and DSP pools 776 

and both Sanger and Capture-sequencing methods were merged as two datasets, one 777 

containing all of the mutants occurring at individual sgRNA, the other containing 778 

large fragment mutants (deletion, insertion, and reversion) between pair sgRNAs. The 779 

mutant type (DEL, INS, or SNP), position (relative to predicted nuclease cleavage 780 

site), and size (for DEL and INS) were considered to be characteristic of a variant, 781 

while the 20 bp sgRNA nucleotides and the PAM sequences, as well as the target 782 

gene’s expression quantification (data from Chen et al., 2014), number of tissues with 783 

expression of FPKM > 0.5 (fragments per kilobase of exon model per million reads 784 

mapped), expression variability along developmental period (measured by coefficient 785 

of variation) were all regarded as predictive variables (Supplemental Figure 10A). 786 

The Random Forest algorithm, which is nonparametric, interpretable, and compatible 787 

with many types of data with high prediction accuracy, was applied in prediction tests 788 

from sgRNA sequences and target expression variables. The out-of-bag (OOB) error 789 

and mean of squared residuals were used to evaluate the predictability for 790 

classification (mutant type) and the regression variables (mutant position and size), 791 

respectively. The Gini decreases (MeanDecreaseGini) and node purity increase 792 

(IncNodePurity) values for each variable over all trees were used to evaluate the 793 

variable importance for classification (mutant type) and the regression variables 794 

(mutant position and size), respectively. 795 

The prediction algorithm FORECasT (favored outcomes of repair events at Cas9 796 

targets) (Allen et al., 2019), fine-tuned using over 109 mutational outcomes from 797 

over 40,000 human sgRNAs, was used in predicting likely repair outcomes by 798 

flanking DNA sequence. First, the effect of the lengths of flanking sequences (10, 20, 799 

50, 100) on allele prediction was examined. While they generally produced highly 800 

replicable results, a longer flanking region led to a higher number of predicted alleles 801 

with rare frequency. Nevertheless, there was no effect when the flanking region was 802 

greater than 50 bp, as predictions with 50 bp and 100 bp being identical. Thus, all the 803 

results from this set were used in further analysis. The entire mutated sequences 804 

incorporated with variants together with corresponding predicted frequencies were 805 
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used to compare to those real observed alleles. 806 

807 

Discovery of Alleles likely Derived from Homology-Directed Repair (HDR). 808 

Those mutated haplotypes with concurrent InDels at sgRNA region and at least 809 

two SNPs within flanking sequences were considered a possible consequence of HDR. 810 

These mutated sequences were then compared by BLAST to all the de novo 811 

assembled contigs to search for a likely template source. 812 

813 

Identification of Expression Compensation of ZmBAM1d Mutant Lines by 814 

RNA-Sequencing.  815 

ZmBAM1d (Zm00001d028317) was edited with two sgRNAs targeting the first 816 

exon. RNA-sequencing on whole kernel (20 d after pollination, DAP) was performed 817 

for self-crossed T3 edited lines with homozygous fragment deletion and wild type 818 

lines, both with three replicates. Raw reads were first trimmed with Trimmomatic 819 

(Bolger et al., 2014). All remaining paired-end clean reads were mapped to the 820 

B73_V4 reference genome (Jiao et al., 2017) using Tophat2 (Kim et al., 2013). The 821 

Cuffquant and Cuffdiff (Trapnell et al., 2013) commands from Cufflinks (Trapnell et 822 

al., 2010; Roberts et al., 2011) were used to estimate RNA abundance and to test for 823 

differential expression, respectively. The geometric method was used to normalize the 824 

FPKMs across all libraries (Anders and Huber, 2010) during differential expression 825 

analysis. 826 

827 

Off-target Analysis. 828 

A total of 20 T1 blocks with dramatic phenotypic changes were selected to 829 

measure the off-target effect, with at least 4 individual T1 lines from the same T0 830 

background mixed to represent each sample. Genomic DNA was isolated from mature 831 

leaves. DNA extraction and library construction were the same as above, with an 832 

additional hybridization process with the Roche/NimbleGen SeqCap EZ library, 833 

which was specifically designed to capture the exon sequences of maize by 834 

high-density biotinylated long oligonucleotide probes. The BGISEQ-500 platform 835 
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was used in Paired-End 150 bp short-reads sequencing. 836 

All the clean reads trimmed by Trimmomatic (Bolger et al., 2014) were aligned to 837 

the B73_V4 reference genome by BWA-mem (Li, 2013). Variants were called by 838 

GATK HaplotypeCaller (Poplin et al., 2018) with GVCF mode. Only InDels 839 

supported with at least 3 reads for each sample were conserved. Those variants were 840 

discarded in further analyses if they: 1) also were called by wild type lines against the 841 

B73 reference genome (background genetic variations), or 2) “ALT” alleles were 842 

simultaneously present in over 3 lines (common variants). The remaining InDels 843 

located within all potential targets were considered as on-targets. One sample was 844 

abandoned since no likely on-target loci were found. The remaining 19 samples 845 

targeted a total of 25 genes. The Cas-OFFinder (Bae et al., 2014) was used to predict 846 

the corresponding off-target loci, with at most 5 mismatches and NGG PAM. Those 847 

InDels located within these possible off-target regions were regarded as likely 848 

off-targeting events.  849 

850 

Phenotyping. 851 

All the T0 individuals were self-crossed if conditions allowed or back-crossed to 852 

wild lines (KN5585) if self-crossing was not possible due to phenotypes affecting 853 

reproductive structures (which information was all recorded). Generally, at least two 854 

independent events were planted if available. For the DSP gene set, all the T0 plants 855 

were first inspected for mutated alleles (DNA from seedling leaf), and those events 856 

with clearly edited sequences resulting in likely non-functional alleles were planted 857 

with expanded T1 or greater populations. For the SSP gene set, all the T0 events with 858 

seed numbers larger than 10 (including lines that failed target assignment) were 859 

planted for phenotyping and the lines with observed agronomic trait variance were 860 

genotyped. We planted 17 genotyped individuals per cell for phenotyping during the 861 

T1 generation. Wild type controls were planted every 4 to 30 rows based on specific 862 

designs, variation in the number of total events, and space limitations. Phenotypic 863 

differences relative to wild-type and segregating independently within T1 lines that 864 

were from the same T0 event were recorded as heritable phenotypic changes. Multiple 865 
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locations (from northeast temperate to southwest and south tropical zone, including 866 

Gongzhuling city, Jilin province: 43º30´N 124º49´E; Gasa town, Xishuangbanna dai 867 

autonomous prefecture, Yunnan province: 21º57´N 100º45´E; Foluo Town, Sanya City, 868 

Hainan Province: 18º34´N 108º43´E) were used to evaluate the environmental effect 869 

for DSP, however, only the Beijing location (at summer of 2018) was used in the 870 

large-scale measurement of the T1 performance for SSP. 871 

 872 

Genetic Materials Module.  873 

In addition to the general considerations listed above, the examples used in 874 

interpreting genotype-phenotype links are described in detail here. Mutants of 875 

zmtps14.1 were from DSP (two sgRNAs are simultaneously designed), whose 876 

phenotypic change was supported by large fragment deletion F2 populations at Hainan 877 

(south China) (61 mutant lines vs. 173 wild lines; Figure 4B; Supplemental Figure 878 

12B). The zmsbp22 was supported by six independent T1 populations (derived from 879 

DSP, 52 positive/mutant lines vs. 20 negative/wild lines) at Yunan (southwest China) 880 

(Figure 4C; Supplemental Figure 12B), and two mutant alleles from SSP (only one 881 

sgRNA is used) along with considering all the other lines as “control” (10 target gene 882 

mutant lines compared to all the other 470 lines with various mutant genes; 883 

Supplemental Figure 12D) were compared for double confirmation. The example in 884 

the aminotransferase-like gene GRMZM2G331652 was supported by data from both 885 

T1 (62 positive vs. 17 negative lines) and T2 data at two locations (39 mutants vs. 30 886 

wild lines at Hainan; 39 mutants vs. 45 lines at Jilin; Supplemental Figure 13B-D). 887 

For the zmbam1d, self-crossed T3 lines with large fragment deletion (from two 888 

sgRNAs) were used to measure kernel weight (Figure 4DE) at Yunnan (five mutants 889 

vs. 13 wild ears) and Wuhan (central China; 39 mutants vs. 10 wild ears). Detailed 890 

phenotypes for these examples are provided in Supplemental Data Set 4. 891 

For those “unexpected” mutant lines shown in Supplemental Figure 14, at least 892 

two individuals showing mutant phenotypes and separated within T1 populations 893 

(from same T0), or the whole T1 population displayed significant differences relative 894 

to wild types are considered as heritable (but not environmental) phenotypic changes. 895 
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For T1 or advanced populations, we did not evaluate for the presence of a transgene, 896 

but instead, we detect the target alleles for all the phenotyped lines using mature 897 

leaves as source for DNA.  898 

The vectors used in present study can be requested from Jieting Xu 899 

(xjt@wimibio.com). All the information of the mutants are available at the official 900 

website of WIMI Biotechnology Co., Ltd. (http://www.wimibio.com/tbtk.asp), which 901 

will be continuously updated and the seeds can be requested with the standard MTA 902 

(http://www.wimibio.com/e.doc) and specified charge. 903 

904 

Software/Custom Scripts. 905 

The CRISPR-Local for high-throughput designing sgRNAs for non-reference 906 

lines can be obtained from:  https://github.com/sunjiamin0824/CRISPR-Local.git. 907 

And the script to obtain reads that matched both the barcodes and pooled sgRNAs 908 

from trimmed fastq files can be available at: 909 

https://github.com/heroalone/crispr_pool.git. 910 

911 

Accession Numbers. 912 

Raw whole-genome-sequencing and RNA-sequencing reads of the transformation 913 

receptor (KN5585), and raw reads of capture-based sequencing (TRC-seq) for 60 914 

batches have been deposited in the Genome Sequence Archive (Wang et al., 2017b) of 915 

BIG Data Center (BIG Data Center Members, 2017) under the following accession 916 

numbers: CRA001955 (https://bigd.big.ac.cn/gsa/browse/CRA001955). Individual 917 

fastq files can be downloaded under the “Run Accession” links. 918 

Assembled contigs can be downloaded at http://maizego.org/Resources.html 919 

(“High-throughput CRISPR/Cas9 gene editing” section). 920 

921 

922 

mailto:xjt@wimibio.com
http://www.wimibio.com/tbtk.asp?Action=Show
https://github.com/sunjiamin0824/CRISPR-Local.git
https://github.com/heroalone/crispr_pool.git
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TABLES 923 

Table 1. Statistics of the genome-editing experiments 924 

Pool Batch sgRNAs 
Vector 

No. (Vn) a
V’n in 

plasmid b
T0 No. 

Assigned 

T0 (Pn)c

V’n in T0 

plants d
Genotyped 

lines e
Edited 

lines 

DSP 

DSP1 90 49 48 157 125 38 95 79 

DSP2 78 40 37 342 296 34 263 224 

DSP3 191 100 98 387 379 75 173 146 

DSP 191 104 103 886 800 93 531 449 

SSP 

SSP1 959 959 936 940 860 340 -- -- 

SSP2 1,186 1,186 320 1,374 1,016 257 -- -- 

SSP3 1,186 1,186 1,173 1,156 1,019 466 -- -- 

SSP 1,186 1,186 1,178 3,470 2,895 685 1,290 693 

Total 1,368 1,290 1,281 4,356 3,695 778 -- -- 
a Total vector number (Vn) pooled in the present study. 925 
b Observed vector number (V’n) in plasmid pools. 926 
c T0 individuals successfully assigned to linked targets. 927 
d Vector number covered by those successfully assigned T0 individuals. 928 
e The number genotyped for DSP is indicated by the total T0 lines. The number of T1 lines with phenotypic 929 

change were selected for SSP genotyping (thus it is inappropriate and not used for estimation of general 930 

mutant ratio). 931 

932 

933 
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Figure 1. Pipeline of high-throughput genome editing design.
(A) Candidates selected from QTL fine mapping, GWAS, and comparative genomics. (B) Line-specific sgRNA filtering based on
assembled pseudo-genome of the receptor line KN5585. (C) Different vector construction approaches of double sgRNAs pool
(DSP) and single sgRNA pool (SSP). (D) Measuring the coverage and uniformity during plasmid pool by deep-sequencing. (E-
G) Transformation and assignment of targets to each T0 individual by barcode-based sequencing. (H-J) Identification of mutant
sequences by Sanger sequencing. (K-L) Identification of mutant sequences by Capture-based deep-sequencing. (M) Measuring
phenotypes changes and identification of functional genes.



Figure 2. High coverage and uniformity from plasmid pool to T0 individuals. Plasmid sequencing in quality-
control process (A), results of measuring the coverage and uniformity of sgRNA amount (B). T1: primary plasmid
pool before Agrobacterium transfection, at t0. T2: plasmid pool extracted from the first Agrobacterium colonies. T3:
plasmid pool randomly extracted from 20% of colonies of second Agrobacterium transfections. T4: plasmid pool
specifically taken from 33-50% of fresh, and more vigorous colonies of second Agrobacterium transfection, for
further embryo transformation. t0: the primary plasmid pool before Agrobacterium transfection; t48/t60: 48 h or 60 h
culture on solid medium after Agrobacterium transfection. The sgRNAs are ordered along the x axis based on their
ID number. (C) Ratio of co-infection events in six batches (three SSPs and three DSPs) and total. (D) Correlation of
sgRNA relative amount between plasmid pool (black) and T0 individuals (red). Proportion lines were smoothed. All
sgRNAs along the x-axis were sorted according to their relative proportion in the plasmid pool.



Figure 3. Mutation pattern and predictability of variants generated by genome editing. (A) Allele size and
position distribution based on all individual events. Position-based: distribution along relative position on
sgRNA; event-based: distribution of individual events. The position along sgRNA (x-axis) is relative to predicted
nuclease cleavage site, while +1 and –1 indicate the nucleotides 3-4 bp upstream of the PAM. INS: insertion;
DEL: deletion. (B) Distribution of mutant outcome sizes (in bp) and diversity for different mutant classes. (C)
Ratio of real observed alleles that are being predicted by only flanking sequences, classified by mutant types
(DEL, INS, SNP). ALL corresponds to all mutant types added. (D) Algorithm-mediated prediction of mutant
outcomes based on flanking sequences. The set of alleles observed in real cases display significantly higher
predicted frequency compared to all predicted outcomes (background).



Figure 4. Applied targeted mutagenesis for the validation of gene function. (A) Two large-effect flowering time QTLs for
days to tasseling (DTT) identified by GWAS and targeted by genome editing. Corresponding results for days to anthesis (DTA)
and days to silking (DTS) are shown in Supplemental Figure 12A. Both QTL intervals include well-known causal genes (shown
in grey), while novel genes identified in this study are shown in red. Significant flowering time differences are seen for
Zmtps14.1 (B) and Zmsbp22 (C). Phenotypic values from wild type lines are indicated in black, and all colors show mutant lines.
Trait values for Zmtps14.1 and Zmsbp22 were measured as Jilin (northeast China, temperate climate) and Hainan (south China,
tropical climate), respectively. Corresponding edited alleles along the x-axis are detailed in Supplemental Figure 12B-C. (D-F)
Gene redundancy from homologous genes can skew the results of a targeted gene. (D) Two sgRNAs were designed to target
the first exon of ZmBAM1d and caused a large deletion between sgRNAs. Both sgRNAs were specific for ZmBAM1d without
affecting homologous genes. (E) Selfing T3 edited lines carrying the deletion were used to measure kernel weight (HKW); only a
marginal phenotypic difference was seen at both Yunan (year 2018, labeled as 18YN) and Wuhan (year 2019, labeled as
19WH). Over-expression lines have significantly higher HKW, and near-isogenic lines show significant differences in HKW
(Yang et al., 2019), leading to the expectation that Zmbam1d edited lines would demonstrate smaller HKW. (F) Expression of
Zmbam1d and its homologous genes across three edited lines and corresponding wild type segregants. Two of the three close
homologues show higher expression that might compensate for the loss of Zmbam1d.
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