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ABSTRACT

Maize is one of the most important crops in the world. However, few agronomically
important maize genes have been cloned and used for trait improvement, due to its
complex genome and genetic architecture. Here we integrated multiplexed
CRISPR/Cas9-based high-throughput targeted mutagenesis with genetic mapping and
genomic approaches to successfully target 743 candidate genes corresponding to traits
relevant for agronomy and nutrition. After low-cost barcode-based deep sequencing,
412 edited sequences covering 118 genes were precisely identified from individuals
showing clear phenotypic changes. The profiles of the associated gene editing events
were similar to those identified in human cell lines, and consequently are predictable
using an existing algorithm originally designed for human studies. We observed
unexpected but frequent homology-directed repair through endogenous templates that
was likely caused by spatial contact between distinct chromosomes. Based on the
characterization and interpretation of gene function from several examples, we
demonstrate that the integration of forward- and reverse-genetics via a targeted
mutagenesis library promises rapid validation of important agronomic genes for crops
with complex genomes. Beyond specific findings, this study also guides further

optimization of high-throughput CRISPR experiments in plants.
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Introduction

Global crop production will need to double by 2050 in order to feed the
increasing world population. As one of the most important crops for food, feed, and
fuel in agriculture, raising the yield of maize (Zea mays) will need to contribute to
meeting our needs for food production beyond current projections (Ray et al, 2013).
Most maize yield traits are quantitative, and cloning the causal genes and dissecting
the underlying mechanisms affecting these traits are both key to continuous genetic
improvement.

As a classical model system for genetic studies, hundreds of quantitative trait loci
(QTL) for many traits have already been mapped in maize (Xiao et al., 2017; Liu et
al., 2019). Nonetheless, the number of causal genes confirmed within these QTL
regions is relatively small compared to rice and Arabidopsis. Large-scale efforts
aimed at genome-wide mutagenesis based on the random insertion of various
elements in the genome (transposon, transfer DNA (T-DNA) or the Tosl7
retrotransposon) have been a key resource employed widely in rice and Arabidopsis
over the last two decades (Jeon et al, 2000; Alonso et al, 2003; Wang et al, 2013).
Although transposon tagging and mutagenesis by the Activator (4c) and Dissociation
(Ds) transposable elements (Cowperthwaite et al, 2002; Vollbrecht et al, 2010) and
UniformMu (May et al, 2003; McCarty et al, 2005; Hunter et al., 2007), or chemical
mutagens such as ethyl-methanesulfonate (EMS) (Lu et al, 2018) have all been used
in maize, the exact identification of causal gene(s) among the tens or even hundreds
of loci within a line that might have been mutated but are not responsible for the
phenotype under question is still costly due to the complexity of the maize genome.
The laborious and low-throughput nature of classical forward genetics approaches that
rely on the segregation of the causal mutation(s) in a mapping population hinders the
successful and rapid application of these resources in many plant species.

The RNA-guided CRISPR/Cas9 (Clustered Regularly Interspaced Short
Palindromic Repeats and CRISPR-Associated protein 9) system represents a massive

breakthrough both in terms simplicity and efficiency (Cong et al, 2013; Mali et al,



87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115

2013), and has been extensively applied in plant genome-editing since 2013 (Li et al,
2013a; Nekrasov et al, 2013; Shan et al, 2013). Although more difficult to apply to
plant species than to human cell lines (Yin et al, 2017), CRISPR/Cas9-based genome
editing has recently been successfully applied to large-scale mutagenesis efforts in
rice (Lu et al, 2017; Meng et al., 2017) and soybean (Bai et al., 2019). Due to its
convenience, low-cost, high specificity and high-throughput scalability,
CRISPR/Cas9-based editing therefore holds great promise for functional crop
genomics. However, a proof-of concept study that demonstrates the feasibility and
efficiency of such an approach is so far lacking for complex genomes such as maize.
In the present study, we report the development of a CRISPR/Cas9-based editing
platform adapted to high-throughput gene targeting in maize, and its application in
functional gene identification by integrating over one thousand candidate genes
derived from genetic mapping and comparative genomic analysis (Figure 1). Through
the use of state-of-the-art sequencing technologies and validation by Sanger
sequencing, we established low-cost optimized and quality-controlled pipelines for
each step, from the design of guide RNAs (sgRNAs) to the identification of targeted
genes and edited sequences. Our study also expands on two key aspects that are
critical during large-scale plant genome editing research. First, general properties and
insights for outcomes of plant genome editing were obtained and could serve as a
reference for other crops. Second, knowledge-driven candidate genes were selected
and a large number of mutants were screened using lines from T, or follow-up
generations. Our results indicate that the integration of high-throughput gene editing
and forward-genetic approaches has great potential in rapid functional gene cloning

and validation.

RESULTS
Establishment of CRISPR/Cas9-Based Batch Targeting System

Based on existing and tested vectors for maize (Li et al, 2017) and rice (Lu et al,

2017) transformation, three vectors were optimized to allow one-step construction via
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overlapping PCR combining homologous recombination or T4 DNA ligase ligation
(Supplemental Figure 1; see Methods). These vectors are suitable for pooled
CRISPR/Cas9-based knockout (pCKO), for individual sgRNAs or paired sgRNAs in
each plasmid.

For all three vector types (Supplemental Figure 1), we used the maize inbred line
KN5585 for Agrobacterium-mediated transformation of immature embryos, with an
average 14% transformation efficiency (Supplemental Table 1). To explore the gene
targeting efficiency of our constructs, we designed four sgRNAs within a single
plasmid to target the ZmPLAI (PHOSPHOLIPASE A; Liu et al, 2017a), resulting in a
mutation rate ranging from 79% (23/29) to 83% (24/29) in the T, generation
(Supplemental Figure 2). This high targeting frequency is consistent with a previous
study (51%-91%; Li et al, 2017) and may be a consequence of using a maize
endogenous RNA polymerase III promoter to drive the expression of the guide RNA
(Qi et al., 2018). Even though the relatively low transformation efficiency in maize
presents a massive challenge, the high targeting efficiencies of these vectors rendered

subsequent experiments possible.

Choice of Candidate Genes for Batch Editing

A total of 1,244 candidate genes were collected for pooled knockout experiments
and functional validation. The candidates were divided into two sets. Set #1 included
98 genes that had been either 1) fine-mapped to regions with one to a few candidate
genes by linkage mapping, or 2) derived from comparative genomics, as each
individual gene showed a high probability of being associated with various traits. Set
#2 was made up of 1,181 genes, mainly from 70 mapped QTL regions corresponding
to 27 agronomically-relevant traits, and including 35 genes that overlapped with those
from Set #1 (see Methods; Supplemental Figure 3). These candidate genes served as a
springboard for building the batch editing pipeline. This study also intended to
establish a preliminary targeted mutant library for maize functional genomic studies.

Since the KN5585 line originates from the tropics, its genome differs
significantly from the B73 reference genome. We therefore established a new

5
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pseudo-reference by deep sequencing of genomic DNA (to ~60x coverage) and RNA
samples collected from seven diverse tissues. Assembled contigs were used for
genotype-specific sgRNA design (Figure 1B; see Methods). sgRNAs obtained by this
method were confirmed by Sanger sequencing on all Set #1 candidates, ensuring high
reliability of sgRNA design. Double sgRNAs in one vector were designed primarily
for Set #1 genes (double-sgRNAs pool, DSP), with the expectation that this would
increase the probability of obtaining knock-out lines. Individual sgRNAs per vector
were used for Set #2 genes (single-sgRNA pool, SSP). These two sets were used
separately, leading to a total of 1,290 vectors consisting of 1,368 sgRNAs for 1,244

genes.

High Uniformity and Coverage of sgRNAs During Pooled Construction and
Transformation

Coverage and uniformity are two key factors during pooled transformations, so
that all cloned vectors are represented within pools. Since only the spacer sequences
(e.g., 20 bp) of sgRNAs differed between vectors, primers from flanking sequences
were used to amplify these sequences for next-generation sequencing (NGS), in order
to evaluate the relative presence of different sgRNAs. No significant differences were
observed between the two pooling strategies, that is either pooling after construction
for the DSP gene set (mixing the vectors separately), or pooling after ligation for the
SSP gene set (mixing ligation reagents first, followed by pooled construction). Indeed,
both had acceptable uniformity and coverage for sgRNA distribution. Nevertheless,
pooling after ligation was easier to implement. The uniformity and high coverage for
sgRNA distribution was also stable following different culture periods, and after
Agrobacterium transfection (Figure 2A, 2B).

The coverage of pooled sgRNAs was high, 98% on average. Only a few sgRNAs
could not be detected at any given stage. This may be caused by sequencing bias,
since undetected sequences usually could be found at other stages. For example, 52 of

the 1,181 gRNAs from SSP were not detected before the transformation, but were
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subsequently identified in Ty plants. Together, these results implied that coverage was

uniform and sufficient to construct a mutant library.

A Barcode-Based NGS Approach Reveals the Uniformity and Coverage of
sgRNAs in T, plants

Six CRISPR libraries of sgRNAs were separately transformed into immature
embryos via co-cultivation with Agrobacterium tumefaciens (Agrobacterium), and a
total of 4,356 T, seedlings resistant to the herbicide glyphosate were transplanted
(Table 1). DNA from leaves of each Ty seedling was sampled at least in duplicate, and
sgRNA-specific PCR followed by barcode-based deep sequencing was performed to
identify the corresponding target(s) within each plant (Figure 1D; Supplemental
Figure 4). Care was taken to ensure high reliability of target determination
(Supplemental Figure 5; see Methods). In total, 3,695 (or 85%) of Ty plants were
reliably assigned to 778 vectors corresponding to 743 target genes and used for
further analysis, while unconfirmed plants were verified in additional experiments.
Most positive Ty plants (2,704, or 73.2%) carried a single gRNA, while double and
triple co-infections were found in 21.5% and 3.8% of cases (Figure 2C), respectively.

The number of T, plants isolated for a given sgRNA was positively correlated
(P<2.0E-5) with the amount of each sgRNA in the plasmid pool, although differences
were slightly magnified in the transgenic lines (Figure 2D), implying a balanced
vector pool is necessary to obtain a balanced maize mutant library. On average, 4.3 Ty
individuals were obtained for each target sgRNA (Table 1). We used a simulation
analysis to model that 4 to 10 T plants (relative to gene/vector number) were required
to cover at least 98% of the chosen candidate genes (see Methods). Interestingly, our
simulation analysis suggested that the number of mixed vectors in each batch should
be over 50 in order to avoid large deviations from the expected coverage

(Supplemental Figure 6).

Efficient Identification of Sequence Variation in Edited Plants.
Identification of induced sequence variants with high sensitivity and accuracy

7
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remains a challenge for high-throughput experiments. Using Sanger sequencing, we
found 449 (out of a total of 531, or ~85%) Ty individuals from the DSP with
mutations at target loci, and 118 (26%) had large deletions between two sgRNAs.
Sanger sequencing was inadequate for accurate variant identification, especially for
individuals with multiple variants, and was also time-consuming and labor-intensive
when many lines and/or genes were analyzed.

We therefore developed an improved method based on the MassARRAY® System,
which is usually used for genotyping known variants (Ellis and Ong, 2017), with
sequential primer combinations to infer the as yet unknown mutated alleles. This
method was particularly suitable for efficient medium-scale (20 to 50) gene
identifications (Supplemental Figure 7-8; Supplemental Table 2) and was used in a
single experiment to successfully identify 24 lines with exact mutations among 30
randomly selected T, individuals from the SSP experiments. These results were
consistent with Sanger sequencing. The observed mutation rate in the SSP was
estimated to be around 80% (24 of 30), slightly lower than that of DSP (83%~85%).

In order to scale up the method to allow for high-resolution detection of induced
mutations to many genes, and to render the method capable of estimating
allele-specific mutation efficiency, we turned to target-region capture based
sequencing (TRC-seq, see Methods). We designed 113 primers for 106 genes to
capture regions flanking sgRNA target sites from T, lines with obvious morphological
changes. Since we had already identified their respective individual target genes
during the Ty generation, 20-25 individuals with different targets could be combined
into a batch for TRC-seq without compromising on sensitivity. A total of 1,208 unique
T, lines from 60 pools were assayed by this method, of which 656 were also
characterized by Sanger sequencing. We used the improved biologically-informed
alignment algorithm CRISPResso2 (Clement et al., 2019) for deconvolution of edited
alleles from deep sequencing data. Mutated alleles identified by TRC-seq included all
the homozygous mutations that we had identified by Sanger sequencing, indicating its
high sensitivity.

While a median of 81% of edited genes identified by TRC-seq was consistent

8
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with previous target assignment, the remaining 19% of mutations, from 19 genes,
were newly identified, compared with previously assigned individuals/targets. These
results demonstrated 1) the highly reliable but conservative target assignment, and 2)
the superior efficacy of the TRC-seq method in mutation identification. Even though
CRISPResso2 has multiple advantages in the identification of mutant alleles, it also
had a propensity for false-negative discovery, since a large number (130 of 292, or
39%) of lines, covering a total of 32 genes, were identified as homologous alleles
exclusively by the Sanger method. To explore the contribution of rigorous filtering
and alignment procedures, a standard variant calling pipeline followed by global
mapping of short reads to the pseudo-genome was additionally integrated in order to
detect mutant alleles (see Methods). With an acceptable reliability of only three lines
(out of 166, ~2%) differing from the overlapped homologs called by Sanger method,
this method remedied nearly 40% (51 of 130) of the CRISPResso2 false negatives.
However, 27% (79 of 292) false-negative discoveries (compared to Sanger
sequencing) still remained, possibly caused by the biased mixing of individuals and

asymmetrical capture during deep sequencing.

Pattern and Predictability of Mutations Generated by Editing

Considering the complementary ways in which our different methods addressed
mosaicism (described below in detail), the mutations identified from SSP and DSP
pools using Sanger sequencing and TRC-seq were merged for further analysis. A total
of 326 unique mutant sequences in 109 genes corresponding to 135 individual
sgRNAs were collected. An additional 86 non-redundant structural variants between
paired sgRNAs of 53 genes were also identified (Supplemental Data Set 1), providing
a representative resource to understand the genome-wide distribution of editing in
maize.

For the individual target mutated sequences, most (60%) were deletions (DEL) of
1 bp to 65 bp, with a median of 3 bp. Breakpoints were enriched within a 4 bp
window 3 to 6 bp upstream of the NGG PAM (Protospacer Adjacent Motif ) sequence.
Insertion-type (INS) mutants accounted for nearly one-third (32.5%), with 90% being

9
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single bp insertions and usually occurring within the predicted nuclease cleavage site
(3 to 4 nucleotides upstream of the PAM; Figure 3A). Most of the remaining
mutations (8%) were single nucleotide polymorphisms (SNPs), transversions being
twice as frequent as transitions. Individual sgRNAs sometimes produced large
deletions or insertions. In contrast, when using paired sgRNAs, we often observed
structural variants between the target sites, with deletions being the most frequent
(91%) (Supplemental Figure 9A). For genes targeted with two sgRNAs, whether a
large deletion between the two sgRNAs or a small deletion at each individually
sgRNA target site was induced could not be predicted (Supplemental Figure 9B),
although the distance between paired sgRNAs was found to slightly affect the
outcomes (Supplemental Figure 9C, 9D).

Recent studies suggest high predictability of genome editing in human cell lines
(Shou et al., 2018; Chakrabarti et al., 2019), and an algorithm to predict mutational
outcomes using only flanking DNA sequences has been described (Allen et al., 2019).
Interestingly, even though the algorithm was refined using human cell line data, it was
able to predict the outcome of 72% of the observed alleles in the present study, and
this increased to 85% for DEL (Figure 3C). Furthermore, the algorithm estimated
allele frequencies for true observed variants much better than background (P=2.3E-16;
Figure 3D), suggesting that primary alleles were readily captured. Despite the fact that
many of the mutants not predicted by the algorithm were large (for example, 24% of
such non-predicted DEL were longer than 10 bp) and the presence of
cell-line-dependent bias (Allen et al., 2019), the predictions developed from human
data are therefore largely transferable to plants. Even though plants have unique
mechanisms for repair of double-strand breaks (Spampinato, 2017) and somewhat
different mutation signatures are observed between animals and plants (Bortesi et al.,
2016), our study provides the justification to apply animal guide sgRNA design
guidelines for precise editing in plants.

We next used a tree-based Random Forest algorithm to test the effect of sgRNA
sequences in predicting the outcomes produced in the current study. Given the limited
data size, the general accuracy on classifying the mutant types (INS, DEL or SNP)

10
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from sgRNA sequences was low (Supplemental Figure 10). To ask what additional
factors beyond sgRNAs and their flanking DNA sequences might affect editing
outcomes, we also considered the expression patterns of the candidate genes as an
additional explanatory variable (Supplemental Figure 10A). Interestingly, the
expression variability of target genes along diverse tissues affected the size of
insertion or deletion (InDels) events and the position of DELs, as higher expression
variability was associated with smaller mutations that were more proximal to the
predicted nuclease cleavage site (Supplemental Figure 10D, 10G). SNPs in target
genes with higher expression in the shoot apical meristem also appeared to be more
proximal to the predicted nuclease cleavage region (Supplemental Figure 10F, 10G).
Previous studies also found that chromatin states and active transcription affect Cas9
binding (Verkuijl and Rots, 2019) and editing mutant profiles (Chakrabarti et al.,
2019), and thus further exploration on how expression changes influence mutational

outcomes could lead to improved predictability.

Homology-Directed Repair with Endogenous Templates as a Means of Mutant
Generation

Programmable nucleases introduce DNA double-strand breaks at user-defined
target sites and thus engage the inherent repair systems such as error-prone
non-homologous end joining (NHEJ) or, in the presence of a DNA template,
homology-directed repair (HDR). Among the mutants identified from TRC-seq of
SSP T, lines, we identified two clear cases of HDR that used inter-chromosomal
endogenous templates (Supplemental Figure 11). Given the total of 154 mutated
InDels covering 63 genes, these two cases accounted for 1.3% and 3.2% of total
mutations and genes, respectively, suggesting a much higher frequency than previous
reports in plants (Puchta, 1999; Ayar et al., 2013). Evidence for the hypothesis that
NHE]J repair occurred sequentially after initial cleavage, resulting in HDR, was also
observed (Supplemental Figure 11B). The estimated mutant frequencies caused by
HDR were 1% and 20% for these two genes, respectively. These ratios were
comparable to studies that improved HDR efficiency using exogenous templates in
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plants (Wang et al., 2017a; Gil-Humanes et al., 2017; Li et al., 2019a). An improved
genome assembly of the maize transformation recipient line used here (KN5585) will
improve the detection of more endogenous HDR events.

The targets and corresponding templates for the two documented cases of HDR
were homologues with highly correlated expression patterns (Supplemental Figure
11C). Interestingly, for one case, the chromatin bearing the homologous template and
the target gene were shown to come in close proximity to each other, although they
are located on different chromosomes (Supplemental Figure 11C, 11D; Peng et al,
2019), suggesting that higher-order chromatin structure contributes to the high
frequency of endogenous HDR. This finding supports the hypothesis that low
frequency of precise gene replacement through HDR in plants might be due to an
inefficient targeting of exogenous templates, as opposed to a difference in endogenous
repair mechanisms compared to mammals (Schuermann et al.,, 2005;
Lieberman-Lazarovich and Levy, 2011; Fauser et al., 2012). Further study of these
endogenous HDR events might provide clues towards optimizing HDR efficiency, and

thus improving the efficiency of precise introduction of specific variants.

Rare Off-Target vs. Common Mosaic Mutations

Consistent with previous studies that found rare off-target events in plants when
using CRISPR/Cas9 (Tang et al., 2018; Li et al., 2019), we identified only 10 InDels
among a total of 39,328 potential off-target genes via Whole-Exome-Sequencing
(WES) in 19 mixed T,; blocks covering 25 mutated genes (see Methods). Thus
off-target effects will likely have only a small effect on plant editing, at least under
our conditions. By contrast, mosaic mutations were observed widely in the present
study. Evidence from SSP T, lines indicated that: 1) most heterozygous alleles called
from Sanger sequencing were bi-allelic and only 1.4% (2 of 148) included one
wild-type copy; 2) only 46% of variants from capture sequencing (TRC-seq) were
matched to one of the heterozygous alleles detected by Sanger sequencing, while the
remaining 54% were different; 3) different homozygous mutations were observed
among T individuals from the same self-crossed T, ear and 4) base-calls with Sanger

12
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sequencing of 41 lines were completely impossible to interpret, most likely a
co-existence of more than two alleles at a given locus. Such chimeras can impair
mutant characterization and inference of any genotype-phenotype links. For example,
even though a large deletion was identified for one flowering time candidate in a T
event, no mutation was found in a large number of derived T lines. This finding calls
for higher scrutiny not only for mutation identification but also for further validation

of genotype-phenotype association.

Knowledge-Driven Gene Editing Accelerates the Exploration of Gene Function

The edited lines provided reliable evidence in causal gene validations for selected
candidates that were previously fine-mapped to individual genes (DSP set). For
example, they provided -confirmation for the validation of ZmDXS2
(I-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE 2; GRMZM2G493395) in
affecting kernel color and carotenoid contents (Fang et al., 2020). Although lines
carrying only 32% of the mutated genes were planted, some phenotypes were found to
be consistent with predictions from forward genetics or comparative genomics, even
though a large fraction of candidates (~40%) from the SSP set were not mutated. We
planted 639 T, families from 445 SSP T, events covering 246 genes and observed 119
T, families representing 107 genes with significant morphological phenotypes.
Importantly, we observed 13 genes showing altered phenotypes that were consistent
with their QTL mapping predictions. Each QTL interval covers multiple genes, only
one or very few of which might be expected to be responsible for the underlying
phenotypes. We may have therefore missed the causal locus when designing our gene
editing constructs.

In addition, the mutants we generated are also valuable to identify new gene
functions within classical QTL intervals. Taking flowering time as an example, the
maize anti-florigen gene ZEA CENTRORADIALIS 8 (ZCNS) is usually assumed to be
the causal locus behind the largest effect QTL on chromosome 8 that was mapped in
various maize populations (Buckler et al., 2009; Coles et al., 2010; Liu et al., 2016;
Guo et al., 2018), given this gene’s role in flowering regulation (Meng et al., 2011;
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Lazakis et al., 2011). However, this QTL region covers 1 Mbp (Figure 4A) and
suggests that variation in genes outside of ZCN§ might participate in the underlying
QTL. |Interestingly, mutants in ZmTPSI14.1 (TREHALOSE-6-PHOSPHATE
SYNTHASE 1, GRMZM2G068943, ~100 kbp downstream of ZCNS) also displayed a
significant delay in flowering time (Figure 4B; Supplemental Figure 12A, 12B),
consistent with a previously study in Arabidopsis (Wahl et al., 2013). Another
flowering time QTL on chromosome 3 was also associated with ear height (Figure 4A;
Supplemental Figure 12A), and while the MADS-box transcription factor ZmMADS69
(GRMZM2G171650) located within this region was recently validated as a gene
underlying flowering time regulation in maize (Liang et al., 2019), we obtained many
mutated alleles of SQUAMOSA promoter BINDING PROTEIN gene ZmSBP22
(GRMZM5G878561, ~370 kbp upstream of ZmMADS69) in this study, and all showed
late flowering (Figure 4C; Supplemental Figure 12C, 12D). These findings raise the
possibility that multiple causal genes might map to the same QTL regions, and might
contribute, alone or in combination, to the underlying phenotype, which is not easily
addressed by routine genetic mapping analyses.

A loss of function allele induced by CRISPR-mediated gene editing may have
different phenotypes from a subtle difference in protein function resulting from the
underlying variation between naturally occurring alleles at a QTL. For example,
GRMZM2G331652 (a gene encoding an aminotransferase-like protein) was located
within a plant height QTL interval, but falls outside of a small effect flowering QTL
interval on chromosome 1 (Supplemental Figure 13A). Interestingly, in addition to the
expected plant height changes, mutants in this candidate were also characterized by
flowering time differences and varied responses to day-length (Supplemental Figure
13B-D). Finally, as was our hope, we obtained lines with a large number of
unexpected phenotypic changes, including traits not previously studied (Supplemental
Figure 14) affecting plant size and morphology, reproductive structures or
susceptibility to disease, demonstrating that our library of edited genes provides an
unprecedented resource for further detailed functional genomics.

The mutant library may also refute standing hypotheses of gene function, and
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together would promote a new perspective on underlying regulatory mechanisms. An
interesting case was for the BARELY ANY MERISTEM 1d gene ZmBAMId
(GRMZM2G043584), which was previously found to affect kernel weight and
validated by results from a NIL population and over-expression (Yang et al., 2019).
However, our CRISPR/Cas9 edited lines had no obvious phenotypic differences
compared to the parental line (Figure 4D, 4E). RNA-sequencing revealed the
up-regulation of two BAM1d homologues as potential cause for the lack of visible
phenotypes (Figure 4F), suggesting that a compensatory mechanism might be the
reason for the lack of trait changes in the genome-edited lines. While gene
redundancy is widely recognized as an obstacle to identifying gene function in plants,

gene editing can be multiplexed to address this issue.

DISCUSSION

The CRISPR/Cas9 system is a simple, effective method for generating targeted
mutations, and its capacity for high-throughput has fueled its popularity in large-scale
mutagenesis libraries, first in animals (Shalem et al., 2015; Peng et al., 2015) and now
in plant systems (Lu et al, 2017; Meng et al., 2017; Bai et al., 2019). These benefits
make the CRISPR-based system far outweigh other classical plant mutant libraries
generated by transposon insertion of chemical mutagens. Here, we provide a practical
workflow for high-throughput genome editing in maize, with optimized bioinformatic
analysis, that should circumvent problems associated with its large and complex
genome and difficulty of transformation (Figure 1). We anticipate that our approach is
also applicable to other species. In contrast to human cell line screening, large-scale
exploration of mutants and corresponding phenotypic analysis in plants is challenging,
mainly due to the lower associated throughput, labor-intensive phenotyping and
environmental impact during phenotyping in the field. This is especially true when
large field trials are needed to detect small quantitative changes, and when different
environmental conditions (stress, nutrition) may reveal additional phenotypes.

However, this will likely be addressed in the future via innovations in high-throughput
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phenotyping methods. As technologies for genome editing rapidly advance, emerging
toolkits will be integrated into such future experiments. While recent studies offer
high transformation efficiency for a wide variety of maize genotypes (Lowe et al.,
2016; Lowe et al., 2018; Jones et al., 2019), new methods in sgRNA delivery by viral
vectors (Wang et al., 2017a) or by clay nanosheets (Mitter et al., 2017) that avoid the
time-consuming tissue culture may be critical in accelerating functional genomics.

Here, we explored the CRISPR-Cas mutational profiles of a representative set of
genes. Interestingly, the patterns of repair outcomes in our study were in line with
those seen in human cell lines (Allen et al., 2019). Genome editing events in the form
of deletions and insertions largely dominated over SNPs, and the size of deletions
varied more widely than that of insertions. This similarity allowed a good
predictability of mutational outcomes in maize using an algorithm refined for human
cell lines using only local sequences as input. Our findings suggest that the
mechanisms of both Cas9-induced double-strand break and subsequent DNA repair
are highly conserved between humans and plants. The prediction algorithm can be
thus be incorporated with sgRNA design and variant effect prediction to help
prioritize sgRNAs based on expected mutant alleles and/or expected effect (such as
frameshift or missense) on the target gene. This is important, since the precise
introduction of given variants through repair of exogenous templates is still difficult,
and a pre-screening step of all possible sgRNAs for accurate prediction followed by
screening of a smaller pool of mutated descendants is more tractable. Furthermore, the
present study provides evidence that the chromatin state (open chromatin being
associated with higher expression and accessibility) at a targeted gene may have an
impact on editing efficiency and on mutational outcomes, which can be further
integrated for prediction improvement.

Cloning and validating genes affecting important agronomic traits remains key to
crop genetic improvement, especially when implemented to target multiple traits each
with multiple candidate regions; it is essential to meet future food demand. Mutants
created by CRISPR/Cas9 are highly valuable in functional genomics, especially when
used in a multiplex fashion. As screening phenotypic changes in a genome-wide
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mutant library is challenging in crops, access to candidate regions for corresponding
traits identified by forward-genetic approaches is thus highly valuable. In the present
study, we integrated candidates from genotype-phenotype associations and
CRISPR/Cas9 early on in our pipeline, and we provide a practical roadmap for the
rapid detection of gene function through an informed mutagenesis library. In addition
to the validation of high-confidence candidates, the approach may allow to rule out
other predicted candidates. At the same time, other mutants derived from the present
design will be a valuable resource in functional gene discovery. Since candidates from
natural variation have greater utility in crop improvement, such knowledge-driven
targeted mutagenesis based on QTLs, pathways, and gene families will dramatically
improve future studies. We anticipate that all candidate genes from a given QTL
region can thus be mutated simultaneously in one implementation. Of course,
complete gene loss of function alleles induced by genome editing may display drastic
phenotypes that go beyond the range conferred by natural alleles: these validation
experiments should be interpreted carefully. The heritable transmission ratio is also an
important issue to test genotype-to-phenotype links, but could not be explored in the
current study since the T¢ and T; populations were descended from unrelated
individuals. However, previous studies in maize indicate that CRISPR/Cas9-derived
mutation in Ty individuals were stably transmitted to the next generation (Li et al,
2017; Zhu et al, 2016), one of which used the same vector we did (Li et al, 2017). We
also found that off-target mutations may not be common in plants, although editing at
non-target homologous sequences deserves attention, and stresses the need for
high-quality genomes of the parent lines.

The knowledge-informed mutagenesis design we present here is not only helpful
in accelerating gene discovery; it will also be valuable to characterize the effects of
specific genes or alleles, to study regulation mechanisms, to evaluate pleiotropic
effects and to create novel useful haplotypes. A multitude of CRISPR-derived alleles,
with effects other than complete loss of function (a non-exhaustive list includes
knock-in, knock-down or -up at specific developmental stages, base editing, or
modifying epigenomic, transcriptional, or post-transcriptional processes) can be
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504  flexibly incorporated into fine-tuning of regulatory networks (Chen et al., 2019; Hua
505 etal, 2019; Zhang et al., 2019). The knowledge and materials available here therefore
506  represent important tools in the acceleration of high precision crop breeding (Fernie

507 and Yan, 2019).

18



508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

METHODS

Collection of Candidate Genes.

1)

2)

3)

4)

The candidates selected for the present study were from multiple sources:

Genes that have been fine-mapped using various recombinant inbred line (RIL)
populations. Most traits mapped to single genes, and a few mapped to intervals
with several (less than five) genes. Additional genes included four related to
tocopherol content, four to carotenoid content/composition, three to kernel
dehydration rate, three to corn leaf blight susceptibility, three related to ear yield
and one to tassel length.

19 genes from the CCT family with high potential for affecting maize flowering
time (14 of which were orthologs from rice and Arabidopsis), located within
QTLs for flowering time identified by genome-wide association mapping studies
(GWAS) in a recently developed population (Liu et al., 2020). Together with 14
genes associated with ear leaf width and length, 25 genes were associated with
plant height. One other ortholog for a gene shown to affect phosphorus content in
rice (Yamaji et al., 2017) was also included in the present study.

A large number of candidates derived from initially mapped QTLs for 23
important agronomic traits, identified by GWAS using the recently developed
population (Liu et al., 2020). For each trait, the top one or two larges- effect QTLs
were integrated, and genes were filtered if additional evidence (expression
relevance, expression QTL associations, or ortholog information) was available;
all candidates within the QTL interval were included if there was no other reliable
evidence and if the interval contained less than ten candidates. These included 243
genes associated with flowering times, 540 genes related to plant architecture
traits, another 229 and 422 genes affecting the ear and kernel-related yield traits,
respectively.

270 genes from QTLs associated with dehydration rate and another seven genes

potentially affecting lipid content identified by association mapping. These two
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studies were performed using a natural population consisting of over 500

unrelated individuals (Liu et al., 2017b).

Genes from sources 1) and 2) formed Set #1, and two sgRNAs were designed for
each gene to form the double-sgRNAs pool (DSP). Genes from sources 2), 3), 4)
comprised Set #2, with individual sgRNA per gene for 3) and 4), and the two sgRNAs
per gene for 2) with individually constructed, all were mixed as individual sgRNA per

vector to form the single-sgRNAs pool (SSP).

Non-Reference Based sgRNA Design.

The sgRNA oligo design criteria were fully implemented according to Lu et. al.
(2017) to obtain an initial sgRNA library based on the B73 reference genome.
However, due to the large genetic difference between the B73 and the transformation
receptor KN5585 (a tropical line) used here, we required an additional filtering step to
select those sgRNAs also suitable for KN5585. Whole-genome sequencing (WGS,
~60x) and deep mRNA-sequencing (RNA-seq) on a mixture of seven tissues were
used to obtain the de novo assembled contigs of KN5585, based on canonical
pipelines using ABySS (Jackman et al., 2017; contig N50 = 3,162) and Platanus
(Kajitani et al., 2014; N50 = 565) for WGS and Trinity (Grabherr et al., 2011) for
RNA-seq (N50 = 2,167). These raw assembled contigs can be available at

http://maizego.org/Resources.html  (see  the section of “High-throughput

CRISPR/Cas9 gene editing”). All sgRNAs designed from the B73 genome with
acceptable on-target scores were filtered by Basic Local Alignment Search Tool
(BLAST, Camacho et al., 2008) against the locally assembled contigs to obtain the
uniquely matched set. When the alignment between gene and sgRNA did not fully
match, the sgRNAs with only one SNV or InDel were retained after replacing the
given variants from KN5585. In addition, the nearly complete genomic sequences for
all Set #1 genes were PCR-amplified and sequenced by the Sanger method, providing
confirmation for all of their sgRNAs using this filtered method. To make this analysis
friendly to a broad range of users, we developed a tool (Sun et al., 2018) with both a
command-line and graphical user interface (GUI) (implemented in Java) that can be
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easily implemented.

Vector Design, Construction, and Pooling.

Three different vectors (Supplemental Figure 1) were used in the present study: 1)
pCPB-ZmUbi-hspCas9 came from Dr. Chuanxiao Xie (Li et al, 2017). We modified
the wvector construction by combining overlapping PCR and homologous
recombination to obtain a single- or double-sgRNAs vector (SSV or DSV) in one step
(Supplemental Figure 1A and 1B). In detail, pCPB-ZmUbi-hspCas9 was first
linearized by HindlIII. Separately, ZmU6 and the sgRNA scaffold of insertion elements
were amplified through overlapping PCR with a homologous arm, or sgRNA scaffold
and/or 20b p gene-specific target-attached primers. Additionally, homologous arms
that match linearized pCPB-ZmUbi-hspCas9 were also added to the insertion
fragment in the overlap PCR. Finally, different gene-specific insertion fragments were
incorporated into pCPB-ZmUbi-hspCas9 as SSV and DSV. It is worth noting that the
HindIII restriction enzyme recognition site was maintained in each construct so that
gene-specific elements can be inserted (Li et al, 2017). pCXB052 was modified from
a vector designed for genome-wide editing in rice (Lu et al, 2017) by replacing the
rice promoters with the RNA polymerase II promoter of the maize ubiquitin gene
(ZmUbi) and the RNA polymerase III promoter ZmU6 (Supplemental Figure 1C).
pCXB053 was extended from pCPB-ZmUbi-hspCas9 through the pre-assembled
ZmU6 and sgRNA scaffold. The difference between pCXB052 and pCXB053 was that
both AspCas9 and the selection marker Basta gene (BIpR) are expressed by ZmUbi in
pCXBO052, and alternatively expressed by ZmUbi and enhanced Cauliflower Mosaic
Virus CaMV 35S promoters in pCXB053. Unlike the construction approach in DSP,
SSV of SSP was produced by oligo annealing and T4 Ligase ligation. pCXB052 or
pCXB053 was cleaved by Bsal to ligate with the sgRNA anneal products. Only the
positive strains survive since the toxin ccdB gene was replaced by sgRNA.
Self-ligated vectors were eliminated, which ensured that all of the clones obtained
were positive and allowed for a pooled plasmid cloning. In brief,
CPB-ZmUbi-hspCas9 was used for DSP, which was suitable for a single vector
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containing one or multiple sgRNAs. Thus, DSP was a uniform concentration mixture
of each Sanger-validated plasmid. The pCXB052 and pCXBO053 vectors were
designed for pCKO since this allowed pooled ligation reaction cloning, so SSP was

pooled prior to E. coli transformation.

Plasmid Pool Sequencing.

The TnS transposase (Nanjing Vazyme Company of China, cat. No. TD501) was
used to fragment mixed plasmids. For each reaction, 50 ng DNA was aliquoted with
10 uL 5XTTBL Buffer, 5 uLL Tn5. Double-distilled water was added to 50 pL, mixed
well, then incubated at 55°C for 10 min. DNA was purified with VAHTS DNA Clean
Beads (Nanjing Vazyme Company of China, cat. No. N411-03-AA). For PCR
amplification, we mixed 24 pL purified DNA, 10 uL 5XTAB Buffer, 5 uL PPM, 5 pL
NS5 primer, and 5 pLL N7 primer, added 1 uLL TAE amplification enzyme and mixed
well. The PCR program consisted of (1) 72°C for 3 min, (2) 98°C for 30 sec, (3)
6-cycle of 98°C for 15 sec, 60°C for 30 sec, 72°C for 1 min, (4) 72°C for 5 min and
hold at 4°C. Finally, purification was done with two rounds of VAHTS DNA Clean
Beads (Nanjing Vazyme Company of China, cat. No. N411-03-AA), first-round with
0.6x (30 pL) and second-round 0.15x (7.5uL) to collect the 300~700 bp PCR
products. The beads were eluted in 16 pL double-distilled water. The libraries that
passed quality checks were subjected to the Illumina X-Ten sequencer with pair-end

150 bp.

Agrobacterium-Mediated Pooled Transformation.

The plasmids were electroporated into Agrobacterium tumefaciens strain
EHA105. Agrobacterium-mediated maize transformation is illustrated in
Supplemental Figure 15. Maize immature embryos (IEs) of 1.5-1.8 mm were isolated
from ears harvested 10 d after pollination into 2.0 mL tubes with 1.8 mL Inoculation
Medium (Sidorov and Duncan, 2009), and were infected with Agrobacterium
suspension (Inoculation medium with 200 pM of acetosyringone and Agrobacterium
cells) for 5 min, then poured onto co-cultivation medium. The extra liquid was
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removed with pipettes. IEs were placed with scutellum-side up on the medium and
incubated in the dark at 23°C for 48-72 h of co-cultivation. After co-cultivation,
immature embryos were transferred to the resting medium and cultured for 5-7 d.
Calluses were then transferred to the selection medium (glufosinate-ammonium
10mg/L), incubated in the dark at 28°C for 2 weeks and transferred to fresh selection
medium for another 2 weeks. Resistant calluses obtained were placed on the
regeneration medium, incubated under 5000 Ix at 25°C for 14-21 d. Regenerated
shoots were transferred to rooting medium under 5,000 lux at 25°C for 14 d. Leaves
were sampled for PCR analysis before the plantlets were planted into greenhouse. The

transformation experiments were conducted by the Wimi Biotechnology company.

Assigning Associated Targets to Ty Plants.

The minimum number of T, plants was determined to be about 4 times of the
number of vectors to cover most of the targets, as below simulation analysis suggested.
For high-throughput detection of gene-edited plants (T, generation), we added
different barcode sequences (at least two mismatches between any two) to the ends of
the universal primers (Forward primer: CGTTTTGTCCCACCTTGACT; Reverse
primer: TTCAAGTTGATAACGGACTA) to produce amplicons, and the length of
PCR amplification products was 165 bp (Supplemental Figure 4). A total of 30
forward and 96 reverse amplification primers ligated with barcodes designed to
represent a maximum of 2,880 lines for each batch (Supplemental Data Set 2). A
forward amplification primer and 96 reverse amplification primers were used to
amplify the DNA of gene-edited plants in a 96-well PCR plate. PCR products purified
with DNA clean kit (ZYMO RESEARCH Cat. No. D4013) were used for library
construction. DNA libraries were constructed according to the Truseq DNA LT sample
preparation kit (Illumina: FC-121-3001), end repair, ‘A’ base addition, Illumina
adapters ligation and PCR enrichment following with purification by AMPure XP
beads (Supplemental Figure 4). All the DNA was extracted from seedling leaves
unless otherwise specified.

The matched barcode sequences and amplified sgRNA were obtained by pair-end
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short-reads sequencing, so that the T, individuals can be associated with their
corresponding candidate genes, as long as contamination is avoided. To reduce the
potential for contamination, we have focused on experimental design and
bioinformatic analysis parameters affecting the reliability. Through mixing several
lines with individually transformed sgRNA and negative controls (wild type tissue,
water, and empty wells), iterative sequencing with various coverage was performed.
Four parameters were considered (Supplemental Figure 5A), including supported
reads (count cutoff from 5 to 200), relative ratio of supported reads at given well
(ratio_cutoff, from 0.01 to 0.2), inflection point of relative amount (fold change
between ratios) between sorted targets (the largest fold change of N+Ith target
compared to the Nth target for all targets that meet the requirements of count cutoff
and ratio_cutoff, named as peakFC), and the fold enrichment of target among the
whole 96-plates, relative to mean (measured as contamination, the targets would be
iteratively removed with cutoff decreasing from 5 decreases to 1.5 with a step of 0.5).
Adequate sequencing coverage is essential for eliminating background noise.
While the false negative rates were usually low, the false-positive rate is sensitive to
floating count- and ratio- cut-offs and highly correlated to total effective discovery
number (Supplemental Figure SB-E). That is, a strict cut-off would lead to lower false
positives, but at the cost of reducing total effective assignments. By sequencing
multiple biological and technical replicates, a stricter cut-off is possible, increasing
reproducibility. Taken together, targets passed the relatively strict cut-offs
(count_cutoff = 100, ratio cutoff = 10%, targets ranked above the peakFC,
contamination_cutoff = 2Xmean coverage of each individual) and identified in at
least two repeats were used to ensure high-confidence assignments. However, all of
the remaining sgRNAs identified in only one experiment were also incorporated in

mutated sequence detection, even though very few were validated by mutants.

Simulation of Target Coverage as a Function of the Number of T, Individuals.
Considering the transformation and planting limitation, it is important to balance
the plant pool size and gene/target coverage of each pooled transformation assay. To
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decide how many genes/vectors (V,) should be mixed in a pool, we performed a
simulation, with V, from 1 to 200 and the number of Ty individuals (P,) from 1 to 10
times V,. Fifty replicates of the primary vector pool were created as follows. Vectors
were randomly selected from the amplified vector pool without replacement, to obtain
Vis. Finally, the coverage was calculated as the ratio to V,,. The simulation for a given
vector pool and plant library was repeated 100 times and three values (mean,
minimum and standard value) were considered to select the primary vector mixture
size and the number of plants needed.

From the simulation analysis and the observed cases of coverage of sgRNAs
along various Ty lines, four times the number of T, plants (relative to gene/vector
number) were required to cover most of the candidates, comparable with observed
results. Given a 50-vector pool as an example, 98.7% of genes on average (with a min
of 94%) can be covered by 200 (4x) Ty lines (Supplemental Figure 6), and the
coverage was better for a larger number of vector pools. However, over half of the
genes (or vectors) were present in fewer than three plants and 30% were represented
by a single individual. This distribution represented a risk in further experiments
(including the identification of effective mutant alleles, independent cross-validations,
or even collection of sufficient seeds for next generation); ten times the number of T
plants would then be needed to represent more than 85% of genes by at least three

lines.

Identification of Mutated Alleles by Sanger Sequencing.

Sanger sequencing was applied for all amplicons to obtain “.ab1” files, and the R
package sangerseqgR (Hill et al., 2014) was used for base-calls and plotting
chromatograms. By using the Poly Peak Parser, this package can separate ambiguous
base calls into two sequences. A ratio = 0.2 was set for separating signal and noise
base-calls, and the 20 bp at the beginning and end of the sequence were trimmed
when generating chromatogram plots. The obtained primary and secondary sequences
were considered as two haplotypes, which are identical for homozygous mutations.
Further analyses were the same for homozygous or heterozygous mutations. The
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primary and secondary sequences together with the wild-type genomic and sgRNA
sequences were used as input to multiple sequence alignment (MSA) by Clustal
programs (Larkin et al., 2007) to call specific variants. It is important to note that both
the forward and reverse amplicons help identify exact alleles, or at least to clarify the
mutated position/intervals. However, for those lines containing more than two

mutated alleles, this method will not uncover separate alleles.

Identification of Mutated Alleles by MassARRAY.
We used MassARRAY technology to genotype known variants for multiple loci
in large populations. An introduction to MassARRAY, laboratory protocol and

analysis is available at http://agenabio.com/products/massarray-system. Based on the

conventional MassARRAY process, we applied a sequential primer combination
strategy (Supplemental Figures 7 and 8) to detect if given nucleotides are altered,
resulting in an opportunity to infer the likely mutants by integrating all the sequential
outcomes. All the experiments in the present study were performed by Agena
Bioscience in Beijing. Based on the design of a primer covering the predicted
nuclease cleavage region (3 to 6 bp upstream of the NGG PAM sequence), this
method is preferable to the determination of whether individuals of interest were
mutated at given genes, or to the identification of known variants at the T; or later
generations in a large number of individuals. A full comparison of the advantages and
disadvantages of Sanger sequencing, the MassARRAY method, and

Capture-sequencing are described in Supplemental Table 2.

Identification of Mutated alleles by Capture-Sequencing.

Targeted capture was realized by GenoPlexs technology, which captures multiple
target regions using a set of primer pairs and a single polymerase chain reaction. All
the capture primers were designed by the MOLBREEDING company (in
Shijiazhuang, Hebei). After removing genes with difficulties in primer design and
primers with low efficiency or non-specificity, we retained a total of 106 genes with
113 primer pairs (Supplemental Data Set 3) for further analysis. Deep pair-end (PE)

26


http://agenabio.com/products/massarray-system

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

sequencing (> 500X) on the captured products was performed on an Illumina HiSeq
3000. All reads were trimmed by Trimmomatic (Bolger et al., 2014) with the
following parameters: LEADING:5 TRAILING:5 SLIDINGWINDOW:3:20
MINLEN:50, and only clean PE reads were used in the next analysis.

As all the Ty individuals had been assigned to corresponding targets, lines with
different targets can be mixed in capture-sequencing to reduce library construction
cost. By applying modeling with 3 wild-type line repeats, and varying numbers (5~50)
of mixed individuals, we found a mix of 20~25 lines would be best, with a 0.3% ratio
of background mutant error, presumably because of aerosol contamination and PCR
or sequencing errors.

The CRISPResso2 software (Clement et al.,, 2019) was applied for the
identification of mutated alleles and estimation of their frequencies. Only the
mutations that overlapped with the 20 bp-window before the NGG PAM were
considered unless the subsequent analysis detected likely alleles caused by
homology-directed repair, in which case flanking variants were also considered. The
abridged sequences within the 20 bp window were merged when identical. The alleles
supported by less than 3 reads and those present in wild samples (including 3
technical repeats) were discarded in further analysis, and allele-specific frequencies
were re-estimated when there was more than one allele. A variant-calling pipeline was
also integrated in allele identification: the clean PE reads were first mapped to
pseudo-genome (derived from replacing specific variants to B73 genome) by
bwa-mem (Li, 2013b), followed by SNP and InDel calling using the mpileup
command from samtools (Li et al., 2009) at all target regions.

To avoid assigning identical mutants to different alleles as a result of ambiguous
alignments, entire mutated sequences were used to determine whether the alleles
called were consistent between different methods. All the different alignments from
the identical alleles were assumed to be the one with overlap (or close) to the

predicted nuclease cleavage site, as CRISPResso2 (Clement et al., 2019) suggested.

Testing the Predictability of Edited Outcomes.
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All of the alleles with precise variant sequences from both SSP and DSP pools
and both Sanger and Capture-sequencing methods were merged as two datasets, one
containing all of the mutants occurring at individual sgRNA, the other containing
large fragment mutants (deletion, insertion, and reversion) between pair sgRNAs. The
mutant type (DEL, INS, or SNP), position (relative to predicted nuclease cleavage
site), and size (for DEL and INS) were considered to be characteristic of a variant,
while the 20 bp sgRNA nucleotides and the PAM sequences, as well as the target
gene’s expression quantification (data from Chen et al., 2014), number of tissues with
expression of FPKM > 0.5 (fragments per kilobase of exon model per million reads
mapped), expression variability along developmental period (measured by coefficient
of variation) were all regarded as predictive variables (Supplemental Figure 10A).
The Random Forest algorithm, which is nonparametric, interpretable, and compatible
with many types of data with high prediction accuracy, was applied in prediction tests
from sgRNA sequences and target expression variables. The out-of-bag (OOB) error
and mean of squared residuals were used to evaluate the predictability for
classification (mutant type) and the regression variables (mutant position and size),
respectively. The Gini decreases (MeanDecreaseGini) and node purity increase
(IncNodePurity) values for each variable over all trees were used to evaluate the
variable importance for classification (mutant type) and the regression variables
(mutant position and size), respectively.

The prediction algorithm FORECasT (favored outcomes of repair events at Cas9
targets) (Allen et al., 2019), fine-tuned using over 10° mutational outcomes from
over 40,000 human sgRNAs, was used in predicting likely repair outcomes by
flanking DNA sequence. First, the effect of the lengths of flanking sequences (10, 20,
50, 100) on allele prediction was examined. While they generally produced highly
replicable results, a longer flanking region led to a higher number of predicted alleles
with rare frequency. Nevertheless, there was no effect when the flanking region was
greater than 50 bp, as predictions with 50 bp and 100 bp being identical. Thus, all the
results from this set were used in further analysis. The entire mutated sequences
incorporated with variants together with corresponding predicted frequencies were

28



806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

used to compare to those real observed alleles.

Discovery of Alleles likely Derived from Homology-Directed Repair (HDR).

Those mutated haplotypes with concurrent InDels at sgRNA region and at least
two SNPs within flanking sequences were considered a possible consequence of HDR.
These mutated sequences were then compared by BLAST to all the de novo

assembled contigs to search for a likely template source.

Identification of Expression Compensation of ZmBAMId Mutant Lines by
RNA-Sequencing.

ZmBAMI1d (Zm00001d028317) was edited with two sgRNAs targeting the first
exon. RNA-sequencing on whole kernel (20 d after pollination, DAP) was performed
for self-crossed Ts edited lines with homozygous fragment deletion and wild type
lines, both with three replicates. Raw reads were first trimmed with Trimmomatic
(Bolger et al., 2014). All remaining paired-end clean reads were mapped to the
B73 V4 reference genome (Jiao et al., 2017) using Tophat2 (Kim et al., 2013). The
Cuffquant and Cuftdiff (Trapnell et al., 2013) commands from Cufflinks (Trapnell et
al., 2010; Roberts et al., 2011) were used to estimate RNA abundance and to test for
differential expression, respectively. The geometric method was used to normalize the
FPKMs across all libraries (Anders and Huber, 2010) during differential expression

analysis.

Off-target Analysis.

A total of 20 T, blocks with dramatic phenotypic changes were selected to
measure the off-target effect, with at least 4 individual T; lines from the same T
background mixed to represent each sample. Genomic DNA was isolated from mature
leaves. DNA extraction and library construction were the same as above, with an
additional hybridization process with the Roche/NimbleGen SeqCap EZ library,
which was specifically designed to capture the exon sequences of maize by
high-density biotinylated long oligonucleotide probes. The BGISEQ-500 platform
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865

was used in Paired-End 150 bp short-reads sequencing.

All the clean reads trimmed by Trimmomatic (Bolger et al., 2014) were aligned to
the B73 V4 reference genome by BWA-mem (Li, 2013). Variants were called by
GATK HaplotypeCaller (Poplin et al., 2018) with GVCF mode. Only InDels
supported with at least 3 reads for each sample were conserved. Those variants were
discarded in further analyses if they: 1) also were called by wild type lines against the
B73 reference genome (background genetic variations), or 2) “ALT” alleles were
simultaneously present in over 3 lines (common variants). The remaining InDels
located within all potential targets were considered as on-targets. One sample was
abandoned since no likely on-target loci were found. The remaining 19 samples
targeted a total of 25 genes. The Cas-OFFinder (Bae et al., 2014) was used to predict
the corresponding off-target loci, with at most 5 mismatches and NGG PAM. Those
InDels located within these possible off-target regions were regarded as likely

off-targeting events.

Phenotyping.

All the Ty individuals were self-crossed if conditions allowed or back-crossed to
wild lines (KN5585) if self-crossing was not possible due to phenotypes affecting
reproductive structures (which information was all recorded). Generally, at least two
independent events were planted if available. For the DSP gene set, all the Ty plants
were first inspected for mutated alleles (DNA from seedling leaf), and those events
with clearly edited sequences resulting in likely non-functional alleles were planted
with expanded T, or greater populations. For the SSP gene set, all the T, events with
seed numbers larger than 10 (including lines that failed target assignment) were
planted for phenotyping and the lines with observed agronomic trait variance were
genotyped. We planted 17 genotyped individuals per cell for phenotyping during the
T, generation. Wild type controls were planted every 4 to 30 rows based on specific
designs, variation in the number of total events, and space limitations. Phenotypic
differences relative to wild-type and segregating independently within T; lines that
were from the same Ty event were recorded as heritable phenotypic changes. Multiple
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locations (from northeast temperate to southwest and south tropical zone, including
Gongzhuling city, Jilin province: 43°30'N 124°49°E; Gasa town, Xishuangbanna dai
autonomous prefecture, Yunnan province: 21°57'N 100°45°E; Foluo Town, Sanya City,
Hainan Province: 18°34'N 108°43'E) were used to evaluate the environmental effect
for DSP, however, only the Beijing location (at summer of 2018) was used in the

large-scale measurement of the T; performance for SSP.

Genetic Materials Module.

In addition to the general considerations listed above, the examples used in
interpreting genotype-phenotype links are described in detail here. Mutants of
zmtpsi4.1 were from DSP (two sgRNAs are simultaneously designed), whose
phenotypic change was supported by large fragment deletion F, populations at Hainan
(south China) (61 mutant lines vs. 173 wild lines; Figure 4B; Supplemental Figure
12B). The zmsbp22 was supported by six independent T; populations (derived from
DSP, 52 positive/mutant lines vs. 20 negative/wild lines) at Yunan (southwest China)
(Figure 4C; Supplemental Figure 12B), and two mutant alleles from SSP (only one
sgRNA is used) along with considering all the other lines as “control” (10 target gene
mutant lines compared to all the other 470 lines with various mutant genes;
Supplemental Figure 12D) were compared for double confirmation. The example in
the aminotransferase-like gene GRMZM2G331652 was supported by data from both
T, (62 positive vs. 17 negative lines) and T, data at two locations (39 mutants vs. 30
wild lines at Hainan; 39 mutants vs. 45 lines at Jilin; Supplemental Figure 13B-D).
For the zmbamld, self-crossed Ts lines with large fragment deletion (from two
sgRNAs) were used to measure kernel weight (Figure 4DE) at Yunnan (five mutants
vs. 13 wild ears) and Wuhan (central China; 39 mutants vs. 10 wild ears). Detailed
phenotypes for these examples are provided in Supplemental Data Set 4.

For those “unexpected” mutant lines shown in Supplemental Figure 14, at least
two individuals showing mutant phenotypes and separated within T; populations
(from same Ty), or the whole T, population displayed significant differences relative
to wild types are considered as heritable (but not environmental) phenotypic changes.
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For T, or advanced populations, we did not evaluate for the presence of a transgene,
but instead, we detect the target alleles for all the phenotyped lines using mature
leaves as source for DNA.

The vectors used in present study can be requested from Jieting Xu

(xjt@wimibio.com). All the information of the mutants are available at the official

website of WIMI Biotechnology Co., Ltd. (http://www.wimibio.com/tbtk.asp), which

will be continuously updated and the seeds can be requested with the standard MTA

(http://www.wimibio.com/e.doc) and specified charge.

Software/Custom Scripts.
The CRISPR-Local for high-throughput designing sgRNAs for non-reference

lines can be obtained from: https://github.com/sunjiamin0824/CRISPR-Local.git.

And the script to obtain reads that matched both the barcodes and pooled sgRNAs
from trimmed fastq files can be available at:

https://github.com/heroalone/crispr pool.git.

Accession Numbers.

Raw whole-genome-sequencing and RNA-sequencing reads of the transformation
receptor (KN5585), and raw reads of capture-based sequencing (TRC-seq) for 60
batches have been deposited in the Genome Sequence Archive (Wang et al., 2017b) of
BIG Data Center (BIG Data Center Members, 2017) under the following accession
numbers: CRAO001955 (https://bigd.big.ac.cn/gsa/browse/CRA001955). Individual
fastq files can be downloaded under the “Run Accession” links.

Assembled contigs can be downloaded at http://maizego.org/Resources.html

(“High-throughput CRISPR/Cas9 gene editing” section).
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923 TABLES
924  Table 1. Statistics of the genome-editing experiments
Vector V’hin Assigned V', inTO Genotyped Edited
Pool Batch sgRNAs a b To c d . R .
No. (V) plasmid TO (Py) plants lines lines
DSP1 90 49 48 157 125 38 95 79
DSP2 78 40 37 342 296 34 263 224
psP DSP3 191 100 98 387 379 75 173 146
DSP 191 104 103 886 800 93 531 449
SSP1 959 959 936 940 860 340 -- --
SSP2 1,186 1,186 320 1,374 1,016 257 -- --
SsP SSP3 1,186 1,186 1,173 1,156 1,019 466 -- --
SSP 1,186 1,186 1,178 3,470 2,895 685 1,290 693
Total 1,368 1,290 1,281 4,356 3,695 778 - -
925 @ Total vector number (V,) pooled in the present study.
926 ® Observed vector number (V'5) in plasmid pools.
927 T individuals successfully assigned to linked targets.
928 9Vector number covered by those successfully assigned Ty individuals.
929 € The number genotyped for DSP is indicated by the total T, lines. The number of T+ lines with phenotypic
930 change were selected for SSP genotyping (thus it is inappropriate and not used for estimation of general
931 mutant ratio).
932
933
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Figure 1. Pipeline of high-throughput genome editing design.
(A) Candidates selected from QTL fine mapping, GWAS, and comparative genomics. (B) Line-specific sgRNA filtering based on

assembled pseudo-genome of the receptor line KN5585. (C) Different vector construction approaches of double sgRNAs pool
(DSP) and single sgRNA pool (SSP). (D) Measuring the coverage and uniformity during plasmid pool by deep-sequencing. (E-
G) Transformation and assignment of targets to each T0 individual by barcode-based sequencing. (H-J) Identification of mutant
sequences by Sanger sequencing. (K-L) Identification of mutant sequences by Capture-based deep-sequencing. (M) Measuring

phenotypes changes and identification of functional genes.
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Figure 2. High coverage and uniformity from plasmid pool to T, individuals. Plasmid sequencing in quality-
control process (A), results of measuring the coverage and uniformity of sgRNA amount (B). T1: primary plasmid
pool before Agrobacterium transfection, at t0. T2: plasmid pool extracted from the first Agrobacterium colonies. T3:
plasmid pool randomly extracted from 20% of colonies of second Agrobacterium transfections. T4: plasmid pool
specifically taken from 33-50% of fresh, and more vigorous colonies of second Agrobacterium transfection, for
further embryo transformation. t0: the primary plasmid pool before Agrobacterium transfection; t48/t60: 48 h or 60 h
culture on solid medium after Agrobacterium transfection. The sgRNAs are ordered along the x axis based on their
ID number. (C) Ratio of co-infection events in six batches (three SSPs and three DSPs) and total. (D) Correlation of
sgRNA relative amount between plasmid pool (black) and T, individuals (red). Proportion lines were smoothed. All
sgRNAs along the x-axis were sorted according to their relative proportion in the plasmid pool.
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Figure 3. Mutation pattern and predictability of variants generated by genome editing. (A) Allele size and
position distribution based on all individual events. Position-based: distribution along relative position on
sgRNA; event-based: distribution of individual events. The position along sgRNA (x-axis) is relative to predicted
nuclease cleavage site, while +1 and —1 indicate the nucleotides 3-4 bp upstream of the PAM. INS: insertion;
DEL: deletion. (B) Distribution of mutant outcome sizes (in bp) and diversity for different mutant classes. (C)
Ratio of real observed alleles that are being predicted by only flanking sequences, classified by mutant types
(DEL, INS, SNP). ALL corresponds to all mutant types added. (D) Algorithm-mediated prediction of mutant
outcomes based on flanking sequences. The set of alleles observed in real cases display significantly higher
predicted frequency compared to all predicted outcomes (background).
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Figure 4. Applied targeted mutagenesis for the validation of gene function. (A) Two large-effect flowering time QTLs for
days to tasseling (DTT) identified by GWAS and targeted by genome editing. Corresponding results for days to anthesis (DTA)
and days to silking (DTS) are shown in Supplemental Figure 12A. Both QTL intervals include well-known causal genes (shown
in grey), while novel genes identified in this study are shown in red. Significant flowering time differences are seen for
Zmips14.1 (B) and Zmsbp22 (C). Phenotypic values from wild type lines are indicated in black, and all colors show mutant lines.
Trait values for Zmips14.1 and Zmsbp22 were measured as Jilin (northeast China, temperate climate) and Hainan (south China,
tropical climate), respectively. Corresponding edited alleles along the x-axis are detailed in Supplemental Figure 12B-C. (D-F)
Gene redundancy from homologous genes can skew the results of a targeted gene. (D) Two sgRNAs were designed to target
the first exon of ZMBAM1d and caused a large deletion between sgRNAs. Both sgRNAs were specific for ZmBAM1d without
affecting homologous genes. (E) Selfing T; edited lines carrying the deletion were used to measure kernel weight (HKW); only a
marginal phenotypic difference was seen at both Yunan (year 2018, labeled as 18YN) and Wuhan (year 2019, labeled as
19WH). Over-expression lines have significantly higher HKW, and near-isogenic lines show significant differences in HKW
(Yang et al., 2019), leading to the expectation that Zmbam1d edited lines would demonstrate smaller HKW. (F) Expression of
Zmbam1d and its homologous genes across three edited lines and corresponding wild type segregants. Two of the three close
homologues show higher expression that might compensate for the loss of Zmbam1d.
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