Is Pruning Compression?: Investigating Pruning Via Network Layer Similarity

Cody Blakeney

Yan Yan

Ziliang Zong

Texas State University
cjb92@txtstate.edu

Abstract

Unstructured neural network pruning is an effective
technique that can significantly reduce theoretical model
size, computation demand and energy consumption of large
neural networks without compromising accuracy. However,
a number of fundamental questions about pruning are not
answered yet. For example, do the pruned neural networks
contain the same representations as the original network?
Is pruning a compression or evolution process? Does prun-
ing only work on trained neural networks? What is the role
and value of the uncovered sparsity structure? In this pa-
per, we strive to answer these questions by analyzing three
unstructured pruning methods (magnitude based pruning,
post-pruning re-initialization, and random sparse initializa-
tion). We conduct extensive experiments using the Singu-
lar Vector Canonical Correlation Analysis (SVCCA) tool to
study and contrast layer representations of pruned and orig-
inal ResNet, VGG, and ConvNet models. We have several
interesting observations: 1) Pruned neural network models
evolve to substantially different representations while still
maintaining similar accuracy. 2) Initialized sparse models
can achieve reasonably good accuracy compared to well-
engineered pruning methods. 3) Sparsity structures discov-
ered by pruning models are not inherently important or use-

Sful.

1. Introduction

Nowadays, deep artificial neural networks have undoubt-
edly become the most promising method in solving many
challenging computer vision problems [20, 6]. However,
the model size and parameter space of successful deep neu-
ral networks are typically massive, which prevents them
from being deployed on edge-devices (e.g., mobile phones)
with limited resources.

To address this problem, pruning has been studied exten-
sively in the literature [9, 5, 2, 23, 17, 13] as an effective
technique that can significantly reduce theoretical model
size, computation demand and energy consumption of large
neural networks without compromising accuracy. The key

idea of pruning is to eliminate or mask non-essential com-
ponents (e.g., less important neurons or negligible weight
values) of a deep neural network. Exemplary pruning meth-
ods include the early work presented by [10] and a more
recent work by Han ef al. [5]. Since then, a variety of
pruning methods, such as parameter pruning and sharing
[5, 2, 9], low-rank factorization [16, 7, 21], and compact
convolutional filters [22, 18], have been published (ref. Re-
lated Work for details). Despite all this progress, our fun-
damental understanding about pruning is still in its infancy.
For example, existing pruning theories and techniques tend
to agree with the following hypotheses:

e Hypothesis 1: Pruning is an iterative compressing pro-
cess. It compresses the original model to a subnet and
the representation of the original network remains sim-
ilar, which is why a pruned network can achieve simi-
lar accuracy as the original network.

e Hypothesis 2: A complex model needs to be trained
first before it can be pruned. Models with sparsity at
initialization are unlikely to succeed.

e Hypothesis 3: Once a deep neural network is pruned
and recovered to good accuracy (after retraining), its
pruned model structure and weights carry important
information and should help improve models trained
from scratch.

As more pruning methods being developed, it is time to
rethink if these hypotheses that are derived from previous
research and practices still hold true and ask the following
fundamental questions about pruning. Do the pruned neural
networks contain the same representations as the original
network? Is pruning truly a compression process? Does
pruning only work on trained neural networks? Do we re-
ally need sophisticated pruning strategies? What happens if
sparsity is chosen randomly?

This paper strives to answer these questions. Specifi-
cally, we analyze three fine-grained pruning methods (mag-
nitude based pruning, post-pruning re-initialization, and
random sparse initialization). In our experiments, the Sin-
gular Vector Canonical Correlation Analysis (SVCCA) tool

Magnitude Based
Pruning

o
r
\

IIH Post-Pruning Re-Init.
ﬂ” Random Sparse Init.

o

4
\

[

Original Network

Tensorflow Generated Layer-Wise Neurons’ Vectors

il

SVCCA Analysis

Pruned Network

mxn

Singular Vector
Decomposition

Singular Vector Canonical Correlation Analysis (SVCCA) Process

b= {=, . 2t } D r:% E‘ \
Eﬁh—{:{ﬁm. I }} M = U Z V Top Singular

mxm mxn nxn

*

Similarity of

Representations

‘I"".‘;_l

Canonical Correlation Analysis

Values
and Directions

Figure 1: Overview of proposed approach.

[15] is utilized to study and contrast layer representations
of pruned and original ResNet [6], VGG, and ConvNet [8]
models. We find that: 1) Pruning is not a passive compres-
sion process without learning new knowledge. Rather, the
pruned model is capable of evolving proactively to survive
in a dramatically changed environment, which is done by
learning and transforming to more effective representations
when aggressive pruning is occurring. 2) Models initial-
ized with sparsity structures can achieve reasonably good
accuracy compared to well-engineered pruning methods. 3)
Sparsity structures discovered by performing unstructured
pruning on models are not inherently important or useful.

Figure 1 illustrates the overview of our proposed ap-
proach. We first take an original network (ResNet, VGG,
or ConvNet) and prune it using magnitude based pruning,
post-pruning re-initialization, or random sparse initializa-
tion (ref. section 4 for details) at different sparsities respec-
tively. The neurons’ vectors at each layer, which are gener-
ated by Tensorflow during the training and pruning process,
are then stored and processed by the SVCCA analysis tool
created by Google [15] (ref. section 3 for details). Lastly,
the accuracy of different pruning methods and the similar-
ity of different representations are analyzed and presented
in section 5.

2. Related Work

Deep neural networks have become extremely popu-
lar and been successfully used in different applications re-
cently. However, most designed neural networks in machine
learning and computer vision field [20, 6] focused on accu-
racy rather than efficiency. There has been some work on re-
ducing the storage and computation cost by model compres-
sion. For example, Lecun Yann had done early work about
pruning network which has been investigated in the opti-
mal brain damage work [10]. The basic idea is that differ-
ent neurons contribute differently in the network. The low
ranking neurons can be removed, which results in a smaller
and faster network. Recently, Mariet et al. [12] proposed
to identify a subset of diverse neurons that do not require
retraining to reduce redundancy of the network. In this sec-
tion, we first review the model compression [3] from three
aspects, i.e., parameter pruning and sharing, low-rank fac-
torization, and compact convolutional filters. Afterwards,
we briefly discuss the Lottery Ticket Hypotheses and the
existing work to explore the nature of network pruning.
Parameter Pruning and Sharing reduces redundant pa-
rameters which are not sensitive to the performance. It can
be used in both convolutional layers and fully connected
layers. Han et al. [5] proposed to reduce the total number
of parameters and operations in the entire neural network.
Chen et al. [2] introduced a HashedNet model that used a

low-cost hash function to group weights into hash buckets
for parameter sharing. Lebedev ef al. [9] imposed group
sparsity constraint on the convolutional filters to achieve
structured brain damage. Zhou et al. [23] proposed a group-
sparse regularizer on neurons during the training stage to
learn compact CNN's with reduced filters. Magnitude-based
weight pruning methods are computationally efficient and
scalable to large networks and datasets, which makes it
become a popular approach for network pruning. See et
al. [17] showed that weight pruning with retraining was a
highly effective method of compression and regularization
on a state-of-the-art NMT system, compressing the model
to 20% of its size with no loss of performance. Narang et
al. [13] proposed a technique to reduce the parameters of a
network by pruning weights during the initial training of the
network. At the end of training, the parameters of the net-
work were sparse while accuracy was still close to the origi-
nal dense neural network. The network size was reduced by
8x and the time required to train the model remained con-
stant. Anwar ef al. [1] introduced a three-level pruning of
the weights and locate the pruning candidates using particle
filtering, which selected the best combination from a num-
ber of random generated masks. Polyak et al. [14] detected
the less frequently activated feature maps with sample input
data for face detection applications.

Low-rank Factorization uses matrix or tensor decomposi-
tion to estimate the informative parameters. It can be used in
both convolutional layers and fully connected layers. Riga-
monti ef al. [16] introduced learning separable 1D filter fol-
lowing the idea of dictionary learning. Jaderberg et al. [7]
proposed using different tensor decomposition schemes to
achieve double speed for a single convolutional layer with
1% drop in classification accuracy in text recognition. Tai
et al. [21] proposed a new algorithm for computing the
low-rank tensor decomposition for training low-rank con-
strained CNNs from scratch.

Compact Convolutional Filters is to design special struc-
tural convolutional filters to save parameters. The ap-
proaches can be only used for convolutional layers. Cohen
et al. introduced Group equivariant Convolutional Neural
Networks (G-CNNGs), a natural generalization of convolu-
tional neural networks that can reduce sample complexity
by exploiting symmetries. G-CNNs use G-convolutions, a
new type of layer that enjoys a substantially higher degree
of weight sharing than regular convolution layers. Zhai et
al. [22] proposed doubly convolutional neural networks
(DCNNG5), which significantly improved the performance
of CNNs by further exploring this idea. Instead of allo-
cating a set of convolutional filters that were independently
learned, a DCNN maintained groups of filters where filters
within each group were translated versions of each other.
Shang et al. [18] integrated CRelu into several state-of-
the-art CNN architectures and demonstrated improvement

in their recognition performance on the CIFAR-10/100 and
ImageNet datasets with fewer trainable parameters.
Lottery Ticket Hypotheses and The Nature of Network
Pruning. After the renewed interest in pruning proposed
by [5], many researchers have begun studying what is hap-
pening during the process of pruning and how it works. A
notable recent work which focuses on unstructured iterative
pruning [4] proposes the Lottery Ticket Hypothesis which
states "Dense, randomly-initialized, feed-forward networks
contain sub-networks (winning tickets) that - when trained
in isolation — reach test accuracy comparable to the original
network in a similar number of iterations.” These subnets
as the paper articulates have particularly lucky weights and
connections such that they are able to converge through gra-
dient descent towards accuracies as better than the model as
a whole. The paper suggests that the effectiveness of deep
learning is due in part to the high number of weights and
layers which increases the odds of initializing some sub-
nets within the model that can find some good local min-
ima. While the authors claim that it is a combination of both
weights and connections that make these ”winning tickets”,
it is unclear to what role, the weights and connections re-
spectively, play. Our work tries to address more thoroughly
on how network topology affects accuracy and learned rep-
resentations.

Another work [11] trying to explain the nature of prun-
ing focuses primarily on structured pruning. They find the
resulting model architectures from the structured pruning
process are well suited for training from scratch. That is,
the resulting architectures (not the found weights) are use-
ful. Their work suggests that structured pruning can be con-
sidered as one type of neural network architecture search.
The contradictions between their findings and that from [4]
show that there is a fundamental difference in what struc-
tured and unstructured pruning algorithms do with the orig-
inal model.

Nevertheless, none of the prior work has studied the fun-
damental questions that we asked previously. The lack of
understanding about the nature of pruning, the learned rep-
resentations during the pruning and retraining process, and
the trend of developing more sophisticated pruning algo-
rithms raises concerns to us. By exploring these questions,
this study is distinct from all previous work on neural net-
work pruning.

3. Singular Vector Canonical Correlation
Analysis (SVCCA)

Most previous work has been focused on improving dif-
ferent pruning methods without deep understanding about
how network pruning really works. In order to take a deep
dive into the learning process, it is essential to understand
what representations are learned at every stage of training
and pruning. Additionally, it is critical to have a tool that

can quantitatively compare two representations and eval-
uate how similar or different they are. In this study, we
leverage the Singular Vector Canonical Correlation Analy-
sis (SVCCA) tool created by [15] to compare and analyze
the learned representations of different layers. This section
summarizes the SVCCA process and briefly discusses how
it functions.

In SVCCA, a series of activations of a neuron is treated
as a vector and the model’s layers are treated as subspaces
that those vectors will span. SVCCA is able to compare the
learned representations of any two layers and tell whether
or not they have learned the similar or different representa-
tions. It does this by combining Singular Vector Decompo-
sition (SVD), which reduces the dimensions of layer sub-
spaces, and Canonical Correlation Analysis (CCA), which
maximizes a projection between the two layers that re-
sults in the highest correlation. This process allows lay-
ers with different configurations of weights, neurons, biases
and activation functions to be analyzed. For a given dataset
X = {x1,...,z,,} and a neuron i on layer [the output of
that neuron on the entire dataset is defined as the vector 2.
SVCCA takes input from two layers I; = {2z}, ..., Zh}
and Iy = {22, ..., z!2 } where n; and ny are the number
of neurons in their respective layers. SVD is performed on
each layer to get new subspaces !} and I}, where I] C [,
5 C la. Next, 5 and [} are linearly transformed to be as
aligned as possible and correlation coefficients are calcu-
lated. SVCCA outputs aligned directions (2!*, 2:2) and how
well they correlate. The higher the correlation value p; is,
the more similar the two aligned directions are.

In this study, we primarily focus on the SVCCA similar-
ity p. p is the mean of the p; values from the top CCA di-
rections and essentially describes how similar the represen-
tations of two layers are with each other. The p values can
be used to observe how the learned representations change
overtime if similarties of layers are calculated at different
time steps. In other words, we use layer similarities as the
metric to evaluate the changes in learned representations as
models undergo the pruning and retraining process.

4. Pruning Methods

Despite various pruning methods published in the litera-
ture, we only evaluate three unstructured pruning methods
(magnitude based pruning, post-pruning re-initialization,
and random sparse re-initialization) in this study. They are
carefully selected to focus on answering the key questions
about pruning: 1) do the representations remain identical
during the pruning and retraining process? 2) How impor-
tant is it to carefully design pruning methods? 3) How im-
portant is the structure learned from the pruning process

4.1. Magnitude Based Pruning

The magnitude based pruning presented by [5] serves as
the baseline method, which first trains an original model
to convergence, then prunes each layer by removing the
weights with the smallest absolute value until the desired
sparsity is reached, and finally retrains the pruned model to
recover to a similar accuracy as the original model. The im-
portant distinction between our method and Han’s approach
[5] is that pruning is done layer by layer (not globally on
the whole model). We use both an iterative and single shot
pruning method, which aims to identify what knowledge is
carried over from the original model. We also omit pruning
the final fully connected layer as it represents only a tiny
portion of the overall weights of a model. We speculate that
magnitude based pruning would result in the most similar
representations to the original model across layers.

4.2. Post-Pruning Re-initialization

The post-pruning re-initialization method makes copies
of each magnitude based pruned model, reinitializes the all
variables, but keeps the mask from the magnitude based
method. In this way the topology of the pruned network
is preserved and the network is trained from scratch for the
same number of epochs as the baseline model. The post-
pruning re-initialization method is specifically designed to
find out: 1) how much capacity is needed for training; 2) if
restricting weights to a learned topology will result in more
similar representations to the original; and 3) if this topol-
ogy uncovered by pruning encodes important information
about the original model and helps improve models trained
from scratch.

4.3. Random Sparse Initialization

To measure the efficacy of the post-pruning re-
initialization method, we compare it with a model initial-
ized to the same sparsity where the pruned weights are
chosen at random. For each layer in the original model,
we randomly prune an index from its weights until the de-
sired sparsity is reached. We then allow those models to
train for the same number of epochs as the baseline model.
Random sparse initialization sheds lights on how models
can be taught when their capacity is reduced in perhaps
the least advantageous way possible. The random selec-
tion of weights ensures that it cannot take advantage of any
architectural structure advantage, and the process may po-
tentially remove important components.

5. Experimental Results

This section presents a series of experiments that are
specifically designed to answer the following key questions:
1) Is pruning truly a compression process? 2) Does pruning
work for untrained neural networks? 3) Do learned sparse

structures carry important information? For each question,
we restate the hypothesis, explain the detailed experiments,
discuss the results, and finally draw our conclusions.

5.1. Question 1: Is Unstructured Pruning Compres-
sion?

The conventional wisdom believes that pruning is merely
a compression process, in which the redundant information
is removed and the key network structure is preserved. In
fact, almost all existing literature refer pruning as a com-
press technique for neural networks. The recently published
“Lottery Ticket Hypothesis” [4] claimed that successfully
trained large networks contain wining tickets from the be-
ginning. The winning tickets refer to the sub-networks that
have connections and initial weights that make training par-
ticularly effective. Therefore, the pruning process is just a
lucky draw that helps to find the wining ticket. If pruning
is merely a compression process, a neural network should
learn no or minimal new knowledge while being pruned.
As a result, the learned representations among all layers
and models should have very high similarities (e.g. close
to 100%). However, as the authors themselves noted in [4],
the discovered lottery ticket winning sub-nets have weights
that change the most during the retraining process.

ResNet 34 Similarity Distributions

¢
¢ . +

0.9 1 T ¢

¢+

0.8 4
2
507
E
[2)

0.6 4

0.5 4 Data Set -

I Cifar 10
0.4 [T Cifar 100
30% 60% 90%
Sparsity

Figure 2: Similarity distributions for Pruned Magnitude
ResNet-34 as compared to the original model.

To verify if pruning is truly compression or not, we
design and conduct an experiment as follows. We train
the original ResNet and VGG models using CIFAR-10 and
CIFAR-100 datasets to serve as the baseline. The represen-
tations of each layer are recorded and analyzed using the
SVCCA tool. Once the baseline model has been trained,
we prune it in two ways: 1) iteratively using the magnitude
based pruning method, and 2) at incremental sparsity levels
of 30%, 45%, 60%, 75% and 90% using magnitude based
pruning, post-pruning re-initialization, and random sparse
re-initialization. This allows us to observe how models re-
act from moderate pruning towards intensive pruning where

Prining Retraining Layear Similarity

Layer
s

0.5
0.5
054
0.7

— 072

(= R N TR S =]

L B L R o Tt i L s rdom
A A A A A A A A A A

epoch

Figure 3: Similarity of 90% sparse ResNet during retrain-
ing. Similarities are calculated with respect to the initial
state of the model before retraining (note: additional parts
of the computation graph like batch normalization and skip
layer additions are also calculated resulting in a layer count
greater than 50).

VGG 16 Layer Similarity

5. 90%
.E
2 60%

o
N 30%

Cifar10

5. 90%
.ﬁ
2 60%
o
9 30%

Cifar100

0.64 0.72 0.80 0.88 0.96

Figure 4: Similarities of VGG layer by layer at different
sparsities resulting from iterative pruning. Layers go from
left to right with the left most squares being the first con-
volutional layer and the last three being the fully connected
and softmax layers.

they could no longer maintain the desired accuracy. When
all pruned models have finished training, we evaluate their
accuracy, record their representations, and analyze the simi-
larities using the SVCCA tool. We construct the input func-
tion in a way that grantees each model to see the exact same
images in the same order, which is critical for preserving
the consistency of learned neuron vectors. Lastly, we calcu-
late the SVCCA similarity value p for each layer and use it
as the metric to fairly compare the similarities of different
representations.

Figure 2 shows the SVCCA similarity value distributions

for iteratively pruned magnitude ResNet-34 as compared to
their original models. We can observe that the learned rep-
resentations of moderate pruning (e.g. 30% of sparsity) re-
main relatively similar with the original model. However,
the more aggressively (i.e. the higher the sparsity) a model
is pruned, the less similar its learned representations are to
the original model it is derived from.

We also investigate in what ways the models are chang-
ing while they undergo pruning. Figure 3 shows the simi-
larities using a heatmap for the 90% sparsity model’s layers
in different epochs while retraining ResNet. This allows us
to obtain visual insights about the evolutionary process the
model undergoes to regain its accuracy. We observe that the
filters that are closer to the output, where presumably high
level class features are located, change at the fastest pace.
The high level layers reach a steady state in the earliest time
and propagate backward to the earlier layers in the model.
This is different from the observations reported in [15] for
models that are training from scratch, where the lower level
layers converge to their final representations first. We be-
lieve our results complement [15] well with Google’s re-
sults by showing how pruned models must repair their high
level representations first during the retraining process. In
addition, an interesting stripping pattern is observed in the
similarities, which is the result from the residual block of
ResNet. While further investigation is needed to understand
the phenomena, we speculate it is easier for the model to
discard the information between the skip connections than
to repair the damage to the layers caused by pruning. Fig-
ure 4 contains a similar visualization for layer similarities of
VGG at different sparsities compared to its original model.
Figure 4 shows that the first two convolution layers main-
tain high similarities in both data sets similar to ResNet’s
first few layers. The CIFAR-10 VGG model has a pattern of
propagating change similar to the ResNet CIFAR-10 model,
while the CIFAR-100 model has noticeably more disruption
in the middle layers at all sparsity values.

These results clearly demonstrate that pruning does not
always result in the same representation. Actually, the ag-
gressive pruning seems to force the network to adapt to the
dramatically changed environment. As a result, the learned
representations evolve to a new form, probably a more ef-
fective one than the originally learned representation. These
observations are controversial to the traditional compres-
sion theory which treats pruning as a passive process with-
out much of new learning.

5.2. Question 2: Does Pruning Work for Untrained
Neural Networks?

It is the common belief that a complex model should be
trained with full capacity first before it can be pruned for
better efficiency and initialized sparsity in an untrained neu-
ral network is unlikely to succeed. To test this hypothesis,

we conduct an experiment with sparsly intialized models to
see if pruning before training is a viable option, and if so
how much model capacity is needed for training. In this ex-
periment, we use the post-pruning re-initialization method.
First a baseline mode is trained using TensorFlow and either
the CIFAR-10, or CIFAR-100 dataset. Once the baseline
model is finished training, the model is pruned to incremen-
tal sparsity levels of 30%, 45%, 60%, 75% and 90%. We
take those pruned models and reinitialize all of their values,
but leave their sparse structures, and let them train for the
same number of epochs as the baseline model. Table 1 and
2 show the results of the post-pruning re-initialization accu-
racy as it compares to the original model, from which we
can observe that full capacity is not always needed to train
a model from scratch. For all but the most extreme level of
pruning (e.g. 90% sparsity), the models can be trained to
very similar accuracy as the baseline model. Furthermore,
as demonstrated in Table 1, the sparsely initialized models
perform equally well and sometimes even better than the
original magnitude based pruning strategy for ResNet and
ConvNet models.

VGG, however, is an exception. The accuracy of VGG
(with initialized sparsity pruning) drops significantly when
the sparsity goes beyond 45% (e.g. 10% for CIFAR-10 and
1% for CIFAR-100) and even the magnitude based method
drops to 1.1% at 90% sparsity (see Tables 1 and 2). This
indicates that sparsities over 45% prevents the VGG model
from learning. The recorded test accuracies become only
as good as random guessing for both datasets. We tried to
adjust the learning rates and reduce or remove the drop out
layers, but none of these changes helped the model to learn
anything meaningful.

This is interesting because the ConvNet is similar in de-
sign philosophy to the VGG model. It has 2 convolutional
layers, 2 fully connected layers, and a softmax layer. If re-
dundancy of a model is measured only in number of weights
or layers, then the VGG model should be able to survive
from more aggressive pruning and still learn. These results
agree with the observation by [11] that redundency in VGG
is not evenly distributed. We believe ResNet is able to sur-
vive these catastrophic collapses during training with ini-
tialized sparsity because of its skip connections in the resid-
ual blocks. If a single convolution layer is broken or prob-
lematic, its deep network is capable of bypassing the layer.

Comparing the accuracies of the iterative pruning meth-
ods in Table 3 to that of the single pass magnitude prun-
ing and pre-initialized sparsity methods in Tables 1 and 2,
we observe that the real advantage iterative methods have is
increasingly better initialization for the model weights and
substantially larger training budgets. The original VGG pa-
per [19] explicitly explained how sensitive VGG is to initial-
ization, going as far as to train a smaller model to warm start
the larger VGG-16 and VGG-19. This may also explain

Accuracy

Accuracy

Sparsity Ref (0%) | 30% 45% 60% 75% 90%

Sparsity Ref (0%) | 30% 45% 60% 75% 90%

Mag. 92.6% | 92.4% | 92.5% | 91.9% | 91.2% | 87.2%
ResNet-34 | Re-Init. | 92.6% | 92.1% | 92.0% | 90.8% | 89.9% | 88.4%
Rand. 92.6% | 92.4% | 91.8% | 91.1% | 90.2% | 87.2%

Mag. 68.8% | 682% | 68.5% | 67.6% | 65.8% | 54.4%
ResNet-34 | Re-Init. | 68.8% | 683% | 67.5% | 66.1% | 65.4% | 60.8%
Rand. 68.8% | 682% | 672% | 66.4% | 64.6% | 60.5%

Mag. 88.7% | 88.7% | 88.6% | 88.2% | 87.4% | 10.0%

Mag. 56.7% | 57.5% | 57.25% | 56.4% | 50.1% | 1.1%

VGG-16 | Re-Init. 88.7% 87.3% | 86.9% | 10.0% | 10.0% | 10.0% VGG-16 | Re-Init. | 56.7% | 53.1% | 56.6% 1.0% 1.0% 1.0%
Rand. 88.7% 87.0% | 87.0% | 10.0% | 10.0% | 10.0% Rand. 56.7% | 57.4% | 56.2% 1.0% 1.0% 1.0%
Mag. 86.3% 86.1% | 85.8 | 86.0% | 86.0% | 83.6% Magn. 58.5% | 58.5% 58.3 57.6% | 58.1% | 53.4%
ConvNet | Re-Init. 86.3% 85.7% | 85.6% | 84.6% | 84.3% | 81.0% ConvNet | Re-Init. | 585% | 57.9% | 57.9% | 58.0% | 58.4% | 58.4%

Rand. 86.3% 86.0% | 86.2% | 85.2% | 84.1% | 80.1%

Rand. 58.5% | 58.3% | 58.0% | 58.8% | 58.0% | 58.%

Table 1: Accuracy of single pass Pruned Models on CIFAR-
10

why iterative and single pass magnitude pruning are able
to succeed at higher sparsities while the initialized sparsity
methods can not.

These results overturn the conventional wisdom that
models must be first trained in full capacity before they un-
dergo pruning. When attempting to design efficient mod-
els, new methodologies thus can be developed to speed up
the pruning/training process by training models with some
amount of sparsity from the beginning.

Accuracy

Sparsity Ref (0%) | 60% 70% 80% 90%
CIFAR-10 ResNet-34 | 92.6% | 92.9% | 93.0% | 92.6% | 91.7%
VGG-16 88.7% | 89.2% | 89.9% | 88.5% | 87.9%

ResNet-34 | 68.8% | 69.3% | 69.3% | 68.5% | 60.7%

CIFAR-100 VGG-16 56.7% | 63.0% | 63.4% | 63.7% | 63.4%

Table 3: Accuracy of Iteratively Pruned Models

5.3. Question 3: Do Learned Sparse Structures
Carry Important Information?

ResNet 34 Initalized Sparsity Similarity Distributions

0.65 - T _
0.60 - —_—
0.55
2z
‘T 0.504
o
£
& 0454
0.40 -
0.35 - i — Method —1
I Post-Prune Initalized i
0.30 - [Random Initalized
60% 75% 90%
Sparsity

Figure 5: Similarity distributions for Post-Pruning Re-
initialization and Random Sparse Initaial ResNet-34 as
compared to the original model.

Sparse structures resulting from structured pruning as in
[11] has been demonstrated to have significant value. It is

Table 2: Accuracy of single pass Pruned Models on CIFAR-
100

less clear what if any value network topology that is a re-
sult of unstructured pruning has. We design an experiment
in this subsection to verify if the learned structure of the
sparsity is important and if random sparsity can yield good
accuracy.

In this experiment, we take the baseline model and ran-
domly select weights in each layer to prune until the de-
sired sparsity is reached. We prune to the same sparsities
described in the previous experiment, and allow the model
to train for the same number of epochs as our baseline
model. Tables 1 and 2 compares the results of the learned
pre-pruning method to the random pre-pruning method. In
contrast to [11]’s findings for structured sparsity, there is
virtually no distinction in performance between our random
sparse initalized and post-pruning re-initialization methods.
Our random initialized sparsity method does nearly as well
or better than the post-pruning initialized method at all spar-
sities. ResNet-34 model preforms only 1% less in accu-
racy compared with the time-consuming magnitude based
pruning method at the different sparsity levels. It also per-
forms as well as magnitude based pruning methods at the
90% sparsity level for CIFAR-10 and outperforms mag-
nitude based pruning for CIFAR-100. We also show that
models that have prior knowledge of good sparse structures
do not necessarily preform better. The only requirement
is not to be over-aggressive for capacity (e.g. use 90% or
higher sparsity). As long as moderate amounts of weights
are available, the model will find a way to adapt and over-
come its lower capacity and still learn. This indicates that
not only can pre-pruning be effective, but it can be easily
implemented using randomness.

We have already demonstrated that post-pruned re-
initialized models do not have any significant difference in
performance to randomly intialized sparse models. Purhaps
as [4] suggest the data intensive process of unstructured
pruning will create a sparsity structure that contains a cer-
tain bias. To further investigate if the learned sparsity struc-
tures carry valuable information, we analyze the SVCCA
similarity value distributions for the post-pruning initialized
and random initialized ResNet-34 models compared with
the original ResNet-34 model (see Figure 5). It can be ob-

served that the median similarity values of the representa-
tions are less than 50% at all sparsities and the distinction
between the randomly initialized and post-prune initialized
methods is negligible. We also observe that as the level
of sparsity increases, the similarities of post-prune initial-
ization actually decreased (it should increase if the sparse
structures really carry important information), which indi-
cates that the learned sparse structures do not carry valuable
information.

6. Conclusion

As an effective technique to reduce the size of modern
neural networks, pruning has been extensively studied in re-
cent years. However, the current understanding about prun-
ing is still in its early stage with numerous misconceptions
and inappropriate hypotheses. This paper explores several
fundamental questions about pruning and strives to find out
1) if pruning is truly compression; 2) if pruning can work on
untrained neural networks; and 3) if sparsity structures from
unstructured pruning provide valuable information. The
following conclusions can be drawn from our experiments
and observations.

First, after analyzing the similarities of various learned
representations using the SVCCA tool, we find that prun-
ing is not a passive compression process without learning
new knowledge. Rather, the pruned model is capable of
evolving proactively to survive in a dramatically changed
environment, which is done by learning and transforming
to more effective representations when aggressive pruning
is occurring.

Second, our results indicate that initialized sparsity can
work for untrained neural networks with certain architec-
tures or capacities. Taking advanced knowledge from one
model (e.g. which weights are important) and using it to
train another model will not result in any significant perfor-
mance gains when training.

Third, we observe that the sparsity structure from the
post-pruning re-initialization is not inherently useful or
meaningful. Random initialized sparse models perform
equally well compared to post-pruning re-initialized sparse
models. The similarity of their layer representations share
almost no connection or valuable information to the origi-
nal models where they derive from. This is in contrast to
structured pruning where the discovered structures can be
used to train efficient models from scratch.

ACKNOWLEDGMENT

The work reported in this paper is supported by the U.S.
National Science Foundation under Grant No.
CNS-1908658.

References

[1] S. Anwar, K. Hwang, and W. Sung. Structured pruning of
deep convolutional neural networks. In arXiv preprint
arXiv:1512.08571, 2015.

W. Chen, J. Wilson, T. S., W. K. Q., and C. Y. Compressing

neural networks with the hashing trick. In JMLR workshop,

2015.

Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of

model compression and acceleration for deep neural

networks. /EEE Signal Processing Magazine, 2018.

[4] J. Frankle and M. Carbin. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In International
Conference on Learning Representations, 2019.

[5] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both
weights and connections for efficient neural networks. In
NIPS, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2015.

2

—

3

—

[7

—

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up
convolitional neural networks with low rank expansions. In
BMVC, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS. 2012.

[9] V. Lebedev and V. Lempisky. Fast convnets using
group-wise brain damage. In CVPR, 2016.

[10] Y. Lecun, J. S. Denker, and S. A. Solla. Optimal brain
damage. In NIPS, 1990.

[11] Z.Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell.
Rethinking the value of network pruning. In International
Conference on Learning Representations, 2019.

[12] Z. Mariet and S. Sra. Diversity networks. In ICLR, 2016.

[13] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen.
Exploring sparsity in recurrent neural networks. In arXiv
preprint arXiv: 1704.05119, 2017.

[14] A. Polyak and L. Wolf. Channel-level acceleration of deep
face representations. In IEEE Access, 2015.

[15] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein.
Sveca: Singular vector canonical correlation analysis for
deep learning dynamics and interpretability. In NIPS, pages
6076-6085, 2017.

[16] R. Rigamonti, A. Sironi, V. Lepetit, and F. P. Learning
separable filters. In CVPR, 2013.

[17] A. See, M.-T. Luong, and C. D. Manning. Compression of
neural machine translation models via pruning. In CoNLL,
2016.

[18] W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding
and improving convolutional neural networks via
concatenated rectified linear units. In ICML, 2016.

[19] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

[8

—

[21] C. Tai, T. Xiao, and X. Wang. Convolutional neural
networks with low-rank regularization. In arXiv preprint
arXiv:1511.06067, 2015.

[22] S.Zhai, Y. Cheng, W. Lu, and Z. Zhang. Doubly
convolutional neural networks. In NIPS, 2016.

[23] H.Zhou, A.J. M., and P. F. Less is more: Towards compact
cnns. In ECCV, 2016.

