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Identification and Control of Electron-Nuclear Spin Defects in Diamond

Alexandre Cooper % Won Kyu Calvin Sun,' Jean-Christophe J askula,' and Paola Cappellarol‘:ﬁ
'Department of Nuclear Science and Engineering and Research Lab of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
2Deparl‘menr of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA

® (Received 2 July 2018; revised manuscript received 4 September 2018; accepted 23 January 2020; published 25 February 2020)

We experimentally demonstrate an approach to scale up quantum devices by harnessing spin defects in
the environment of a quantum probe. We follow this approach to identify, locate, and control two electron-
nuclear spin defects in the environment of a single nitrogen-vacancy center in diamond. By performing
spectroscopy at various orientations of the magnetic field, we extract the unknown parameters of the
hyperfine and dipolar interaction tensors, which we use to locate the two spin defects and design control
sequences to initialize, manipulate, and readout their quantum state. Finally, we create quantum coherence
among the three electron spins, paving the way for the creation of genuine tripartite entanglement. This
approach will be useful in assembling multispin quantum registers for applications in quantum sensing and

quantum information processing.
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Quantum devices that exploit the spins of impurity atoms
or defect sites in solid-state materials offer promising
applications in quantum communication [I-3], quantum
information processing [4—6], and quantum sensing [7,8].
Color centers with robust optical transitions and long-lived
spin degrees of freedom are especially attractive for engineer-
ing optical networks of quantum registers [9—11] and atomic-
scale sensors of time-varying magnetic fields [12—14]. The
most studied of such color centers is the nitrogen-vacancy
(NV) center in diamond, because of its outstanding optical
and spin properties under ambient conditions [15].

An important problem with building scalable quantum
devices based on synthetic NV centers is the existence of
environmental spin defects, mostly byproducts of the NV
creation process, such as nitrogen-related centers, vacan-
cies, and their aggregates [16]. Whereas these spin defects
usually cause fluctuations responsible for decoherence
[17], they could rather serve as quantum resources were
their spin properties under control [18,19]. Although spin
defects in the environment of a single NV center have been
studied and controlled [20-26], a systematic approach for
converting electron-nuclear spin defects into useful quan-
tum resources is still needed, e.g., to transfer information
between distant quantum registers [27-29] or improve the
sensitivity of quantum sensors [19,30-33].

Here, we experimentally demonstrate an approach to
identify, locate, and control electron-nuclear spin defects
in the environment of a quantum probe using double
electron-electron resonance spectroscopy. Our approach
relies on exploiting the nontrivial transformation of the
spin Hamiltonian under rotation of the external magnetic
field to estimate the parameters of the hyperfine and dipolar
tensors, as needed to identify and locate unknown spin
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defects, as well as to design control sequences to initialize,
manipulate, and readout their quantum states. As a proof-
of-principle demonstration, we spectrally characterize two
unknown electron-nuclear spin defects in the environment
of a single NV center in diamond and create quantum
coherence among the three electron spins. These results
demonstrate a further step toward assembling large scale
quantum registers using electron spins in a solid.

Our experimental system consists of a single NV center
interacting through magnetic dipole-dipole interaction with
two electron-nuclear spin defects (X;, X,) randomly
created by implanting N ions through nanometer-sized
apertures in an isotopically purified diamond crystal [34].
Each X spin consists of an electronic spin § = 1/2 strongly
coupled to a nearby nuclear spin I = 1/2, giving rise to
two resolved hyperfine doublets in the spin-echo double-
resonance (SEDOR) spectrum [Fig. 1(a)] [37]. Each hyper-
fine transition can be selectively addressed using resonant
microwave pulses with negligible crosstalk. Interestingly,
the X spins are stable under optical illumination, enabling
repetitive readout of their quantum state [33].

Our approach to solving the system identification prob-
lem consists in estimating the parameters of the spin
Hamiltonian describing each of the two electron-nuclear
spin defects

H(0.¢) =p.B- A I

S+S-A-I-g.p,B-1. (1)

ISS)

where B = B(6, ¢) is the static magnetic field vector of
norm By, A is the hyperfine interaction tensor, g (g,) is the g

tensor (g factor) of the electron (nuclear) spin, and 3, (f,,) is
the Bohr (nuclear) magneton (we set 7 = 1).
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FIG. 1. Identifying two unknown spin defects in diamond. (a) A
single nitrogen-vacancy center (NV) interacts with two electron-
nuclear spin defects (X;, X,) in diamond. The spin-echo
double-resonance (SEDOR) spectrum measured by applying a
recoupling 7 pulse at a variable frequency vk during a spin-echo
on the NV electron spin exhibits two resolved hyperfine doublets
centered around the free-electron spin resonance frequency
v, = 7.By, where 7, is the gyromagnetic ratio of the free electron
and By = 171.8 G is the strength of the static magnetic field
oriented along the molecular axis of the NV center. The solid line
is a fit to four Lorentzian spectral lines associated with the two
hyperfine resonances of X, (blue, outer spectral lines) and X,
(green, inner spectral lines) (b) The unknown parameters of the
hyperfine and dipolar tensors of the X spins are measured by
varying the strength and orientation of the magnetic field using a
permanent magnet. The polar and azimuthal angles parametrizing
the orientation of the magnetic field (0, ¢) and the principal axes
of the hyperfine tensors for the NV center (Ony = 54.7°,
¢nv = 0°) and X spins (ay, By) are defined with respect to
the crystallographic axes (X¢,¥c¢,Zc) of the diamond crystal.
(c) NV resonance frequency for various magnet positions. For
each magnet position, there exist multiple values of the strength
and orientation of the magnetic field that result in the same NV
resonance frequency (inset). (d) Electron-spin-echo envelope
modulation (ESEEM) spectroscopy of the NV center for various
magnet positions. The spectral components at the nuclear
frequencies result from hyperfine mixing with the host N
nuclear spin in the presence of a nonaxial magnetic field. For
each magnet position, the field strength (B,) and polar angle (6)
are unambiguously determined by finding the simulated spectrum
(dotted lines) that best matches the measured spectrum. The
frequency wrapping for large magnet positions is an artifact of
bandlimited sampling that is captured by our model.

To extract the energy eigenvalues of H(0,¢), we
perform double-resonance spectroscopy for different ori-
entations of the magnetic field [Fig. 1(b)] by translating and
rotating a permanent magnet with respect to the diamond
sample. However, simply measuring the resonance fre-
quency of the NV electron spin on only one of its electronic
spin transitions, e.g., via cw-ESR in the m; € {0,—1}
manifold [Fig. 1(c)], is not sufficient to uniquely character-
ize B(6, ) [38,39]; indeed, multiple admissible pairs of
(By,0) exist resulting in the same resonance frequency

[inset of Fig. 1(c)]. To resolve this ambiguity, we measure
the frequencies of the electron spin-echo envelope modu-
lation (ESEEM) [40] caused by the strong dipolar coupling
to the 1N nuclear spin [Fig. 1(d)]. When the magnetic field
is misaligned with respect to the NV molecular axis ((111)
crystallographic axis), the energy levels of the NV electron
and nuclear spins are mixed, such that the spin-echo signal
is modulated at the nuclear frequencies and their combi-
nations, {v;, vy, v, £ 1 }. Performing a numerical fit to the
ESEEM spectrum [41], we unambiguously determine the
magnetic field strength and polar angle at each magnet
position [34].

To estimate the parameters of the hyperfine tensors, we
follow an approach akin to tomographic imaging recon-
struction. Geometrically, the hyperfine tensor can be
represented as an ellipsoid, whose dimensions are given
by the principal components, {A,,A,,A,}, and principal
angles, {ay, Bx,Yx}, of the hyperfine tensor. Rotating the
magnetic field around a fixed axis generates multiple
tomographic cuts of the ellipsoid from which the hyperfine
parameters can be estimated.

Specifically, we estimate the hyperfine parameters by
monitoring the change in the hyperfine splitting of the X
spins as a function of the orientation of the magnetic field
(Fig. 2). To simplify the reconstruction problem, we
assume the hyperfine tensors A to be axially symmetric
(A, =A,=A)), neglect the nuclear Zeeman term, and
choose the ¢ tensor to be isotropic with its principal value
equal to the electron spin ¢ factor (g =g, -1). These

assumptions are consistent with our measurements, which
could be further extended to distinguish between an axially
symmetric tensor and a full tensor [34].

Thus, characterizing the hyperfine tensor involves meas-
uring a set of four unknown parameters, {A LA ax, f Y s
which we experimentally determine by simultaneously
fitting the measured hyperfine strengths to the parametric
equations for the eigenvalues of H (0, ¢). Thus, we obtain
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FIG. 2. Characterizing the hyperfine tensors of two spin defects
in diamond. (a) Measured hyperfine strengths for various polar
angles of the magnetic field (0) plotted with respect to the polar
angle of the NV center (fyy) in the azimuthal plane ¢ = 0°.
(b) Measured hyperfine strengths for various azimuthal angles of
the static magnetic field (¢) in the polar plane 6 = 90°. The solid
lines are the curves of best least-square fit of both sets of data to
the eigenvalues of an axially symmetric hyperfine tensor with
four free parameters.
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AL =172(3), Ay =294(2), ax =0(2), fx = 87(2) for
Xy and A; =1.6(3), A =11.2(2), ay =45(2), fx =
66(2) for X,. We did not find any defects sharing these
parameters in the literature [42-48], suggesting that they
may never have been detected using conventional spec-
troscopy methods. These defects are possibly nitrogen- or
silicon-related centers resulting from nitrogen-ion implan-
tation through a 10-nm amorphous SiO, layer introduced to
mitigate ion channeling [49]. Further triple-resonance
measurements on the X nuclear spins should enable
unambiguous identification of the nuclear spin species.

To spatially locate the two defects, we measure the
change in dipolar interaction strengths as we rotate the
polar angle & of the magnetic field in the azimuthal plane
¢ = 0. Because the NV and X electron spins are quantized
along different axes, the transformation of the dipolar
interaction tensor under rotation of the magnetic field is
nontrivial [34]. Another complication is that, as the
magnetic field is rotated away from the NV molecular
axis, the NV coherence signal becomes modulated by the
hyperfine interaction with the N nuclear spin, in addition
to the desired modulation due to the dipolar interaction with
the recoupled X electron spin [Fig. 3(a)].

To generate probability distribution maps for the location
of the X spins with respect to the NV center [Figs. 3(c) and
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FIG. 3. Locating two spin defects in diamond. (a) Typical

dipolar oscillations measured using a recoupled spin-echo se-
quence in the presence of a nonaxial magnetic field. The slow
modulation (solid blue line) is caused by the dipolar interaction
between the NV electron spin and the X electron spin, whereas
the fast modulation is caused by the hyperfine mixing with the
NV nuclear spin. (b) Measured dipolar coupling strengths
between the NV electron spin and the X; (blue) and X, (green)
electron spins for various magnet positions. The solid line is the
best least-square fit to the eigenvalues of the interacting spin
Hamiltonian with three free parameters (r, ¢, &, see [34]), which
parametrize the relative position of the two X spins with respect to
the NV center. (c) and (d) Probability distribution maps of the
location of the X; (top) and X, (bottom) spins defined with
respect to the coordinate frame of the NV center placed at the
origin. The darker color indicates a higher probability of finding
the X spin at this specific location.

3(d)], we evaluate the least-square error between the dipolar
strengths computed for various admissible locations of the
defects and the dipolar strengths measured from the low-
frequency components of the SEDOR signal [Fig. 3(b)]. At
the most probable location, we estimate the distance from
the NV center to be r; = 9.23(3) nm and r, = 6.58(3) nm
for X, and X,, respectively. We searched for signatures of
coherent interaction between X; and X, but could not
resolve any, indicating that the two defects are farther apart
from each other than from the NV center.

Having partially identified and located the two X defects,
now, we have a consistent description of the three-spin
system that is sufficient for designing control protocols to
engineer its quantum state and create correlated states of
multiple spins. To demonstrate control of the two X spins
[34], we create quantum coherence among the three
electron spins, taking a first step toward the creation of
genuine tripartite entanglement. Our control protocol
(Fig. 4) is based on (1) initializing the three-spin system
in a pure state using coherent spin exchange with the
optically polarized NV spin, (2) creating three-spin coher-
ence using a series of entangling CNOT gates, and
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FIG. 4. Creating and detecting three-spin coherence. (a) and
(b) The dissipative channel ® removes entropy out of the
quantum system by optically pumping the NV center (green
box). The SWAP gates implemented using Hartmann-Hahn cross
polarization with z/2 pulses along the +y axis (bright and pale
red box) and continuous driving along the +x axis (bright and
pale blue box) exchange the state of the NV and X spins,
effectively polarizing the X spins. A series of Hadamard (H)
and CNOT gates implemented using z/2 and 7 pulses realize an
entangling and disentangling gate to create and detect three-spin
coherence, which is protected against dephasing by a series of X
gates. The three-spin coherence is mapped back into a population
state of the NV spin using a series of disentangling gates and
measured projectively in the Z basis (green box). The phase of the
pulses of the disentangling gate on the NV, X, and X, spins are
incremented by steps of A¢ny = 57/10, A¢, = 2x/10, and
A¢, = /10, respectively, to spectrally label the spin coherence
terms. (c) The power spectrum of the signal shows parity
oscillations [50] at the sum of the three modulation rates
(Ags = 87/10), thus, indicating the creation of three-spin
coherence [34].
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(3) mapping the coherence back into a population differ-
ence on the NV spin using a series of disentangling CNOT
gates with modulated phases.

Specifically, because the X spins lack a known mecha-
nism for dissipative state preparation, first, we initialize its
quantum state using multiple rounds of Hartmann-Hahn
cross polarization [51-53], which relies on simultaneously
driving both spins at the same Rabi frequency to engineer
coherent spin exchange in the rotating frame at a rate given
by the dipolar coupling strength.

Then, we create three-spin coherence by synthesizing
entangling gates using the recoupled spin-echo sequence
[37], which decouples the NV spin from its environment
using a spin-echo sequence while selectively recoupling the
dipolar interaction with the X spin with a recoupling #
pulse. The recoupled spin-echo sequence correlates the two
spins, but does not necessarily create entanglement in the
presence of control imperfections.

Finally, we quantify the amount of three-spin coherence
created after the entangling gate by mapping it back into a
measurable population difference on the NV spin. To
distinguish between the creation of single-spin and multi-
spin coherence, we increment the phase of the pulses of the
disentangling gates after each realization of the experiment
by steps of 57/10, 27/10, and /10 for the NV, X;, and X,
spins, respectively. Although this method [54,55] does not
provide full state tomography, the modulation of the phases
results in a modulation of the polarization signal [Fig. 4(c)]
at a rate given by the sum of the three increment rates
(87/10), thus, indicating the creation of three-spin coher-
ence without significant leakage to other coherence terms
and showing a first step toward the creation of genuine
tripartite entanglement, which could be used to achieve
quantum-enhanced sensing [33].

In conclusion, we have demonstrated an approach to
identify and control electron-nuclear spin defects in the
environment of a quantum probe using double-resonance
spectroscopy. This approach will be useful in characterizing
unknown spin defects in solids so as to better understand
their formation mechanisms, mitigate their detrimental
influence, and harness their favorable spin, charge, and
optical properties. This approach will also be useful in
identifying spin systems of greater complexity, including
unknown molecular structures placed near the surface of
diamond [30,31]. Instead of more abundant species, such as
substitutional nitrogen defects (P1 centers) and free elec-
trons, harnessing proximal electron-nuclear spin defects will
enable better spectral separability in a crowded spectrum and
better stability against photoionization. Controlling their
nuclear spins, e.g., by direct driving at the Larmor frequency
using radio-frequency pulses in triple-resonance experi-
ments, will provide further access to quantum resources
for processing and storing quantum information.
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Supplemental Material
Identification and Control of Electron-Nuclear Spin Defects in Diamond

PREPARING THE DIAMOND SAMPLE

The nitrogen-vacancy (NV) center in diamond is a point-defect formed by a substitutional nitrogen atom located
nearby a vacancy in the diamond lattice. The NV center in its negatively charged state (NV™) has two unpaired
electrons that form a spin-triplet ground state with three magnetic sub-levels, my, = {0,+1}, and a zero-field splitting
of A =2x-2870 MHz. The NV center has a spin-triplet excited state with a phonon-broaden spin-preserving optical
transition in the visible range centered at 637 nm. This optical transition enables spin-state initialization in the
ms = 0 ground state by optical pumping and spin-state readout by fluorescence imaging. The host nuclear spin
(I =1 for N-14, I = 1/2 for 'N), coupled by an anisotropic hyperfine interaction, provides additional degrees of
freedom for storing quantum information and assisting in magnetic sensing applications.

We fabricated two-dimensional arrays of confined ensembles of spin defects in a synthetic diamond crystal [1], by
implanting °N nitrogen ions through circular apertures with a diameter of 30 nm. The diamond substrate was a
single crystal chemical vapor deposition (CVD) diamond from Element Six with a 100 pm-thick layer of isotopically
enriched 99.999 % 12C grown on top of a 300 um-thick electron grade single crystal diamond substrate. The diamond
sample was cut with its edge directed along the (110) crystallographic axis, such that the (111) molecular axis of the
NV center lied in the (110) x (001) crystallographic plane with its transverse projection oriented towards the (110)
edge of the diamond sample.

After cleaning the surface with boiling acid, we deposited a 10-nm SiOs layer to mitigate ion channeling during ion
implantation. We then coated the sample with a 150 nm-thick layer of Poly(methyl methacrylate) (PMMA) resist
and thermally evaporated Au. We used electron-beam lithography with an exposure dose of 1400 uC/cm? to pattern
nano-aperture arrays, and finally developed the PMMA resist while keeping the SiO2 layer.

We then implanted '°N nitrogen ions with an energy of 14 keV and a dose of 10 cm™2. We chose these implantation
energy and dose parameters as a trade-off between increasing the mean distance to the diamond surface and reducing
the longitudinal straggling of the nitrogen ions. We further annealed the diamond sample at a temperature of
800°C for 4 h to promote the mobility of vacancies and create NV centers with a conversion efficiency of less than
a few percent. We finally cleaned the surface of the diamond with a boiling mixture of concentrated acids (1:1:1
H5S04 : HNOj3 : HCIO4). We routinely cleaned the diamond surface with a piranha acid solution (3:1 HoOs : HySOy)
and did not observe any modifications of the properties of our spin system.

Numerical simulations with the SRIM software indicated that the spatial distribution of substitutional nitrogen de-
fects in each implanted region was normally distributed with a mean implantation depth of 19.9 nm and a longitudinal
straggling of 6.6 nm, greater than the interaction range with surface spins. We searched over more than 150 implanted
regions to identify three single NV centers, one of which exhibited a strongly modulated interferometric signal and
was thus used in this study. For this NV center, we could not resolve a coherent signal from ensembles of nuclear
spins associated with impurities on the surface of the diamond sample or protons of the confocal oil, suggesting a
relatively deep NV center.

DETERMINING THE STRENGTH AND ORIENTATION OF THE MAGNETIC FIELD

As the parameters of the dipolar and hyperfine tensors depend critically on the orientation of the static magnetic
field, we implemented a precise protocol to extract its strength and orientation from spectroscopic measurements on
the NV center.

To systematically vary the orientation of the static magnetic field at the location of the NV center, we mounted a
25.4 mm-edge cubic magnet on a linearly-actuated translation stage with rotational degrees of freedom. We aligned
the magnetization axis of the magnet along the (110) crystallographic axis of the diamond crystal in such a way that
displacing the magnet along its magnetization axis rotated the magnetic field by the polar angle 6 in the (001) x (110)
(¢ = 0°) crystallographic plane. This was confirmed by performing spectral measurements on an ensemble of NV
centers implanted in a nearby region of the same diamond and observing the spectral overlap of the resonance



frequencies of two out of the four NV crystallographic classes. Fixing the position of the magnet at the polar angle
# = 90° and rotating the magnet along its vertical axis further rotated the azimuthal angle ¢ of the magnetic field in
the (110) x (110) crystallographic plane.

To quantify the strength and orientation of the static magnetic field at each position of the magnet, we first
measured the resonance frequency of the NV electron spin in the m; € {0, —1} manifold using a continuous-wave
electron spin resonance (cw-ESR) sequence (sFig. 1a). The set of measured frequencies was, however, not sufficient to
uniquely determine the strength and orientation of the static magnetic field; there indeed existed an infinite number
of admissible values for (By, 6) that resulted in the same resonance frequency (inset of sFig. la).

To resolve this ambiguity, we further measured the frequencies of the electron spin-echo envelope modulation
(ESEEM) [2] caused by the strong dipolar coupling to the intrinsic N nuclear spin of the NV center. As the
hyperfine tensor of the N spin is axially symmetric, no ESEEM is detectable when the static magnetic field is
oriented along the molecular axis of the NV center ((111) crystallographic axis). For any other orientation of the
magnetic field (0’ = 0 — Oy # 0), the bare energy levels of the NV electron spin and '®N nuclear spin are mixed,
resulting in an effective interaction strength proportional to A Bsin(6’)/(A—~.B cos(#’)). Then, the spin-echo signal
is modulated at the nuclear frequencies and their combinations, {v1, v, 1 £1vp}. These frequencies correspond to the
quantization energies of the nuclear spin conditional on the NV electron spin being in the ms = 0 or my = —1 spin
states, including the mixing contributions.

We numerically simulated the ESEEM spectrum [3] by diagonalizing the electron-nuclear spin Hamiltonian of the
NV center for different values of the strength and orientation of the static magnetic field. For each position of the
magnet, we searched for the field parameters (By, #) that best reproduced the measured ESEEM spectrum under the
constraint of a known NV resonance frequency. Following this approach, we determined a unique pair of admissible
values for the field parameters at each magnet position (inset of sFig. 1d).

CHARACTERIZING THE HYPERFINE INTERACTION STRENGTH

We derive an analytical expression for the hyperfine coupling strength in the secular approximation as a function
of the orientation of the static magnetic field. The Zeeman Hamiltonian for the electron spin is given by

/He(eﬁ(b)zﬁe Bgﬁ (1)
= geﬂe B- § (2)
= we(cos(0)S, + sin(6)(cos(¢) Sy + sin(4)Sy)), (3)

where we = g, By is the Zeeman energy of the electron spin and
B(0,¢) = Bo(sin(0) cos(¢), sin(f) sin(¢), cos()), (4)

is the magnetic field vector expressed in the crystal frame using the polar and azimuthal angles (6, ¢).

The strength of the magnetic field is chosen such that the hyperfine coupling strength is smaller than the electron
spin Zeeman energy, but larger than the nuclear spin Zeeman energy, i.e., w, < ||A|] < we. Under this assumption,
the electron spin is quantized by the Zeeman energy, whereas the nuclear spin is not.

Let’s recall that the hyperfine tensor is fully characterized by its principal components, {A;, A,, A.}, and its
orientation with respect to the crystal frame given by the Euler angles, {«, 3,v}. The hyperfine tensor in its principal
coordinate frame is thus represented by a diagonal matrix

A = diag[A,, Ay, A, (5)

which can be rotated into the crystal frame as

>

A=RT.A R, (6)
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sFig. 1. Measuring the strength and orientation of the static magnetic field. (a) Measurements of the
resonance frequency of the NV electron spin for various magnet positions. For each magnet position, there exist
multiple values of the strength and orientation of the magnetic field that result in the same NV resonance frequency
(inset). (b) Measurements of the electron spin-echo envelope modulation (ESEEM) of the NV electron spin for
various magnet positions. The spectral lines at the nuclear frequencies result from hyperfine mixing with the host
15N nuclear spin in the presence of a non-axial magnetic field. (c) For each magnet position, the field strength and
polar angle are unambiguously determined by finding the simulated spectrum that best matches the measured
spectrum. (d) Field strength and polar angle of the magnetic field recovered from a series of spectral measurements
on the NV electron spin.

where R is the rotation matrix describing the transformation of the hyperfine matrix from its principal coordinate
frame to the crystal frame,

cos(y) cos(f) cos(ar) — sin(y) sin(a)  cos(7y) cos(B) sin(«) + sin(7y) cos(a) — cos(y) sin(p)
—sin(y) cos(B) cos(a) — cos(7y) sin(a) — sin(7) cos(B) sin(a) + cos(y) cos(a)  sin(7y) sin(B)
sin(8) cos(a) sin(8) sin(a) cos(8)

R=
For simplicity, assume the magnetic field to be aligned along the z-axis of the crystal frame, such that B = By-(0,0, 1)

for 8 = 0 and ¢ = 0. The secular hyperfine Hamiltonian is given by

T

:B»

Hn

h>>

S .
S,

Q

giving rise to an effective hyperfine frequency shift of C, = \/ Az, + A2, + AZ,.

In general, the hyperfine coupling strength is given by

C. = \JTe{(H, ® L) Hp}? + Te{(H, ® I,) Hy}? + Tr{ (H, © L) Hy}? /4w,



In the case of an isotropic hyperfine tensor, we have
Cizso = A, (10)

whereas in the case of an axially symmetric tensor, we have
ax __ _1 2 2 2 2
(4 cos(25) sin®(B) sin®(0) + 4 cos(6) sin(23) sin(26) + cos(28)(3 cos(20) + 1) + cos(26))] / ,
where § = o — ¢. In the general case of an arbitrary tensor, we can also obtain an explicit expression, which is given
by

= i [5 (A2 + A}) + 6A2 + 8 (A2 — A2) sin(2) (cos(B) sin(26) sin®(0) — sin(B) sin(d) sin(26))

+ (Ai — A;) cos(27y) (2(cos(2B) + 3) cos(26) sin”(0) — 4sin(2) cos(8) sin(20) + 2sin®(B) (3 cos(26) + 1)) (12)
+ (242 — A2 — A2) (4sin?(B) cos(26) sin®(0) + 4sin(2) cos(8) sin(20) + cos(28) (3 cos(20) + 1) + cos(26))]"*.

C.

We fit the data collected as described in the main text to these formulas, where the magnetic field angles 6 and ¢
were varied by translating the permanent magnet with respect to the diamond crystal. We found that the model of
an axially symmetric tensor (Eq. (11)) fitted slightly better the data (lower x?) than the general model of Eq. (12).
Further data points at different combinations of # and ¢ could better discriminate between models.

CHARACTERIZING THE DIPOLAR INTERACTION STRENGTH

In the absence of an external static magnetic field, the NV center is quantized along its (111) molecular axis defined
by the strong crystal field responsible for the zero-field splitting A = 27 - 2870 MHz. In the presence of a weak static
magnetic field of strength v.By < A, the NV electronic spin is weakly tilted away from its molecular axis, whereas
the X electronic spin is predominantly quantized along the external field. This behavior is responsible for a non-trivial
transformation of the dipolar interaction tensor under rotation. The dependence of the effective dipolar interaction
strength on the orientation of the static magnetic field thus provides information about the spatial location of the X
spins with respect to the NV center.

The total spin Hamiltonian describing the interaction between the NV center (Snyyv = 1, Inv = 1/2) and the X
electron-nuclear spin defect (Sx = 1/2, Ix = 1/2) is given by

H=Hnv + Hx + HNv_X, (13)

where Hnvy (Hx) is the spin Hamiltonian of the NV center (X spin defect) and Hyv_x the interaction Hamiltonian
describing the magnetic dipolar interaction between the NV electron spin and X electron spin. The dipolar Hamiltonian
in its general form is given by

NvYx A2
Hyv_x = _ Poanviaxiv

i 3 BNy 0)(Ex 1) — (Snv - Sx)), (14)

where r = (sin (¢) cos (§), sin (¢) sin (£), cos (¢)) is the interatomic vector of norm 1 that join the NV center and X spin
defect, parameterized by the distance r between the two centers and the polar and azimuthal angles ((,&) defined
with respect to the NV molecular axis.

Since we can consider the dipolar coupling as a perturbation of each spin Hamiltonian, the only visible component
in an experimental measurement is the energy-conserving one. Thus, the effective (secular) dipolar coupling strength
between the NV electron spin and X electron spin is obtained by computing the eigenvalues of the total dipolar
Hamiltonian in the doubly-tilted frame

H = Ug ' UnvHnv—xUnvUx (15)

where Uny (Ux) is the unitary transformation diagonalizing Hyv (Hx).



By projecting the NV electron spin onto an effective two-level system, it is possible to analytically evaluate the
secular dipolar strength. In this approximation, valid when the mgs; = 41 level is energetically isolated and never
populated by the driving field, we obtain:

3sin(2¢) cos(€) sin(@')[A — 3. By cos(0')] — 6. By sin?(¢) cos(2¢) sin () + (3 cos(2¢) + 1)(A cos(0') — . Bo cos(26"))
4r31/2(7e By sin(0"))2 + (A — . By cos(6))?

d=d,

where d. = 27 - 52.041 kHz is the dipolar constant for two electronic spins at a distance of 1 nm and 6’ = 6 — Oy is
the angle between the static magnetic field and the NV molecular axis in the ynyv = 0 plane.

CONTROLLING THE THREE ELECTRON-NUCLEAR SPIN SYSTEM
GENERATION AND DETECTION OF THREE-SPIN COHERENCE

Identifying the unknown parameters of the three-spin Hamiltonian enables precise control of the three-spin system
via resonant microwave pulses and free evolution under dipolar interaction. To demonstrate control, we generated and
detected three-spin coherence. The spin system was first initialized by exploiting cross-polarization under continuous
driving and optical polarization of the NV system. We performed the cross polarization on each hyperfine transition of
the X spin in series, as the hardware implementation was easier to avoid cross-talks. Similarly, we applied microwave
pulses on each hyperfine transition in series rather than simultaneously.

We then used a recoupled spin-echo sequence to generate CNOT gates, combining single-spin 7/2 pulses and free
evolution under the spin-spin couplings. Intuitively, the free evolution blocks engineer a controlled-Z rotation, which
is transformed into a CNOT by the 7/2 pulses. In order to protect the spins affected by the gates from noise and
other couplings in the system, we embedded spin echoes in the gate.

The polarization sequence ideally prepares the state |000). The entangling control then prepares, in the absence of
control errors, the GHZ state |GHZ) = %(|OOO> + €™ |111)). We repeat the experiment after incrementing the phase
of the detection pulses by steps of A¢ny = 57/10, Apxo = 27/10, and Apx1 = 7/10 for a total of 64 repetitions.
Given these phase increments, only if there exists three-spin coherence, we would measure a modulation of the signal
at the sum of the three modulation rate, A¢y, = Apny + Adxa + Adx1 = 87/10.

We further notice that, given an arbitrary mixed state, assuming the disentangling gate to be perfect, we would
expect modulation only at the rates of 0,7 /10,27 /10, ...,87/10. Thus, our choice of modulation frequencies simplifies
the expected modulation spectrum. As shown in the spectrum presented in the main text, most of the signal is indeed
given by the A¢y, = 87/10 component. However, we observe some small leakage at other spectral components (37/10,
47/10, and 77 /10), indicating that the disentangling gate is not perfect. We note that these imperfections would
affect any attempts to perform full state tomography, thus preventing us from distinguishing between imperfect state
preparation and imperfect state readout.

The frequency modulation can still give estimates of the prepared state fidelity and entanglement. First, we note
that our experiment effectively post-selects on the charge state of the NV center: indeed, we consider the difference
signal obtained when measuring the NV center in the |0) and | — 1) state, so that the signal measured when the NV
is ionized in the NV? state is mainly canceled out as it would typically contribute just a common background noise.

Normalized Signal

0 10 20 30 40 50 60
Phase Step

sFig. 2. Normalized modulation signal. The solid line is a non-linear fit of the experimental data (circles) to a
sum of sinusoids.

We can fit the difference signal to a sum of sinusoids (sFig. 2), Sq = ag + ) _, a; cos(¢; + w;n), where n is the step
size in the experimental phase increment. The component ag at wg = A¢y = 87/10 yields the absolute value of the



coherence ag/2 = |p1s]| = [(111|p|000)|, where p is the state prepared by the series of cross-polarization and entangling
gates. By renormalizing the signal by its L? norm, [ S3 = 1/2, we effectively post-select the initialized state in the
subspace spanned by the observable. We then observe as = 2|p15| = 0.43(5), indicating that most of the signal is
indeed at the desired modulation frequency, showing good coherent control of the three-spin system.

We note that the fidelity is given by F = (GHZ|p|GHZ) = 3(p11 + pss + 2|p1s|), where we allowed for a free
parameter, the phase x. Also, the state is entangled if we have Tr[pW] < 0, with W an entanglement witness [4, 5]
given by W = 2 — |GHZ)(GHZ|, that is, there is genuine tripartite entanglement if the fidelity is F' > 2. If the only
off-diagonal term in the density matrix were p;s, we can bound p1; + psg by imposing that the density matrix should
be semidefinite positive, and the fidelity is bounded by F' > 2|p1s| ~ 0.43(5).

This estimate however overestimates the fidelity, since most of the signal in the experiment is actually lost due to
imperfect polarization. Indeed, an imperfectly polarized state gives rise to similar oscillations, but with a smaller
amplitude. To obtain an estimate of this effect, we can compare the difference signal amplitude for a simple NV-
only experiment (such as a Ramsey modulation experiment) with the signal amplitude obtained in the entangling
measurement. We then find 2|p15] = 0.10(2) indicating that, when accounting for imperfect polarization, despite
creating the desired coherence, no entanglement is generated.
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