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Many-body localization (MBL), characterized by the absence of thermalization and the violation of con-
ventional thermodynamics, has elicited much interest both as a fundamental physical phenomenon and for
practical applications in quantum information. A phenomenological model which describes the system using
a complete set of local integrals of motion (LIOMs) provides a powerful tool to understand MBL but can usually
be computed only approximately. Here we explicitly compute a complete set of LIOMs with a nonperturbative
approach by maximizing the overlap between LIOMs and physical spin operators in real space. The set of LIOMs
satisfies the desired exponential decay of the weight of LIOMs in real space. This LIOM construction enables
a direct mapping from the real-space Hamiltonian to the phenomenological model and thus enables studying
the localized Hamiltonian and the system dynamics. We can thus study and compare the localization lengths
extracted from the LIOM weights, their interactions, and dephasing dynamics, revealing interesting aspects of
many-body localization. Our scheme is immune to accidental resonances and can be applied even at the phase
transition point, providing a tool to study the microscopic features of the phenomenological model of MBL.
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I. INTRODUCTION

How a many-body quantum system thermalizes—or fails
to do so—under its own interaction is a fundamental yet elu-
sive problem. Localization serves as a prototypical example
for the absence of thermalization, first studied in the noninter-
acting single-particle regime known as Anderson localization
[1,2] and then revived in the context of interacting systems
[many-body localization (MBL)] [3]. The existence of MBL
as a phase of matter was demonstrated theoretically [4—6] and
numerically [7-11]. Recently, the MBL phase was observed in
cold atoms [12—17], trapped ions [18,19], and natural crystals
using nuclear magnetic resonances [20]. Most characteristics
of MBL, such as area law entanglement [21,22], Poisson
level statistics [8,9], logarithmic growth of entanglement
[7,16,23-27], and power law dephasing [28—32], can be un-
derstood via a phenomenological model that expresses the
Hamiltonian in terms of a complete set of conserved quantities
with local support. However, the explicit computation of such
local integrals of motion (LIOMs) [21,25] and their interac-
tions is a challenging task, complicated by the fact that the
set of LIOMs is not unique. LIOMs have been calculated by
the infinite-time averaging of initially local operators [33,34];
however, the obtained LIOMs do not form a complete basis.
A complete basis of LIOMs can be obtained using perturba-
tive treatment of interactions [5,35-38], using Wegner-Wilson
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flow renormalization [39], minimizing the commutator with
the Hamiltonian [40,41], ordering the eigenstates with the
greedy method [42], and prompting the infinite-time averaged
LIOMs [43]. The previous methods either require strong
disorder field strength or assume a cutoff of LIOMs in real
space, so a complete numerical study of localization lengths
is missing.

Here we design and implement a method to compute a
complete set of binary LIOMs (i.e., with eigenvalues +1)
in a nonperturbative way by maximizing the overlap with
physical spin operators. This criterion enables a recursive
determination, similar to quicksort, of the LIOMs matrix
elements in the energy eigenbasis, without the need to exhaust
all the eigenstate permutations, which would be prohibitive
for system size L > 5. We verify that in the MBL phase the
LIOMs are exponentially localized in real space and their
interaction strength decays exponentially as a function of
interaction range. This typical behavior is usually investigated
by defining two characteristics lengths, the LIOM localization
lengths and interaction localization lengths, which can be
extracted from the two exponential behaviors. Deep in the
MBL phase, the two localization lengths are well character-
ized by the inequality derived in Ref. [3]. Near the transition
point between localized and delocalized phases, which our
construction enables exploring, the interaction localization
length diverges, while the LIOM localization length remains
finite: this should be expected given the constraints imposed
by our construction, even if it contradicts the inequality in
Ref. [3]. The explicit form of the LIOMs further enables
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exploring the system evolution, which has been shown to
display a dephasing behavior with a power law decay that is
characterized by a third characteristic length, the dynamical
localization length [28]. Here we show that the LIOMs we
derive display a similar dynamics to the physical spin oper-
ators, and we are able to extract the dynamical localization
length from the power law dephasing process. Interestingly,
we find that the dynamical localization length is much shorter
than what would be given by a conjectured relationship to
the above two localization lengths [3,28], suggesting that the
dynamics depends not only on the typical value of LIOMs and
their interactions but also on higher-order correlations.

II. ALGORITHM

To understand the construction algorithm, we first review
the properties of integrals of motion in the many-body lo-
calized phase. LIOMs {t/} are diagonal in the Hamiltonian
H eigenbasis, [H, /] = 0. A complete set of LIOMs can be
related to physical spin operators (described by Pauli matrices
o/) by a local unitary transformation 7/ = Uo/U", which
implies that (i) half of the eigenvalues of 7/ are +1 and
the other half are —1, (ii) LIOMs are mutually independent
(orthonormal) Tr(z/t¥)/2" = 8, and (iii) the weight of 7/
decays exponentially in real space for localized Hamiltonians.
In particular, property (ii) requires that, for any j, in either the
+1 or —1 sector of 7, half of the diagonal elements of r are
+1, and the other half are —1 for all k # j. In other words,
the +1 and —1 sectors of 7/ are effectively two manifolds
that represent two instances of a new system with L — 1 spins
containing all sites except j.

With only constraints (i) and (ii), there are 2¢!/L! different
sets of integrals of motion (IOMs), among which we want
to find the most local one. However, enumerating the 2L /L!
different sets and quantifying the localization of the related ;
are numerically prohibitive. Instead of explicitly demanding
the exponential localization, the key idea of our construction
is to maximize the overlap of LIOMs and physical spin
operators Tr(t/ o), which are themselves local. This strategy
enables a systematic and efficient way to find a unique set of
LIOMs, and we can then verify that these LIOMs are indeed
exponentially localized in the MBL phase.

Expanding the IOMs 7/ in the energy eigenbasis {|n)} n=
1,2,...,25 as 1:./ =), a,1|n)(n|, our goal is to find aj, € %1
under constramts (i)—(iii). We note that the procedure assumes
that we have diagonalized the Hamiltonian. The algorithm is
reminiscent of quicksort (see Fig. 1):

(1) For all eigenstates |n) and spin j evaluate sh =
(nlo/ In). ,

(2) For each j, sort the eigenstates according to s;, and de-
fine candidates %/ = D onesi Im)inl — Znes,{m |n)(n|, where

S'r’;lax(min) is the set of eigenstates giving the 2¢/2 largest
(smallest) overlaps s,’,

(3) For each j, compute the overlaps (11;/. oii ) =
> nesh s — ZHGS&“ s, and find the site jy; that maximizes

the overlap. For this site, set 7/ = £/, thus assigning a;”.

3 1,23 1,23 1.2 .3

T; TZZ TZ TZ TZ TZ TZ 7'—Z TZ TZ I-Z TZ
ju =3
iy =2 23,9) > (71
SERGN Jju=1
1ol > (758

FIG. 1. The flow diagram shows an example of the construction
of a complete set of LIOMs in a system with L = 3. Gray blocks
represent undetermined matrix elements, and orange (green) blocks
represent +1 (—1) matrix elements. The procedure works as follows:
after diagonalizing the Hamiltonian, find the candidate LIOM t;,,
that maximizes the overlap with the physical spin operator (/o)
(ju = 2 here). Divide the eight eigenstates into two sectors, each
containing four states according to (n|o2|n), and assign t2 = 2. For
each sector, find jj; within the sector, divide into two sectors each
containing two states, and assign rfM = rfM Repeat the step one
more time, and then all LIOMs are determined.

(4) Consider the two manifolds S’
+1 eigenstates of 7/*. Each of these manifolds represents two
instances of a new system with L — 1 spins, containing all
sites except jy. In this new system, perform the same protocol
in steps 1-3 to set another LIOM. This results in four sectors,
each containing 2-2 states.

(5) By repeating the previous steps L — 2 times we finally
reduce the dimension of each sector to just 1, and all aj, are
assigned.

We note that our scheme does not necessarily find the most
local set of 7/ since once the matrix elements of a LIOM are
determined at a given step, the subsequent search for the rest
of the LIOMs is restricted to its perpendicular complement to
satisfy orthogonality (that is, we are not ensured of finding a
global optimum). Therefore, we choose to divide sectors using
the most local LIOM (largest (‘L’- 0?)), so that this division
sets the least constraints on later divisions. Other choices
are possible [43], but as we show in Fig. S4 of the Supple-
mental Material [44], this choice indeed gives the most local
results among all alternate algorithms we tried. Because we
utilize only the overlaps s}, = (n|o”/|n) in the computation, the
scheme is immune to accidental resonances in the spectrum.

corresponding to the

III. RESULTS

A. Localization of operators and interactions

To test the proposed algorithm and characterize the LIOMs
that it finds we consider a prototypical example of an MBL-
supporting system, a Heisenberg spin-1/2 chain [45] with
random fields,

L1 L
H=>Y 66"+ no!, (1)
i=1 i
where the first term is the isotropic exchange interaction (with
unit strength) and the second term is a disorder longitudi-
nal field with A; uniformly distributed in [-W, W] (we set
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FIG. 2. (a) and (b) Median of the LIOM weights | f’ ol as a
function of distance n for two disorder strengths: (a) W = 20, deep
in the MBL phase, where the median decays exponentially to zero,
and (b) W = 1, in the ergodic phase, where the median saturates to
a nonzero value. For each j, the median is taken over the index k in
| f”/ | as well as 20 different disorder realizations. The darker color
represents LIOMs in the middle of the chain, j = L/2 [as shown in
the bottom of (b)], and left (right) half of the LIOMs is represented
by dashed blue curves. (¢) and (d) Median of the interaction strength
as a function of range r for two disorder strengths. Dotted curves
represent /-body interaction terms |V, [Vikl,... (( =2,...,9),
where the median is taken over all indices i, j, ..., as well as 100
disorder realizations. The solid curve represents the median of all
interaction terms for a given range V (r), regardless of how many
LIOMs are involved. L = 10 in all subplots.

h = 1). It is known [8] that in the thermodynamic limit there
is a MBL phase transition at W. &~ 7 &£ 2. Although this model
conserves the total magnetization along z, the validity of the
algorithm does not depend on this symmetry. To quantitatively
check the locality of LIOMs, we decompose them into tensor
products of Pauli operators,

L
=22 fLOne @)

n=0 k

where O .« 1s a tensor product of Pauli operators whose
furthest nomdentlty Pauli matrix from j is of distance n, e.g.,
0! ® ol ®o; @1*is of distance n = 2 to j = 1, because o}
is the furthest nomdentlty Pauli matrix. k labels operators with

the same n. f/, = Tr(z! O,; ) 18 the weight of the jth LIOM

on OAfl’ .- Figures 2(a) and 2(b) show the median of |f, n’ il asa
function of distance n. In the MBL phase, the median weight
decays exponentially with distance n, while in the ergodic
phase it saturates at large n.

Because the LIOMs form an orthonormal basis, the Hamil-
tonian can be decomposed into this basis unambiguously and
efficiently:

H= Zs,r +Zv,,mf+2v,,m,fr +o 0

ijk

(a) (b)
Distance, n = 2 Range, r =2 |
n=3 I

.

-10 -5 0 -10 -5 0
logyg | £ log [V (r)|

FIG. 3. (a) Probability distribution of LIOM weights log, | f, 1’ o
For a given distance n, samples are taken from all possible j and
k as well as 200 disorder realizations. The distribution shows one
single Gaussian peak that shifts toward smaller weights with increas-
ing distance n, signaling the localization of IOMs. (b) Probability
distribution of the interaction strength log,,(|V|). For a given range r,
samples are taken from all terms in Eq. (3) as well as 10 000 disorder
realizations. Two peaks can be observed: the left peak is due to the
localized cases as it shifts to smaller interaction strengths for longer
range; the right peak shows the delocalized cases (rare events) as
it is independent of interaction range. L = 10 and W = 20 for both
(a) and (b).

For noninteracting models, only the &; coefficients are
nonzero. We can define the range r of each coupling term
Vij... as the largest difference among the indices. For example,
the range for two-body interaction V;; is simply r = |i — j|,
while for three-body interactions it is » = max(|i — j|, |i —
k|, |j — k|). Figures 2(c) and 2(d) show the median interaction
strength as a function of interaction range. In the MBL phase,
the interaction strength decays exponentially. The behaviors
of two-body interactions |V;;| and three-body interactions
[Vijkl, ... show no significant difference [36,39] and can
essentially be captured by the median of all interaction terms
for a given range V (r). We considered the median instead of
the mean in order to exclude rare events, i.e., instances where
the disorder strength is small in a local region.

To gain more insight into the localization of IOMs and
interactions and observe the occurrence of rare events, in
Fig. 3 we further study the probability distribution of weight
f & versus n and the probability distribution of interaction
strength V (r) versus r in the localized regime (strong disor-
der). The distribution of log,,(|f, ,\|) can be described by a

single Gaussian peak, centered at smaller values of | f; j «| when
the distance n increases, confirming the localization of IOMs.
Instead, two peaks can be observed in the distribution of
log;,(]V]). The left peak shifts to smaller |V'| with increasing
r, while the right peak (larger |V'|) shows no significant shift.
Moreover, the area of the right peak decreases for larger
W and smaller L. Therefore, we identify the left peak as
describing localized cases and the right one as rare events. The
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FIG. 4. (a) Dephasing of the physical spin operator o> (dark
green dashed curve) and LIOM 1’ (green solid curve). The initial
state is a product state with each spin pointing randomly in the
xy plane, i.e., [ (0)) = ®"_,(|+), + €®|—);)/+/2, with ¢ randomly
sampled in [0, 2r), o/|+); =|+); o/|—); = —|—), for the red
curve and sz““)j =[+); t:fl—)j = —|—); for the blue curve. L =
10, W = 20. Averaging is performed over 20 different initial states
and 20 disorder realizations. The error bar represents the standard
deviation of all configurations. (b) and (c) Localization lengths as a
function of disorder strength W for L = 12. The LIOM localization
length £ is extracted by fitting Tr(réiazk) ~exp(—lk — j|/&) as a
function of k (for j = 1). The interaction localization length is
obtained from the fit of the interaction as a function of range, V (r) ~
exp(—r/«). The dynamical localization length describes the LIOM
dephasing shown in (a) and is obtained by the fit to ((rXL)z) ~ =82,
Here the error bars derive from the fitting error. The dephasing curve
used to fit &’ is extracted from the median of 50 disorder realizations
and 50 initial states. & and « are extracted from the median of 5000
disorder realizations. (b) is a zoom of (c) near the transition point.

exponential localization of the LIOMs and their interactions
are usually the two criteria that define the LIOM. In the
rare region of low disorder, however, the two requirements
cannot be satisfied simultaneously, and there are no universal
criteria on how to choose LIOMs in this case. Here we require
the IOM 1, to be local by construction, so the presence
of a rare region shows up only in the interaction strengths
(see Appendix B); choosing different criteria for the LIOM
construction may lead to different results.

B. Localization lengths

From the explicit form of the LIOMs and their interactions,
we can extract the LIOM localization length & via | f"l’; o~
exp(—n/§&) and interaction localization length k via |V (r)| ~
exp(—r/x) [3]. In Fig. 4 we show « and & as a function
of disorder strength W. The LIOM localization length &
is extracted using the relation Tr(rzjaz") ~exp(—lk — jl/&)

[33,36] because calculating f, ,f  1s numerically demanding
[44], and in Appendix A we verify the two, indeed, have the
same localization length. The interaction localization length «
is extracted by fitting the distribution of log,, |V | (as in Fig. 3)
to two Gaussian peaks and then fitting the localized peak cen-
ter to a linear function of r. Because our method forces t, to
be local, & is always finite, while « diverges around W = 8.1
[Fig. 4(b)], which agrees with the critical point W, =7 £ 2
reported in Ref. [8]. ¥ = 0 serves as an unambiguous metric
to pinpoint the ergodic to MBL phase transition point. It has
been shown in [3] that the two localization lengths satisfy the
inequality x~' > (7' — In2)/2. From the numerical results
in Fig. 4(c), we find that this inequality is satisfied in the local-
ized phase, except in the vicinity of the phase transition point.

C. Noninteracting model: Trade-off of localization

We can better understand why the interaction localization
length « diverges at the critical point while the LIOM local-
ization length & remains finite by varying the ZZ coupling

strength and study the noninteracting model H =
Y hiol + 35 (ojoi ! + ojoy ! + Lol =1

is the Heisenberg model we investigated before, and J, = 0
corresponds to a noninteracting model. For the noninteracting
model, the system is effectively localized for arbitrarily
small W. This Hamiltonian can be mapped to a free fermionic
Hamiltonian via a Jordan-Wigner transformation [46]. The
Hamiltonian can be diagonalized by single-particle IOMs
{Zl}: H = Y, & that is, the interaction localization length
in the {X}} basis is zero. However, note that the single-particle
IOMs (X!} can be highly nonlocal for small W. We can
instead apply our algorithm to find LIOMs {z;} for this model
as done for the interacting Hamiltonian and compare { =/}
and {7/} (see Fig. 5). For large disorder strength, W = 20, the
Hamiltonian is practically interaction free even in the T.i’ basis,
and indeed, the LIOMs 1/ approach the IOMs, ! ~ X.
The trade-off between the two interaction strengths « and §
becomes evident for small disorder, W = 0.5, where 7/ # X/.
In this regime, the single-particle IOMs ¥/ are delocalized,
& > 1, but the Hamiltonian still has no interactions, k = 0.
Instead, the LIOMs obtained by our construction, {t/}, are
localized, but they give rise to long-range interactions in
the Hamiltonian, « > 1. Even though our method results
in nonzero interaction among LIOMs, it is still able to
distinguish interacting and noninteracting, as shown in
Figs. 5(a) and 5(b), where a moderate J, leads to a significant
increase of the interaction among LIOMs for both weak and
strong disorders. For interacting models, it is difficult to obtain
IOMs that minimize the interactions in a nonperturbative way.
Still, we expect that if one were indeed able to find such a
set of IOMs, there would be a similar trade-off between how
local they are (small &) versus how local the interactions are
(small ) outside the well-localized phase. Our choice of
criterion for constructing LIOMs not only allows a simple
and efficient algorithm; by keeping the operators local even
when crossing the localization transition, 7/ are always well
defined and can be used to explore properties of the system,
such as its dynamics, around the localization-delocalization
transition point.
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FIG. 5. LIOM in the noninteracting model. (a) and (b) Median
interaction strength in the LIOM basis { rj } vs range r. J; = 0 (blue
dashed line) corresponds to a noninteracting model, and J, = 0.1
(red line) corresponds to a model with a small interaction. We note
that for large disorder the noninteracting model has only nonzero V
for the range r = 1, which denotes the single-particle Hamiltonian
S_,-rzf , and even for small disorder V(r = 1) is the dominant term.
This is in contrast to the behavior of the interacting model. (¢) and
(d) Median overlap between LIOMs and physical spins Tr(@crz" )
for the noninteracting model J, = 1, with O = ¥/ (solid lines) for
single-particle LIOM and o= 7/ (dashed lines) for LIOMs obtained
using the scheme proposed in this paper. Blue stands for smaller j,
and red stands for larger j except for the single-particle LIOMs in (d),
where the color is randomly chosen because single-particle LIOMs
are too delocalized to be ordered. In (a) and (¢c) W =20. r > 1
interaction strength is below machine precision ~10~'3. X. and T,
show little difference. In (b) and (d) W = 0.5. rj is more localized at
site j, but the interaction among LIOMs is not zero. L = 10 and 500
disorder realizations are used in all plots.

D. Dephasing dynamics

Since physical spin and LIOM operators are related by a
local unitary transformation, they are expected to exhibit a
similar dynamics [Fig. 4(a)]. In particular, the higher-order
interaction terms in Eq. (3) induce dephasing of the transverse
operators by creating an effective magnetic field He at the
location of spin j due to all the other spins. The dephasing
of the expectation values (z,(¢)) and (o,(2)) is closely related
to the logarithmic light cone in the MBL phase [28]. It was
previously shown that ((o,(1))?) ~ ((t.(t))?) oc t~%, where
we took the average of the expectation values over random
initial states and disorder realizations. For an initial state given
by a product state with each individual spin pointing randomly
in the xy plane, @ = 2¢"In2 for bulk spins and « = &'In2
for boundary spins, where &’ is a localization length different
from & and « [28]. This length &', which we name dynamical
localization length, describes the strength of the contribution
to the effective magnetic field felt by spin j due to spins at
distance I: HY; ~ exp(—1/€') (see Appendix C). By assuming
exponentially decaying interactions, |V (r)| = exp(—r/k), it
was conjectured that 1<k '+ (In 2)/2 [3]. We find in-
stead a much larger dephasing rate [Fig. 4(c)]. To investigate
whether this is due solely to our LIOM construction, which

does not explicitly enforce an exponentially decaying interac-
tion strength, we artificially generate a Hamiltonian satisfying
[V (r)| o« exp(—r/k) (see Appendix C). Still, although we
indeed find a power law decay, this is even faster than what we
observe in Fig. 4(a). We conjecture that the dephasing process
cannot be simply described by a mean interaction strength (the
model used to justify the relationship to «), and higher-order
correlations may play an important role.

IV. CONCLUSION AND OUTLOOK

We provided a method to efficiently compute the LIOMs
for MBL systems by maximizing the overlap between LIOMs
and physical spin operators. The method is nonperturbative
and thus immune to resonances in the spectrum and can
be applied at the phase transition point. The only quantity
we used in computing the LIOMs and their interactions is
the expectation value of physical spin operators on energy
eigenstates (n|o? |n). Although we used exact diagonalization
here, our scheme is compatible with renormalization group
methods and matrix product state representations [38,47],
which can potentially be applied to much larger systems
and beyond one dimension. We showed the power of the
constructed LIOMs by extracting the localization length of the
LIOMs and the Hamiltonian interactions from their respective
exponential decays. We also showed that in the MBL phase,
the LIOMs and physical spin operators exhibit similar dephas-
ing dynamics, even if it cannot be simply explained by the
typical weights of LIOMs and typical interaction strengths.
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APPENDIX A: COMPARISON OF LIOMS AND
PHYSICAL SPIN OPERATORS

In the main text we defined the overlap fnj ¢ @s a quantifier

of the locality of the LIOMs t/. Another metric that char-
acterizes the LIOMs as a function of disorder strength is the
distance of each 7/ from the corresponding physical spin-1/2
Pauli operator ozj . Indeed, the larger the disorder is, the more
local the LIOMs are, and therefore, the closer they are to the
corresponding Pauli operators. We use the Frobenius norm of
the matrix difference between the two operators at the same
site [see Fig. 6(a)] to quantify the operator distance. At small
disorder strength, the LIOM and physical spin operators are
almost perpendicular,

~

(AD)

“‘sz"z + ||rf“2 — 9L+1)/2.

As the disorder strength increases, the distance decreases, as
expected. At strong disorder strength W > W, ~ 7, we find
that the distance decreases as 1/W, indicating that the system
is in the MBL phase. This result shows that the Frobenius
norm distance (or, equivalently, the trace norm) can be taken
as a good proxy for the overlap f "J .

In the main text we state that the LIOM localization length
can be extracted from Tr(t/ crz"). To confirm this quantita-

lo? =/l
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FIG. 6. Comparison of LIOMs and physical spin operators.
(a) Blue dots show the Frobenius norm of the difference between
same-site physical spin-1/2 Pauli matrices and local integral of
motion ||az-" — rj || as a function of disorder strength in a size L = 10
system. For disorder W > W, ~ 7 (vertical black line), the norm
scales as 1/W (green line). The red dashed line shows the norm of
the difference between two LIOMs at different sites for comparison.
(b) Weight of the first LIOM fn{ « (blue curves) and overlap of the
first LIOM with physical spins Z_i Tr(z)o,*)/L (red curves) as a
function of distance n for W = 20 (solid curves) and W = 40 (dashed
curves). L = 10, and the median is taken over k and 100 disorder
realizations.

tively, in Fig. 6(b) we compare the weight of the first LIOM

¢ and Tr(z!o!*"). Both of them show exponential decay
with n, and the slopes (decay rates) are similar for n > 2. In
numerics, calculating fn{ « is demanding because it is defined
in real space [44], while calculating Tr(zo, ™) can be done
in the energy eigenbasis since the expectation value of o7 on
every eigenstate is already obtained during the construction
process. Therefore, we use Tr(t/ azl"’”) with n > 2 to extract
the LIOM localization length k in the main text (Fig. 4).

APPENDIX B: DISTRIBUTION OF INTERACTION
STRENGTHS AND RARE REGIONS

In the main text we linked the occurrence of rare events
in the distribution of interaction strengths to rare regions of
the disordered field. We can verify this conjecture by taking a
closer look at one particular disorder realization that contains
a low-disorder rare region (see Fig. S1 [44]). To further

0
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FIG. 7. (a) Median |Tr(1'zfaz")| and (b) normalized probability
distribution of log,, |V (r)| for a chain of size L = 14 with disordered
field only on sites 1 to 8 (i, = 8). In (a), green dashed (blue solid)
curves represent the LIOMs in the disorder-free (disordered) region.
In (b), blue curves show only the coupling terms within the disor-
dered region, and red curves show the distribution of all coupling
terms. W = 50 and 100 random realizations are used in both (a)
and (b).

confirm the connection between a rare region and the rare
event peak in the interaction strength distribution, we study
a Heisenberg spin chain with the disorder field only on part of
the chain, i.e., h; € [-W, W] in the disordered region i < i,
and h; = 0 in the disorder-free region i > i,. The LIOMs in
the disordered region are localized, while the LIOMs in the
disorder-free region are delocalized with an exponential tail
extending into the disordered region [Fig. 7(a)]. Due to the ex-
istence of the disorder-free region, the probability distribution
of log;, |V (r)| shows a large delocalized peak [blue curve in
Fig. 7(b)], which is absent when considering only interactions
inside the disordered region. We can further analyze how the
occurrence of rare events changes with the system size (see
Fig. S2 [44]). We find that for a given interaction range, the
area of the delocalized peak gets larger for a longer chain
because the frequency of having a local low-disorder region
is higher for larger L.

APPENDIX C: DEPHASING WITH THE
ARTIFICIAL HAMILTONIAN

It has been conjectured that the dephasing rate of (z,) (and
(oy)) can be related to the interaction localization length via
a simple, mean-field model. Using our LIOM construction,
we found instead surprising results, as shown in Fig. 4. Here
we want (i) to verify whether assuming an exponentially de-
caying interaction strength does indeed yield the relationship
between localization lengths presented in Ref. [3] and (ii)
to determine whether the Hamiltonian approximation with a
simpler, exponentially decaying interaction strength is enough
to capture the exact dephasing dynamics.

To answer these questions, we consider two artificially
generated Hamiltonian: (1) |V (r)| = exp(—r/k), with each
interaction term randomly assigned a plus or minus sign, and
(2) |V (r)| randomly sampled from the simulated probability
distribution [see Fig. 3(b) in the main text for an example]
with a random sign.
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FIG. 8. (a) {(zL)?) under real (green line) and two artificial
Hamiltonians (blue and red lines). The dark green dashed curve
shows ((o£)?) under the real Hamiltonian. L = 12, W = 40, so that
the delocalized cases are negligible. All ({(t*)?) are averaged over
20 random initial states in the xy plane and 20 disorder realizations.
{{(oL)?) is averaged over ten random initial states in the xy plane and
ten disorder realizations. (b) The red curve shows ! as in Fig. 4
of the main text. The green solid curve represents the dephasing
localization length &” extracted from the artificial Hamiltonian with
|V (r)] = e~"/), The green dashed curve shows &” +In2/2, which
overlaps with «~! within the error bars.

The first Hamiltonian exactly satisfies the hypothesis under
which the relation between the interaction localization length
and dynamical localization length was derived in Ref. [3].
Therefore, we fit the power law dephasing obtained under
this Hamiltonian [see Fig. 8(a)] and extract the dynamical
localization length &” as done in Fig. 4 of the main text.
We find that « ' ~ £”~! 4+ 1n2/2 [Fig. 8(b)], which gives a
more stringent relation than the bound k! > £"~! —In2/2
given in Ref. [3]. We can provide a heuristic argument for

the relation between £” and «, under the assumption |V (r)| =
exp(—r/k). As described in Ref. [28], the dephasing can be
understood as arising from an effective magnetic field at site
Jj due to all other spins t,. Starting from the phenomenological
model in Eq. (3), the effective magnetic field at site j is

Hy=Tr(t/H) =& +H +H} +---, (C1)
where H J’ denotes the magnetic field created by spins within
the distance / from spin j. For example, the first term is given

by
Hjl :Vj’j+l.rzj+l +Vj,1’jTZj_l +Vj71’j,j+1fzj_l‘[zj+l. (C2)

Similarly, HJ’- contains interactions of the range [/ + 1,1 +
2,...,21 + 1. As the interaction strength decays as |V (r)| =
exp(—r/k) and the number of terms grows as ~2", the Frobe-
nius norm of H| is estimated as

2+1 172 —2/k\(I+1)/2
||H.,'-||=[Z Zfeﬂ ~

1 —2e2/
r=Il+1
In the last term we assumed that / > 1 and the system
is deep in the MBL phase so that 2exp(—2/k) < 1. We
thus find that Hj also exhibits an exponential decay Hj o
exp(—1/£"), with £’~! = k! +1n2/2, yielding the dephas-
ing [28] ((zL(#))%) ~ t7¢" 12, as shown in Fig. 8.

While we confirm that the dephasing under the approx-
imated Hamiltonian satisfying |V (r)| = exp(—r/k) follows
the predicted relation to , we still find that dephasing under
the “real” Hamiltonian is different. The physical spin and
LIOMs under the real Hamiltonian in Eq. (1) show similar
dephasing, as expected. Under either artificial Hamiltonian,
however, ((th)z) dephases much faster than under the real
Hamiltonian, suggesting that the dephasing dynamics cannot
be fully captured by the interaction localization length x or
even the probability distribution of |V (r)| [Fig. 8(a)]. For
instance, in the real system for a given disorder realization
the interaction terms may have some correlation, which gives
rise to a slower dephasing, but this is not captured by the
probability distribution.
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