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Abstract: Herein, we examine two sensing schemes for detection and discrimination of chlorinated
volatile organic compounds (VOCs). In this work, phosphonium ionic liquids (ILs) were
synthesized and vapor sensing properties examined and compared to phosphonium IL-polymer
composites. Pure IL sensors were used to develop a QCM-based multisensory array (MSA), while
IL-polymer composites were used to develop an MSA and virtual sensor arrays (VSAs). It was found
that by employing the composite MSA, five chlorinated VOCs were accurately discriminated at
95.56%, which was an increase in accuracy as compared to pure ILs MSA (84.45%). Data acquired
with two out of three VSAs allowed discrimination of chlorinated VOCs with 100% accuracy. These
studies have provided greater insight into the benefits of incorporating polymers in coating
materials for enhanced discrimination accuracies of QCM-based sensor arrays. To the best of our
knowledge, this is the first report of a QCM-based VSA for discrimination of closely related
chlorinated VOCs.
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1. Introduction

Many volatile organic compounds (VOCs) cause detrimental health and environmental effects
after both acute and chronic exposure, which has led to an increase in development of new techniques
for detection of these compounds [1-3]. However, it is still a challenge to detect and discriminate
closely related VOCs. In this regard, electronic noses (e-noses), which mimic the human nose, are of
great interest due to a large selection of possible transducers [4,5]. Among such transducers, the
quartz crystal microbalance (QCM) coupled with ionic liquids (ILs) has proven to be a viable e-nose
[6-10]. The QCM is a sensitive and rapid responding transducer with a large selection of sensing
materials, which makes it ideal for fabricating sensor arrays. In this regard, ILs have proven to be
good sensing materials due to their tunable properties and ability to be used for detection of a wide
range of VOCs [11-13]. Briefly, ILs are a class of organic salts with melting points below 100 °C, and
by a simple counterion exchange, many properties including toxicity, hydrophobicity, thermal
properties, etc. can be tuned [14]. Due to these redeeming qualities, IL-based QCM sensor arrays have
proved to be beneficial in vapor sensing studies [15-17].
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E-noses, or cross-reactive sensor arrays (CRSAs), have two major sensing schemes. The most
common is the multisensor array (MSA), which consists of several sensors that are based on chemical
affinity. In this scheme, differences in each sensing material allows for interaction with a large range
of different VOCs. Each sensor will generate analyte specific response patterns, which can be
analyzed using statistical analyses techniques, such as artificial neural networks (ANN), principal
component analysis (PCA), cluster analysis (CA), discriminant analysis (DA), etc., in order to identify
or discriminate the analyte in question. The second CRSA scheme is the virtual sensor array (VSA),
which is based on a single sensor. The VSA generates multiple analyte specific response patterns and
can be analyzed in the same manner as an MSA. Fundamentally, the VSA represents a large number
of sensors; however, there is only one physical sensor and the remaining “sensors” are imaginary. A
schematic of a QCM-based VSA is depicted in Figure S1. In this regard, the VSA reduces cost and
complexity of sensing materials as compared to the MSA.

QCM based VSAs were first introduced by Warner, et al. in 2015, and are based on film thickness,
viscoelasticity, and harmonics [18]. Briefly, a viscoelastic material is used as the coating material,
which results in significantly different behavioral changes under resonant conditions as compared to
rigid films due to elastic and viscous properties of the material. This theory is based on the Sauerbrey
equation:

Af = —2am=-"1t
f =—<dm=——psty

where Af is change in resonance frequency, n is harmonic number, ¢ is mass sensitivity
designated as 17.7 ng cm2 Hz™! for the 5 MHz AT-cut crystal used in this study; p; is film density,
and ¢y is film thickness [19]. Thus, the harmonic, thickness, and viscoelasticity of each film will have
an effect on sensor response. Harmonics are generated using fundamental frequencies at odd
multiples. The quartz crystal resonators (QCRs) used in this work are capable of seven harmonics. In
this regard, each harmonic response is recorded and employed as a sensor. For QCM based MSAs
and VSAs, the selectivity and sensitivity depend on the coating material.

Herein, a comparative study of QCM based MSAs and VSAs for detection and discrimination of
commonly used chlorinated VOCs is described. To accomplish this, three phosphonium-based ILs
were synthesized using trihexyltetradecylphosphonium as the cation with three different anions as
coating materials for VOC detection. Phosphonium ILs are known to have good chemical stability,
viscosity, and the IL trihexyltetradecylphosphonium, in particular, exhibits partial selectivity to a
wide range of VOCs [15,20,21]. Composite materials were then created using an IL-polymer blend
with the phosphonium ILs and polydimethylsiloxane (PDMS). PDMS is known to increase sensitivity
of gas sensors [22], and IL-polymer blends have been shown to increase discrimination of VOCs due
to enhanced viscoelastic properties [23,24]. In order to investigate the vapor sensing properties of
each IL and IL-PDMS composite, thin films of each were deposited on the surface of QCRs via
electrospray deposition and subsequently exposed to a set of five chlorinated VOCs. Each set of
sensors (pure IL and composites) exhibited cross reactive patterns and were determined to be suitable
for MSA fabrication. The resulting data from each set of sensors (pure IL sensors and composite
sensors) were then used to develop statistical models for discrimination of five VOCs. PCA was used
to assess the dimensionality of each data set and to obtain a visual representation of separation among
the chlorinated VOCs. DA was used to develop predictive models for discriminating chlorinated
compounds. Lastly, each composite sensor exhibited multiple harmonic responses and each data set
was used to fabricate three different VSAs.

2. Materials and Methods

2.1. Materials

Trihexyltetradecylphosphonium (Pesc14) chloride, sodium dodecylbenzenesulfonate (DBS),
chloropropane, chlorobutane, and tetrachloromethane were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Sodium benzenesulfonate (BS) and polydimethylsiloxane (PDMS) were purchased
from Acros Organics (West Chester, PA, USA). Sodium 4-n-octylbenzenesulfonate (OBS) was
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purchased from Alfa Aesar (Haverhill, MA, USA), dichloromethane (DCM) was purchased from
BDH VWR Analytical (Radnor, PA, USA), and chloroform was purchased from Macron Fine
Chemicals (Center Valley, PA, USA). All chemicals were used as purchased without further
purification.

2.2. Instrumentation

A Q-Sense QCM-D E4 system and associated QCRs were used for these studies and previously
purchased from Biolin Scientific (Stockholm, Sweden). Each QCR is an AT-cut gold-coated quartz
crystal with a diameter of 14 mm, thickness of 0.3 mm and fundamental frequency of 4.95 MHz *+ 50
kHz. Both readout equipment (Model 5878) and mass flow controllers (Model 5850E) were obtained
from Brooks Instrument, LLC (Hatfield, PA, USA).

2.3. Synthesis and Characterization of ILs

Three ILs were synthesized using a biphasic ion exchange reaction. As an example of a typical
synthetic procedure, [Na][DBS] was dissolved in water, while [Pese14][Cl] was dissolved in DCM at a
1:1 mole ratio. Prepared solutions were mixed together and allowed to stir for 48 h to obtain
[Pess14][DBS]. After completion of ion exchange, NaCl (byproduct) was removed from the DCM layer
by washing with water several times. To isolate the final product, DCM was removed using rotary
evaporation followed by lyophilization to remove any residual water. The reaction procedure
referenced above was used to obtain remaining ILs by reacting [Pessia][Cl] with [Na][BS], and
[Na][OBS] to obtain [Pess14][BS], and [Pess14][OBS], respectively. All three ILs were colorless and
viscous liquids. Structures of starting materials are shown in Figure S2.

Electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared
spectrometry (FT-IR) were used to characterize ILs. ESI-MS was accomplished using an Agilent 6210
system in positive and negative ion modes. FT-IR was performed using a Bruker Alpha & Tensor 27
FT-IR instrument.

2.4. Preparation of IL Stock Solutions

Stock solutions of [Pess14][DBS], [Peee14][BS], and [Peee1a][OBS] (1 mg/mL) were prepared using
DCM in 20 mL borosilicate glass scintillation vials.

2.5. Preparation of Composite Stock Solutions

Stock solutions of [Pess14][DBS] (1 mg/mL) with PDMS (0.5 mg/mL), [Pees14][BS] (1 mg/mL) with
PDMS (0.5 mg/mL), and [Psss14][OBS] (1 mg/mL) with PDMS (0.5 mg/mL) were prepared using DCM
in 20 mL borosilicate glass scintillation vials.

2.6. Preparation of Sensing Films

Prior to coating, each QCR was cleaned using RCA standard clean 1 solution (5:1:1 deionized
water, 30% hydrogen peroxide, and ammonium hydroxide) [25]. An electrospray method was used
for deposition of ILs and composites onto each QCR surface. Parameters for electrospray remained
constant for each thin film: flowrate of 100 uL/min, current of 30 A, voltage of 16.6 kV and a working
distance of 7 cm. After coating, films were dried with nitrogen and then stored in a desiccator prior
to use. The change in frequency between coated and uncoated QCRs in all of the studied ILs and
composites was maintained at ~ -2000 Hz. Once coated with materials, QCRs are referred to as
Sensors.

2.7. Data Collection

Each analyte was introduced at five different instrumentally controlled dilutions of flow rate
ratios (0.05, 0.1, 0.2, 0.3, and 0.4 Fs/Fr:) that correspond to 5%, 10%, 20%, 30%, and 40% of saturated
vapor pressure in a 20 mL vial of VOC and argon gas. To achieve this, a flow system that consisted
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of two independent gas flow channels, one for analyte vapors and another for carrier gas, was used.
Prior to data collection, the system was purged with ultrapure argon to achieve a stable baseline.
Subsequently, a vial containing the VOC of choice was bubbled with argon to generate a sample of
equilibrated headspace. The analyte and carrier channels merged to allow dilution of the analyte flow
to yield respective flow rate ratios [26]. The total flow rate was held constant at 100 sccm by using
digital mass flow controllers. VOC vapors mixed across 1-m length of tubing and then flowed over
each sensor. To remove analyte vapors, the system was purged with argon at room temperature until
the baseline was recovered. A schematic of the system described has been previously published and
is provided in Figure S3 [26].

2.8. Data Analysis

Multiple harmonic data were generated from vapor sensing studies expressed by change in
frequency (Af) in units of hertz (Hz). PCA was used to assess the dimensionality of the observed
sensor data (MSA and VSAs) and to obtain a visual representation of separation among the
chlorinated compounds with respect to the principal components. DA was used to develop a
predictive model for distinguishing chlorinated VOCs, using the principal components as predictor
variables.

3. Results

3.1. Characterization of ILs

Each IL was confirmed using ESI-MS (Figures 54-56) and FT-IR (Figures S7-59). All three ILs
were liquids at room temperature; thus thermal properties were not investigated.

3.2. Evaluation of IL Sensor Responses

Vapor sensing properties of [Pess14][DBS], [Pess14][BS], and [Pess14a][OBS] were evaluated by
inserting three QCM sensors coated with respective ILs into QCM-D chambers. Collectively sensors
were exposed to a set of five chlorinated VOCs, which included dichloromethane, chloroform,
chloropropane, chlorobutane, and tetrachloromethane, at five different instrumentally controlled
sample flow rate ratios (0.05, 0.1, 0.2, 0.3, and 0.4 Fs/Frr). Changes in resonance frequency were
measured by exposing sensors to individual VOCs at indicated flow rate ratios for 3-min intervals
for a total exposure time of approximately 15 min. Three replicate measurements were completed for
each VOC. Sensor responses for [Pees14][DBS], [Pess14][BS], and [Pess14][OBS] are presented in Figure 1
expressed as change in frequency (Af) versus flow rate ratios. While each sensor exhibited reversible
sorption and a stable starting baseline, some sensor drift occurred over the course of the experiment.
Furthermore, all sensors exhibited reproducible responses with the exception of low flow ratios (0.05
and 0.1), which resulted in large standard deviations (Figure 1). It should also be noted that
[Pess14][OBS] exhibited poor reproducibility in response to dichloromethane across all flow ratios.
Based on pattern responses observed in Figure 1, fabrication of a MSA is possible, and these results
are discussed in Section 4.1. In an attempt to increase sensor response and reproducibility at low flow
ratios, incorporation of PDMS with ILs to create composite materials was investigated.



Sensors 2020, 20, 615 5 of 16

A Flow Ratio
0 0.05 01 0.2 0.3 04
-50
~ =100
N
<
Y-
< 150
|=Dcm
-200 1 m Chloropropane
Chloroform
250 m Chlorobutane
m Tetrachloromethane
B Flow Ratio
0 0.05 01 0.2 0.3 04
-50
-100
=
< 150
-
S|
-200
mDCM
-250 {®mChloropropane I
Chloroform
m Chlorobutane
-300 - & Tetrachloromethane
c Flow Ratio
0 0.05 01 0.2 03 04
-50
—~ =100
N
<
Y
< 150
uDCM
-200 {®Chloropropane
Chloroform
m Chlorobutane
-250 - m Tetrachloromethane

Figure 1. Sensor response of chlorinated VOCs at five flow ratios for (A) [Pess14][DBS], (B) [Psss14][BS],
and (C) [Peee14][OBS]. Error bars represent standard deviation for three replicate measurements.

3.3. Evaluation of Sensor Responses for Composites

It was hypothesized that incorporation of PDMS with phosphonium ILs would increase sensor
response to chlorinated compounds [22]. Thus, the vapor sensing properties of [Pess14][DBS]-PDMS,
[Pess14][BS]-PDMS, and [Peee14][OBS]-PDMS were evaluated using similar parameters as ILs studies.
Briefly, three QCM sensors coated with respective IL-polymer composites were inserted into QCM-
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D chambers and exposed to the same set of chlorinated VOCs at identical flow ratios. Similar to IL
studies, sensors were exposed to VOCs at indicated flow ratios for 3 min intervals for a total exposure
time of approximately 15 min with three replicate measurements. Sensor responses for [Pess14][DBS]-
PDMS, [Pes614][BS]-PDMS, and [Pece14][OBS]-PDMS are presented in Figure 2 expressed as change in
frequency (Af) versus flow rate ratios. All sensors were found to be reusable, which is consistent with
each sensor exhibiting a stable baseline and reversible sorption, as shown in Figure S10. Moreover,
each sensor produced analyte specific response patterns as compared to each other, as well as to their
IL counterparts.

With respect to [Pess14][DBS], [Pese14][ DBS]-PDMS exhibited similar response patterns; however,
there was an increase in overall sensor response, as well as smaller error bars with all analytes except
tetrachloromethane. Overall, response patterns generated from IL-PDMS composites showed
enhanced reproducibility and increased sensor response to chlorinated compounds, with the
exception of tetrachloromethane.

Observation of data from [Pess14][BS]-PDMS showed an entirely different response pattern as
compared to [Pees14][BS]. [Pess14][BS]-PDMS exhibited both positive and negative changes in frequency,
whereas all responses were negative values for [Pess14][BS]. Interestingly, sensor responses for
chloropropane and chlorobutane were negligible at lower flow ratios, whereas pure IL sensor
generated significantly larger responses. Notably, tetrachloromethane was the only compound to
achieve a negative changes in frequency over all five flow ratios. Similar to [Pessi4][BS]-PDMS,
[Pes614][OBS]-PDMS exhibited positive and negative changes in frequency and tetrachloromethane
achieved negative values over all flow ratios. In contrast to [Pees14][BS]-PDMS, [Pece14][OBS]-PDMS
exhibited an overall lower sensor response. It is noted that composite sensors exhibited multiple
harmonic responses, which was not exhibited by pure IL sensors. Figures 3-5 depict sensor responses
across multiple harmonics for [Pessis][DBS]-PDMS, [Peee14][BS]-PDMS, and [Pessi4][OBS]-PDMS
respectively. The positive and negative shifts in resonant frequency can be attributed to incorporation
of PDMS, which changes the viscoelasticity of the sensor coating [27]. Based on pattern responses
observed in Figures 3-5 fabrication of a MSA and VSA are possible and these results will be discussed
in Sections 4.1 and 4.2.
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Figure 2. Sensor response of chlorinated VOCs at five flow ratios for (A) [Pess14][DBS]-PDMS, (B)
[Psss14][BS]-PDMS, and (C) [Pess14][OBS]-PDMS. Error bars represent standard deviation for three
replicate measurements.
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Figure 3. [Pess14][DBS]-PDMS sensor response to chlorinated VOCs at multiple harmonics at (A) 0.2
flow ratio, (B) 0.3 flow ratio, and (C) 0.4 flow ratio. Error bars represent standard deviation for three

replicate measurements.
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Figure 4. [Pece14][BS]-PDMS sensor response to chlorinated VOCs at multiple harmonics at (A) 0.2 flow
ratio, (B) 0.3 flow ratio, and (C) 0.4 flow ratio. Error bars represent standard deviation for three

replicate measurements.
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Figure 5. [Pee14][OBS]-PDMS sensor response to chlorinated VOCs at multiple harmonics at (A) 0.2
flow ratio, (B) 0.3 flow ratio, and (C) 0.4 flow ratio. Error bars represent standard deviation for three

replicate measurements.
4. Discussion

4.1. Evaluation of MSAs

Based on pattern responses observed in Figures 1 and 2, fabrication of two MSAs to discriminate
between the chlorinated compounds was possible. The first MSA was developed using sensor
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responses from pure IL sensors, [Pees1a][DBS], [Pess14][BS], and [Pess14][OBS]. The second array was
developed using sensor responses from composite sensors, [Pessi4][DBS]-PDMS, [Peee14][BS]-PDMS,
and [Pess14][OBS]-PDMS. To achieve the first array, the raw Af data collected from the pure IL
sensors of the first harmonic were used to develop a predictive model using DA. The hypothesis that
the covariance matrices associated with the three sensor variables were the same across all VOCs was
strongly rejected (p-value < 0.0001). Thus, quadratic DA (QDA) was used, which fits a model that
estimates the covariance matrices separately for each VOC [26]. The composite MSA was achieved
using the same parameters.

For pure IL MSA, the first two principal components accounted for 99.3% of the variability in
the three predictors. The first principal component, which accounted for 92.6% of the variability,
represents the sum of the three sensor responses. While the second principal component represents
a comparison between [Pees14][BS] and [Peee14][OBS] responses, which accounted for 6.7% of the total
variation. Figure 6 depicts a plot of the first two principal component scores, where some visual
separation between DCM, chloroform, and tetrachloromethane is provided. However, the first two
principal components do not provide any visual separation between chlorobutane and

chloropropane, and there is severe overlap between chlorobutane, chloropropane and remaining
VOCs.
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Figure 6. Principal component plot for discrimination of five chlorinated VOCs with respect to a three
sensor MSA. The plot considers 75 total measurements consisting of three replicate measurements at
five different flow ratios for each VOC (15 measurements per sample) using pure IL sensors.

Based on this plot, it is suggested that there will be difficulty distinguishing between these
VOCs, especially between chlorobutane and chloropropane with the model produced by DA. The
values for the first two principal components were used as predictor variables in QDA. The QDA
predictive model resulted in 30 misclassifications, corresponding to an error rate of 40%. Of these
misclassifications, six DCM measurements were misclassified as chlorobutane, two as
chloropropane, one chloroform measurement was misclassified as chlorobutane, one as
chloropropane, four as tetrachloromethane, nine chloropropane measurements were misclassified as
chlorobutane, one as DCM, one chlorobutane was misclassified as chloropropane, and five
tetrachloromethane measurements were misclassified as chlorobutane. This corresponded to an
overall accuracy of 60%. With an excess of misclassifications and low accuracy, the discriminate
scores from the QDA model were further investigated. It was found that majority of these
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classifications were occurring in the 0.05 and 0.1 flow ratios across all VOCs. Thus, new principal
components using Af measurements from 0.2, 0.3, and 0.4 flow ratios were evaluated and used to
develop an optimized QDA model.

Data obtained from 0.2-0.4 flow ratios demonstrated that the first two principal components
accounted for 99% of the total variability in the three predictors. The first principal component
accounted for 87.9% of the variability and similar to the original principal components, represents
the sum of the three sensor measurements. Similar to the original principal components, the
optimized second component represents a comparison between [Pess14][BS] and [Pece1a][OBS]
measurements, but accounts for 11.1% of the total variability. Based on optimized PCA plot shown
in Figure 7, an improvement in visual separation between tetrachloromethane and DCM,
tetrachloromethane and chloroform, and between DCM and chloroform is provided. However, the
optimized components are still unable to provide visual separation between chloropropane and
chlorobutane, and an overlap of chlorobutane, chloropropane, DCM and tetrachloromethane is
observed. This optimized PCA plot suggests that there may be difficuly discriminating between these
VOCs, but improvement in discrimination as compared to the original PCA plot in Figure 6. To test
this theory, optimized principal components were used as predictor variables in QDA. The optimized
QDA model resulted in a total of seven misclassifications, which corresponds to an error rate of
15.55%. Misclassifications consisted of one DCM measurement classified as chloropropane, four
chloropropane classified as chlorobutane, one chloropropane classified as DCM, and one
chlorobutane classified as chloropropane. Overall accuracy of the optimized QDA model was 84.45%,
which was a large improvement as compared to the original model. It should be noted that all
tetrachloromethane and chloroform measurements were accurately classified as suggested using the
PCA plot in Figure 7.
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Figure 7. Principal component plot for discrimination of five chlorinated VOCs with respect to a three
sensor MSA. Plot considers 45 total measurements consisting of three replicate measurements at three
different flow ratios for each VOC (nine measurements per sample) using pure IL sensors.

Upon examination of the composite MSA, 99.5% of the total variability in the three predictors
was accounted for using the first two principal components. The first principal component accounted
for 81.1% of variance and represented the sum of the three sensor responses. The second principal
component, which accounted for 18.4% of the variability, represented a comparison between
[Pess14][DBS]-PDMS and [Psss14][BS]-PDMS responses. Based on Figure 8, it was proposed that using
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the predicative QDA model will result in VOCs being misclassified as chloropropane or
chlorobutane.
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Figure 8. Principal component plot for discrimination of five chlorinated VOCs with respect to a three
sensor MSA. Plot considers 75 total measurements consisting of three replicate measurements at five
different flow ratios for each VOC (15 measurements per sample) using composite sensors.

This hypothesis is the result of significant overlap of chloropropane and chlorobutane with
DCM, chloroform, and tetrachloromethane. This proposal was evaluated using the first two principal
components as predictor variables in QDA. The QDA model had an error rate of 36%, which
accounted for 27 misclassifications. These misclassifications were comprised of five DCM
measurements classified as chlorobutane, six chloroform measurements classified as
tetrachloromethane, nine chloropropane measurements classified as chlorobutane and three as DCM,
one chlorobutane classified as DCM, and three tetrachloromethane measurements classified as
chlorobutane. This model was found to have an accuracy of 64%, which lead to further investigation
of the discriminate scores. Similar to the original pure IL MSA, most of the misclassifications were
due to the lower flow ratios (0.05 and 0.1). Therefore, new principal components using Af
measurements from 0.2, 0.3, and 0.4 flow ratios were evaluated and used to develop an optimized
QDA model.

In this examination, the first two principal components accounted for 99.6% of the total
variability in the three predictors and represented the same factors as the original components. The
optimized first principal component accounted for 89.3% of the variability, while the second
component accounted for 10.3%. An optimized PCA plot is depicted in Figure 9, where enhanced
visual separation between tetrachloromethane, chloroform, and DCM is provided. Nonetheless, poor
visual separation persisted between chlorobutane and chloropropane of the optimized principal
components.

The optimized principal components were used as predictor variables to develop the optimized
QDA model. With the exception of two measurements, this model accurately discriminated between
the five chlorinated VOCs and resulted in an error rate of 4.44%. The misclassification was due to two
chloropropane measurements being classified as chlorobutane. As previously mentioned,
chloropropane and chlorobutane overlapped in the optimized PCA plot (Figure 9). Thus, this
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misclassification was not alarming. The overall accuracy of this model was determined to be 95.56%,
which is a drastic improvement over the original QDA model as well as the pure IL QDA model.
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Figure 9. Principal component plot for discrimination of five chlorinated VOCs with respect to a three
sensor MSA. The plot considers 45 total measurements consisting of three replicate measurements at
three different flow ratios for each VOC (nine measurements per sample) using composite sensors.

4.2. Evaluation of VSAs

[Pec614][DBS]-PDMS, [Pess14][BS]-PDMS, and [Peee1s][OBS]-PDMS exhibited sensor responses
across multiple harmonics, as shown in Figures 3-5 respectively. To evaluate the capability of VSAs
for discrimination of chlorinated VOCs, each sensor was analyzed as an independent system. To
accomplish this task, raw changes in frequency (Af) data collected from each sensor across multiple
harmonics was used to develop a predictive model using QDA. [Pess14][DBS]-PDMS exhibited five
harmonics (1st, 3rd, 5th, 7th, and 9th), [Psss14][BS]-PDMS exhibited four harmonics (1st, 3rd, 5th, and
7th), and [Pess14][OBS]-PDMS exhibited six harmonics (1st, 3rd, 5th, 7th, 9th, and 11th). For each
sensor, the hypothesis that the covariance matrices associated with the five, four, and six sensor
variables, respectively, were the same across all VOCs was strongly rejected (p-value < 0.0001). Thus,
QDA was used, which fits a model that estimates the covariance matrices separately for each VOC
[26]. Based on optimization of the composite MSA, these QDA models consider only Af
measurements for 0.2, 0.3, and 0.4 flow ratios.

In regards to [Pess14][DBS]-PDMS, four principal components were used as predictor variables to
develop the QDA model. This model resulted in 100% accuracy in discriminating the five chlorinated
VOCs. In contrast, [Pess14][BS]-PDMS, used three principal components as input variables for QDA,
which resulted in 91.11% discrimination accuracy. These misclassifications consisted of one
chlorobutane measurement being classified as chloropropane, and three chloropropane
measurements classified as chlorobutane. Lastly, [Pess14][OBS]-PDMS used five principal components
as predictor variables for development of the QDA model, which resulted in 100% accuracy. Due to
these models using more than two principal components, and hence three-dimensional or more, it is
not possible to illustrate the score plots. For simplicity, two-dimensional QDA canonical plots for
each VSA are provided in Figures 511-513.
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5. Conclusions

In this study, two novel phosphonium ILs and one previously reported phosphonium IL were
synthesized and their vapor sensing properties were investigated using a QCM based MSA. To
further evaluate the vapor sensing properties of these ILs, PDMS was incorporated to create
composite materials. The incorporation of PDMS resulted in significantly different sensor responses
from pure ILs. Ultimately, composite materials vapor sensing properties were investigated using a
QCM based MSA and VSA. It was found that pure ILs and composite materials were not useful for
vapor detection of chlorinated VOCs at low flow ratios (0.05 and 0.1). However, by employing the
composite MSA, five chlorinated VOCs were accurately discriminated at 95.56%, which was an
increase in accuracy as compared to pure ILs MSA (84.45%). It should be noted that pure ILs were
not capable of VSA fabrication, while composite sensors were capable. With the exception of
[Pess14][BS]-PDMS (91.11%), VSAs exhibited higher accuracies than the MSA at 100%. Although
further studies need to be investigated to fully understand vapor interaction with sensing materials,
these studies have provided greater insight into benefits of incorporating polymers for enhanced
discrimination accuracies of QCM based sensor arrays. These sensor arrays are currently in the basic
research stage; however, they show promise for potential use in laboratories where color additives
and inks are produced to monitor chlorinated VOC exposure to employees.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1. Schematic
of QCM-based VSA, Figure S2. Structures of starting materials used to synthesize ILs, Figure S3. Schematic of
QCM flow system, Figure S4. Electrospray ionization mass spectrometry (ESI-MS) spectra for [Pessi4][DBS],
Figure S5. Electrospray ionization mass spectrometry (ESI-MS) spectra for [Psss14][BS], Figure S6. Electrospray
ionization mass spectrometry (ESI-MS) spectra for [Pessi4][OBS], Figure S7. Fourier transform infrared (FT-IR)
spectra for [Pess14][DBS], Figure S8. Fourier transform infrared (FT-IR) spectra for [Pess14][BS], Figure S9. Fourier
transform infrared (FT-IR) spectra for [Pesc14][OBS], Figure S10. Sensorgram for first replicate measurement,
Figure S11. Canonical plot for discrimination of five chlorinated VOCs with respect to a five sensor VSA, Figure
S12. Canonical plot for discrimination of five chlorinated VOCs with respect to a four sensor VSA, Figure S13.
Canonical plot for discrimination of five chlorinated VOCs with respect to a six sensor VSA.
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