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ABSTRACT
Feature screening procedures aim to reducing the dimensionality of data with
exponentially-growing dimensions. Existing procedures all focused on a single type
of predictors, which are either all continuous or all discrete. They cannot address
mixed types of variables, outliers, or nonlinear trends. In this paper we first propose
new feature screening procedure(s) for different continuous/discrete combinations
of response and predictor variables. They are respectively based on marginal Spear-
man correlation, marginal ANOVA test, marginal Kruskal-Wallis test, Kolmogorov-
Smirnov test, Mann-Whitney test, and smoothing splines modeling. Extensive sim-
ulation studies are performed to compare the new and existing procedures, with the
aim of identifying a best robust screening procedure for each single type of data.
Then we combine these best screening procedures to form the robust feature screen-
ing procedure for mixed type of data. We demonstrate its robustness against outliers
and model misspecification through simulation studies and a real example.
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1. Introduction

High dimensional data analysis has become increasingly frequent and important in
many areas such as economics, finance, health sciences and machine learning. Vari-
able selection and feature extraction play a crucial role in knowledge discovery in all
of these areas. Classical model selection methods have been developed and applied
to different areas for many decades. Traditional variable selection, for example, by
AIC[1],BIC[2],Mallow’s Cp[3], RIC[4] and GCV[5], involves an NP-hard combinatorial
optimization problem. It is natural that these classical variable selection methods use
penalized L0 regularization, which gives a nice interpretation of best subset selection
and admits nice sampling properties[6]. However, the expensive computational cost
makes classical procedures infeasible for high dimensional data analysis. Therefore, in
the past decades a number of penalization methods have been developed to exploit
the sparse nature of such high dimensional data. Some well-known examples are the
bridge penalty [7], the least absolute shrinkage and selection operator (Lasso) penalty
[8], the elastic net penalty [9], the adaptive Lasso penalty [10], the smoothly clipped
absolute deviation (SCAD) penalty [11], and the minimax concave penalty [12]. A
more comprehensive list of such methods can be found at the review [13].

The aforementioned regularization methods can comfortably deal with high dimen-
sional cases when the number of predictors p is almost as large as the sample size n.
But they may have difficulty when p can increase in an exponential order exp{O(nα)}
of the sample size n, where α > 0. For example, bioinformatic studies often see data
with a sample size of a few hundreds and predictors of tens of thousand dimensions.
To deal with the ultra high dimensionality, one appealing idea is to first use a fast,
reliable and efficient method to reduce the dimensionality p from an ultra-high scale to
a relatively large scale d (e.g., O(nb) for some b > 0), then the regularization methods
can be applied to the reduced feature space. This motivates the sure independence
screening (SIS) procedure introduced in [14] which ranks the predictors according to
the magnitudes of their individual sample correlations with the response and keeps
only the top-ranked predictors in the model. They have shown that SIS possesses the
sure screening property, that is, it can detect a subset of covariates which contains the
important ones and its size is much smaller than p.

Since then, a number of extensions have emerged to refine the procedure or general-
ize this idea to various settings. For example, Fan and Lv [14] provided an iterative SIS
procedure (ISIS) by iteratively replacing the response with the residual obtained from
the regression of the response on selected covariates in the previous step. Wang [15]
studied the property of forward regression with ultrahigh-dimensional predictors and
proposed using the extended BIC [16] to determine the size of the active predictor set.
Hall and Miller [17] proposed using the generalized correlation as a marginal screening
utility and ranking all predictors based on the magnitude of estimated generalized cor-
relation. Li et al. [18] proposed a robust rank correlation screening(RRCS) procedure
based on the Kendall rank correlation to deal with the heavy-tail distributions. And
the RRCS procedure is robust to outliers and influence points in the observations,
which is not the case for the Pearson correlation in the SIS procedure. Besides the
linear model, [19] and [20] also considered the SIS procedure for generalized linear
models. And [21] proposed a nonparametric independence screening(NIS) procedure
for an ultra-high dimensional additive nonparametric regression model. Furthermore,
[22] proposed a model-free variable screening procedure called the sure independent
ranking screening(SIRS) procedure.

All the aforementioned screening procedures only deal with continuous predictors.
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There is also some work focusing on the screening procedures for discrete predictors
only. For example, when the response is also categorical, Huang et al. [23] employed
the Pearson χ2 test statistic as a marginal utility for feature screening. Screening
procedures have also been studied under the scenario of classification. For example, Fan
and Fan [24] proposed using two sample t-statistic as the marginal utility for feature
screening in high dimensional binary classification. However, this procedure may break
down for heavy-tailed distributions or data with outliers. To overcome this drawback,
Mai and Zou [25] proposed a feature screening method for binary classification based
on the Kolmogorov-Smirnov statistic. Besides establishing the sure screening property,
they also showed that this method is almost as fast as the t-test screening [24] and
is ten times faster than nonparametric maximum marginal likelihood screening [21].
Cui et al. [26] proposed a model-free feature screening procedure using mean variance
index for ultra high dimensional discriminant analysis. It is not only robust to heavy-
tailed distributions of predictors and the presence of potential outliers, but also allows
the categorical response having a diverging number of classes in the order of O(nk)
with some k ≥ 0.

One common drawback of these existing methods is that they all focus on single
type of predictors, which means the predictors are all continuous or all discrete. How-
ever, in practice, we often collect mixed type of data, which contains both continuous
and discrete predictors. For example, in genetic studies, researchers can collect infor-
mation on both gene expression profiles and single nucleotide polymorphisms (SNPs)
genotypes. Numerous gene expression(continuous variables) based strategies have been
developed ([27], [28], and [29]) and many methods have been developed for pathway
analyses using SNP data([30], [31], and [32]). As discussed by Xiong et al.[33], valu-
able associations may be discarded in single data type analyses. For instance, genes
with only genetic alterations are not considered in gene set analyses based solely on
expression data. Similarly, genes with only expression changes cannot be captured
by a purely SNP-based approach. These issues create a need to integrate both gene
expression and SNPs into the association analysis of gene sets. This motivates us to
develop a feature screening procedure for mixed type of data. Furthermore, data with
ultra-high dimensions are often contaminated with outliers. Many existing screening
procedures may suffer from such contamination. And many procedures assume strict
parametric models that might not be realistic for most practical data. Therefore, in
this paper we are interested in developing screening procedures for mixed type of data
that are robust against outliers and model misspecification.

Our new development is divided in two parts. In Section 2, we first focus on feature
screening procedures for single type of data. For each type of data, we propose a new
robust procedure and conduct simulation studies to assess the performance of the pro-
posed procedure and compare them with existing procedures. The goal of this part is
to identify a candidate robust screening procedure for each type of data which will be
combined together to form the robust screening procedure for mixed type of data in
the next part. Our contribution and findings in this section can be summarized below.
For models with a continuous response and continuous predictors, we propose a robust
screening method by the marginal Spearman correlation and our simulations show that
our Spearman correlation screening procedure and the RRCS [18] procedure are the
most robust procedures against all the types of outliers considered in our simulations.
For models with a continuous response and categorical predictors, we propose two
screening procedures respectively by the marginal ANOVA and Kruskal-Wallis tests,
and our simulations show that the ANOVA screening procedure is the best when
there is no outlier but the Kruskal-Wallis screening and the RRCS are better when
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there are outliers. For models with a categorical response and continuous predictors,
we propose two screening procedures respectively by the Kolmogorov-Smirnov and
Mann-Whitney tests, and our simulations show that the Mann-Whitney test outper-
forms all the other competitors. For nonparametric models with continuous predictors,
we propose a screening procedure by smoothing splines modeling of the predictor ef-
fects and our simulations show that the smoothing spline screening procedure is the
best for such models together with the NIS procedure [21]. In summary, all the new
screening procedures we propose for models with a single type of predictor variables
are either competitive or better than the existing methods in general, and especially so
when there are outliers. Our extensive simulations also provide important numerical
comparisons of all the existing methods that are not available anywhere else.

In Section 3, we propose robust screening procedures for mixed type of data based
on our findings in Section 2. When the response is continuous, we propose a screening
procedure combining the B-spline modeling of continuous predictors as in the NIS
method and the ANOVA/Kruskal-Wallis screening for categorical predictors. When
the response is categorical, we propose a screening procedure combining the Chi-square
test for continuous predictors with the ANOVA/Kruskal-Wallis test for categorical
predictors. We conduct extensive simulation studies to evaluate the performance of
the proposed procedure options for both types of responses. We further illustrate the
procedure using a real-life data example in Section 5.

2. Screen procedures for single type of data

In this section, we focus on feature screening procedures for single type of data and aim
to identify a best robust candidate screening procedure for each type of data, which
will be combined together to form the screening procedure for mixed type of data.
For models with a continuous response and continuous predictors, we introduce the
Spearman correlation screening procedure and conduct simulation studies to compare
the performance with SIS [14], RRCS [18], CQC-SIS [34] and DC-SIS [35]. For models
with a continuous response and categorical predictors, we introduce the screening pro-
cedures respectively by the ANOVA and Kruskal-Wallis test and conduct simulation
studies to compare their performances with SIS and RRCS. For categorical response
and continuous predictors, we introduce the screening procedures respectively by the
Kolmogorov-Smirnov and Mann-Whitney tests and conduct simulation studies to com-
pare their performances with NIS [21] and SIRS [22]. For models with a categorical
response and categorical predictors, screening with χ2 test statistic[23] seems to be the
only option. These studies for single type of data prepare us for developing a robust
procedure for data of mixed types.

2.1. Models with a continuous response and continuous predictors

2.1.1. Robust Screening by Spearman Correlation

Consider the random vectors (Xi, Yi), i = 1, . . . , n. After converting the raw values
Xi, Yi to ranks rgXi, rgYi, the Spearman’s ρ rank correlation between Xi and Yi is

defined as ρ = cov(rgX ,rgY )
σrgX

σrgY

, where cov(rgX , rgY ), σrgX and σrgY are respectively the

covariance and standard deviations of the rank variables. If there are no ties, it can

be computed as ρ = 1− 6
∑
d2i

n(n2−1) , where di = rg(Xi)− rg(Yi) is the difference between
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the two ranks at the ith observation.
Let Y = (Y1, . . . , Yn)T be an n-vector of response, X = (X1, . . . ,Xp) be an n×p de-

sign matrix. Define ω = (ω1, . . . , ωp)
T with components ωk = 1−6

∑n
i=1 d

2
ik

n(n2−1) , k = 1, . . . , p,

where dik = rg(Xik)− rg(Yi). Then ωk is essentially the marginal rank correlation co-
efficient between Y and Xk. We can sort the magnitudes of all the components of ω
in a decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : |ωk| is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a
submodel with the size dn.

The Spearman rank correlation between two variables is the nonparametric version
of the Pearson correlation and equal to the Pearson correlation between the rank
values of those two variables. Because of the robustness of the Spearman correlation
against heavy-tailed distributions and outliers, a screening method using Spearman
correlation is expected to be more robust than the SIS.

2.1.2. Numerical Studies

In this section, we present simulations to compare the performances of the Spear-
man correlation screening procedure with the existing methods, such as SIS([14]),
RRCS([18]), CQC-SIS([34]) and DC-SIS([35]).

We used the linear model with multivariate normal predictors and the noise ε was
generated from three different distributions: the standard normal distribution, the
standard normal distribution with 10% of the outliers following the Cauchy distribu-
tion, and all the errors from the t(1) distribution. We considered two settings with
(n, p) = (100, 1000) and (200, 1000), respectively. The sizes s of the true models, i.e.,
the numbers of nonzero coefficients, were chosen to be 5 and 8, respectively, and the
nonzero values of the p-vectors β were all set to be 5. We considered three designs for
the predictor covariance matrix: (1) Σ1 = Ip×p; (2) Σ2 = (σij)p×p with σij = ρ|i−j|,

ρ = 0.5; (3) Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8. To examine robustness against
outliers in the predictors, we also considered the scenarios of having 10% of outlier
predictors in each design that were generated from multivariate t-distribution with
t(1) marginal distributions and the same covariance matrix as the multivariate normal
distribution in the design, using the rmvt function in the R pakcage mvtnorm. We
chose d = [n/ log n]. For each model we simulated 500 data sets.

We used the median number of correctly selected predictors and the proportion
of times that the screened predictor set contained the true model to evaluate the
performances of the procedures. Tables 1 and 2 summarized the simulation results
and we can draw the following conclusions:

(1) When there were no outliers, SIS and CQC-SIS performed better than others,
yielding higher proportions of predictors containing the true model selected.
The difference became smaller with a larger sample size. But when outliers were
present in data, Spearman, RRCS and CQC-SIS performed much better than
others. SIS was very sensitive to outliers.

(2) Spearman, RRCS and CQC-SIS could outperform DC-SIS with or without out-
liers in response. When outliers were in predictors, Spearman and RRCS per-
formed much better than the others. Generally speaking, the performance of
Spearman and RRCS were the best.
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Table 1. Results of simulation comparisons for the methods SIS, Spearman, RRCS, CQC-SIS, DC-SIS with

n = 100, p = 1000 and s = 5 in Section 2.1.2. Four outlier types are: no outliers (None), 10% Cauchy errors

(ε : 10% Cauchy), 100% t(1) errors (ε ∼ t(1)), and 10% multivariate t(1) predictors (x : 10% MVT). The top
half of the table contains the empirical medians for the numbers of correctly selected variables, and the bottom

half the proportions of times that the screened predictor set contained the true model.

ρ Outlier Type SIS Spear-
man

RRCS CQC-
SIS

DC-
SIS

0 None 5 5 5 5 5
0 ε : 10% Cauchy 5 5 5 5 5
0 ε ∼ t(1) 2 5 5 5 5
0 x : 10% MVT 1 5 5 3 3
0.5 None 5 5 5 5 5
0.5 ε : 10% Cauchy 5 5 5 5 5
0.5 ε ∼ t(1) 2 5 5 5 5
0.5 x : 10% MVT 1 5 5 3 4
0.8 None 5 5 5 5 5
0.8 ε : 10% Cauchy 5 5 5 5 5
0.8 ε ∼ t(1) 2 4 4 4 4
0.8 x : 10% MVT 1 5 5 3 3

0 None 0.940 0.924 0.930 0.944 0.898
0 ε : 10% Cauchy 0.848 0.904 0.896 0.936 0.888
0 ε ∼ t(1) 0.144 0.768 0.776 0.802 0.642
0 x : 10% MVT 0.040 0.856 0.864 0.248 0.296
0.5 None 0.910 0.902 0.904 0.922 0.894
0.5 ε : 10% Cauchy 0.704 0.824 0.848 0.832 0.800
0.5 ε ∼ t(1) 0.104 0.704 0.712 0.768 0.576
0.5 x : 10% MVT 0.032 0.832 0.832 0.248 0.328
0.8 None 0.744 0.712 0.718 0.744 0.676
0.8 ε : 10% Cauchy 0.664 0.706 0.712 0.726 0.654
0.8 ε ∼ t(1) 0.062 0.428 0.398 0.446 0.312
0.8 x : 10% MVT 0.012 0.708 0.712 0.208 0.284

(3) With the increase of the sample size, they all had improved performances.

2.2. Models with a continuous response and categorical predictors

2.2.1. Screening by the ANOVA and Kruskal-Wallis Tests

Given observations (Xi, Yi), i = 1, . . . , n, of a continuous variable Y and a categorical
variable X, where Xi ∈ {1, . . . ,K} is the observed class label. We can divide the n-
vector Y = (Y1, . . . , Yn) into K groups according to the corresponding class label Xi.
Then we can perform a one-way ANOVA to test whether the means of the K groups
are all the same. The p-value of the test indicates the level of association between Y
and X.

The ANOVA model assumes that Y is normally distributed. When this assumption
does not hold, we can use the Kruskal-Wallis test [36], which is the nonparametric
equivalent of ANOVA. Let ni represent the sample size for the ith group, i = 1, . . . ,K.
Rank all the observations and compute Ri, the sum of the ranks for group i. Then the
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Table 2. Results of simulation comparisons for the methods SIS, Spearman, RRCS, CQC-SIS, DC-SIS with

n = 200, p = 1000 and s = 8 in Section 2.1.2. Four outlier types are: no outliers (None), 10% Cauchy errors

(ε : 10% Cauchy), 100% t(1) errors (ε ∼ t(1)), and 10% multivariate t(1) predictors (x : 10% MVT). The top
half of the table contains the empirical medians for the numbers of correctly selected variables, and the bottom

half the proportions of times that the screened predictor set contained the true model.

ρ Outlier Type SIS Spear-
man

RRCS CQC-
SIS

DC-
SIS

0 None 8 8 8 8 8
0 ε : 10% Cauchy 8 8 8 8 8
0 ε ∼ t(1) 5 8 8 8 8
0 x : 10% MVT 1 8 8 5 5
0.5 None 8 8 8 8 8
0.5 ε : 10% Cauchy 8 8 8 8 8
0.5 ε ∼ t(1) 3 8 8 8 8
0.5 x : 10% MVT 1 8 8 5 5
0.8 None 8 8 8 8 8
0.8 ε : 10% Cauchy 8 8 8 8 8
0.8 ε ∼ t(1) 3 8 8 8 7
0.8 x : 10% MVT 1 8 8 5 5

0 None 0.988 0.982 0.982 0.986 0.974
0 ε : 10% Cauchy 0.804 0.966 0.966 0.978 0.952
0 ε ∼ t(1) 0.124 0.858 0.862 0.812 0.762
0 x : 10% MVT 0.008 0.944 0.944 0.112 0.246
0.5 None 0.938 0.926 0.926 0.946 0.904
0.5 ε : 10% Cauchy 0.782 0.930 0.938 0.948 0.902
0.5 ε ∼ t(1) 0.088 0.832 0.866 0.822 0.714
0.5 x : 10% MVT 0.000 0.914 0.922 0.066 0.190
0.8 None 0.738 0.706 0.710 0.756 0.688
0.8 ε : 10% Cauchy 0.570 0.682 0.682 0.716 0.658
0.8 ε ∼ t(1) 0.018 0.572 0.554 0.552 0.428
0.8 x : 10% MVT 0.000 0.692 0.706 0.092 0.172

Kruskal-Wallis test statistic is

H =
12

n(n+ 1)

K∑
i=1

R2
i

ni
− 3(n+ 1). (1)

This statistic approximately follows a χ2 distribution with K − 1 degrees of freedom
if the null hypothesis is true.

Let Xj = (X1j , . . . ,Xnj)
T be the vector of observed values for the jth categorical

predictor and ω = (ω1, . . . , ωp)
T be the vector of p-values of tests on the marginal

association between Y and Xj . We can then sort the magnitudes of all the components
of ω in an increasing order and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a
submodel with size dn.
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2.2.2. Numerical Studies

In this section, we present several simulations to compare the performances of four
methods: screening by the ANOVA test, screening by the Kruskal-Wallis test, SIS([14])
and RRCS([18]).

The true model was the linear model with p binary predictors where only s of them
had nonzero coefficients. The random error was generated from two different distribu-
tions: the standard normal distribution and the standard t distribution with one degree
of freedom. We considered two settings with (n, p) = (100, 1000) and (200, 1000), re-
spectively. The true size s of the model was chosen to be 5 or 8, with all the nonzero
components of the coefficient vector β equal to 5. We considered the same three designs
for the predictor covariance matrix as in Section 2.1.2: (1) Σ1 = Ip×p (2) Σ2 = (σij)p×p
with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8. We chose
d = [n/ log n]. For each model we simulated 500 data sets. Table 3 and Table 4 sum-
marized the simulation results and we can draw the following conclusions:

(1) With the standard normal noise, the ANOVA test performed better than the
others, yielding higher proportions of predictors containing the true model se-
lected. The difference became smaller with a larger sample size. But with the
t distribution noise, the Kruskal-Wallis test and RRCS performed much better
than the others.

(2) Generally speaking, the performance of the Kruskal-Wallis test and RRCS were
the best.

(3) With the increase of the sample size, they all had improved performances.
(4) An interesting finding was that: the performance of the Kruskal-Wallis test and

RRCS were the same in almost all the settings. This may be due to their common
nonparametric nature.

Table 3. Results of simulation comparisons for the ANOVA, Kruskal-Wallis, SIS and RRCS methods with

n = 100, p = 1000 and s = 5 in Section 2.2.2. Two error distributions, N(0, 1) and t(1), are considered. The
top half of the table contains the empirical medians for the numbers of correctly selected variables, and the

bottom half the proportions of times that the screened predictor set contained the true model.

ρ ε ANOVA K-W SIS RRCS

0 N(0, 1) 5 5 2 5
0 t(1) 2 5 1 5
0.5 N(0, 1) 5 5 2 5
0.5 t(1) 3 5 1 5
0.8 N(0, 1) 5 5 2 5
0.8 t(1) 2 4 1 4

0 N(0, 1) 0.972 0.928 0.008 0.928
0 t(1) 0.136 0.626 0.004 0.626
0.5 N(0, 1) 0.946 0.880 0.004 0.880
0.5 t(1) 0.112 0.610 0.000 0.610
0.8 N(0, 1) 0.912 0.826 0.002 0.826
0.8 t(1) 0.076 0.478 0.002 0.478
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Table 4. Results of simulation comparisons for the ANOVA, Kruskal-Wallis, SIS and RRCS methods with

n = 200, p = 1000 and s = 8 in Section 2.2.2. Two error distributions, N(0, 1) and t(1), are considered. The

top half contains the empirical medians for the numbers of correctly selected variables, and the bottom half
the proportions of times that the screened predictor set contained the true model.

ρ ε ANOVA K-W SIS RRCS

0 N(0, 1) 8 8 3 8
0 t(1) 4 8 2 8
0.5 N(0, 1) 8 8 3 8
0.5 t(1) 4 8 2 8
0.8 N(0, 1) 8 8 3 8
0.8 t(1) 5 8 2 8

0 N(0, 1) 0.998 0.996 0.000 0.996
0 t(1) 0.148 0.870 0.000 0.870
0.5 N(0, 1) 0.976 0.970 0.002 0.970
0.5 t(1) 0.130 0.872 0.000 0.872
0.8 N(0, 1) 0.960 0.932 0.004 0.934
0.8 t(1) 0.134 0.764 0.000 0.764

2.3. Models with a categorical response and continuous predictors

2.3.1. Screening by the Kolmogorov-Smirnov and Mann-Whitney Tests

We first review the Kolmogorov-Smirnov and Mann-Whitney tests for testing whether
two samples come from the same distribution. The Kolmogorov-Smirnov test is a
nonparametric hypothesis test that evaluates the difference between the cumulative
distribution functions (c.d.f.) of the two sample data vectors over the data range.
Suppose that the first sample X1, . . . , Xm of size m has a distribution with c.d.f.
F1(x) and the second sample Y1, . . . , Yn of size n has a distribution with c.d.f. F2(x).
The Kolmogorov-Smirnov statistic is D = max

x
|F1(x)−F2(x)|, which is the maximum

absolute value of the differences between the two c.d.f.s. A natural estimator for D is

D̂mn = max
x
|F̂1(x)− F̂2(x)|, (2)

where F̂1 and F̂1 are the sample c.d.f.s. The null hypothesis of two samples having the

same distribution is rejected at level α if D̂mn > c(α)
√

m+n
mn , where c(α) is the critical

value for the Kolmogorov-Smirnov distribution.
The Mann-Whitney test is another non-parametric test that can be used to test

whether two samples come from the same distribution. It is based on a comparison
of every observation in the first sample with every observation in the other sample.
Suppose we have a sample X1, . . . , Xm of size m and another sample Z1, . . . , Zn of
size n. To calculate the test statistic, one first ranks all the pooled observations and
let Sj be the rank of Zj in this joint ordering. When there are ties, Sj is computed
as the average rank of all the observations that are tied. Then the Mann-Whitney
test statistic is defined as U =

∑n
j=1 Sj − n(n + 1)/2. Note that if the number of

observations is large enough, a normal approximation can be used with µU = mn
2 ,

σU =

√
mn(m+n+1)

12 .

Both the Kolmogorov-Smirnov and Mann-Whitney tests are nonparametric tests to
compare two unpaired groups of data. Both compute p-values for testing the null hy-

9



pothesis that the two groups have the same distribution. The Kolmogorov-Smirnov test
is sensitive to any distributional differences. Substantial differences in shape, spread
or median will result in a small p-value. In contrast, the Mann-Whitney test is mostly
sensitive to changes in the median. Both tests can be used when we have two groups.
When we have three or more groups, we can use the Kruskal-Wallis test as described
in Section 2.2.1.

Let Y = (Y1, . . . , Yn)T be an n-vector of categorical responses where Yi ∈ {1, . . . ,K}
is the ith class label, and Xj = (X1j , . . . , Xnj)

T be the jth continuous predictor. For
each pair of Y and Xj , we can divide Xj into K groups according to the class label
Yi and perform a test to see whether the K groups come from the same distribution.
Let ω = (ω1, . . . , ωp)

T be a p-vector each being the p-value of the selected test. We
can then sort the magnitudes of all the components of ω in an increasing order and
select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a
submodel with the size dn.

2.3.2. Numerical Studies

In this section, we present simulations to compare the performances of four meth-
ods: NIS([21]), SIRS([22]), screening with the Kolmogorov-Smirnov test (K-S) and
screening with the Mann-Whitney test (M-W).

In this example, the observations were independently generated such that Y |X = x

is distributed as Binomial(1, p(x)), with log( p(x)
1−p(x)) = xTβ + ε where the additional

noise variable ε was inserted into the model to create outliers. The noise variable ε
was generated from three different distributions: the standard normal distribution,
90% from standard normal distribution and 10% from the Cauchy distribution, and
all from the t(1) distribution. We chose n = 200, p = 1000. The true size s of the
model was chosen to be 8 and the nonzero components of the coefficient vector β
were all equal to 5. We considered three designs for the predictor covariance matrix:
(1) Σ1 = Ip×p (2) Σ2 = (σij)p×p with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p with

σij = ρ|i−j|, ρ = 0.8. We chose d = [n/ log n]. For each model we simulated 500
data sets. Table 5 summarized the simulation results and we can draw the following
conclusions:

(1) The Mann-Whitney test outperformed the other three methods.
(2) With the increase of ρ, the performances all became worse.

2.4. Nonparametric screening for models with continuous predictors

When continuous predictors are involved, the underlying form of their effects may not
necessarily be linear as considered in the previous sections. This motivates screening
procedures under a nonparametric regression model. The NIS procedure developed in
[21] is such an example where each marginal nonparametric regression model is fitted
by B-splines.
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Table 5. Results of simulation comparisons for the NIS, SIRS, Mann-Whitney test and Kolmogorov-Smirnov

test methods with n = 200, p = 1000 and s = 8 in Section 2.3.2. Three noise types are: all from N(0, 1), 90%

from N(0, 1) + 10% from Cauchy, and all from t(1). The top half of the table contains the empirical medians
for the numbers of correctly selected variables, and the bottom half the proportions of times that the screened

predictor set contained the true model.

ρ Noise Type NIS SIRS M-W K-S

0 N(0, 1) 8 6 8 7
0 90% N(0, 1) + 10% Cauchy 7 6 8 7
0 t(1) 7 5 8 7
0.5 N(0, 1) 7 6 8 7
0.5 90% N(0, 1) + 10% Cauchy 7 6 8 7
0.5 t(1) 7 5 8 7
0.8 N(0, 1) 7 5 7 7
0.8 90% N(0, 1) + 10% Cauchy 7 5 7 6
0.8 t(1) 6 5 7 6

0 N(0, 1) 0.518 0.042 0.714 0.436
0 90% N(0, 1) + 10% Cauchy 0.368 0.048 0.728 0.408
0 t(1) 0.332 0.000 0.632 0.404
0.5 N(0, 1) 0.452 0.054 0.664 0.366
0.5 90% N(0, 1) + 10% Cauchy 0.384 0.024 0.642 0.328
0.5 t(1) 0.350 0.036 0.610 0.260
0.8 N(0, 1) 0.256 0.008 0.304 0.144
0.8 90% N(0, 1) + 10% Cauchy 0.202 0.006 0.326 0.132
0.8 t(1) 0.116 0.004 0.242 0.080

2.4.1. Screening by smoothing splines modeling of predictor effects

B-splines are good for modeling simple nonlinear trends but may suffer when the non-
linear trend becomes more complicated. In this section, we consider using smoothing
splines instead of B-splines for the marginal regression models. For responses gener-
ated from exponential family distributions, we assume the following marginal model
for response Y given the jth predictor Xj = x

f(y|Xj = x) = exp (yηj(x)− b(ηj(x)))/a(φj) + c(y, φj), (3)

where a > 0, b and c are known functions, ηj(·) is the marginal regression function of
the jth predictor, and φj is either known or considered as a nuisance parameter. We
use the smoothing splines in Chapter 5 of [37] to estimate ηj .

Let Y = (Y1, . . . , Yn) be an n-vector of observed responses and X = (X1, . . . ,Xp)
T

be an n×p design matrix. For each pair of Y and Xj , we can fit a marginal regression
model by smoothing splines and get an estimate η̂j for ηj . We then test the significance
of the relationship by examining whether η̂j is a constant function, or equivalently,
η̂′j ≡ 0. Define ωj =

∑n
i=1{η̂′j(Xij)}2 and let ω = (ω1, . . . , ωp)

T . We can then sort the
magnitudes of all the components of ω in an decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a
submodel with the size dn. Here we opt for examining ωj instead of the p-values of
a nonparametric marginal test since p-values for hypothesis tests involving nonpara-
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metric smoothing tend to be conservative and may not be as accurate as those in
parametric tests [38].

2.4.2. Numerical Studies

Continuous Response:
For continuous response, we compared the performance of screening by smoothing

spline with SIS([14]), CQC-SIS([34]) and NIS([21]). We set n = 400 and p = 1000. For
NIS, the number of basis is set to be 5 as suggested by Fan et al.[21]. For smoothing
spline, the number of basis was set to be max(30, 10n2/9) and the modified GCV with
a = 1.4 was used for smoothing parameter selection as suggested by Kim and Gu[39].
For each model we simulated 500 data sets.

Example 2.1. This example was adapted from [21]. Let g1(x) = x, g2(x) =
(2x− 1)2, g3(x) = sin(2πx)/(2− sin(2πx)) and g4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) +
0.3 sin(2πx)2 + 0.4 cos(2πx)3 + 0.5 sin(2πx)3. The data were generated from the fol-
lowing model:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) +
√

1.74ε.

The covariates X = (X1, . . . ,XP )T are simulated according to the random-effects
model

Xj =
Wj + tU

1 + t
, j = 1, . . . , p,

where W1, . . . ,Wp and U are iid Uniform(0, 1), and ε ∼ N(0, 1). When t = 0, the
covariates are all independent, and when t = 1, the pairwise correlation of covariates
is 0.5.

Example 2.2. The settings and model were the same as Example 2.1 except that
the covariates X = (X1, . . . , Xp)

T were generated from the multivariate normal dis-
tribution with mean 0 and the covariance matrix Σ = (σij)p×p with σii = 1 and

σij = ρ|i−j| for i 6= j. We considered three cases: ρ = 0.5, ε ∼ N(0, 1); ρ = 0.8,
ε ∼ N(0, 1); ρ = 0.8, ε ∼ t(1).

Based on the summary results in Table 6 we can draw the following conclusions:

(1) Generally speaking, the performance of NIS and smoothing splines were the best.
(2) When ρ = 0.8, the performances for all procedures became worse while both NIS

and smoothing splines gave good performance.

Discrete Response from Exponential Family:
For discrete response from exponential family, we compare the performance of

screening by smoothing spline with NIS([21]), SIRS([22]) and screening by p-values
from the Kruskal-Wallis test. We set n = 400 and p = 1000. The choices of the num-
ber of basis functions for NIS and smoothing splines screening, as well as the smoothing
parameter selection criterion for smoothing splines screening, were the same as those
in the previous simulations for continuous responses. For each model we simulated 500
data sets.

Example 2.3. Let g1(x) = x2, g2(x) = x3 and g3(x) = exp(x). Y is distributed,

conditional on X = x, as Binomial(1, p(x)), with log( p(x)
1−p(x)) = 5g1(X1) + 5g2(X2) +

12



Table 6. Results of simulation comparisons for the SIS, CQC-SIS, NIS and smoothing spline methods with

data generated from models in Examples 2.1 and 2.2 of Section 2.4.2. The true number of active predictors is

s = 4. For Example 2.1, two values (0 and 1) for the constant t are considered. For Example 2.2, the distribution
for ε is always Uniform(0,1) and two values (0.5 and 0.8) of the constant ρ are considered. The top half of the

table contains the empirical medians for the numbers of correctly selected variables, and the bottom half the

proportions of times that the screened predictor set contained the true model.

Model Specification SIS CQC NIS SS

Example 2.1 (t = 0) 1 3 4 4
Example 2.1 (t = 1) 4 4 3 4
Example 2.2 (ρ = 0.5) 1 3 4 4
Example 2.2 (ρ = 0.8) 0 3 4 4

Example 2.1 (t = 0) 0.000 0.074 0.962 0.968
Example 2.1 (t = 1) 0.578 0.336 0.426 0.524
Example 2.2 (ρ = 0.5) 0.000 0.120 0.960 0.960
Example 2.2 (ρ = 0.8) 0.000 0.055 0.924 0.854

5g3(X3). The covariates X were generated from the multivariate normal distribution
with mean 0 and the covariance matrix Σ = (σij)p×p with σii = 1 and σij = ρ|i−j| for
i 6= j. We considered two cases: ρ = 0 and ρ = 0.8.

Example 2.4. Let g1(x) = x2, g2(x) = x3 and g3(x) = exp(x). Y is distributed, con-
ditional on X = x, as Poisson(µ(x)), with log(µ(x)) = 5g1(X1) + 5g2(X2) + 5g3(X3).
The covariates X = (X1, . . . ,XP )T are generated from the multivariate normal distri-
bution with mean 0 and the covariance matrix Σ = (σ)p×p with σii = 1 and σij = ρ|i−j|

for i 6= j. We considered two cases: ρ = 0 and ρ = 0.8.

Based on the summary results in Table 7 we can draw the following conclusions:

(1) Generally speaking, the performance of NIS and smoothing spline are the best.
(2) The performance of NIS and smoothing splines were not much affected by the

increase of correlations between predictors.

Table 7. Results of simulation comparisons for the NIS, SIRS, Kruskal-Wallis test and smoothing spline
methods with data generated from models in Examples 2.3 and 2.4 of Section 2.4.2. The true number of active

predictors is s = 4. For each example, three values (0, 0.5, and 0.8) for the constant ρ are considered. The top

half of the table contains the empirical medians for the numbers of correctly selected variables, and the bottom
half the proportions of times that the screened predictor set contained the true model.

Model Specification NIS SIRS K-W SS

Example 2.3 (ρ = 0) 4 3 3 4
Example 2.3 (ρ = 0.5) 4 3 3 4
Example 2.3 (ρ = 0.8) 4 3 3 4
Example 2.4 (ρ = 0) 4 3 3 4
Example 2.4 (ρ = 0.5) 4 3 3 4
Example 2.4 (ρ = 0.8) 4 3 3 4

Example 2.3 (ρ = 0) 0.876 0.012 0.018 0.886
Example 2.3 (ρ = 0.5) 0.774 0.032 0.026 0.868
Example 2.3 (ρ = 0.8) 0.850 0.000 0.000 0.870
Example 2.4 (ρ = 0) 0.732 0.062 0.088 0.786
Example 2.4 (ρ = 0.5) 0.712 0.032 0.048 0.736
Example 2.4 (ρ = 0.8) 0.748 0.018 0.026 0.728
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We note that in both the continuous and discrete response cases, the performance
of the NIS with B-splines is similar to that of smoothing spline screening. Therefore,
we opt to use the NIS with B-splines for the development in the next section.

3. Screening procedure for mixed types of data

The studies for single type of data in Section 2 have prepared us to define a robust
screening procedure for mixed type of ultra-high dimensional data. The best robust
screening procedure for each type of data has been identified. We will combine these
best screening procedures to form the robust feature screening procedure for mixed
type of data.

Let Y = (Y1, . . . , Yn)T be an n-vector response and X = (X1, . . . ,Xp)
T be the n×p

design matrix. For each pair of Y and Xj , we want to perform a marginal test and
the p-value of the test indicates the significance of the marginal relationship between
the response and the predictor.

Case 1: Response Y is continuous:
If the predictor Xj is also continuous, we use the B-splines to estimate the

marginal regression function similar to the NIS procedure. Consider the marginal
model Y = fj(Xj) + ε. We estimate the marginal regression function fj(x) by the

B-splines expansion f̂j(x) = β̂Tj Bj(x) where Bj(x) = {Bj1(x), . . . ,Bjd(x)}T is the

vector of B-spline basis functions. The coefficients β̂j = (βj1, . . . , βjd)
T is computed as

β̂j = argmin
βj∈Rd

n∑
i=1

{Yi − βTj Bj(Xij)}2.

Then we can test whether f̂j is a constant function and get a p-value.
When the predictor Xj is discrete, we can treat different values of the predictor as

group labels. Then we perform a one-way ANOVA test or Kruskal-Wallis test. Suppose
we have K groups, let ni(i = 1, . . . ,K) represent the sample sizes for each of the K
groups. If we choose one-way ANOVA test, our test statistic would be:

F =

∑K
i=1 ni(Y i· − Y ··)2/(K − 1)∑K

i=1

∑ni

j=1(Yij − Y i·)2/(n−K)
.

This test statistics follows an F distribution with degrees of freedom K−1 and n−K.
And we can get a p-value from the ANOVA test. If we choose the Kruskal-Wallis test,
we need to rank the response, and compute Ri = the sum of the ranks for group i.
Then the Kruskal-Wallis test statistic is:

H =
12

n(n+ 1)

K∑
i=1

R2
i

ni
− 3(n+ 1).

This statistic approximately follows a χ2 distribution with K − 1 degrees of freedom
and we can get a p-value from the K-W test.

Case 2: Response Y is discrete:
If the predictor Xj is continuous, we can treat different values of the response as

group labels, then we can perform a one-way ANOVA test or Kruskal-Wallis test simi-
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lar to the previous case but with the roles of X and Y switched. Both the corresponding
test statistics and their approximate distributions are the same as above.

If the predictor Xj is also discrete, we can perform a Chi-square test. Suppose
Yi ∈ {1, . . . ,K1} and Xij ∈ {1, . . . ,K2}. Define P (Yi = k) = πyk, P (Xij = k) = πjk,
and P (Yi = k1, Xij = k2) = πyj,k1k2 . Those quantities can be estimated by π̂yk =
n−1

∑
I(Yi = k), π̂jk = n−1

∑
I(Xij = k), and π̂yj,k1k2 = n−1

∑
I(Yi = k1)I(Xij =

k2). The Chi-square test statistic is

4̂j =

K1∑
k1=1

K2∑
k2=1

(π̂yk1 π̂jk2 − π̂yj,k1k2)2

π̂yk1 π̂jk2
.

This test statistics follows a χ2 distribution with (K1− 1)(K2− 1) degrees of freedom
and we can get a p-value from the test.

In either case for the type of the response variable, we combine the p-values of
all the marginal tests for both continuous and discrete predictors to form the vector
ω = (ω1, . . . , ωp)

T . We can then sort the magnitudes of all the components of ω in an
decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a
submodel with the size dn. Then the regularization methods, such as SCAD and MCP,
can be applied to the reduced feature space.

4. Simulation Studies

In this section we perform simulations to study the empirical performance for the pro-
posed screening procedure for mixed types of data. When the response is continuous,
the marginal model for a continuous predictor is fitted by B-splines and there are
two options for assessing the marginal effect of a discrete predictor: the ANOVA or
the Kruskal-Wallis test. We shall denote them respectively by B-sp & ANOVA and
B-sp & K-W. Similarly, when the response is discrete, the marginal effect of a discrete
predictor is assessed by the Chi-square test and there are two options for assessing
the marginal effect of a continuous predictor: the ANOVA or Kruskal-Wallis test. We
shall denote them respectively by ANOVA & Chi-sq and K-W & Chi-sq.

Example 4.1. We considered the linear model Y = Xβ+ε. One half of the predictors
were generated from multivariate normal distribution whose covariance matrix had one
of the following two designs: (1) Σ1 = Ip×p; (2) Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8.
The other half of predictors were binary predictors generated from the Bernoulli(0.5)
distribution. The random error ε was generated from three different distributions: all
from the standard normal distribution, 90% from the standard normal and 10% from
the Cauchy distributions, and all from the t distribution with three degrees of freedom.
We chose (n, p) = (400, 1000), s = 8, d = [n/ log n] and the nonzero components of
the p-vectors β were all equal to 5. For each model we simulated 500 data sets.

Example 4.2. Same as Example 4.1 except that Y = X2β + ε.

Example 4.3. Same as Example 4.1 except that Y = sin(X)β + ε.
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Example 4.4. Let g1(x) = x, g2(x) = x2 and g3(x) = sin(x). The true model was
Y = 5g1(X1)+5g2(X2)+5g3(X3)+5g1(X4)+5g2(X5)+5g3(X6)+ε, where X1, X2, X3

are continuous predictors and X4, X5, X6 are binary predictors. The other settings are
the same with Example 4.1.

Based on the summary results in Tables 8 and 9, we draw the following conclusions:

(1) Both options, B-sp & ANOVA and B-sp & K-W, performed better with standard
normal noise and independent predictors shown by the higher proportions of
selected predictors containing the true model.

(2) Generally both options performed well and the performances of the two options
were comparable.

Table 8. Results of simulation comparisons for the B-sp & ANOVA and B-sp & K-W methods with data

generated from models in Examples 4.1-4.3 of Section 4. The true number of active predictors is s = 8. In each
example, two values (0 and 0.8) are used for the constant ρ and three distributions are used for simulating

ε. The errors are generated respectively all from the standard normal distribution (N(0, 1)), 90% from the

standard normal and 10% from the Cauchy (10%), and all from the t distribution with 3 degrees of freedom
(t(3)). The top half of the table contains the empirical medians for the numbers of correctly selected variables,

and the bottom half the proportions of times that the screened predictor set contained the true model.

ρ & Errors ε 0&N(0, 1) 0&10% 0&t(3) 0.8&N(0, 1) 0.8&10% 0.8&t(3)

Ex 4.1/anova 8 8 8 8 8 8
Ex 4.1/K-W 8 8 8 8 8 8
Ex 4.2/anova 8 8 8 8 7 8
Ex 4.2/K-W 8 8 8 8 8 8
Ex 4.3/anova 8 8 8 8 8 8
Ex 4.3/K-W 8 8 8 8 8 8

Ex 4.1/anova 0.984 0.902 0.976 0.900 0.766 0.894
Ex 4.1/K-W 0.982 0.938 0.962 0.880 0.834 0.876
Ex 4.2/anova 0.748 0.656 0.738 0.636 0.488 0.620
Ex 4.2/K-W 0.882 0.864 0.888 0.824 0.768 0.820
Ex 4.3/anova 1.000 0.998 0.998 0.996 0.896 0.992
Ex 4.3/K-W 0.998 0.994 0.998 0.990 0.938 0.990

Example 4.5. Repeat Example 4.1 with (n, p) = (100, 200) and s = 6.

Example 4.6. Repeat Example 4.2 with (n, p) = (100, 200) and s = 6.

Example 4.7. Repeat Example 4.3 with (n, p) = (100, 200) and s = 6.

Example 4.8. Repeat Example 4.4 with (n, p) = (100, 200).

Example 4.9. To make the simulation mimic the arrhythmia application in the next
section, we chose (n, p, s) = (450, 250, 6) and Y is distributed as Binomial(1, p(x))

conditional on X = x, with log( p(x)
1−p(x)) = xTβ. The other settings were the same as

Example 4.1.

Example 4.10. Same as Example 4.9 except that log( p(x)
1−p(x)) = (x2)Tβ.

Example 4.11. Same as Example 4.9 except that log( p(x)
1−p(x)) = sin(x)Tβ.
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Table 9. Results of simulation comparisons for the B-sp & ANOVA and B-sp & K-W methods with data

generated from models in Examples 4.4-4.8 of Section 4. The true number of active predictors is s = 6. In each

example, two values (0 and 0.8) are used for the constant ρ and three distributions are used for simulating
ε. The errors are generated respectively all from the standard normal distribution (N(0, 1)), 90% from the

standard normal and 10% from the Cauchy (10%), and all from the t distribution with 3 degrees of freedom

(t(3)). The top half of the table contains the empirical medians for the numbers of correctly selected variables,
and the half the proportions of times that the screened predictor set contained the true model.

ρ & Errors ε 0&N(0, 1) 0&10% 0&t(3) 0.8&N(0, 1) 0.8&10% 0.8&t(3)

Ex 4.4/anova 6 6 6 6 6 6
Ex 4.4/K-W 6 6 6 6 6 6
Ex 4.5/anova 6 6 6 6 6 6
Ex 4.5/K-W 6 6 6 6 6 6
Ex 4.6/anova 6 6 6 6 6 6
Ex 4.6/K-W 6 6 6 6 6 6
Ex 4.7/anova 6 6 6 6 6 6
Ex 4.7/K-W 6 6 6 6 6 6
Ex 4.8/anova 6 6 6 6 6 6
Ex 4.8/K-W 6 6 6 6 6 6

Ex 4.4/anova 0.986 0.912 0.978 1.000 0.866 1.000
Ex 4.4/K-W 0.996 0.958 0.996 1.000 0.906 1.000
Ex 4.5/anova 0.946 0.812 0.938 0.876 0.672 0.876
Ex 4.5/K-W 0.938 0.916 0.932 0.876 0.728 0.872
Ex 4.6/anova 0.846 0.608 0.826 0.756 0.504 0.740
Ex 4.6/K-W 0.822 0.842 0.778 0.718 0.782 0.684
Ex 4.7/anova 0.936 0.826 0.948 0.902 0.816 0.872
Ex 4.7/K-W 0.952 0.908 0.966 0.920 0.848 0.900
Ex 4.8/anova 0.724 0.696 0.696 0.644 0.648 0.642
Ex 4.8/K-W 0.774 0.812 0.726 0.674 0.776 0.674

Example 4.12. (n, p) = (450, 250) and Y is distributed as Binomial(1, p(x)) condi-

tional on X = x, with log( p(x)
1−p(x)) = 5g1(x1) + 5g2(x2) + 5g3(x3) + 5g1(x4) + 5g2(x5) +

5g3(x6).

The summary results in Table 10 lead us to the following conclusions similar to the
case with a continuous response:

(1) Both options, ANOVA & Chi-sq and K-W & Chi-sq, performed better with stan-
dard normal noise and independent predictors shown by the higher proportions
of selected predictors containing the true model.

(2) Generally both options performed well and the performances of the two options
were comparable.

5. Application: Arrhythmia

We apply the proposed screening procedure to the Arrhythmia data set
downloaded from the UC-Irvine Machine Learning Respository https :
//archive.ics.uci.edu/ml/datasets/Arrhythmia. The original data contained
452 patient records and 279 attributes, such as age, sex, height, weight and patients’
ECG related measurements. The patients were divided into 16 different classes, with
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Table 10. Results of simulation comparisons for the ANOVA & Chi-sq and K-W & Chi-sq methods with data

generated from models in Examples 4.9-4.12 of Section 4. The true number of active predictors is s = 6. In

each example, two values (0 and 0.8) are used for the constant ρ and three distributions are used for simulating
ε. The errors are generated respectively all from the standard normal distribution (N(0, 1)), 90% from the

standard normal and 10% from the Cauchy (10%), and all from the t distribution with 3 degrees of freedom

(t(3)). The top half of the table contains the empirical medians for the numbers of correctly selected variables,
and the bottom half the proportions of times that the screened predictor set contained the true model.

ρ & Errors ε 0&N(0, 1) 0&10% 0&t(3) 0.8&N(0, 1) 0.8&10% 0.8&t(3)

Ex 4.9/anova 6 6 6 6 5 6
Ex 4.9/K-W 6 6 6 5 5 5
Ex 4.10/anova 5 5 5 5 5 5
Ex 4.10/K-W 6 5 6 6 5 5
Ex 4.11/anova 6 6 6 6 6 6
Ex 4.11/K-W 6 6 6 6 6 6
Ex 4.12/anova 6 5 6 5 5 5
Ex 4.12/K-W 6 6 6 6 5 5

Ex 4.9/anova 0.740 0.602 0.720 0.530 0.442 0.528
Ex 4.9/K-W 0.718 0.584 0.706 0.484 0.424 0.482
Ex 4.10/anova 0.416 0.454 0.406 0.318 0.434 0.306
Ex 4.10/K-W 0.606 0.476 0.588 0.506 0.442 0.486
Ex 4.11/anova 0.934 0.896 0.914 0.792 0.772 0.754
Ex 4.11/K-W 0.892 0.876 0.886 0.748 0.804 0.730
Ex 4.12/anova 0.586 0.486 0.580 0.494 0.456 0.404
Ex 4.12/K-W 0.692 0.538 0.648 0.522 0.496 0.468

class 1 corresponding to the normal ECG with no arrhythmia and classes 2 to 15
corresponding to different types of arrhythmia. We removed the patient records
belonging to class 16, the unlabeled class. And we removed single-valued attributes
and attributes with missing values. Therefore, we were left with 430 patients and 257
attributes. Among the attributes, 206 were continuous variables and the rest were
nominal. We noticed that the data set had 245 patients belonging to the normal
class (class 1) and many of the rest of the classes had very few patients. Therefore,
we pooled all the patients in classes 2 to 15 into one abnormal group and aimed to
distinguish normal from abnormal heartbeat behavior based on the 257 attributes.

We applied our screening procedure to the data set and used 10-fold cross validation
to measure the classification accuracy. For continuous features, we used the ANOVA
test (the results for the Kruskal-Wallis test option were similar and not presented
here). For categorical features, we used the Chi-square test. The features were selected
based on the p-value of the selected tests. The number of features selected was dt =
[nt/ log nt], where nt was the sample size of the training set. We applied the generalized
linear model with SCAD penalty to further reduce the feature space. The fitted model
from the training set was then used to obtain estimated classes for the test set. The
classification accuracy was calculated using the estimated and true classes of the test
set. We repeated the whole procedure 100 times.

From the study by Gupta et al.[40], we know that the performance of random
forest is quite well compared with other classification methods. Therefore we compared
the performance of our method with random forest. The results are summarized in
Table 11. From the table, we can see that, with a much smaller model size and less
computational time, the mean classification accuracy of our method was competitive
to that of the random forest.
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We also applied our screening procedure to the whole data set, which reduced the
feature space to contain 73 features. After further application of the generalized linear
model with SCAD penalty to the reduced feature space, we got 12 features in the
final model: QRS duration, DII90, DII91, DII93, DII100, DII103, DII112, and
DI167, DI169, DII199, DII211, DII277. We also applied the random forest method
to the whole data set. The top 12 important features selected by model accuracy and
Gini index were as follows. RF with model accuracy: DII224, DII91, DII277, DII93,
DII228, DII234, DII199, DII103, DII179, DII76, QRS duration, and DII250. RF
with Gini index: DII224, DII277, QRS duration, DII199, DII197, DII91, DII179,
DII93, DII228, DI167, DII177, and DI169. Mitra and Samanta[41] also studied
the Arrhythmia data set by neural network. Their final model contained 18 features:
Sex, QRS duration, DII49, DII76, DII91, DII103, DII112, DI163, DI167, DI169,
DII173, DII199, DII207, DII211, DII261, DII267, DII271, and DII277. Table
12 listed the important features selected by at least two methods mentioned above.
From the table we can see that, 11 out of 12 features selected by our method were also
selected by at least one different method. Only one feature, DII76, was selected by
two other methods and was not selected by our method. Only one feature, DII100,
was selected by our method and was not selected by other methods.

Table 11. Cross-validation results of the Arrhythmia data set: Mean values of the model size, classification

accuracy and time.

Method Model Size Classification Time
Accuracy (seconds)

Screening 13.70 76.47% 19.58
Random Forest 257 80.09% 31.54

Table 12. Features selected by at least two methods

Attribute Type Screening RF- RF- Neural
+SCAD Gini Accuracy Networks

QRS continuous Y Y Y Y
DII76 discrete N N Y Y
DII90 discrete Y N Y N
DII91 discrete Y Y Y Y
DII93 discrete Y Y Y N
DII103 discrete Y N Y Y
DII112 discrete Y N N Y
DI167 continuous Y Y N Y
DI169 continuous Y Y N Y
DII199 continuous Y Y Y Y
DII211 continuous Y N N Y
DII277 continuous Y Y Y Y

6. Conclusion

In this paper we have studied feature screening procedures for ultra-high dimensional
data with various combinations of single-type responses and predictors. Our intensive
simulations compare the screening properties of these procedures and identified a best
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procedure for each combination of response and predictors. Based on these findings, we
have developed a screening procedure for mixed types of data through the integration
of these single-type variable procedures. Its use is demonstrated in the analysis of a
high dimensional data set on arrhythmia with mixed types of predictors.

The sure screening property has been theoretically verified for data with single-
type variables in numerious papers. For the new screening procedures proposed in
this paper for data with single-type variables, their sure screening properties can be
derived similar to the existing literature with a simple replacement of the correspond-
ing metric. For example, such a property for the Spearman correlation screening in
Section 2.1.1 can be established similar to [14] with the Pearson correlation replaced
by the Spearman correlation in their proof. However, such a rigorous proof for the
screening procedure for mixed types of data is very challenging. One possible detour
is to assume the discrete data are actually observations from some latent continuous
variables and then use the characterization of the joint distribution of these latent
continuous variables and the continuous variables in the original data to derive the
property. Such an investigation is beyond the scope of the paper and left as a future
research direction.
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