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Liver procurement experiments with surface-temperature monitoring
motivated Gao et al. (J. Amer. Statist. Assoc. 114 (2019) 773–781) to develop
a variance change-point detection method under a smoothly-changing mean
trend. However, the spotwise change points yielded from their method do not
offer immediate information to surgeons since an organ is often transplanted
as a whole or in part. We develop a new practical method that can analyze a
defined portion of the organ surface at a time. It also provides a novel addition
to the developing field of functional data monitoring. Furthermore, numerical
challenge emerges for simultaneously modeling the variance functions of 2D
locations and the mean function of location and time. The respective sample
sizes in the scales of 10,000 and 1,000,000 for modeling these functions make
standard spline estimation too costly to be useful. We introduce a multistage
subsampling strategy with steps educated by quickly-computable preliminary
statistical measures. Extensive simulations show that the new method can
efficiently reduce the computational cost and provide reasonable parameter
estimates. Application of the new method to our liver surface temperature
monitoring data shows its effectiveness in providing accurate status change
information for a selected portion of the organ in the experiment.

1. Introduction. According to assessment on May 8, 2018, by the Organ Procurement
and Transplantation Network (http://optn.transplant.hrsa.gov/), there are over 110,000 people
needing a lifesaving organ transplant, over 70,000 of whom are on the active waiting list.
Every 10 minutes someone is added to the national transplant waiting list, and, on average,
22 people die each day while waiting for a transplant. The whole process, from obtaining
a donated organ and finding a matching recipient, to the organ being transplanted to the
recipient, can often take hours to days. Severely impacting the process, the maximum viability
of vital organs, under ideal procurement/preservation conditions, is only four to six hours for
lungs and hearts and eight to 12 hours for livers and pancreases. The potential viability of a
specific organ can vary from case to case, due to variations in donor health status and quality
of procurement. An accurate assessment of an organ’s viability status is critical in the process
but is difficult to achieve with standard preimplantation organ evaluation methods.

The current practice of organ viability assessment is mainly through two approaches: vi-
sual inspection and biopsy (Keeffe (2001), Vazquez-Martul and Papadimitriou (2004)). Vi-
sual inspection undoubtedly suffers from human observer subjectivity and experience; in
many cases the appearance of a viable organ may be indistinguishable from an unviable one.
The use of biopsy and histologic analysis is more accurate but often destroys the portion
of organ where the biopsy sample is collected (Lan, Jin and Robertson (2015), Rothuizen
and Twedt (2009)). Additionally, the very small volume of a biopsy specimen (<0.5 cm3)
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FIG. 1. Data collected from isolated and machine-perfused porcine liver specimens. Left and middle: The raw
temperature profile and detrended temperature profile, with the fitted mean function and estimated variance
change point imposed, at a random spot of the liver surface. The horizontal axis labels in both panels repre-
sent 24 hours. Right: The heat map of estimated spotwise variance change points of temperatures on a lobe of
liver in the procurement experiment.

may not accurately represent the histomorphology of the entire organ. A research team at
Virginia Tech, composed of clinical scientists and engineers, is devising methods for nonin-
vasive monitoring of the viability status of isolated and machine-perfused organs (Bhonsle
et al. (2016), Gao et al. (2019), Lan et al. (2018), O’Brien et al. (2017)). We have employed
a noninvasive thermal imaging system that can accurately measure the surface temperatures
of an organ during machine perfusion. The temperatures are taken at a dense mesh of grid
points covering the whole surface of the organ. As an example, the left and center panels in
Figure 1 show the raw and detrended temperature profiles of a random spot on the surface
of an isolated and machine-perfused liver. Our preliminary analysis of data collected from
experiments with porcine livers reveals a close relationship between the histomorphologic
quality and surface temperatures of the organ. Such a strong correlation of surface tempera-
ture of organs to their viability is also founded in the literature (Karpelowsky (2014), Kochan
et al. (2015), Vidal et al. (2014)). In particular, the temperature profiles show a high variation
when the corresponding part of the organ is viable, and the variation drops sharply when the
viability of that part of organ deteriorates. Thus, identifying the change point of the temper-
ature variation essentially determines the viability breakdown point of the liver. Therefore,
our goal is to develop an analytic method for estimating this variation change point beyond
which the organ would be considered nonviable.

Existing change point detection methods mostly assume a sudden change in a few param-
eters of the data distribution or the distribution itself as a whole entity. However, the surface
temperature data in our experiments have a smoothly changing mean function and, thus,
a constantly changing distribution. Blindly applying these methods would result in erroneous
change-point estimates. In a recent product of the project, Gao et al. (2019) focused on spot-
wise data analysis and developed a new variance change-point detection method that allows
the existence of a smoothly changing mean function. They designed an iterative procedure
to simultaneously estimate the mean function, variances and variance change point. Their
asymptotic theory included the asymptotic null distribution of the test statistic on variance
change point as well as the convergence rates of all the parameter estimates. The final prod-
uct from the application of the method was a heat map of change points on the surface of the
liver as shown in the right panel of Figure 1. In clinical practice a liver is always transplanted
as a whole or as a segment of the whole organ. In either case the surgeon needs to know the
viability of the whole organ or the selected portion of it. Although the heat map provides
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some useful spotwise viability information of the liver, it does not necessarily provide imme-
diate information for the surgeon to make a decision. An ideal statistical procedure should
provide the viability status of a portion of or the whole organ. This would require extending
Gao et al. (2019) to estimating the change point of a variance function on a 2D surface in the
presence of a smoothly changing mean function on a 3D space of time and location.

However, such an extension is not trivial. As discussed in the review paper by Woodall
et al. (2004), monitoring of nonlinear profiles (functions) is a much harder problem than
monitoring a single or multiple scalar parameters. The literature on monitoring functional
parameters is much sparser than that on monitoring scalar parameters. Some examples are
described below besides those earlier attempts reviewed in Woodall et al. (2004). Febrero,
Galeano and González-Manteiga (2008) considered a functional depth approach to outlier
detection of functional data where the depth threshold for outliers was obtained through a
smooth bootstrap procedure. Zou, Tsung and Wang (2008) proposed the first formal non-
linear profile monitoring procedure through local linear smoothing, taking advantage of the
generalized likelihood ratio test developed in Fan, Zhang and Zhang (2001). Qiu, Zou and
Wang (2010) extended their approach to monitoring correlated nonlinear profiles through
nonparametric mixed-effects local linear models. Berkes et al. (2009) and Yu, Zou and Wang
(2012) considered a functional principal component approach to change point detection in the
mean of functional data. The common focus of the existing work on monitoring functional
parameter is the mean function. As far as we know, there is no work studying change point in
a variance function, not even to mention the additional complication imposed by the presence
of a smoothly changing mean function.

In addition to the necessary methodological innovation, we also need to be creative in the
computational aspect for the multidimensional scenario. Naturally, the variance functions are
modeled by thin-plate splines on a 2D space and the mean function by the tensor product of
thin-plate splines (location) and cubic splines (time). The surface shown in Figure 1 consists
of over 30,000 grid points. Even a small portion of the organ contains thousands to tens of
thousand of locations. At each location there are over 100 time points. Therefore, the total
sample size can easily reach the magnitude of millions. This is a daunting task for multi-
variate spline smoothing even with the availability of modern computing power. Kim and
Gu (2004) proposed a reduction of the number of knots for smoothing splines that can cut
down the computational cost from the cubic order of sample size to a sub-quadratic order.
Despite its success for medium-sized data, this approach does not offer a cure to the com-
putational problem when the sample size goes beyond thousands, since the enormous data
matrix would be too computationally challenging for all the matrix operations involved. We
need an alternative approach for large sample data.

The existing work on nonparametric smoothing with large data sets mostly uses the idea of
divide and conquer (D&C). The D&C approach consists of three steps: divide the whole data
into subsets, fit the model to each subset and recombine estimates from all the subsets into
an overall estimate. Examples include Zhang, Duchi and Wainwright (2015) for kernel ridge
regression and Shang and Cheng (2017) and Xu and Wang (2018) for univariate smoothing
splines. However, the extension of D&C to modeling of our temperature monitoring experi-
ment may have some other issues. On one hand, a simple random partition of the data does
not take full advantage of the dense and regular sampling feature of our data. On the other
hand, a sequential partition similar to Xu and Wang (2018) is much harder to implement for a
2D or 3D space. In addition, no matter how the data are partitioned, the ensuing recombining
step can be cumbersome since we must estimate a 3D mean function and two 2D variance
functions as well as test on the existence of a variance function change point. Therefore, we
adopt the subsampling approach in this work which has been well-received in the past decade
due to the need of efficient statistical analysis methods to handle massive data sets. For exam-
ple, Rokhlin and Tygert (2008), Drineas et al. (2011), Ma, Mahoney and Yu (2015), Ma and
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Sun (2015) and Wang, Yang and Stufken (2019) designed various subsampling algorithms
for linear regression with massive data. Jin, Chang and Shi (2011) studied subsampling un-
der the Gaussian process models for spatial correlated data. Fithian and Hastie (2014) and
Wang, Zhu and Ma (2018) studied subsampling for logistic regression on massive data.

The main computational difficulty in extending the method of Gao et al. (2019) to the mul-
tivariate case is the exponential increase in the sample size. To overcome this, we introduce
a three-stage subsampling strategy here. The first stage is a blockwise subsampling of loca-
tions, the second stage a reduction in time points and the third stage a probability-weighted
sub-subsampling of locations. The latter two stages take advantage of a preliminary spotwise
analysis applying Gao et al. (2019) to the stage-one subsample. After the three-stage subsam-
pling, we then extend the method of Gao et al. (2019) to the multivariate case to analyze the
final subsample. Our simulations demonstrate the computational efficiency of the proposed
method while maintaining a good estimation performance. The application of our method to
the liver procurement experiment yield direct viability information about any selected region
of the organ.

In summary, our method has the following distinguishing features: (1) it is uniquely qual-
ified to address the scientific goal for our liver procurement experiment, identifying the via-
bility breakdown point of the liver; (2) it is an innovative addition to the developing literature
on change-point analysis for functional data given its unique focus on change in a sequence
of 2D variance functions; (3) it provides a nontrivial extension of the existing subsampling
approach to a rather complex problem setting.

The rest of the paper is organized as follows. We introduce our method in Section 2. In
Section 3 we present all the simulations. We analyze the liver procurement data in Section 4.
Discussion in Section 5 concludes the paper.

2. Method.

2.1. Notation and model. In the following we shall use the superscript 0 to represent
the original data and the subscript 0 the underlying truth. Suppose that surface temperature
measurements y0

ij are independent observations generated from the following model:

(2.1) y0
ij = f0

(
i/N, z0

j

) + εij , i = 1, . . . ,N, j = 1, . . . ,M,

where M is the number of locations, N is the number of sampling time points, z0
j =

(z0
1j , z

0
2j ) ∈ R

2 is the j th location (latitude and longitude), f0(t, z) is an unknown smooth

mean function of time t and location z and the random errors εij ∼ N(0, σ 2
i (z0

j )) where σ 2
i (·)

is the variance function of location at the ith time point. To identify the viability breakdown
point, we are interested in testing the hypothesis

H0 : σ 2
1 (z) = · · · = σ 2

N(z) vs.

H1 : σ 2
1 (z) = · · · = σ 2

τ0
(z) �= σ 2

τ0+1(z) = · · · = σ 2
N(z) for some τ0.

Note that H0 is equivalent to τ0 = N . Therefore, without loss of generality, we shall assume
that σ 2

i (z) = σ 2
0 (z) when i ≤ τ0, and σ 2

i (z) = δ2
0(z) when i > τ0, where both σ 2

0 (·) and δ2
0(·)

are unknown smooth-positive functions. Next, we present the computational algorithm for
our method and leave the details of each step to subsequent subsections.

ALGORITHM.

1. Three-stage subsampling (see Section 2.3):
(a) Divide the region of interest into m1 equal-sized small blocks, and randomly select

one location from each block to form the initial subsample Z1 of m1 locations.
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(b) Perform the spotwise analysis of Gao et al. (2019) at the locations in Z1, calculate
the average of all the spotwise variance change points and compute a time window
T = {t1, . . . , tn} of size n centered at the average change point.

(c) Calculate a probability weight for each location in Z1 based on statistics from the spot-
wise analysis. Sample m locations from Z1 with these probability weights to obtain
the final location subsample Z = {z1, . . . , zm}.

2. Iterative estimation of mean function and variance change point on T × Z:
(a) Initialize f̂ (0) with the mean-function estimate assuming constant variance.
(b) Iterate on the following two steps until convergence. At the ιth iteration:

i. Given the mean estimate f̂ (ι−1), we first use the testing procedure in Section 2.4 to
find an estimate τ̂ (ι) for τ0. Then, at each location zj in Z, we compute the max-
imum likelihood estimates [σ̂ 2

j ](ι) and [̂δ2
j ](ι) using the respective subsequences

of residuals, {yij − f̂ (ι−1)(ti , zj ) : i = 1, . . . , τ̂ (ι), } and {yij − f̂ (ι−1)(ti , zj ) : i =
τ̂ (ι) + 1, . . . , n}.

ii. Now, given the variance component estimates τ̂ (ι), [σ̂ 2
j ](ι) and [̂δ2

j ](ι), we update
the mean estimate by the minimizer of (2.2) where the covariance matrix � is
updated with the current variance component estimates.

3. Repeat Step 1 subsampling and Step 2 estimation K times. Denote the K sets of mean
function and change-point estimates as {(f̂1, τ̂1), . . . , (f̂K, τ̂K)}. Then, our final mean and
change-point estimates are, respectively, f̂ = ∑K

k=1 f̂k/K and τ̂ = ∑K
k=1 τ̂k/K .

4. Use the whole data and the mean estimate f̂ to compute the residuals {ε̂ij = y0
ij −

f̂ (i/N, z0
j ), i = 1, . . . ,N; j = 1, . . . ,M}. Use thin-plate splines to smooth the squared

residuals {ε̂2
ij , i = 1, . . . , τ̂ ; j = 1, . . . ,M} and {ε̂2

ij , i = τ̂ + 1, . . . ,N; j = 1, . . . ,M}, re-

spectively, to obtain the final variance-function estimates σ̂ 2(z) and δ̂2(z).

In the algorithm, the final estimates for the variance functions σ 2
0 and δ2

0 use thin-plate
splines. All the intermediate and final estimates of the mean function f0 use tensor prod-
uct of cubic and thin-plate splines. The knots selection procedure suggested in Kim and Gu
(2004) is used in all these estimations. Therefore, if sufficient smoothness (p = 2 in Kim and
Gu (2004)) is assumed for the true functions, the computational costs for each variance func-
tion estimation and each mean function estimation are, respectively, of (approximate) orders
O(m9/5) and O(m9/5n9/5). Had the original data been used for these estimations, these costs
would be in terms of M and N instead. The convergence criterion used in Step 2(b) is the
maximum absolute difference between the residuals of the current iteration versus the previ-
ous iteration. This step usually converges in a few iterations in our numerical experiments.

2.2. Smoothing splines estimation. All the function parameters will be estimated by
smoothing splines under the setting of nonparametric regression. Therefore, we will give
a short review of smoothing splines regression in this section. We start with a generic set-
ting. Let (Yi, xi) be independent observations generated from the regression model Yi =
η0(xi) + εi , i = 1, . . . , I , where Yi is a continuous response variable, xi ∈ X is a generic
predictor that can be univariate or multivariate, η0 is the unknown smooth function of interest
and εi are independently distributed random errors with mean 0 and variance σ 2

i . Assume η0
belongs to a reproducing kernel Hilbert space H = {η|η : X → R, J (η) < ∞}, where J is
seminorm on H. Some examples of J and H to be used in the paper will be given later. Let
� = diag(σ 2

1 , . . . , σ 2
I ). Given �, the smoothing splines estimate of η is the minimizer of the

penalized weighted least squares

(2.2)
1

I
(Y− η)T �−1(Y− η) + λJ (η)
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in H, where Y = (Y1, . . . , YI )
T , η = (η(x1), . . . , η(xI ))

T , J (η) acts as a roughness penalty
and λ > 0 is the smoothing parameter balancing the trade-off between the goodness-of-fit and
smoothness of the mean-function estimate. When the random errors have a common variance,
the matrix �−1 can be dropped from (2.2) since the common variance can be absorbed into λ.
Then, (2.2) reduces to the penalized least squares

(2.3)
1

I
(Y− η)T (Y− η) + λJ (η).

A reproducing kernel Hilbert space (RKHS) is a Hilbert space H where the evaluation
functional [x] : H → R, η �→ η(x) is continuous for every x ∈ X . By the Riesz Representa-
tion Theorem, for each x ∈ X there exists a unique function Rx ∈ H with the reproducing
property 〈Rx,η〉 = [x](η) = η(x), where 〈·, ·〉 is the inner product on H. Now, the reproduc-
ing kernel R of H is defined as a function R : X ×X →R such that R(x,u) = 〈Rx,Ru〉. One
can show that each RKHS is uniquely associated with a reproducing kernel and vice versa.
Note that the penalty functional J in (2.2) is a squared seminorm on H. The null space of J ,
namely NJ = {f : J (f ) = 0}, induces a direct sum decomposition H = NJ ⊕HJ , where HJ

is the complement of NJ in H. This then yields a decomposition of the reproducing kernel
R = R0 + RJ , where R0 and RJ are, respectively, the reproducing kernels on the subspaces
NJ and HJ . See, for example, Gu ((2013), Chapter 2) for more details on RKHSs.

The RKHS H is of infinite dimensions, so a direct optimization of (2.2) on H seems
infeasible. However, since the weighted least squares part in (2.2) depends on η only through
its evaluations at the observation points xi, i = 1, . . . , I , the representer theorem (Wahba
(1990)) guarantees that the exact minimizer of (2.2) actually resides in a finite dimensional
subspace of H, namely, NJ ⊕ span{RJ (x1, ·), . . . ,RJ (xI , ·)}. Let φl, l = 1, . . . , a be the basis
functions of NJ and ξj = RJ (xj , ·), j = 1, . . . , I . Write f = φT d+ ξT c, where c and d are
the corresponding coefficient vectors. Also, note that J (η) can be written as a quadratic form
J (f ) = cT Qc, where Q is the I × I matrix with the (i, j)th entry equal to RJ (xi, xj ). So
for a fixed λ, the objective function (2.2) is reduced to a quadratic function of the coefficient
vectors c and d. Its minimizer can be obtained analytically. To select the smoothing parameter
λ, an outer loop for minimizing the generalized cross-validation (GCV) score is sufficient for
the job; see Gu (2013), Section 3.2.

We now introduce three examples of smoothing splines to illustrate these concepts. The
cubic smoothing splines (Example 2.1) will be used for estimating mean functions of time
only in the preliminary spotwise analysis. The thin-plate splines (Example 2.2) will be used
for computing the final estimates of the variance functions of location. The tensor product
splines of cubic and thin-plate splines (Example 2.3) will be used for estimating the mean
functions of time and location.

EXAMPLE 2.1 (Cubic-smoothing splines). Suppose x = t is a variable of time and,
without loss of generality, assume X = T = [0,1]. A choice of J (f ) is

∫ 1
0 (f ′′)2 dt

which yields the popular cubic splines. If the inner product in NJ is (
∫ 1

0 f dt)(
∫ 1

0 g dt) +
(
∫ 1

0 f ′ dt)(
∫ 1

0 g′ dt), then HJ = H 
 NJ = {f : ∫ 1
0 f dt = ∫ 1

0 f ′ dt = 0, J (f ) < ∞} and the
reproducing kernel RJ (s, t) = k2(s)k2(t) − k4(|s − t |), where kν(t) = Bν(t)/ν! are scaled
Bernoulli polynomials for t ∈ [0,1]. The null space NJ has a basis {1, k1(t)} of two func-
tions where k1(t) = t − 0.5 for t ∈ [0,1]. See Gu (2013), Section 2.3.3.

EXAMPLE 2.2 (Thin-plate splines). Suppose x = z = (z1, z2) is a variable of 2D loca-
tion and X = Z = (−∞,∞)2. For the order 2 thin-plate splines, J (f ) = ∫∫

(f̈ 2
11 + 2f̈ 2

12 +
f̈ 2

22) dz1 dz2, where f̈〈ij 〉 = ∂2f/∂zi∂zj . The null space of J is NJ = span{1, z1, z2}, and its
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complement space is HJ = H 
NJ . By Theorem 4 of Duchon (1977), the minimizer ηλ of
(2.3) has the expression

ηλ(z) = d1 + d2z1 + d3z2 +
n∑

i=1

ci‖zi − z‖2 log‖zi − z‖,

where dj and ci are coefficients and ‖ · ‖ is the Euclidean norm. See Gu (2013), Section 4.3.

EXAMPLE 2.3 (Tensor product splines). Suppose x = (t, z) is a multivariate variable
of time t and 2D location z and X = T × Z = [0,1] × (−∞,∞)2. Example 2.1 gives a
decomposition of the RKHS H〈t〉 on the time domain

H〈t〉 =
{
f :

∫ 1

0

(
f ′′)2

dt < ∞
}

= H00〈t〉 ⊕H01〈t〉 ⊕H1〈t〉

= span{1} ⊕ span
{
k1(t)

} ⊕
{
f :

∫ 1

0
f dt =

∫ 1

0
ḟ dt = 0,

∫ 1

0

(
f ′′)2

dt < ∞
}
.

Example 2.2 gives the decomposition of H〈z〉 = H00〈z〉 ⊕ H01〈z〉 ⊕ H1〈z〉 = span{1} ⊕
span{z1, z2} ⊕H1〈z〉, where H1〈z〉 =H〈z〉 
 (H00〈z〉 ⊕H01〈z〉).

Taking tensor product of H〈t〉 and H〈z〉, one obtains six tensor sum terms Hν,μ = Hν〈t〉 ⊗
Hμ〈z〉 on T × Z , ν = 00,01,1 and μ = 00,01,1. The two subspaces with ν = 00,01 and
μ = 00,01 can be lumped together as NJ . The other four subspaces can be put together as
HJ . For interpretation, the six subspaces readily define an ANOVA decomposition

f (t, z) = f∅ + ft (t) + fz(z) + ftz(t, z)

for functions on T × Z , with f∅ ∈ H00〈t〉 ⊗ H00〈z〉 being the constant term, ft ∈ {H01〈t〉 ⊕
H1〈t〉} ⊗H00〈z〉 the time main effect, fz ∈ H00〈t〉 ⊗ {H01〈z〉 ⊕H1〈z〉} the location main effect
and ftz ∈ {H01〈t〉 ⊕H1〈t〉} ⊗ {H01〈z〉 + H1〈z〉} the interaction. In this paper we only consider
the additive model for fitting the mean function, that is, the model with ftz = 0.

2.3. Three-stage subsampling. To take full advantage of the dense nature of our data in
both space and time, we first use a blockwise random sampling to select the locations. We
divide the region of interest into m1 small blocks, all equal-sized rectangles except for the
corner blocks. Then, one location is randomly selected from each block to form the initial
subsample Z1 of m1 locations. Note that a spotwise preliminary analysis by the method of
Gao et al. (2019) needs to be conducted at each of these m1 locations. Therefore, the choice
of m1 needs to balance the size of the region and the computational cost of the preliminary
analysis. In our numerical experiments we have maintained m1 to be in the range of 100 to
500.

The preliminary spotwise analysis provides key information about the variance change
point and locationwise estimation accuracy. Denote the data points corresponding to Z1 =
{z1

j , j = 1, . . . ,m1} by {(y1
ij , z

1
j ), i = 1, . . . ,N; j = 1, . . . ,m1}. For each fixed location zj ,

we apply Gao et al. (2019) to the measurements {y1
ij , i = 1, . . . ,N} at the location and obtain

the following statistics: change-point estimate τ̂ 1
j and mean-square error of the mean estimate

MSE1
j = ∑N

i=1{y1
ij − f̂ 1

j (i/N)}2/N , where f̂ 1
j the mean-function estimate at location z1

j . Let

τ̄ 1 = ∑m1
j=1 τ̂ 1

j /m1 be the average change-point estimate. These preliminary analysis results
will be exploited to guide the next stages of subsampling.

We first use τ̄ 1 to narrow down the time range to a window T = {t1, . . . , tn} of size n

centered at τ̄ 1, where t1 = τ̄ 1− n
2 +1, t2 = τ̄ 1− n

2 +2, . . . , tn = τ̄ 1+ n
2 . The choice of n should

balance between the computational cost and the need of sufficient time points for proper
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change-point analysis. In our application the variance function of liver surface temperature
experiences a sudden drop in magnitude and then sustains the reduced level afterward. For
this kind of change point, we generally recommend an n of at least 50 based on our numerical
experience. In the paper we use n = 60.

The sample size resulted from the first two stages of subsampling is still in the range of
thousands or tens of thousands. Therefore, a further reduction of locations is desired. We
apply a probability-weighted subsampling approach to Z1 where the probability weight πj

for each location z1
j is calculated as

πj =
∑m1

�=1(MSE1
� + �1)

MSE1
j + �1

×
∑m1

�=1(|τ̂ 1
� − τ̄ 1| + �2)

|τ̂ 1
j − τ̄ 1| + �2

,

where �1 and �2 are small positive constants to prevent against zero values. Here, we use
�1 = 0.0001 and �2 = 0.5. The motivation for weight πj is that those locations with “poor”
estimates, represented by larger MSE for mean estimate and large deviation of change-point
estimate from the average change point, would be less likely to be selected. In our numerical
studies we experiment with m values in the range of 10 to 50. Let Z = {z1, . . . , zm} be the
final subsample of locations. The final subsample of data is now {yij : (ti, zj ) ∈ T × Z, i =
1, . . . , n, j = 1, . . . ,m} which has a sample size of mn.

2.4. Iterative estimation on T × Z. The parameter estimation for the subsample data
on T × Z iterates between: (1) estimate the mean function given estimates of the variance
component parameters, and (2) estimate variance component parameters given estimate of
the mean function.

For the first step, let the current estimates of variance component parameters be, respec-
tively, τ̃ , σ̃ 2(zj ) and δ̃2(zj ), j = 1, . . . ,m. In the objective functional (2.2) the response
vector Y becomes (y11, y21, . . . , yn1, . . . , y1m, . . . , ynm)T , and the covariance matrix � be-
comes a diagonal matrix whose diagonal repeats τ̃ times with the entry σ̃ 2(z1), (n− τ̃ ) times
with the entry δ̃2(z1), τ̃ times with the entry σ̃ 2(z2), (n − τ̃ ) times with the entry δ̃2(z2) and
so on. The mean function f0 is estimated by the tensor-product splines in Example 2.3 as the
minimizer of the penalized weighted least squares (2.2).

Given a mean function estimate f̃ , we extend the testing procedure in Gao et al. (2019)
to find an estimate τ̃ for the variance change point τ0. Then, we can compute the maximum
likelihood estimates σ̃ 2(zj ) = τ̃−1 ∑τ̃

i=1{yij − f̃ (ti , zj )}2 and δ̃2 = (n − τ̃ )−1 ∑n
i=τ̃+1{yij −

f̃ (ti , zj )}2. For a potential change point position τ , we want to test the hypothesis

H0 : σ 2
t1
(z) = · · · = σ 2

tn
(z) versus

H1 : σ 2
t1
(z) = · · · = σ 2

τ (z) �= σ 2
τ+1(z) = · · · = σ 2

tn
(z).

(2.4)

Let

�(τ ) =
m∑

j=1

τ log

[
1

τ

τ∑
i=1

{
yij − f̃ (ti , zj )

}2

]
+ (n − τ) log

[
1

n − τ

n∑
i=τ+1

{
yij − f̂ (ti , zj )

}2

]
.

Note that �(n) = −2L0(σ̃
2)−mn−mn log 2π and �(τ ) = −2L1(σ̃

2, δ̃2)−mn−mn log 2π ,
where L0 and L1 are, respectively, the log-likelihood functions under the null and alternative
hypotheses of (2.4). So we define the test statistic to be �2

n = max1<τ<n{�(n) − �(τ )}. The
asymptotic null distribution for �2

n, together with the convergence rates of all the parameter
estimates, are given in Gao et al. (2019).
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2.5. Final estimates. Although our numerical experiments suggest one subsample can
often deliver good estimates with properly chosen m and n, sometimes one may want to
repeat the three-stage subsample multiple times with the same parameter values for m1,
m and n. Suppose the subsampling is repeated with replacement K times. Denote the
K sets of mean-function and change-point estimates obtained from each subsample as
{(f̂1, τ̂1), . . . , (f̂K, τ̂K)}. Then, our final mean and change-point estimates are, respectively,
f̂ = ∑K

k=1 f̂k/K and τ̂ = ∑K
k=1 τ̂k/K .

To get the final estimate of the variance functions, we first use the mean-function estimate
f̂ to compute the residuals {ε̂ij = y0

ij − f̂ (i/N, z0
j ), i = 1, . . . ,N; j = 1, . . . ,M}. Use thin-

plate splines to smooth the squared residuals {ε̂2
ij , i = 1, . . . , τ̂ ; j = 1, . . . ,M} and {ε̂2

ij , i =
τ̂ + 1, . . . ,N; j = 1, . . . ,M}, respectively, to obtain the final variance function estimates
σ̂ 2(z) and δ̂2(z).

3. Simulations. In this section we report simulations to evaluate the empirical perfor-
mance of the proposed method. We considered two different mean functions f01(t, z) =
20 + 12t (1 − t) + sin(2πz1) + cos(2πz2) and f02(t, z) = sin(t) + t5 − 8t3 + 10t + 6 +
sin(2πz1) + cos(2πz2). The first function f01 had a surface similar to the estimated mean-
temperature function in the procurement study and the second function f02 represented a
more complex smooth surface. The true variance functions before and after the change
point τ0 were, respectively, σ 2

0 (z) = 0.18 + 2
3{(z1 − 0.5)2 + (z2 − 0.5)2} and δ2

0(z) =
5|σ 2

0 (z)+ (z1 −0.5)3 + (z2 −0.5)3|, mimicking the variance trends shown in the application.
The number of time points was fixed to be N = 130, same as the number of time points in the
application. The variance function change point was always τ0 = N/2 = 65. The locations
were a 20 × 20 regular grid on the square domain [0,1] × [0,1] and, thus, M = 400. We
also fixed the number of blocks in the first stage of location subsampling to be m1 = 100. All
the simulations were run on the Windows Server 2012 R2 64 bit with Intel(R) Xeon(R) CPU
E5-2650 0 @ 2.00 GHz (two processors) and 64 GB RAM.

3.1. Computational time comparison. We first conducted a small scale experiment to
compare the computational time of the proposed method for various location subsample sizes
with that of the method without any subsampling. One can think of the latter as having m = M

and n = N . Five data replicates with true mean function f01, M = 400 and N = 130 were
generated. For the method with subsampling, we considered four different subsample sizes
of locations, namely, m = 10,20,30 and 50. For the method without subsampling, all the
simulations with M = 400 aborted due to memory overflow. Therefore, for a better compar-
ison we reduced M to 100 so that the simulation without subsampling could finish without
memory issues. The computational time for each setting was obtained as the average running
times on the five replicates. The result is summarized in Table 1. As we can see, even with
a much reduced M , the method without subsampling must take more than an hour to finish,
compared with the few minutes of the method with subsampling. Since the viability duration
of an organ is generally in hours, the subsampling approach is clearly much more appealing
here.

TABLE 1
Computational time comparison. NA indicates aborted simulations due to memory overflow

Method With subsampling Without subsampling

n (# time points) 60 130
m (# locations) 10 20 30 50 100 400
Running time (seconds) 100.97 120.37 132.57 218.54 3921.08 NA
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FIG. 2. Sensitivity analysis for m with f0 = f01, n = 60 and K = 3 for simulations in Section 3.2. Left: Change–
point estimates vs. m. Right: MSEs vs. m. The red dashed line represents the true change point τ0 = 65.

3.2. Sensitivity analysis. The subsampling part has three important tuning parameters,
namely, the window size n, the size m of the location subsample and the number K of sub-
sample repetitions. We now present some sensitivity analysis experiments to guide our practi-
cal selection of these parameters. Note that m1, the number of blocks or the initial subsample
size of locations, does not appear to be as critical as m based on our numerical experience.
So, for brevity, a sensitivity analysis on m1 is not conducted here. We chose to present the
experiments when the true mean function was set to f01 which mimics that in our application.
We use boxplots of change-point estimates and MSEs to assess the estimation performance,
with each boxplot produced from 20 runs under its corresponding simulation setting. Similar
analysis can be performed on f02 but is skipped here for space concern.

In our first set of experiments, we fixed n = 60 and K = 3 while letting m taking values
from {10,20, . . . ,100}. As shown in Figure 2, the performance, especially the change-point
estimation, started to stabilize when m = 30. This was also confirmed by our single-run sim-
ulations in the Supplementary Material (Gao et al. (2020)) where function estimates with
m = 10 and m = 30 were visually compared. One can surely argue, based on Figure 2, that
m = 50 can yield even more accurate change-point estimates but that would mean an in-
crease of time cost by approximately (50/30)9/5 − 1 ≈ 1.5 folds. Therefore, we suggest to
use m = 30 while holding m = 50 as a backup option. Our single-run simulations in the
Supplementary Material (Gao et al. (2020)) also supports this choice of m.

In the second set of experiments, we fixed m = 30 and K = 3 while letting n taking values
from {30,40, . . . ,90}. In Figure 3, while the MSE boxplots were similar for different n,
change-point estimates clearly stabilized to the true value when n = 60.

FIG. 3. Sensitivity analysis for n with f0 = f01, m = 30 and K = 3 for simulations in Section 3.2. Left: Change–
point estimates vs. n. Right: MSEs vs. n. The red dashed line represents the true change point τ0 = 65.
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FIG. 4. Sensitivity analysis for K with f0 = f01, m = 30 and n = 60 for simulations in Section 3.2. Left:
Change-point estimates vs. K . Right: MSEs vs. K . The red dashed line represents the true change point τ0 = 65.

In the last set of sensitivity analysis experiments, we fixed m = 30 and n = 60 while letting
K vary from 1 to 10. The boxplots in Figure 4 shows that both the change-point estimates
and the MSEs stabilized when at least K = 3 repetitions were used.

Based on the above sensitivity analysis, we shall always apply the proposed method with
m = 30, n = 60 and K = 3 from now on.

3.3. Estimation performance. To assess the estimation performance we repeated the sim-
ulations with 1000 data replicates for both true mean functions f01 and f02. The boxplots of
change-point estimates and MSEs of mean-function estimates are shown in Figure 5. Clearly,
the change-point estimates were almost perfect, and the MSEs were well in control in both
scenarios. On the other hand, the nearly perfect change-point estimates also indicates that
the two variance functions, chosen to mimic the trends in the application, are well separa-
ble. Therefore, to demonstrate the robustness of the proposed method, we also considered a
scenario where the variance function δ2

0(z) was reduced by a factor of 0.56. The resulting
boxplots of estimates are in Figure 6. We can see that the estimates were still very accurate.
This demonstrates excellent estimation performance of the proposed method.

4. Application: Temperature monitoring in liver procurement. As reviewed in the
Introduction, organ viability assessment is a critical step in organ transplant procedures. Un-
fortunately, the current assessment procedures may suffer from either human subjectivity
(visual inspection) or intrusiveness (biopsy). Aiming to find a new, noninvasive way of as-
sessing the viability of organs, a research team from Virginia Tech designed a temperature
monitoring system such that the surface temperature of a perfused organ can be densely
and continuously monitored using high-resolution infrared thermography (FLIR Systems,
Boston, MA). In the experiment considered in this paper, a lobe of porcine liver, as shown in
the right panel of Figure 1, was perfused with a physiologic perfusion fluid called modified
Krebs’ solution (Demmy et al. (1997), Quan et al. (2003), Vargaftig and Hai (1972)). Or-
gan surface temperature was intensively monitored for a continuous period of 24 hours. The
liver lobe was optically (not physically) divided into a dense grid of 36,795 spots with each
spot producing a 24-hour temperature profile. Temperature measurements were collected ev-
ery 10 minutes, yielding a total of 145 points in each profile. The first 2.5 hours of data
were discarded since it took about one to two hours for the perfusion fluid to completely
infuse and stabilize the liver. There were n = 130 points left in each profile, after correction
and elimination of the data collected during initial infusion and stabilization. In earlier work
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FIG. 5. Boxplots of change-point estimates (top panels) and MSEs of mean-function estimates (bottom panels).
Left: Simulations with the true mean function = f01; Right: Simulations with the true mean function = f02. Blue
dashed lines represent the true change point τ0/N = 0.5.

Gao et al. (2019) conducted a spotwise analysis on each of the 36,795 temperature profiles
and produced the heat map of spotwise variance change points shown in Figure 1. We shall
now demonstrate how the surfacewise method proposed in this paper can help physicians
pinpoint the viability breakdown point in an efficient way for a segment of or the whole
liver.

We selected three distinct areas from the liver surface with decreasing levels of uniformity
in the spotwise variance change-point estimates, as shown in Figure 7. The numbers of lo-
cation spots in the areas were, respectively, 6177, 6563 and 6480. We applied the proposed
method with m = 30, n = 60, and K = 3 to each of these three pieces of liver. The compu-
tational times for the analysis of these areas were, respectively, 44.50s, 52.01s and 38.98s.
The estimated variance change point τ̂ were 12.33 (12.17, 13.17, 11.67), 12.11 (13.00, 12.17,
11.17) and 12.39 (12.17, 11.17, 13.83) hours for areas #1 to #3, respectively, where the
numbers in the brackets are the corresponding estimates from the three repetitions. To com-
pare with the results from the spotwise analysis, we plotted the heatmaps and boxplots of
variance change point estimates from the spotwise analysis for areas #1 to #3 in Figures 8
to 10.
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FIG. 6. Boxplots of change-point estimates (top panels) and MSEs of mean-function estimates (bottom panels)
with reduced δ2

0(z). Left: Simulations with the true mean function = f01; Right: Simulations with the true mean
function = f02. Blue dashed lines represent the true change point τ0/N = 0.5.

Area #1 was a portion of the liver that had the most uniform spotwise change points. It was
reassuring to see that the single change-point estimate from our surface-wise method fell right
into the middle of the narrow range of the spotwise change points in this area. Area #2 had a
wider range of spotwise change points. The single change-point estimate for this area could
still fit well into the overall trend of the range. Note that a noticeable portion of spots had
their change points beyond 13 hours. But the single change-point estimate could safely tune
down the influence of these spots thanks to the three-stage subsampling schemes embedded
in the proposed method. Area #3 was much more heterogeneous, with the spotwise change
points mostly ranged from 12 to 17 hours. Therefore, it may not be considered appropriate
for a surface-wise analysis. It was selected intentionally to see if the proposed surface-wise
analysis could return a reasonable change-point estimate for a highly heterogeneous area.
Figure 10 shows that the single change point at 13.13 hours is indeed located around the
center of all the spotwise change points.

5. Conclusion and discussion. Motivated by the need of monitoring surface temper-
ature in a liver procurement experiment, we have proposed in this paper a variance func-
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FIG. 7. The heat map of estimated variance change points of temperatures on the organ surface in the liver
procurement experiment with three selected areas. Area #1: latitude [175, 245], longitude [312, 398]; Area #2:
latitude [251, 320], longitude [261, 394]; Area #3: latitude [104, 213], longitude [175, 255].

tion change-point detection method under a smoothly-changing mean function for tempera-
tures measured on a surface and over time. It is a nontrivial multidimensional extension to
the recently proposed variance change-point detection method by Gao et al. (2019) under a
smoothly-changing mean trend. In addition, such an extension brings significant numerical
challenge due to the computational burden of thin-plate splines and its tensor product with
cubic splines. We have also developed a three-stage subsampling procedure that can carry out
such analysis in a computationally efficient way.

FIG. 8. Variance change-point estimates for area #1. Left: heat map of the estimated variance change points
from spotwise analysis. Right: boxplot of the estimated change points from spotwise analysis for area #1, red
dashed line is the estimated change point (12.33 hours) from applying the new method to area #1.
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FIG. 9. Variance change-point estimates for area #2. Left: heat map of the estimated variance change points
from spotwise analysis. Right: boxplot of the estimated change points from spotwise analysis for area #2, red
dashed line is the estimated change point (12.11 hours) from applying the new method to area #2.

In the proposed method we have assumed independence of observations in space and time.
The inclusion of spatial dependence would have difficulty in the specification of an appro-
priate spatial correlation matrix. The surface temperature of the liver in a region depends on
the distribution of blood vessels near the region. Such spatial variation can be hardly repre-
sented by common spatial correlation matrices. For the time domain dependence, our explo-
ration shows that the observations might have short-memory dependence. As well known for
nonparametric smoothing, ignorance of such dependence won’t affect the consistency of a
nonparametric smooth mean function estimate; see, for example, Lin and Carroll (2001). On
the other hand, its potential influence on variance estimation can become very complicated.
Work in these dependence-incorporated directions surely merit more research and is ongoing
within the research team.

Another common approach to reducing sample size is data aggregation which may have
some difficulty in our application. First, data aggregation over the spatial domain may obscure
the underlying change point pattern due to the spatial heterogeneity of variance over the
surface. This can complicate the subsequent change-point analysis. Second, once the data are
aggregated, it is hard to run any spotwise analysis, whereas spotwise analysis provides useful
information and plays a critical role in our multistage subsampling approach.

FIG. 10. Variance change-point estimates for area #3. Left: heat map of the estimated variance change points
from spotwise analysis. Right: boxplot of the estimated change points from spotwise analysis for area #3, red
dashed line is the estimated change point (12.39 hours) from applying the new method to area #3.
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SUPPLEMENTARY MATERIAL

Supplement to “Surface temperature monitoring in liver procurement via functional
variance change point analysis” (DOI: 10.1214/19-AOAS1297SUPP; .pdf). We conducted
single-run simulations to study the choice of the location subsample size m.
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