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A lineage colonizing a geographic region with no competitors may exhibit
rapid diversification due to greater ecological opportunity. The resultant
species diversity of this primary-colonizing (incumbent) clade may limit
subsequent lineages’ ability to persist unless these non-incumbent lineages
are ecologically distinct. We compare the diversity in diet-related mandibu-
lar morphology of two sympatric murid rodent clades endemic to Luzon
Island, Philippines—incumbent Phloeomyini and secondary-colonizing
Chrotomyini—to the mandibular morphological diversity of Sahul Hydro-
myini, the sister clade of Chrotomyini and the incumbent murid lineage
on the supercontinent of Sahul. This three-clade comparison allows us to
test the hypothesis that incumbent lineages can force persistent ecological
distinction of subsequent colonists at the time of colonization and through-
out the subsequent history of the two sympatric clades. We find that
Chrotomyini forms a subset of the diversity of their clade plus Sahul Hydro-
myini that minimizes overlap with Phloeomyini. We also infer that this
differentiation extends to the stem ancestor of Chrotomyini and Sahul
Hydromyini, consistent with a biotic filter imposed by Phloeomyini. Our
work illustrates that incumbency has the potential to have a profound influ-
ence on the ecomorphological diversity of colonizing lineages at the island
scale even when the traits in question are evolving at similar rates among
independently colonizing clades.
1. Introduction
In classic examples of adaptive radiation, a single lineage diversifies over time
to occupy an array of novel niches, resulting in a group of ecologically and phe-
notypically distinct species [1–3]. In such cases, phenotypic diversification is
facilitated by adaptive evolution into unoccupied niche space. However, the
diversification dynamics that occur when two or more independent, ecologi-
cally similar lineages colonize the same system at different times require
additional study across phylogenetic and temporal scales [4–8]. In this case, pri-
mary colonists (the incumbent clade) may prevent phenotypically similar
species from invading the system, suggesting that only lineages that are suffi-
ciently distinct from the primary colonists can invade and diversify [9,10].
This process of biotic filtering could enhance the overall ecological diversity
of the system, while at the same time limiting the potential phenotypic diversity
attained by secondary colonists. In other words, an incumbent clade may
exclude very similar lineages from colonizing the system and prevent reason-
ably similar lineages from realizing otherwise attainable phenotypic diversity
[11]. Alternatively, lineages that are ecologically similar may still be able to
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colonize the system, but exhibit rapid divergent ecological
adaptation to specialize on the unoccupied areas of ecological
and morphological space to minimize competition with the
incumbent lineage [12,13].

In natural systems, testing whether incumbent lineages
have such effects on the diversity of subsequent colonists is
best accomplished in systems that meet certain rare require-
ments. First, the colonizing lineages should be ecologically
similar enough that one could reasonably act as a biotic
filter or competitor for the other. This requirement is most
likely to be met by closely related lineages that colonize a
system over a relatively short time span, because phylo-
genetic inertia tends to result in two lineages that resemble
one another more than they do distantly related species
[14–16]. Second, there should be some way to assess the
potential phenotypic diversity that these lineages could
attain were they to diversify apart from one another. Asses-
sing the array of potential phenotypes achievable by any
clade is a daunting challenge, and it is important to disentan-
gle any intrinsic constraints on the ‘evolvability’ of a clade
from external forces of interest, such as competition, that
could limit the evolution of otherwise attainable phenotypes
[17]. One way to meet this requirement is to examine diversi-
fication of a large clade, part of which is evolving in the
presence of potentially competing lineages and part of
which is not. Island archipelagoes, which bring together
novel assemblages of organisms through different patterns
of dispersal and colonization success [9,18], provide one
such promising arena for investigation, and we present one
example here.

We use three clades of murid rodents, specifically in sub-
family Murinae (rats and mice), to assess whether incumbent
lineages influence the success and ecomorphological diver-
sity of subsequent colonists. Two of these clades are found
on Luzon Island, the largest Philippine island, which has
been colonized by murids at least five times [19,20]. The
earliest two colonizations, Phloeomyini (sensu [21]) and
Chrotomyini (sensu [20]), occurred approximately 12.8 and
8.4 Ma, respectively. The species diversity of just these two
clades comprise the vast majority of native, non-flying
mammal species on the island (approx. 85% [22]), providing
a rich system to compare ecomorphological diversity in a
phylogenetic framework. While direct, quantitative dietary
information of these two clades is limited (e.g. [23–26]),
their members exhibit extensive morphological disparity
that corresponds to apparent differences in trophic ecology
both between each clade and among genera within clades
[22]. Decades of standardized field studies across the island
of Luzon have established that members of these clades
occur sympatrically, and in most cases, syntopically with
one another, establishing the possibility that these lineages
may compete for access to suitable habitat and food sources
[22]. The extensive sampling of this island yields an under-
standing of community composition that is unmatched by
other mammalian radiations.

The biogeography of murid rodents in Australasia also
presents unique opportunities to test incumbency effects in
Philippine murids. Notably, Chrotomyini is the sister clade
to a large group of murid rodents that radiated throughout
Australia, New Guinea and Melanesia [27,28]. This group,
referred to here as the Sahul Hydromyini, is the first colonizing
murid lineage on the islands they inhabit and includes both
tiny and giant herbivorous rodents (resembling Phloeomyini)
as well as shrew-like, primarily insectivorous rodents (resem-
bling Chrotomyini) [29,30]. This system thus seems to meet
both requirements for investigating whether incumbent
lineages can limit phenotypic diversification: the two Luzon
Old Endemic (LOE) clades, Phloeomyini and Chrotomyini,
are sufficiently closely related to be likely competitors, and
the Sahul hydromyine radiation’s close relationship to Chroto-
myini provides the best available opportunity to examine how
Chrotomyini might have evolved had they colonized a similar
system in the absence of murid competitors.

Here, we analyse mandibular morphology (as a proxy for
dietary diversity) of these lineages in a phylogenetic com-
parative framework to test whether the incumbent lineage
on Luzon (Phloeomyini) may have shaped phenotypic diver-
sity of the secondary colonizing lineage (Chrotomyini) as
compared to its sister taxon (Sahul Hydromyini). We focus
on mandible (lower jaw) shape as an ecologically relevant
trait that correlates with food-processing strategy and has
proven to be useful for delineating dietary differences
among species [31–34]. We then compare the variation in
mandibular shape between the two sympatric clades to the
variation between the two incumbent clades to determine
whether the contemporary morphological diversity of Chro-
tomyini, when compared to that of Chrotomyini and Sahul
Hydromyini together (hereafter referred to as Hydromyini,
sensu [21]), is biased in a way that minimizes overlap with
the areas occupied by incumbent Phloeomyini. Then, using
a novel phylogeny of Hydromyini, we infer the ancestral
morphology of Philippine chrotomyines to estimate its eco-
morphological distinction from incumbent Phloeomyini at
the time of chrotomyine colonization.
2. Material and methods
(a) Taxon sampling
Our molecular dataset consists of DNA sequence data obtained
from several previous studies, with additional sequencing per-
formed as needed (electronic supplementary material,
Supplementary methods). We obtained 15 tissue samples from
the American Museum of Natural History (AMNH), the Field
Museum of Natural History (FMNH) and the Australian National
Wildlife Collection (ANWC) to supplement existing molecular
sampling. In total, our molecular phylogeny contained 132
samples representing 131 species of rodents endemic to the Philip-
pines, rodents endemic to Sahul, six outgroup taxa from family
Muridae, and Chiropodomys gliroides, which is the sister lineage
to Chrotomyini and Sahul Hydromyini. Some lineages within
Chrotomyini and Phloeomyini have dispersed to other islands
in the Philippine archipelago. We included nine of these species
in our phylogenetic analyses but did not include them in our mor-
phometric analyses as they occur on islands other than Luzon,
which have substantially different faunal, especially mammalian,
community assemblages (compare e.g. [25,35]). Although these
clade names technically refer to the old endemics distributed
across the Philippine archipelago, throughout the manuscript,
we use the names Chrotomyini and Phloeomyini to refer
specifically to the Luzon members of these clades.

Our morphometric dataset comprised measurements of
mandible shape from LOE and Sahul hydromyine rodents. For
the LOE rodents, we used the mandibular morphometric dataset
containing 337 specimens representing 41 rodent species (29 chro-
tomyine species and 12 phloeomyine species) obtained in a
previous study [36]. This dataset included all described LOE
rodent species and two undescribed chrotomyine species. The
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Figure 1. PC1 and PC2 of mandibular shape of LOE (Phloeomyini + Chrotomyini) and Sahul hydromyine rodents, with Sahul Hydromyini projected onto the LOE
component space. Opaque enclosed circles represent species averages. Convex hulls indicate the extremes of each clade’s individual specimens. Dashed ellipses
indicate posterior density intervals for estimated ancestral state of Hydromyini (i.e. crown ancestor of Chrotomyini + Sahul Hydromyini) with increasing radii repre-
senting 50%, 90% and 95% highest posterior density, respectively. Percentages on axis labels indicate LOE (i.e. excluding Sahul Hydromyini) dataset variation
explained by that axis. Thin-plate splines along axes show specimens with extreme scores and illustrate differences along these axes. Bottom left: lateral view
of a mandible indicating landmarks taken. (Online version in colour.)
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Sahul hydromyine dataset consisted of 270 specimens represent-
ing 85 species for approximately 58 and 86% coverage of all
currently described species and genera, respectively. These
Sahul specimens were obtained from the AMNH, FMNH and
the United States National Museum of Natural History
(USNM). We aged and photographed specimens as described
by Rowsey et al. [36]. For the Sahul rodents, we attempted to
sample four individuals per species with an even sex distribution
but relaxed this constraint when suitable specimens were limited.
The list of 607 sampled murid specimens and associated meta-
data can be found in the electronic supplementary material,
table S1.
(b) Geometric morphometric analysis
We used the geometric morphometric analytical procedure pre-
viously described for LOE rodents [36] to collect and analyse
morphometric data for the Sahul hydromyines. We collected 12
fixed landmarks along the outline of themandible using the R pack-
age geomorph v. 3.0.5 [37–39] (figure 1). These landmarks were
collected so as to be congruent to those collected by Rowsey et al.
[36], where the pattern of morphometric dissimilarity between the
two Luzon old endemic clades was first documented. In the cases
where a specimen’s mandible was damaged, we estimated the pos-
itions of missing landmarks using the thin-plate spline algorithm
implemented in the estimate.missing function of geomorph,
using other individuals of the same species as a reference when
available or members of the same genus when conspecific speci-
mens were unavailable [40]. The complete dataset of landmark
configurations, including LOE landmark data, were subjected
to a generalized Procrustes analysis (GPA [41,42]) from which
we also retained log-transformed centroid size, or the average
distance between each landmark and the centre of the landmark
configuration, as a proxy for body size.

(c) Testing contemporary ecological distinction
We compared the overlap between Chrotomyini and Phloeomyini
(sympatric clades) to Phloeomyini and Sahul Hydromyini
(incumbent clades). To do this, we first averaged both the GPA-
transformed landmark configurations and centroid size by species
and performed a PCA on the correlation matrix using these
average values. We then calculated the median pairwise distance
between the 29 species in Chrotomyini and 12 species in Phloeo-
myini. This distance was compared to a distribution of distances
between Phloeomyini and 10000 permuted samples of 29 Sahul
hydromyine species values to determine whether the distance
between the two sympatric clades was significantly greater than
that of the two incumbent clades.

(d) Phylogenetic inference
We used PartitionFinder v. 2.1.1 [43] to determine the best-fitting
scheme of nucleotide partitions and substitution models in our
seven-locus dataset (electronic supplementary material, Sup-
plementary methods) using the Bayesian information criterion
(BIC [44]). We selected locus-level candidate partitions, specified
linked branch lengths among partitioning schemes and selected
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only substitution models that were supported by BEAST 2 [45],
choosing the best scheme using the ‘greedy’ algorithm (electronic
supplementary material, table S2). We used the resultant parti-
tioning scheme along with secondary calibration points to infer
the phylogeny of these rodents with divergence dates estimated
in absolute time using BEAST v. 2.5.2 [45], (electronic supplemen-
tary material, Supplementary Methods).We placed a normal prior
on the crown ages of Phloeomyini (mean: 11.1, standard devi-
ation: 0.825), Chrotomyini (mean: 7.22, standard deviation:
0.506) and Sahul Hydromyini (mean: 9.00, standard deviation:
0.455) based on the distribution of ages inferred by Rowsey et al.
[13], which were themselves dated based on thoroughly examined
fossil data [14]. A recent study using simulated sequences illus-
trates that secondary calibrations may lead to node age
estimates that are erroneously younger and exhibit lower variance,
giving the false impression of greater certainty than primary
calibrations [15]. We acknowledge this as a limitation of our
sampling scheme, as no fossil data are available for the level of
divergences necessary to calibrate divergences among our
sampled clades. Nevertheless, we obtained nodal age estimates
consistent with the study from which the secondary estimates
were obtained [13].
192746
(e) Testing ancestral ecological distinction
To test ancestral ecomorphological distinction between the two
LOE clades, we needed to not only estimate a distribution of
probable ancestral phenotypes of the common ancestor of Chro-
tomyini and Sahul Hydromyini, but also determine whether the
contemporary distances between members of the two LOE (sym-
patric) clades were similar to the difference between Phloeomyini
and the ancestor of the secondary-colonizing clade. This analysis
was motivated by the observation that the LOE clades occupy
almost entirely different regions of morphospace on PC 1–2,
which together account for 56.5% of the variation in mandible
shape in these two rodent clades [36]. We performed a PCA on
LOE rodent mandibular shape (i.e. excluding Sahul Hydromyini)
and used the rotation matrix from this PCA to project the Sahul
hydromyine morphometric data into the LOE component space.
We then took the average component score of each Sahul
hydromyine species. We chose not to incorporate the Sahul
Hydromyini in eigenvector computation because doing so
would have caused variation in this allopatric clade to influence
the major axes of variation of the two focal clades, and thus the
extent of their overlap along this subset of component space.
Instead, rotating the Sahul Hydromyini to the eigenvectors com-
puted for the LOE clades displays how the allopatric, incumbent
murid lineage varies along the major axes of mandibular shape
of the sympatric focal clades.

We performed our ancestral state estimation procedure using
MECCA, implemented in the geiger package, which employs a
combination of MCMC and approximate Bayesian computation
(ABC) algorithm to jointly estimate diversification rate par-
ameters and trait evolution parameters [46]. See the electronic
supplementary material, Supplementary methods for a detailed
description of our MECCA workflow. Using the distribution of
950 estimated ancestral states for PC1 and PC2 from the 95%
highest posterior density (HPD) of the ABC-MCMC model infer-
ence, we calculated the distance between extant Phloeomyini and
these ancestral trait values using 10 000 combinations of ancestral
state estimates along PC1 and PC2 sampled with replacement.
We computed the distance between these ancestral states and
contemporary Phloeomyini to allow for the greatest potential
for overlap between this ancestral distribution and the incumbent
Luzon clade and thus a more conservative test of biotic filtering.
This distribution of distances was compared to the median pair-
wise distance in PC axes 1 and 2 of contemporary Phloeomyini
and Chrotomyini.
( f ) Testing adequacy of models of morphological
evolution

We performed model adequacy tests in the arbutus package in R
to determine how well the parameters of the single- and two-rate
Brownian motion model inferred using MECCA describe the
expected variation in these traits from the pruned time-scaled
tree used to estimate ancestral chrotomyine morphological over-
lap [47]. We calculated six statistics describing aspects of trait
evolution based on the mandibular morphometric data and com-
pared these statistics to distributions generated by simulating
trait evolution along the branches of the unit tree, which is a
rescaled phylogenetic tree in which each branch is scaled equal
to the amount of variance expected to accumulate along that
branch (effectively standardizing the distribution of trait data
to be equal to a Brownian motion model of trait evolution with
a rate of 1 [47]). Of the six statistics modelled, we were particu-
larly interested in those with potential influence on inferred
ancestral states—CVAR, SVAR and SASR—that, respectively, corre-
spond to unexplained variation in the model due to rate
heterogeneity among branches, branch length error in the phylo-
genetic tree and evolutionary rate correlated with trait value.
Recovering significant deviations in these statistics influences
expected patterns of nodal states that could extend to the infer-
ence of the root node state in our analysis. For detailed
information regarding this model adequacy procedure, as well
as statistic definitions, see electronic supplementary material,
Supplementary methods and table S3.
3. Results
(a) Testing incumbency-influenced morphospace

exclusion
The two clades of Luzon rodents do not share mandibular
shapes with each other, but Sahul hydromyines exhibit
shapes that overlap broadly with both Luzon clades (figure 1;
full PCA results in electronic supplementary material, table S4).
Phloeomyine mandibles are typically stouter and more robust
than chrotomyine mandibles, which are typically more gracile
and exhibit greater concavity in the regions of the mandible
between the coronoid, condyloid and angular processes. By
contrast, Sahul hydromyines broadly overlap with both
clades and include morphotypes similar to both Phloeomyini
and Chrotomyini, although the range of Sahul hydromyine
mandibular variation does not fully encompass that of both
LOE clades combined. Placed in the context of previous
work examining the correlation between diet and mandibular
morphology in rodents specifically and mammals more
broadly, stouter mandibles with broad, shield-like angular pro-
cesses tend to be herbivorous whereas slender mandibles with
long, narrow coronoid and angular processes tend to be insec-
tivorous or carnivorous, suggesting that these differences in
shape correspond to dietary differences [31,34].

We analysed the distribution of mandibular size indepen-
dently as this trait may be evolving under a different
evolutionary process compared to shape [36].Nevertheless, dis-
tribution of mandibular size variation exhibits a similar pattern
to that of shape: specimen-level data of Sahul hydromyineman-
dibular centroid size overlaps extensively with both Luzon
clades, completely encompassing the variation of Chrotomyini
and nearly encompassing Phloeomyini. Although Phloeomyini
andChrotomyini exhibit considerableoverlapwith one another,
Phloeomyini occupies a ‘large’ size class to the exclusion of
Chrotomyini (electronic supplementary material, figure S1).
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We tested the significance of the contemporary distinction
between the two LOE clades by comparing the average
Euclidean distance among PC scores of mandibular form (i.e.
shape and log centroid size combined). This multivariate
distance-based permutation approach allows us to compare
the shape along all component axes simultaneously without
overparameterizing a regression model (as in covariance
matrix-based MANOVA). The average distance of mandibular
phenotype PC scores is significantly greater between the
two sympatric clades than between Phloeomyini and the
distribution of permuted samples of Sahul Hydromyini (p=
0.0004; figure 2a). This result was robust to the exclusion of
Rhynchomys, which is highly distinct from the remaining rodents
andmaycontribute to the inflationof averagebetween-cladedis-
tances (p=0.0022; figure 2b). These comparisons remain
significant even when limited to shape variation along the first
two component axes of mandibular shape (i.e. excluding size
and component axes 3 to 24; electronic supplementarymaterial,
figure S2), and also when considering only those species found
on New Guinea (electronic supplementary material, figure S3).

(b) Testing incumbency-influenced biotic filtering
To examine historical patterns of morphological variation, we
estimated the evolutionary relationships among the three
clades in a time-calibrated Bayesian phylogenetic framework
(figure 3). We used this phylogenetic tree to estimate
ancestral states for the stem ancestor of Chrotomyini
(i.e. Chrotomyini + Sahul Hydromyini, forming the clade
Hydromyini sensu [21]), which represents the earliest (and
thus most conservative) estimate of ancestral phenotype
from a lineage that could have colonized Luzon Island. The
distribution of PC1 and PC2 scores of the ancestor of Chroto-
myini and Sahul Hydromyini, like that of contemporary
Chrotomyini, exhibits little overlap with the distribution of
contemporary Phloeomyini on these axes (figure 1). The
ancestral state of Hydromyini is intermediate to the crown
ancestors of Sahul Hydromyini, which exhibits moderate
overlap with Phloeomyini, and Chrotomyini, which exhibits
no overlap (electronic supplementary material, figure S5).
The contemporary distance along PC1-2 is not significantly
greater than the distribution of 10 000 sampled distances
between extant Phloeomyini and this ancestral state interval
( p= 0.44; figure 4a). This result is robust even when we per-
formed an additional model specification procedure where
Rhynchomys was excluded ( p= 0.73; figure 4b). The generat-
ing Brownian motion model adequately describes the
distribution of PC1-2 scores except for underestimating the
rate of morphological evolution for these clades and for esti-
mating evolutionary rate correlated with node height along
PC1, probably due to our overdispersed sampling scheme
(which MECCA can account for, but arbutus cannot). Our
lack of support for branch-specific rate heterogeneity, rates
correlated with branch length and rates correlated with
ancestral states suggest that our analyses need not invoke
directional shifts of mandibular shape evolution in Hydro-
myini to describe the evolutionary patterns in these two
clades (electronic supplementary material, table S3).
4. Discussion
Our results provide evidence to support the hypothesis that
the two LOE clades have exhibited persistent partitioning of
morphological variation throughout their evolutionary his-
tory in sympatry. Chrotomyini only partially overlaps the
morphological variation exhibited by its sister clade, the
Sahul hydromyines, a clade that diversified in the absence
of prior rodent competitors, such that chrotomyines do not
exhibit the morphotypes typical of the Luzon-incumbent
Phloeomyini. The distinction between the two Luzon ‘Old
Endemic’ rodent clades is consistent with the hypothesis
that Phloeomyini, as the incumbent murid clade in this
system, may have been able to monopolize an area of mor-
phospace that subsequent colonists (Chrotomyini) could not
exploit, even though Chrotomyini’s close relatives could in
the absence of competition from an incumbent murid clade,
and that ancestral ecological distinction subsequently facili-
tated successful colonization of Luzon by Chrotomyini. An
alternative explanation for the patterns we observe is that
the two Luzon lineages were ancestrally similar to one
another but diverged through ecological character displace-
ment over time to their contemporary distinction. Our
results satisfy several criteria asserted by Schluter [48] in his
evaluation of studies displaying evidence for ecological char-
acter displacement, namely greater divergence in sympatry
than in allopatry, ruling out chance as the source of the pat-
tern, and evidence that Chrotomyini may have exhibited a
shift away from its hydromyine ancestors ([48] criteria 1–3)
(electronic supplementary material, figure S5).

Regardless of resulting from ancestral or displacement-
related distinction, contemporary chrotomyine morphological
variation was likely influenced by phloeomyine incumbency.
The emerging picture regarding incumbency effects in the
evolution of Indo-Australian rodents is one of strong influence
on the resulting ecomorphological diversity of the constituent
clades, but weak influence on their rates of lineage diversifica-
tion [5,20,49] and rates of trait evolution [36,50]. In other
words, secondarily colonizing rodent clades appear to be
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Figure 3. Maximum clade credibility tree from BEAST 2 analysis. Bars at nodes indicate 95% highest posterior density interval of node ages. Dots at nodes indicate
posterior probability (PP)≥ 0.95. Grey boxes surrounding clades indicate clades endemic to the Philippines, with bolded names indicating species occurring on Luzon
Island.
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able to diversify without a reduction in evolutionary rate pro-
vided they do not compete with existing lineages. However,
the patterns observed among Indo-Australian rodents may
not necessarily hold true in other clades. For example, in
aquatic systems, secondary colonists can experience limited
ecological opportunity and subsequent diversification com-
pared to incumbent lineages, leading to depressed
evolutionary rates in non-incumbent clades [7,51]. In North
American canids, younger lineages appear to have driven
incumbent lineages extinct, in a reversal of the expectations
set by ecological incumbency conferring a competitive advan-
tage [52]. These studies illustrate that clades vary in their
evolutionary response to competition from ecologically similar
lineages.

Our analysis also reveals the potential impact that geo-
graphic scale and isolation have on recovering patterns
consistent with biotic filtering and subsequent clade-specific
partitioning of morphospace. As one example, a previous
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analysis on continent-wide assemblages of passerine birds
revealed limited effects of colonization order and subsequent
ecological evolution on the patterns of morphospace occu-
pancy [11]. These results illustrate that incumbency effects
can quickly become obscured by other factors, such as allopa-
tric speciation and limited competition between focal
clades, when examining ecological diversity and community
assembly at increasingly broad geographic and taxonomic
scales [53]. They also suggest that such effects may be heavily
dependent on the relatedness and ecological similarity of
the focal clades as well as the spatial scale at which these
interactions occur.

Although our results strongly support the hypothesis of
evolution influenced by a persistent biotic filter in the LOE
rodents, we caution that our results should be interpreted in
the light of two caveats, one methodological and one inherent
to the comparative approach we used. These caveats present
future avenues for study based on our conclusions as more
data become available and methodological advancements are
made for estimating ancestral states. The first caveat is that
our approach is constrained by the lack of temporally relevant
fossil information available for these three clades [54]. The
availability of fossil information would enable inferences
of directionality in mandibular evolution that would reduce
ancestral state uncertainty and allow us to estimate ancestral
states outside the range of observed values of Hydromyini
[55]. The recovery of relevant fossils would help distinguish
between Chrotomyini’s contemporary morphological vari-
ation resulting from persistent ancestral distinction and
ecological character displacement. Our model adequacy test
illustrates that the extant variation in mandibular morphology
is sufficiently described by a non-directional model of evol-
ution (electronic supplementary material, table S3); however,
the inability of arbutus to account for incomplete sampling of
trait data means that these results may be sensitive to
unsampled trait variation. The significant results of the
inferred evolutionary rate and node height correlation along
PC1 indicate that early hydromyine evolution occurred more
rapidly than parameterized by the Brownian motion model,
potentially including exploring areas of morphospace not
currently occupied by the clade.

The second caveat of our study is that our results are
consistent with the processes we sought to test but do not
eliminate other potential explanations for the patterns we
observe. For example, it is possible that these patterns of mor-
phospace occupancy are the result of gradual takeover of
phloeomyine morphospace by Chrotomyini. Fossil evidence
of chrotomyine-like phloeomyine forms is necessary to test
this hypothesis. If this is indeed the case, our recovery of
significant overlap between Phloeomyini and the Sahul
hydromyines would suggest that Chrotomyini may have
been slowed in their ability to exploit the morphospace occu-
pied by Phloeomyini, even as they drive similar forms
extinct. Furthermore, the inference of constrained evolution
in Chrotomyini compared to Sahul Hydromyini rests on the
assumption that the three clades experience similar intrinsic
(developmental) and extrinsic (ecological) macroevolutionary
opportunity. In essence, we assume that Sahul hydromyines
provide a realistic expectation for the evolution of Chroto-
myini if this clade did not experience competition with
Phloeomyini. One criticism of this assumption is that Sahul
Hydromyini may have experienced greater ecological oppor-
tunity due to greater available land area and niche breadth,
and thus cannot provide a comparison of realizable dietary
diversity. However, the fact that this clade occupies an over-
lapping, but not eclipsing, area of LOE rodent morphospace,
suggests that Sahul hydromyines did not have the ability to
diversify into a substantially broader array of niches than
the LOE.

An outstanding question resulting from this study is what
processes contributed to generating the areas of morphospace
filled by Luzon rodents unoccupied by Sahul hydromyines.
Particularly considering Rowsey et al. [36] recovered strong
support for a shift in evolutionary mode along the branch
leading to the tweezer-snouted Rhynchomys, it seems likely
that evolutionary rate heterogeneity has contributed to chro-
tomyine ecological radiation. We present two hypotheses that
would make for additional and exciting areas of research.
First, it seems plausible that although the initial colonizing
chrotomyine lineage was dissimilar from Phloeomyini,
competition between each clade in sympatry generated
morphological innovation as a consequence of evolutionary
pathways of least resistance [56]. If so, inter-clade competition
may influence post-colonization morphological innovation in
this system similar to patterns predicted by ecological charac-
ter displacement. Second, the differing abiotic and biotic
environments of Luzon Island and the Sahul supercontinent,
the latter of which spans tropical, montane, arid subtropical
and temperate biomes, may also contribute to Chrotomyini
occupying areas not occupied by Sahul Hydromyini. For ter-
restrial lineages, island systems such as Luzon may have the
potential to promote more rapid ecomorphological evolution
than continental landmasses, even when these landmasses
are more ecologically heterogeneous [57,58], due to evolution
being influenced less by ecological opportunity and more rare
dispersal events to ecologically similar habitats [59,60]. The
murid rodents of the Indo-Australian archipelago may pro-
vide an excellent opportunity to explore this question given
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the exceptional ecological diversity and species richness of
both continental- and island-endemic rodent lineages.

Our study examined incumbency effects from the stand-
point of the secondary-colonizing Chrotomyini in part
because of the easily-tractable sister-clade comparison between
Chrotomyini and Sahul Hydromyini. However, our work
raises the question as to what has influenced the morphologi-
cal variation among phloeomyines. Phloeomyini diverged
relatively early from the rest of ‘crown’ Murinae [20] and
may exhibit intrinsic (plesiomorphic) constraints that limit
their ability to evolve out of a herbivorous (including special-
ized folivory and granivory) morphotype. Testing this
hypothesis would require comparing the evolutionary pattern
and process between Phloeomyini and crown Murinae, which
is incredibly species rich and geographically widespread.
This sister relationship precludes a comparison of this nature
due to conflation of geographic and ecological sources of
evolutionary variability. However, if there are no intrinsic
evolutionary constraints within Phloeomyini (i.e. Phloeomyini
and Hydromyini exhibit the same potentially realizable
trophic diversity), the absence of carnivorous phloeomyines
may be related to limits placed on this clade by Chrotomyini
(i.e. secondary colonists outcompeting incumbents). Testing
this hypothesis is difficult unless a fossil or newly discovered
extant species bearing a chrotomyine-like mandibular shape
is discovered and definitively attributed to Phloeomyini.

Biotic filtering has been previously demonstrated to be
an important factor in the community assembly of island-
endemic and continentally distributed faunas alike [9,61].
The patterns of mandibular form variation in the three
murid clades we studied illustrate that incumbency may
establish a biotic filter for subsequently colonizing lineages
in systems with repeated colonization as well. Furthermore,
when added to the body of work examining incumbency
effects among Luzon murids, our results indicate that such
effects are more likely to influence the patterns of morpho-
logical diversity than the rates of lineage diversification or
morphological evolution, with non-incumbent clades diversi-
fying relatively freely after colonization [20,36]. We conclude
that secondarily colonizing clades may be forced to exhibit
persistent ecological distinction from the incumbent clade,
but as long as this distinction is maintained, evolution may
proceed relatively uninhibited.
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