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Abstract

We present a mathematical model that describes thermo-mechanical deformations and thermal gradients on
the unsteady burning of a heterogeneous solid propellant. A scaling study shows that the deformations in
solid at combustion timescales can be treated as quasi-static. The resulting thermo-mechanical formulation is
formulated on a Cartesian grid and makes use of a weak form of Chorin-type projection method to deal with
large difference in shear modulus of constituent materials. A one-dimensional verification study is carried
out by comparing numerical simulations with those of an analytical model. In addition, convergence studies
for a two-dimensional propellant sandwich configuration are presented for the stress, velocity, and reference
map components. Finally, simulations are carried out for a two-dimensional random propellant pack and the
time-averaged burn rate and strains are reported.
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1. Introduction

Heterogeneous solid propellants find prevalent use in space missions, rockets, missiles, etc., which makes
understanding the underlying physics that influences their combustion critical to the design process. To
supplement experiments that are often expensive to conduct, it is desirable to have computational frameworks
able to carry out physics-based simulations. Hence, propellant combustion modeling has been the focus of
researchers and companies to design better rockets for the last few decades.

A typical solid propellant consists of an energetic material such as ammonium perchlorate (AP) embedded
in a polymeric binder matrix [1]. The constituent materials have different thermal and mechanical properties,
thus any framework of interest should be robust enough to handle the discontinuities arising from heterogeneity.
Numerical simulation of propellant combustion is severely challenging owing to the multi-physics nature of

the problem: complex chemical reactions giving rise to gas products, a dynamic burning surface separating
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the solid and gas phase, heat transfer between the two phases driving combustion, and thermo-mechanical
deformations within the solid caused by high temperatures and chamber pressure. The propellant combustion
problem has garnered attention over the past two decades with significant progress being made on three-
dimensional modeling of random packs. Early modeling efforts included burning sandwich configuration
(strips of AP and binder arranged alternatively) or periodic arrays of AP particles in binder. However,
these packs are not representative of actual propellant morphology. Knott et al. [2] presented a framework
for generating truly random three-dimensional heterogeneous packs using the Lubachevsky and Stillinger’s
algorithm [3]. To model combustion physics, one of the earliest efforts consisted of modeling the gas phase
using Oseen’s approximation for the momentum equation, the energy and species equations, a pyrolysis law
to describe surface evolution, and unsteady heat conduction in the solid phase. Hegab et al. [4] presented
one such analysis where both the solid and gas phases were completely coupled, and solved the unsteady
heat conduction in both phases with Oseen’s approximation in the gas phase. This reduces the momentum
equation to quasi-one dimension to model the vertical gas velocity. Successive modeling extended the Oseen
approximation to use the low Mach number Navier—Stokes equations [5] for the gas phase. Wang et al. [6]
extended the propellant combustion framework to include aluminized propellants. Jackson[7] provides a
comprehensive review of research conducted in this domain. However, all of these modeling efforts account
only for unsteady heat conduction in the solid phase, neglecting thermo-mechanical effects.

The study of mechanical response has largely focused on the macroscopic matrix behavior and constitutive
models for porosity, and capturing the viscoelastic response of the damaged binder matrix [8, 9, 10]. The
porosity is caused by dewetting, a phenomenon where AP particles dissociate from binder leading to the
formation of voids. This serves to alter the macroscopic binder response by reducing the bulk modulus of
the matrix. These studies capture the mechanical response to straining, but do not account for near-surface
thermal deformations. To this end, Kuznetsov and Stewart [11] presented a one-dimensional analytical
and numerical study for homogeneous propellants using a small-strain approximation. They observed a
decrease in surface temperature because thermal expansion absorbs heat near the surface. Srinivasan et
al. [12] carried out two-dimensional studies of heterogeneous packs using a compressible hyperelastic model
and found decreased regression rates for deformable propellants. They observed large thermo-mechanical
strains at the AP-binder interface, within the thermal boundary layer. This could point to possible hot-spots
for damage at the microscopic level, which could possibly propagate within the propellant. These findings
motivate this work as we seek to develop a predictive framework capable of identifying highly strained areas
in the propellant pack near the burning surface. Our goal is to carry out numerical simulations that account
for the coupling between both phases and solve for temperature, stresses, and strains in the solid phase, for
which an Eulerian framework is desired.

Since the regressing surface has a complex topology, a Lagrangian approach would require mesh generation



at each time step. A fully Eulerian approach has its advantages in the fact that both phases are on the same
grid, which saves computational effort of grid generation. In an Eulerian setting, surface tracking can be
achieved either through level sets [13, 6] or by coordinate transformations that map a corrugated surface
to a flat one [4, 5, 14]. While the choice of an Eulerian framework simplifies the computational aspect of
the problem, it becomes challenging to provide a mathematical description of the mechanical behavior. To
describe the stress state, it is routine to use a strain energy potential that is assumed to be a function of the
deformation gradient and temperature [15, 12]. To specify the deformation gradient, explicit information
about the current location of material points is needed. In an Eulerian system, this is much more difficult to
do since material points are not explicitly tracked. One of the popular ways is to use a hypoelastic constitutive
law, which postulates a rate equation of the stress tensor in terms of deformation rate [16] and has been
used for problems involving finite strains and elasto-plastic deformations [17, 18, 19, 20]. Other approaches
include defining the deformation gradient [21, 22, 23], or a reference map [24], as the primitive variable on
the grid and specifying a conservation law. The updated deformation gradient can then be coupled with
a hyperelastic law to simulate finite strain mechanics. It can be shown that in the limit of small strains,
hyperelasticity and hypoelasticity converge.

In this work, a two-dimensional burning heterogeneous solid propellant system consisting of AP particles
in a hydroxyl-terminated-poly-butadiene (HTPB) binder is considered with a focus on thermo-mechanical
deformations in the solid phase. Both constituent materials are treated as hypoelastic solids. We do not
consider coupling to the gas phase combustion processes. Instead, we assume a constant heat flux from the
gas phase driving the solid pyrolysis. In addition plastic deformations in the solid phase are neglected. The
effect of thermal deformations in the solid phase is taken into account through an additive decomposition of
the deformation gradient tensor D into elastic and thermal parts, i.e. D = D, + Dyy. The temperature is
obtained from the energy equation with the stress work term to capture the dissipative effect of deformations.
A scaling analysis is used to motivate the quasi-static nature of the problem and the resulting choice of
approximate projection method is then presented along with numerical discretization of the governing
equations on a Cartesian grid. For code verification studies, we use a one-dimensional test case for the
propellant constituent materials, as well as a two-dimensional sandwich configuration. Results are then

presented for a two-dimensional random propellant pack and subsequent findings are discussed.

2. Governing Equations

The thermo-mechanical response in the form of a general theory has been the subject of extensive research,
and there are several frameworks that describe this behavior of solids, hypoelasticity being one of them. It

is assumed that the stress rate is linearly dependent on the deformation rate tensor and the constitutive



relation is assumed to be

15"]:(3:De7 (1)

where & is a measure of stress rate, D. is the elastic deformation rate tensor, and C is the fourth order
material stiffness. Since the stress rate is not objective, there exist different definitions of objective stress

rates, with the Jaumann rate [15] being the most popular one. It is defined as

&J:%—:‘+V'VU+U~w7w~o’, (2)

where v, o, and w are the velocity, Cauchy stress tensor, and spin tensor, respectively. For a linear isotropic
material with shear modulus p and bulk modulus K, Cjjr = A0k + p(0:105 + 0ixd;1), where A = K — 2?“

The total rate-of-deformation tensor is defined as

D= (Vv+Vv'). (3)

| =

Using the additive decomposition, D is assumed to be a linear combination of elastic, plastic, and thermal
parts [25], so that
D =D, + D, + Dy,. (4)

In this work, we neglect plastic deformation and thus D, = 0. The thermal deformation Dy, is stated as the

rate form of linear expansion used in small strain theory [26],
Dy, = ofT, (5)

where a, K, T, I are the thermal expansion coefficient, bulk modulus, the time derivative of temperature, and

second order identity tensor, respectively. The conservation of momentum can be written as

dv
—=V-.-o0+b 6
where p is the density of the material, v the velocity vector, and by the body force. The temperature
distribution in the solid is obtained from the energy equation. Neglecting the presence of any heat sources,

the energy equation can be written as

T )
pep e = V- (RVT) + Ta—; L Vv, (7)

where p, cp, k are the density, specific heat capacity, and the thermal conductivity, respectively. We have
assumed, for simplicity, that the specific heat is the same as that for the gas. The first term on the right
hand side represents heat diffusion and the second term is work done by stress.

Since we are not considering the gas-phase equations in this work, a constant heat flux is applied from

the gaseous phase into the burning solid. A marker function ® is used to separate the two materials such



that ® =1 for AP and ® = —1 for binder. The heat flux from the gas phase drives the propellant regression,

and the corresponding burn rate can be determined as

E,
rp = Aexp (—RT ) ; (8)

where A and E, are empirical constants, and Ty is the surface temperature. The propellant surface is

parameterized by ¢ and is updated by solving the Jacobi—Hamilton equation
Gr+ 1/ 1467 =0. (9)
To satisfy conservation of energy across the burning interface, the condition
(kn-VT),— (kn-VT)y = —q.M, (10)

must be satisfied, where (), and () refer to the gas and the solid phase quantities, respectively; M = pry is
the mass flux; and ¢, is the phase change heat release. Equation (8) together with the jump condition (10)
forms a nonlinear system of equations for the surface temperature. Wang et al. [6] studied the regression
problem for both linear approximation and nonlinear system and did not report any noticeable differences in
the solution. In this work, a linear approximation used by utilizing the temperature from previous time step ¢"
to calculate the burn rate. The heat flux from the gas phase is assumed to be constant; i.e., (kn-VT), = Q,.

The jump condition (10) can then be written as
kn-VI=Qq+q.M, (11)

which gives a boundary condition for the surface temperature (7). The burn rate can then be computed
using equation (8) and is explicitly dependent on surface temperature. The chamber pressure (p.) is applied

as a boundary condition to enforce continuity of momentum at the interface.

2.1. Scaling of Governing Equations

Before proceeding to numerical simulations, it is useful to examine the relevant scales associated with the
physical system. Hegab et al. [4] presented the length (L) and time (¢) scales associated with combustion,
where L = 28 x 107% m and ¢t = 2.8 x 1073 s. The characteristic burn rate ryy of the propellant is of the

order 1 cm/s. The elastic longitudinal wave speed ¢, and shear wave speed c¢s are given by

E
Ce=1([—>» Cs= \/ﬁ (12)
p p

where FE is the Young’s modulus of the material. Table 1 lists the thermal and mechanical properties of the
constituent propellant materials. Given p and K, E can be calculated as

_ uK
3K+’

(13)



Table 1: Thermal and mechanical properties for propellant constituent materials [12].

Property Symbol AP Binder
Thermal conductivity (W/mK) K 0.405 0.276
Activation energy (K) E,/R 11000 7500
Heat of reaction (J/kg) ds —47 —100
Arrhenius constant (cm/s) A 1450 10.36
Bulk Modulus (MPa) K 14950 10670
Shear Modulus (MPa) 1 12500 2.5
Density (kg/m?) p 1950 920
Coeff. of thermal expansion (K1) e 1x107° 1x107*
Wave speed (shear) (m/s) Cs 2357.4 51.3
Wave speed (longitudinal) (m/s) Ce 3669.8 88.8

Table 1 lists the elastic wave speeds for constituent materials and these are much larger than the burn rate
(rp0). The relevant scales for the problem are chosen as (L, 740, To, E') and the non-dimensional form of the
variables can be written as X = x/L, Vv =v/ry , & = o/E, C = C/E, and t = tL/r,. With these scalings,
the hypoelastic equation in non-dimensional form becomes

96
ot

+v-Vé6+6-w—-w-6=C:(D-al) (14)
and the non-dimensional momentum equation is
dv ~ .
elp—=|=V-0+Dby, 15
(95 ) =T+, (15)
where € = porlfo /E is on the scale of 107*. This suggests that at the time scales associated with combustion,
the mechanical problem is essentially quasi-static. The energy equation in dimensionless form can be written
as ~
dT 1~ -~ - (.06 -
~7~:7V' ~VT FE T—~:V~ 16
P = ey VD <6T V>’ 16)
where Pe = poc,Lryo/ko is the Péclet number and E=E/ (pocpTp) is the non-dimensional Young’s modulus;
both of these parameters are assumed to be O(1). Using the time scale associated with combustion, the
hypoelastic equation (14) and the energy equation (16) remain unchanged, but the momentum equation (15)
in the limit ¢ — 0 becomes

V.6+b;=0. (17)

In what follows we solve the dimensional forms of (14) for stress, (16) for temperature, and (17) for velocities

using a projection method, as will be described in the next section.



2.2. Quasi-static Assumption and Projection Split

Equation (17) is enforced as a constraint on the hypoelastic equation in a manner similar to zero divergence
in the incompressible Navier—Stokes equations. These are conducive to the application of the projection
method [27] as introduced by Rycroft et al. [20]. Consider starting from the stress o™ at timestep ¢, and

taking a timestep of size At. To perform the projection split, the intermediate stress state o* is calculated as

%:—v"-Va"—a'"~w"—|—w"-0'"—C:D?h, (18)
and the stress update is given by
o.n+1 _ 0.* 1

The velocity at t"*! is calculated in the projection step by taking the divergence of equation (19) and
enforcing the quasi-static constraint from equation (17). This yields

—bf—V-O'*

A =V.-(C:D"). (20)

n+1

Once the velocity v is known, the stress ™! is computed from equation (19).

2.3. Approximate Projection

The projection step (20) yields a coupled Poisson-like equation for the velocity components that contains
second-order derivatives. We extend the projection approach to deal with materials having highly disparate
material moduli by employing a weak formulation based on the finite-element method. This choice is motivated
by the presence of large jump in shear modulus between AP and binder. The framework of solving a weak
form of the Poisson equation in otherwise strong form of equations has already been applied to variable
density incompressible fluid flows. Almgren et al. [28] first introduced a second-order accurate numerical
method for incompressible Navier—Stokes equation using an approximate projection with a bilinear basis
function for pressure. Instead of forcing the divergence of velocity to be zero in projection step, it is assumed
that V - v = O(h?) through the finite-element projection, where h is the grid spacing. The method was
extended to variable density flows by Puckett et al. [29] with two fluids and large density jumps such as water
droplet falling onto a surface. The implementation in this work is based on the application to axisymmetric,
incompressible two-phase flows with variable density by Yu et al. [30]. Neglecting body forces by in equation
(20), the weak form can be obtained by multiplying both sides by a test function w and integrating over the
entire domain. This gives

1 * n+1
—E/Qw(v-a)dx:/gw(v-(C:D ) dx. (21)

Applying the divergence theorem to the above equation, we get

1 1
——/ wo-*-ﬁdS—i——/Vw-o-*dX:/ w(c:D"+1).ﬁdS—/Vw-(c:D"+1)dx. (22)
At Jsq At Jo 59 Q



To simplify the surface terms, we multiply equation (19) by the test function and integrate over the surface,
to obtain

1 1
—— | wo*-ndS=—— wabC~ﬁds+/ w(C: D" . ads. (23)
At Jsa At Jsq 59

Substituting equation (23) into (22), we can write the weak form as

1

1
[N _ ¥ _ . . n+1
A /m wo’°-ndS A, Vw - o™ dx Vw - (C:D")dx. (24)

Q

The expansion of this equation results in a coupled set of equations for the velocity components, which only
have first-order derivatives unlike the strong form (20). The advantage of the weak form over the strong form
is that the discretization leads to a symmetric positive definite linear system to solve, where a solution can
be guaranteed even for very large density ratios. The details of the numerical discretization and choice of

basis function for the approximate projection method are presented in Section 3.

2.4. Reference Map Advection

To calculate strains, an Eulerian framework based on the reference map technique is employed. For any
material deforming under load, the motion of a body can be parameterized by a function x such that a
reference configuration B, at time ¢ = 0 is mapped to the current configuration B at time ¢. This can be
written as

x = x(X, 1), (25)

where x is the motion function mapping points in By to B, x refers to the current configuration and X refers

to the reference configuration. The deformation gradient associated with the motion function is defined as

0x

In a Lagrangian description, deformations are explicitly tracked by the motion of material points. In an
Eulerian frame, this is done implicitly by specifying an advection equation either directly for the deformation
gradient [23, 22] or inverse mapping of the motion function [24]. The reference map technique as introduced

by [24] uses an inverse mapping which can be defined as
X = Xﬁl(xa t) = E(Xv t) (27)

Since the reference location for a material point never changes, the constitutive law governing the reference
map update can be written as

& +v-VE=0. (28)

The reference map £ is a continuous mapping from the present configuration of a system to its original /reference

position. The deformation gradient using this terminology can be defined as

F=ve (29)
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Figure 1: Cartesian grid used for discretization of governing equations.

The Green—St.-Venant strain tensor is related to the deformation gradient by

E= % (FTF-T1). (30)

3. Numerical Implementation

In this section, the numerical discretization of the governing equations in two dimensions is presented
using finite difference method on a Cartesian grid with n, and n, points in the 2 and y directions, respectively.
Figure 1 shows the grid and the staggered discretization of variables used in this work. The velocity v,
temperature T, and reference map & are located at the grid cell corners, whereas the stress (o), the deformation
gradient F', and strain tensor E are located at cell centers. To capture the regressive surface, either of two
methods are used. The first method uses a body-fitted grid in physical space that is mapped to a flat surface
in the computational domain. This approach works as long as the surface remains single valued, and has
been utilized successfully [4, 5]. The advantage of this method is that one-sided difference stencils can be
used at the gas—solid surface. Another approach is to describe the surface using a level set that allows for
multi-valued surfaces such as found in aluminized propellants [6]. Here, we assume that the surface stays
single valued and a mapping is used to map the physical surface to a flat one in the computational domain.

The mapped coordinate 77 can be defined as

77=y—¢(15at)7 (31)

where ¢(z,t) is the surface profile at time ¢. In addition to capturing the surface profile, it is of interest

to capture the thermal boundary layer effects in proximity of the surface. To this end, grid clustering is



employed in the normal direction to the propellant surface by defining another coordinate (7)) such that

~

n
(2- @/L,)?)

where L, is the pack length in the y direction and ¢y, is the clustering coefficient. The coordinate transfor-

n= (32)

Cly I

mation and grid-clustering mapping to capture surface effects keeps the grid is uniform in the computational

space (x, 7).

3.1. Surface Update

The corrugated surface, parameterized by ¢(z,t) is updated by solving the Jacobi-Hamilton equation (9)

using forward Euler time integration

¢"T =" — Atryy/1+ ()2 (33)

where the derivative on right hand side is upwinded using a third-oder WENO scheme, and the burn rate r

is a function of both x and ¢ and is calculated from equation (8).

3.2. Temperature Update

To update temperature, the Crank—Nicolson time stepping scheme is used to numerically integrate the

energy equation (7), which can be written as

o At . At L0o" n
T+1+—2 it =1 -5 AT s UV (34)
where
aT? oT? 1
s _ .mn n _ . TS 35
r=ut +v o9 pcp(v (kVT?)), (35)

for s = n,n + 1, where the n and n + 1 superscripts signify the field variables at the respective timestep. It
may be noted that a lagged value of velocity components u™ and v™ is used in the convective terms on the
left hand side of equation (34). Table 1 lists the thermal properties for the constituent materials and these
are located at the cell corners. For example, p is treated pointwise; i.e., p; ; is used in equation (34). The
discretization of equation (34) presented results in a linear system of algebraic equations that is solved using

a line relaxation algorithm. More details on numerical discretization can be found in Appendix ?77.

3.8. Stress Update

Assuming two-dimensional plane strain conditions, an elastic material is considered with velocity v(x,t)

and Cauchy stress tensor o (x,t), which in component form can be written as

o111 T 0 0 —w 0
o = T J99 0 5 W= lw O O ) (36)
0 0 033 0 0 0

10



where w = %(vx — uy), and x and y subscripts denote partial derivatives with respect to that coordinate
direction. Since we have assumed isotropy and constant material coefficients, the right hand side of the

hypoelastic relation (1) in component form

(A + 2u)uy + Avy p(y + vy) 0
C:D=|  pfuy+vs) Mg+ (A+ 200, 0 : (37)
0 0 Auz +vy)
and
dT
C: Dy =30k L, (38)

where A = K — 2“ The y derivatives in equation (37) are transformed to 7. The first-order forward Euler
scheme is used for time integration of the hypoelastic equation (1) and a third-order WENO scheme [31]
is used to discretize the advective derivatives on the left hand side for stability. The intermediate stress

components o* at time t"t! are computed as

Ufl - 0—?1 nao—?l -n 80—?1 dﬁ n_n dr
911 %1 _ _ 9 _3aK
Al e TV ey a2 TSk
039 — 0% n 005, 0005 d77 n_n dT
Z22  T22 — 2w — 3aK—
At e A "t T
o33 — 083 _ _ n00s 005 di o . dT
At Ox on dn dt’
T — " L0t _, 0T di non non
A W T aﬁd—n—kw o1y —w'oly. (39)

3.3.1. Velocity Update
To compute stress components at "+, we need to first compute the velocities. Recall that the weak form

of the Poisson equation for velocities can be written as

/Vw (C:D)d :——/Vw a'*dx—i——/ waoP (40)

where w is an arbitrary test function. To discretize equation (40) on a Cartesian grid, a set of localized basis
functions 1); ;(x) are used. We use piecewise bilinear hat functions ; ; is one at (i, j) and zero at all other

nodes, and write the velocity as

v = ZVi/,ﬂ/w,j’(X)a (41)

To discretize the right side of equation (40), o* is assumed to be piecewise constant; i.e., o*(x) = o ; on grid
cell (4,7). To derive a linear system, we consider each node (i, j) and we put w = ; ;. Then the integrals in
equation (40) will have non-zero contributions for the grid cells Sy, Sz, S3, and Sy shown in Figure 2. Thus

we can write

1 * c A~
ZV,L'/J'// le,] . (C .V (wi’,j/)) dx = *Kt Z </ wa . Ui/,j/dx +/ w@jo',l;/’j/ -n dS) s (42)
i3 @ < Q 5



which leads to a linear system

Av =B. (43)

where A is a symmetric positive definite matrix and v is a vector of all v; ; components. B is a source
vector arising from the right hand side of equation (42). The two rows in A corresponding to node (3, j) have
non-zero entries for nodes (i + «, j + ) where a, € {—1,0, 1}, thus creating a nine-point stencil. We use

a Jacobi-preconditioned conjugate gradient method to solve the resulting linear system. The second term

lI’i-1, j+1 (pi, j+1 ‘piﬂ, j+1
Vi-1, j+1 Vi,j+1 Vi+1, j+1
[ [
* *
0% o ij
wi—l, i sa (‘bi, ) S4 d’iﬂ, J
i1,j Vi, i vi+1, j
.a* .a*
i-1, j-1 ij-1
'pi-l, j1 sl dli, j-1 SZ (piu, j1
0 Vi-l, -1 Vi, j1 vi+1, J-1

Figure 2: Diagram showing the grid arrangement for calculating the weak form of the projection step on a Cartesian grid.
Bilinear hat functions %; ; centered on nodes (i, j) are used. When evaluating the weak form for the hat function ; j, there will

be non-zero contributions from integrating the four grid cells S1, S2, S3, and Sj.

on the right hand side of equation (42) is non-zero only at the domain boundaries since it cancels out on
all interior cells. At the top surface, the momentum continuity between the two phases yields the condition
o’ . h = [0 —p. 0], where p. is the chamber pressure on the fluid side. At the bottom surface, we set this
term to be zero. The lower boundary has v = 0, while on the top surface the traction boundary condition
allows us to solve implicitly for boundary velocities. See Appendix for more details. Once we obtain the

velocities, the stress components at time "1 can be updated according to

J?{H*Ufl = (A +2p) @m—li x@aifn-i_l @@M_l’
At Ox dn o1 dn 07
by — 0%y _ A outt L dpou™t O+ Qu)@@nﬂ

At ox *dn 0f dnon
JgSJrl o 0—;3 _ )\ @n-&-l @@n—kl B @%n+l
At Ox dn 0 *dn O ’
n+l _ % ~ n+1 n+1 ~ n+1
At dn on ox dn 0f
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3.4. Reference Map
The reference map is initialized on the Cartesian domain of size (n,,n,) such that

€= (£1,8) = (v,y). (45)

The reference map update using a forward Euler integration scheme, and in the computational domain (x,#)

can be written as

n0€" | ndi 65”) . (46)

n+1 _ en At vs —
¢ ¢ (u ox v dn on
The advective derivatives in (46) are upwinded using a second-order ENO scheme. Once the reference map

has been updated, the deformation gradient can be computed as

F=vel (47)
In two dimensions, we can write
dip 9% _ A7 08y
] dn 91) dn 91)
o , (48)
det(V . N
VOV o ajon on  diog

M T e

ox

where the gradients are computed using finite differences as

08 _ &y =&y 06 _&ijn—&iy

ox Az ’ on A7 (49)

Once the discretized deformation gradient is computed, equation (30) can be used to calculate strains.

3.5. Time-stepping Summary

To summarize, we generate the grid based on location of surface (¢™) and solve for temperature distribution
(34) in the solid using Crank—Nicolson time-stepping scheme. The updated temperature is used to calculate
the burn rate (8) and the surface profile (33). The thermal effects are added to the stress equation through
an intermediate stress update (39) using forward Euler method and the velocities are computed using a
preconditioned conjugate gradient method resulting from weak form discretization of the coupled Poisson-like
equation by employing a bilinear basis functions. The stresses at t"T! are updated using equation (44) and
the reference map using equation (46) by using a forward Euler update. The strains can be computed using

equations (30) and (48).

4. One-Dimensional Verification Studies

In this section, verification results for one-dimensional thermo-mechanical simulations for propellant

materials are presented. Each of the constituent material is considered as a one-dimensional homogeneous

13



strip in the y direction undergoing regression under an applied heat flux and traction on the top boundary.
These studies allow for the verification of the numerical solver against analytical solutions. Kuznetsov
and Stewart [11] presented thermodynamically consistent hyperelastic formulation for energetic materials,

assuming small strains. Under one-dimensional assumptions, the energy equation can be written as

dr & &T  (aK)? TdT

i 7 T 50
dy  mec, dy?  cp(m? —pA)” dy’ (50)

where A = A+ 2u, m = pry, is the mass flux, and the second term on the right side of equation (50) is the work
done by thermal stresses. The burn rate is set to be a constant for this case; i.e., r, = 0.45 cm/s. Equation
(50) can be solved numerically given appropriate boundary conditions to obtain the temperature distribution
in the homogeneous material. For this study, the lower boundary is maintained at the cold propellant
temperature (T, = 300 K) and a constant heat flux is applied to the top surface (Q, = 200 cal/s - m?). The
top boundary also has an applied traction (t; = 2 MPa), which is equal to the pressure in the gas phase.
Once the temperature field is obtained, the deformation gradient F' and velocity v are given by [11]

aK (T —Tp) —

F=Fy— g%
m?/po — A Po

It is assumed that deep in the propellant, thermal stresses disappear. As a result, the deformation is purely
due to applied tractions on the surface. The lower boundary of the propellant is fixed; i.e., Fi,, = 0. The

stress components are related to temperature and deformation gradient as

011 :0'33:)\F—OZK(T—T0)7 (52)

099 — AF — OéK(T - T()), (53)
1

p:—§(011 + 022 + 033), (54)

where the pressure p is —% of the trace of the stress tensor. Figure 3 shows the comparison between the
analytical results of [11] and the present numerical solutions for homogeneous AP. There is excellent agreement
between the two. The homogeneous medium develops high pressures due to surface heating (Figure 3b),
but the resulting deformation is small (Figure 3d). Figure 4 illustrates the temperature profiles near the
surface for homogeneous AP and binder. To maintain similar surface temperature, different heat flux values
(Qglap = 200 cal/s - m?, Qg = 100 cal/s - m?) are chosen. The burn rate is kept constant for both cases
(rp = 0.45 cm/s). The contribution of thermal stresses to the temperature distribution is almost negligible for
AP (Figure 4a). For binder, the loss in surface temperature due to thermal stresses is much larger (= 80 K;
Figure 4b). Note that the legend thermal refers to a propellant burning without any thermo-mechanical
deformations, which can be obtained by assuming the second term on right hand side of equation (50) to be

zero.
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homogeneous (a) AP and (b) binder, respectively.

5. Two-Dimensional Results

In this section, results from two dimensional numerical simulations are presented. We first consider
a sandwich propellant configuration which consists of a thin piece of binder located between two larger
strips of AP. This particular problem has a steady state solution and allows for verification of the numerical
solver. Figure 5 illustrates the sandwich problem configuration and the top surface boundary conditions. The
pack has length L, = 2L in the horizontal direction (=L < x < L) and L, = 4L in the vertical direction
(—4L < y < 0), where L = 0.012 cm. The tractions arise from the surface jump condition for momentum
continuity between the two phases. In this work, the traction vector is given by o - n = (0, —p., 0), where
pe = 2 MPa is the chamber pressure from the gas phase. The pack is assumed to be periodic in the z-direction,
and the bottom surface is fixed in y. The center point of the bottom surface is fixed to remove horizontal
translations.

Before proceeding to fully coupled thermo-mechanical simulations, we present results for mechanical
only simulations of the sandwich propellant subjected to pressure boundary. For this case, there is no heat
flux and the surface remains flat. These studies are performed on four different grids of sizes of 32 x 64,
64 x 128, 128 x 256, and 256 x 512 points. Due to absence of an analytical solution, a high-resolution result
on a 512 x 1024 grid is chosen as the reference solution and interpolated using bilinear interpolation to
coarser grids. The error on a particular grid is then computed as the Lo norm of the difference between the
interp gri

interpolated solution f; ;=" and numerical solution f7; d, which is given by

: (55)

interp grid\2
o — \/Z”(f” = i)

T Ty
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Figure 5: Problem setup for the two dimensional propellant sandwich. The top surface has applied heat flux and traction
boundary conditions. The pack is infinitely long in the vertical direction and a window of length L, is chosen for the numerical
simulations. As the pack burns down from the initial (dotted) to the present configuration (solid), the computational grid is

regenerated to maintain a fixed window length in the vertical direction.

where f; ; are the values of the field of interest represented on a grid with n, and n, points in the horizontal
and vertical directions, respectively. Figure 6 shows the convergence of stress and velocity components
using the Lo error norm (55). The dashed and dotted lines represent first and second order convergence,
respectively. Using linear curve fitting to discrete error points, the convergence order can be determined as

the slope of the line. For stress components (011, 022,033, 7), this order is approximately 1.5. For velocities,

this value is 1.90 for v and 1.35 for v.
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Figure 6: Plots showing errors computed at different grids for (a) stress and (b) velocity components using the Lo norm for
mechanical simulations. The errors are calculated by considering a 512 x 1024 grid solution as the reference solution. The

dashed (m=1) and dotted (m=2) lines represent first and second order convergence, respectively.

17



5.1. Thermo-mechanical simulations

We next present results for coupled thermo-mechanical simulations. The numerical configuration of the
test problem is the same as illustrated in Figure 5. A constant heat flux (Q,) at the top surface drives
the propellant regression (Q4|ap = 200 cal/s'm?, Q,|, = 160 cal/s:-m?). The pressure from the gas phase
p = 2 MPa is applied as a traction boundary at the top surface. The temperature at the bottom surface
is assumed to be that of a cold propellant T.,lg = 300 K, and this surface is fixed in the vertical direction
(v =0). The reference map is initialized as the Cartesian grid and advected with the velocities. Since the

propellant morphology is uniform in y, the problem achieves a steady state solution.
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Figure 7: Plots of (a) temperature (K), (b) pressure (MPa), and (c) strain for the thermo-mechanical sandwich configuration at

steady state.

Figure 7 show plots for temperature T, pressure p, and strain |E| at steady state. Thermal gradients
exist in a small layer near the surface, and the pressure and strains are considerably high in this region. It is
interesting to note that all of the stress response is restricted to AP, which is compressed due to thermal
stresses. The interface between two materials experiences strains as high as 50%, and these are highly
localized. These strains are of the same order as presented by Srinivasan et al. [12]. The presence of large
temperature gradients across the AP-binder interface (Figure 8) and moduli mismatch suggests that highly
strained regions in the propellant exist at the interfacial boundaries.

To carry out a grid convergence study, we consider a clustered grid with fixed number of grid points
in y and vary them in x. This is done primarily to properly resolve the thermal boundary layer. The grid
clustering coefficient ciy is fixed at 2, and n, = 96, which gives a minimum grid spacing A7, ;, = 1.25 pm
near the surface. The coarsest grid has 32 points in « and each successive grid has twice the number of the
previous grid (64, 128, 256, respectively). The timestep used for numerical integration is At =2 x 107° s
Figure 8 shows the surface temperature and surface profiles for four different grid sizes. Figure 9 shows the
error (e2) plots for stress, velocity, and reference map components on a log-log plot as a function of grid
spacing Az. The error plots show that a first-order convergence is observed. To compute the error at each
grid, we use the 256 x 96 grid as the reference solution and interpolate it to each of the coarser grids, and

then calculate the error using equation (55).
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Figure 9: Plots showing Lo errors for (a) stress, (b) velocity, and (c) reference map for the thermo-mechanical sandwich problem.
The errors are calculated by considering the 256 x 96 grid solution as reference and interpolating it to coarser grids. The Lo
norm of the error is then computed using the interpolated and actual field data for a particular grid. The dashed line represents

first-order convergence.

Figure 10 illustrates thermo-mechanical effects on the temperature and burn rate. For the case when the
propellant experiences thermal expansion, a drop in surface temperature is observed (Figure 10a), which
causes a drop in the propellant burn rate (plotted as surface averaged burn rate, 7, = [, ds/ [ ds; Figure
10b). The temperature drop is much higher in the binder, which is consistent with the observations made
for the one dimensional homogeneous cases. However, this drop is not as steep due to heat transfer from
neighboring AP strips. The surface experiences outwards expansion, as can be seen in Figure 11, where the
steady state surface profile is compared by moving the first grid point to the origin. The maximum outwards

displacement is for binder, and is roughly 8 pm.
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thermal (no mechanical effects; solid) and thermo-mechanical regression (thermal expansion and tractions; dash).
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Figure 12: Morphology of the random propellant pack under investigation. The shaded circles represent AP particles randomly

distributed in binder matrix (white space). The propellant pack is periodic in the z-direction.

5.2. Heterogeneous Random Pack

In this section, results from two-dimensional simulations of random heterogeneous packs are presented.
The propellant under investigation consists of AP particles distributed randomly within the binder matrix.
This pack is generated using an in-house packing code Rocpack [32] with 72% volume fraction of AP particles.
Figure 12 illustrates the morphology of the propellant under investigation, which consists of 40 particles of
three different diameters (21 of 38.4 pm, 11 of 28.8 pnm, 8 of 17.7 pm). The pack is of length L, = 2L in the
z-direction and L, = 6L in the y-direction, where L = 0.012 cm. Simulations are performed on a stretched
grid (120 x 96) with At = 2.5 x 107° s and ¢1,, = 2. The chosen grid size provides has smallest grid spacing of
Af)in = 2 nm in the thermal layer. A heat flux is applied on the top surface, such that Qg|4p = 200 cal/s-m?
and Qg|p = 160 cal/ s-m?. The surface also experiences loading due to chamber pressure, p = 2 MPa. The
resulting traction boundary condition determines the top surface velocities implicitly. The pack is periodic in
x and semi-infinite in the y-direction. Deep in the propellant, velocities are assumed to be zero and strains to
be constant. The reference map is initialized as the coordinates of Cartesian grid and updated using velocities
obtained from the Poisson solver. At the bottom, the reference map is fixed in & whereas the y component is
advected with the frame speed ¢;. The advected map is then used to calculate strains in the propellant pack
using equation (30).

Figure 13 shows plots of the temperature, pressure, and strains in the burning propellant at four different
times. The strains are restricted within a thin layer near the surface where thermal gradients are large.
Furthermore, peak strains occur in thin binder regions in between AP particles, caused by temperature

gradient existing between AP-binder interface. This might allude to the effects of randomness and particle
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Figure 15: Plot of (a) the maximum temperature distribution and (b) the surface averaged burn rate as a function of time
showing comparison between propellant undergoing thermal (no mechanical effects; solid line) and thermo-mechanical regression
(thermal expansion and tractions; dashed line). The straight lines represent the mean values for the time series with T = 975.9K,

7p = 0.449 cm/s for thermal regression and T = 965.4K and 7}, = 0.42 cm/s for thermo-mechanical regression.

Figure 15 plots (a) the maximum temperature distribution and (b) the spatially averaged burn rate as a
function of time. The dotted line represents the burn rate observed in the pack undergoing thermo-mechanical
deformation compared with a pack going purely thermal regression (no deformations). A decrease in burn rate
is observed (Figure 15b), which is due to the drop in surface temperatures (Figure 15a) with time averaged
value equal to 0.42 cm/s compared with 0.449 cm/s for purely thermal regression. Thermal expansion at
the surface causes dissipation of heat, which was also observed in the case of sandwich packs. The localized
surface swelling brings down the temperature gradient, which results in slower burn rate for the propellant.

Finally, the maximum value of the strains is plotted as a function of time in Figure 16. From the figure we see
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Figure 16: Maximum magnitude of strains plotted as a function of time for the random heterogeneous propellant pack. The

dashed line represents the mean value for the time series and is found to be 31.6%.

that the averaged peak strain value of 31.6% is smaller than those observed for the sandwich pack (= 50%).
This drop can be explained by a relatively smooth surface profile for the heterogeneous packs compared with
the sandwich.

The random pack simulation is repeated by doubling the applied heat flux values; i.e., Qq|ap = 400 cal/s-m?
and Qg = 320 cal/s - m?. Figure 17 shows plots of surface averaged burn rate and maximum strain for this
case. The mean burn rate is found to be 0.81cm/s, which is roughly twice of the case with the lower heat
flux values. The mean value of the maximum strain is found to be 37.24%, compared with 31.6% for the
lower heat flux values. Due to higher applied heat flux, the strain peaks in Figure 17b are much higher, and
in some cases as high as 60%. This suggests an increase in localized strains within the propellant pack as the

value of surface heat flux is increased.

6. Conclusion

In this paper, an Eulerian framework for carrying out thermo-mechanical simulations of heterogeneous
propellants based on an approximate projection method is presented. The constituent materials are treated
as hypoelastic solids. Using a scaling argument, a quasi-static form of the governing equations are derived,
which involves solving a Poisson equation for the velocities. To address the issue of highly disparate material
moduli between AP and binder, the weak form based on finite element projection of the Poisson equation is
used. The temperature is obtained from the energy equation and the effect of thermal expansion is accounted
for through the stress-work term. The strains are obtained by advecting a reference map.

We first presented one-dimensional verification studies for homogeneous materials and found good

agreement between previously published results and our numerical solutions. A grid resolution study for a
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Figure 17: Plots comparing (a) surface averaged burn rate and (b) maximum strain for two cases of applied heat flux: case 1
(solid, labeled Qg): Qg|ap = 200 cal/s-m? and Qg, = 160 cal/s - m?; case 2 (dash, labeled 2Qg): Qg|ap = 400 cal/s - m? and

Qglp =320 cal/s - m?2. The dashed horizontal lines depict the mean values of the respective time series.

two-dimensional sandwich configuration was carried out showing convergence rates between first and second
orders. Strains as high as 50% at the AP-binder interface were observed. We also compared results between
deformation and no deformation cases, and showed that deformation leads to a reduction in both the surface
temperature and burn rate. Finally, we carried out two-dimensional simulations of a random heterogeneous
propellant pack. Similar to the sandwich configuration, we observed a reduced burn rate when deformation is
taken into account. However, the maximum strain is smaller, due to unsteady effects as well as randomness
in the locations of the particles.

Since it is well known that the burning rate of a heterogeneous solid propellant is influenced by the
propellant morphology, we will carry out three-dimensional thermo-mechanical simulations that can allow for
three-dimensional random packs of AP spherical particles. Future work will also account for full coupling
between the solid phase and the gas phase, where in the gas-phase the equations for a reactive gas in the low
Mach number limit are considered, the thermo-mechanical equations in the solid-phase, and with appropriate

jump conditions across the solid/gas interface.
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