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Abstract—A robust observer for performing power system dy-
namic state estimation (DSE) of a synchronous generator is pro-
posed. The observer is developed using the concept of L∞ stability
for uncertain, nonlinear dynamic generator models. We use this
concept to (i) design a simple, scalable, and robust dynamic state
estimator and (ii) obtain a performance guarantee on the state
estimation error norm relative to the magnitude of uncertainty
from unknown generator inputs, and process and measurement
noises. Theoretical methods to obtain upper and lower bounds on
the estimation error are also provided. Numerical tests validate the
performance of the L∞-based estimator in performing DSE under
various scenarios. The case studies reveal that the derived theoret-
ical bounds are valid for a variety of case studies and operating
conditions, while yielding better performance than existing power
system DSE methods.

Index Terms—Dynamic state estimation, Lipschitz nonlinearity,
nonlinear systems, observer design, phasor measurement unit
(PMU), robust estimation, unknown inputs.

I. INTRODUCTION

POWER system monitoring and operation rely on static state
estimation (SSE) [1]–[3], which assumes the system is

operating in quasi-steady state and estimates its static states,
the voltage magnitude and phase angles, using SCADA and/or
phasor measurement unit (PMU) data [4], [5]. However, power
systems do not operate in steady state mainly due to load varia-
tions and potential large disturbances. They are becoming even
more dynamic with the increasing integration of utility-scale
renewable generation to transmission grids and a large number
of distributed energy resources to distribution grids.
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Therefore, SSE may not be sufficient in rapidly and accurately
capturing the dynamic states of the system for desirable situa-
tional awareness. By contrast, with the wide-spread deployments
of PMUs, the dynamic state estimation (DSE) could effectively
estimate the dynamic states (i.e., the internal states of genera-
tors) based on the available model of the dynamic components
and PMU measurements that have high time-synchronization
accuracy and high sampling rates.

To enable real-time system monitoring, protection, and con-
trol, DSE has to be time-efficient enough to allow for online ap-
plication. DSE should also be robust against model uncertainties
(i.e. un-modeled dynamics, unknown inputs, inaccurate param-
eters), measurement gross errors (i.e. bad/low-quality/missing
data or manipulated measurements by cyber attacks), and non-
Gaussian measurement noises, considering that extensive results
using field PMU data from WECC system have revealed that the
Gaussian assumption is questionable [6].

DSE has been implemented by several stochastic estimators.
For example, extended Kalman filter (EKF) is applied to perform
DSE [7], [8], which works only in a mild nonlinear environment
and when Jacobian matrix exists. As a derivative-free alternative,
unscented Kalman filter (UKF) does not require linearization or
calculation of Jacobian matrices [9]–[14]. Using spherical-radial
cubature rule, Arasaratnam et al. propose cubature Kalman filter
(CKF) [15], which has been shown to have improved perfor-
mance compared with EKF and UKF [16]. Besides, extended
particle filter [17], [18] and ensemble Kalman filter [19] are also
applied to perform DSE.

In order to deal with model uncertainty, gross errors, or
non-Gaussian noises, robust DSE has been proposed. General-
ized maximum-likelihood-type estimate [20], two-stage Kalman
filter [21], iterated EKF [22], H∞ EKF [23], robust UKF [24],
and robust CKF [25] have been developed. In [26], a constrained
robust DSE method is proposed that deals with both equality
and inequality constraints for state variables and parameters.
Unlike most papers such as [17], [19], [27] that assume all
inputs to a synchronous machine are measurable, in [28], [29]
an EKF-unknown input (EKF-UI) method is implemented for
one synchronous machine, assuming some or all inputs are
unknown, which is more realistic since some inputs such as the
mechanical torque can be hard to measure [11], [28]. In [30],
a derivative-free Kalman filter considering unknown inputs is
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proposed. However, in [28], [29] it is required that the number
of output measurements be greater than the number of unknown
inputs. Also, the above Kalman filter-based methods do not
have theoretical guarantee for convergence. In addition to the
approaches discussed above, other approaches, mostly based on
different variants of Kalman filter have also been proposed. A
thorough review of different approaches on DSE and robust DSE
can be found in [31] and [32].

Apart from stochastic estimators, deterministic observers that
do not require noise distribution have also been designed for
DSE in power systems. While observers are often used in
observer-based control architectures and applications, stochastic
estimators are typically used for monitoring. With that in mind,
stochastic estimators and dynamic observers both perform the
same task: estimating states of a noisy or uncertain dynamical
system with limited number of sensors [33]. In [34] a sliding-
mode observer and an attack detection filter are proposed to
estimate the power system’s unknown inputs and detect potential
cyber attacks. The authors in [35] develop a multiplier-based
observer design for Lipschitz systems and utilize the designed
observer on a multi-machine power system with second-order
classical generator model and linear measurement model. In [16]
a thorough experimental comparison between stochastic esti-
mators and deterministic observers is performed under various
classes of uncertainty. Recently, an anomaly detection algorithm
for detecting changes in power system operational range for
synchronous generators is introduced in [36], in which the
detection algorithm uses the predicted states obtained from the
proposed time-varying observer.

In this paper we propose a new observer design for performing
decentralized DSE on synchronous generators. The observer
operates based on the nonlinear dynamics of the generator, which
is subject to process and measurement noise. Specifically, we
also assume that some of the generator inputs such as mechanical
torque and internal field voltage are unknown to the observer.
The contributions of the paper are given as follows.
� Based on the Lipschitz property of the generator’s non-

linear model and PMU measurements [37], we propose
a new robust observer framework using the concept of
L∞ stability that provides a performance guarantee for the
state estimation error norm against worst case disturbance
(due to uncertainty in generator inputs and noise). This
performance can be assessed from a constant called the per-
formance index or level. Albeit the observer design is orig-
inally posed as a nonconvex semidefinite program (SDP),
we show that the observer gain matrix can be computed
via solving a convex optimization problem. Moreover, as
the observer gain remains constant, the observer is very
efficient for real-time implementation.

� We introduce a scalable computational method to obtain
lower and upper bounds for the optimal performance index.
The lower bound is derived based on an SDP relaxation,
and the upper bound is derived using simple methods.
The bounds are useful in assessing and quantifying the
optimality of the performance index and hence the state
estimation quality.

� The proposed L∞ observer for power system DSE is tested
under various case studies which include: (a) numerous

noise distributions and magnitudes, (b) high-order genera-
tor dynamic models, and (c) comparison with some Kalman
filter-based state estimators.

The case studies reveal that the derived theoretical bounds are
valid for a variety of case studies and operating conditions, while
also yielding better performance than mainstream power system
DSE methods under the aforementioned scenarios and case
studies. The remainder of the paper is organized as follows. Sec-
tion II presents the nonlinear process-measurement generator
model with a PMU installed at the terminal bus of the generator.
Section III focuses on the design of robust L∞ observer. In
Section IV, we propose methods to pose theL∞ observer design
as convex SDP and compute lower and upper bounds for the
optimal performance index. Section V presents a comprehensive
numerical experiments and Section VI concludes the paper.

II. GENERATOR DYNAMIC MODEL UNDER UNCERTAINTY

For DSE, both multi-machine model [7], [10], [12], [14],
[16], [21]–[24] and single-machine model [17], [19], [27]–[29],
[38] have been used. Compared with the centralized estimation
approach based on multi-machine model, using the one-machine
model and modeling the rest of the system as inputs can enable
decentralized estimation, reducing computational complexity
and avoiding to send all data through dedicated communication
network to control center. With that in mind, in this section
we focus on modeling and understanding the nonlinearities of
a single synchronous machine, whose transient model can be
described by the following 4th-order differential equations in
local d-q reference frame [39], [40].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ̇=ω − ω0 (1a)

ω̇=
ω0

2Hi

(

Tm − Te−KD

ω0
(ω − ω0)

)

(1b)

ė′q=
1

T ′
d0

(
Efd − e′q−(xd − x′d) id

)
(1c)

ė′d=
1

T ′
q0

(−e′d+(xq − x′q) iq
)
, (1d)

where δ(t) := δ is the rotor angle,ω(t) := ω is the rotor speed in
rad/s, and e′q(t) := e′q and e′d(t) := e′d are the transient voltage
alongq andd axes; iq(t) := iq and id(t) := id are stator currents
at q and d axes; Tm(t) := Tm is the mechanical torque, Te(t) :=
Te is the electric air-gap torque, andEfd(t) := Efd is the internal
field voltage; ω0 = 2π60rad/sec is the rated value of angular
frequency, H is the inertia constant, and KD is the damping
factor; T ′

q0 and T ′
d0 are the open-circuit time constants for q and

d axes; xq and xd are the synchronous reactance and x′q and x′d
are the transient reactance respectively at the q and d axes. Case
studies also consider higher-order generator models.

We assume that a PMU is installed at the terminal bus of
the generator. The mechanical torque Tm and internal field
voltage Efd are considered as unknown inputs, which values
are assumed to be unknown. Additionally, we take the current
phasor It = iR + jiI measured by PMU as inputs which can
help decouple the generator from the rest of the network [17].
The voltage phasor Et = eR + jeI can also be measured by
PMU and is considered as output. The dynamic model (1) can
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be expressed in a general state space form where the state, input,
unknown input, and output vectors are respectively defined
as x = [δ ω e′q e′d]

�, u = [iR iI]
�, q = [Tm Efd]

�, and
y = [eR eI]

�. The iq, id, and Te in (1) are functions of x and
u given as follows

iq = u2 sinx1 + u1 cosx1, id = u1 sinx1 − u2 cosx1

eq = x3 − SB

SN
x′did, ed = x4 +

SB

SN
x′qiq

Pe = eqiq + edid, Te =
SB

SN
Pe,

where eq and ed are the terminal voltage at q and d axes, and
SB and SN are the system base MVA and the base MVA for
this generator. The PMU outputs eR and eI can be written as
functions of x and u as follows

y1 = ed sin δ + eq cos δ, y2 = eq sin δ − ed cos δ. (2)

To that end, we can rewrite (1) and (2) as

ẋ1 = x2 − α1 (3a)

ẋ2 = α2q1 − α5x2 − α3 (x3u2 + x4u1) sinx1

+ α3 (x4u2 − x3u1) cosx1 + α4u1u2 cos 2x1

+ 1
2α4

(
u22 − u21

)
sin 2x1 + α6 (3b)

ẋ3 = α7q2 − α7x3 − α8 (u1 sinx1 − u2 cosx1) (3c)

ẋ4 = α10 (u1 cosx1 + u2 sinx1)− α9x4, (3d)

y1 = x3 cosx1 + x4 sinx1 + β1u1 sin 2x1

+ β1u2 cos 2x1 + β2u2 (3e)

y2 = x3 sinx1 − x4 cosx1 − β1u1 cos 2x1

− β1u2 sin 2x1 − β2u1, (3f)

where the parameters α1, . . . , α10, β1, and β2 are given in
Appendix A of [37]. By rearranging the state vector x and input
vectoru and separating the linear terms from the nonlinear ones,
generator dynamics (3) can be expressed as

{
ẋ = Ax+ f(x,u) +Bqq (4a)

y = h(x,u) +Duu, (4b)

where matricesA,Bq , andDu are

A =

⎡

⎢
⎢
⎢
⎣

0 1 0 0

0 −α5 0 0

0 0 −α7 0

0 0 0 −α9

⎤

⎥
⎥
⎥
⎦
, Bq =

⎡

⎢
⎢
⎢
⎣

0 0

α2 0

0 α7

0 0

⎤

⎥
⎥
⎥
⎦
,

Du =

[
0 0 0 β2

0 0 −β2 0

]

.

Functions f(·) andh(·) represent the state and output nonlinear-
ities in (3). Throughout this paper we assume that the operating
region of generator states and inputs are bounded such that

x ∈ X and u ∈ U where

X := [x1, x̄1]× [x2, x̄2]× [x3, x̄3]× [x4, x̄4] (5a)

U := [u1, ū1]× [u2, ū2] . (5b)

Realize that this assumption is practical and holds for most
power system models as physical quantities such as angles
and frequencies are naturally bounded. These upper and lower
bounds of the generator states and control inputs, characterized
by the sets X and U , can be determined from the operator’s
knowledge of power systems operational range. In addition, X
and U may also be determined through performing extensive
simulations while applying different faults or contingencies and
then finding the operating region of the generator [41]. In the
next section, we design a robust observer for DSE which utilizes
the fact that f(·) andh(·) are locally Lipschitz continuous. That
is, there exist nonnegative constants γf and γh such that

‖f(x,u)− f(x̂,u)‖2 ≤ γf‖x− x̂‖2 (6a)

‖h(x,u)− h(x̂,u)‖2 ≤ γh‖x− x̂‖2. (6b)

The corresponding Lispchitz constants can be computed analyti-
cally given that the setsX andU are known. Readers are referred
to [37] for a complete derivation of methods to compute γf and
γh which are a function of state and input bounds as well as the
generator state-space matrices.

III. ROBUST OBSERVER DESIGN

In Section II we treat mechanical torque from the turbine
Tm and internal field voltage from the exciter Efd as unknown
inputs as these quantities are difficult to measure. Even ifTm and
Efd are measured or estimated, the estimates could still exhibit
uncertainty. As a result, here we consider that the robust estima-
tor has access to the entries of Bq , but not to the time-varying,
uncertain Tm andEfd. This allows unknown input matrices to be
constructed as Bw := Bq and Dw := O. For consistency, let
qw := q. This allows the generator model (5a) to be expressed
as

{
ẋ=Ax+f(x,u) +Bwqw (7a)

y=h(x,u)+Duu+Dwqw, (7b)

where qw(t) ∈ R2 is the unknown input vector defined above.

A. Model Modification

The PMU output y(t) is nonlinearly related to x(t) through
h(x,u). To design the robust observer, and inspired by [42], we
introduce the function hl(·) as

hl(x,u) := −Cx+ h(x,u). (8)

Since h(·) is locally Lipschitz with Lipschitz constant γh, from
(8) it follows that hl(·) is also locally Lipschitz with Lipschitz
constant γl where γl = γh + ‖C‖2. IdeallyC can be any matrix
of appropriate dimension, constructed in such a way that the
pair (A,C) is at least detectable. This condition is crucial as it
ensures that the internal states of the system can be estimated via

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on July 09,2020 at 17:24:31 UTC from IEEE Xplore.  Restrictions apply. 



1926 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 3, MAY 2020

observer. See [43], [44] for thorough discussions on detectabil-
ity/observability. One straightforward approach to construct this
matrix is to linearize the functionh(·) around a known operating
point, assuming that this yields a detectable pair of (A,C). This
technique allows (7) to be modified into

{
ẋ=Ax+ f(x,u) +Bwqw (9a)

y=Cx+ hl(x,u) +Duu+Dwqw. (9b)

Realize that this modification does not change the dynamics of
the generator, since (7) and (9) are equivalent. By expressing (7b)
as (9b), the generator’s output equation can be expressed into
linear and nonlinear parts, which allows us to design observer
for such nonlinear systems in a linear fashion. To begin with the
observer design, let x̂(t) := x̂ be the estimated state vector and
ŷ(t) := ŷ be the estimated PMU measurements. The proposed
observer dynamics are given as

{
˙̂x=Ax̂+ f(x̂,u) +Bwr +L(y − ŷ) (10a)

ŷ=Cx̂+ hl(x̂,u) +Duu+Dwr, (10b)

where L(y − ŷ) is the Luenberger-type correction term with
L ∈ R4×2 as a matrix variable; r = [r1 r2]

� where r1 and r2
are any scalars that reflect reasonable ranges of Tm and Efd.
Defining the estimation error as e(t) := x(t)− x̂(t), the error
dynamics can be computed as

ė = (A−LC) e+Δf −LΔhl + (Bw −LDw)w, (11)

where Δf := f(x,u)− f(x̂,u), Δhl := hl(x,u)− hl(x̂,
u), andw(t) = qw(t)− r. Since qw(t) is a time-varying signal
with unknown values and r is fixed, w(t) can be perceived as
the disturbance acting on estimation error dynamics (11).

B. L∞ Stability and Observer Synthesis

This section presents the preliminary background and the
main contribution of the paper—the robust L∞ observer design.
The notion of L∞ stability was first introduced in [45] for
state-feedback control of polytopic systems and then expanded
for feedback control of linearized power network models in our
recent work [46]. To proceed, we define the L∞ space as L∞ :=
{v : [0,∞) → Rn | ‖v(t)‖L∞ <∞} where the L∞ norm of a
signal v(t) is defined as ‖v(t)‖L∞ := supt≥0 ‖v(t)‖2. In other
words, L∞ space defines the space of all bounded functions.
The L∞ observer assumes that w(t) ∈ L∞. The definition of
L∞ stability with performance level μ for the estimation error
dynamics expressed in the form of (11) is given below.

Definition 1: Let e(t) ∈ R4 be the estimation error and
z(t) ∈ R4 be the error performance output defined as z(t) =
Ze(t) for a user-defined performance matrix Z ∈ R4×4. The
nonlinear dynamics (11) is L∞ stable with performance level μ
if (a) for any bounded disturbancew ∈ L∞ and zero initial error
e0 = 0, ‖z‖2 ≤ μ‖w‖L∞ , (b) there exists β : R4 × R+ → R+

such that for any initial error e0 and any bounded distur-
bance w ∈ L∞, ‖z‖2 ≤ β(e0, ‖w‖L∞), and (c) for any ini-
tial error e0 and any bounded disturbance w ∈ L∞, we have
limt→∞ sup ‖z‖2 ≤ μ‖w‖L∞ .

The notion of L∞ stability with performance level μ for error
dynamics (11) can be interpreted as follows. When the initial
error is equal to zero, the norm of performance vector z(t) for
any t ≥ t0 is guaranteed to be no more than a scalar multiple of
the worst case disturbance, i.e., ‖z‖2 ≤ μ‖w‖L∞ . However, if
the initial error is nonzero, the norm of performance vector z(t)
will evolve such that it will not exceed the value of μ‖w‖L∞ . We
also have the norm of performance vector z(t) to be bounded
by a function of initial condition e0 and worst case disturbance
‖w‖L∞ . Notice that when μ = 0, the performance vector z(t)
is irrelevant to the disturbancew(t). In contrast, large μ implies
that z(t) could be very affected by w(t) in the worst case.
Thus, when using L∞ stability for observer design, we want
to have performance index μ to be as small as possible. Having
derived the error dynamics, we propose a sufficient condition to
synthesize the L∞ observer for (5a); Appendix A has the proof.

Theorem 1: Consider the nonlinear generator and PMU
model (9) and observer (10) where x, x̂ ∈ X , u ∈ U , and the
nonlinear functions f : R4 × R2 → R4 and hl : R4 × R2 →
R2 satisfy (6) with Lipschitz constants γf and γl. If there
exist P ∈ S4, Y ∈ R4×2, and ν ∈ R6 so that the following
optimization problem is solved

J∗ = minimize
P ,Y ,ν

ν1ν2 + ν3 (12a)

subject to
⎡

⎢
⎢
⎢
⎣

Q+ ν5γ
2
fI + ν6γ

2
l I ∗ ∗ ∗

P −ν5I ∗ ∗
−Y � O −ν6I ∗

Bw
�P −Dw

�Y � O O −ν4ν1I

⎤

⎥
⎥
⎥
⎦
� 0

(12b)
⎡

⎢
⎣

−P ∗ ∗
O −ν3I ∗
Z O −ν2I

⎤

⎥
⎦ � 0, P � 0, ν4 > 0, ν1,2,3,5,6 ≥ 0,

(12c)

whereQ = A�P + PA−C�Y � − Y C + ν4P , then (i) the
observer gain isL = P−1Y and (ii) the error dynamics (11) are
L∞ stable with performance level μ∗ =

√
ν∗1ν

∗
2 + ν∗3 where the

optimal objective value is J∗ = μ∗2.
We note the following about L∞ observer design prob-

lem (12). First, Theorem 1 provides a method to obtain the robust
gainL for observer dynamics (10) such that the estimation error
dynamics (11) is robust against the disturbancew(t) in the L∞
sense according to Definition 1. This result yields a theoretical
performance and convergence guarantees for the state estimation
error performance output ‖z(t)‖2, or ‖e(t)‖2, bounding it by
μ‖w‖L∞ . In short, the estimation performance output is guar-
anteed to lie in a tube of radius μ‖w(t)‖L∞ centered around the
origin. The case studies in Section V examine the applicability
of this theoretical bound under different conditions.

Second, the L∞ observer design problem (12) relies on the
computation of Lipschitz constants γf,h. These constants define
the operational range of the generator defined through X and
U . The operator can choose to expand the spaces X and U to
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account for anomalies, deviations from nominal values, faults,
and so on. This will impact the Lipschitz constant computation.
However, and as we have observed in [37], smaller computa-
tional Lipschitz constants can be used without compromising the
feasibility of observer design problems. Furthermore, and while
analytical computation of the Lipschitz provide loose approx-
imation of the Lipschitz constant compared to computational
ones [37], numerically computed Lipschitz constants can be used
instead of analytical ones.

IV. BOUNDING THE OPTIMAL SOLUTION OF (12)

In this section, we discuss the upper and lower bounds on the
optimal solution of (12), seeing that Problem (12) is nonconvex
due to the bilinear matrix inequality (BMI) constraints appearing
in (12a) and (12b). The nonconvexity takes a shape of matrix-
scalar variable products. Several approaches can be considered
to solve nonconvex problems with BMI constraints.

One simple approach is to convert it into a convex SDP by
pre-selecting values for ν4 and either ν1 or ν2. This way, a
solution can be obtained to the now-convex problem thereby
providing an upper bound, namely J̄ , on J∗ = μ∗2 which is
the optimal objective function value of the nonconvex problem
(12). For consistency, the performance index obtained here is
denoted by μ̄. If the resulting objective function value is not
small enough (big value of μ translates to a poor performance
index), the objective function can be improved by utilizing
successive convex approximations (SCA) [47]. The idea of SCA
is to solve a series of convex problems starting form a feasible
initial point. These convex problems, which consist of LMIs,
are obtained by linearizing the BMIs using the first-order Taylor
approximation.

On the other hand, a lower bound for the nonconvex problem
(12) can be obtained by first expressing the BMI constraints
as rank-one equivalent constraints with some other LMI con-
straints. Since rank-one constraints are also nonconvex, neglect-
ing it yields a convex SDP which then provides a lower bound
on J∗. This approach is referred to as SDP relaxation; see [48].
The following theorem delineates this approach.

Theorem 2: An SDP relaxation and a lower bound J on J∗

of the nonconvex problem (12) can be obtained by solving the
following convex SDP with additional variablesΞ ∈ S4,Ψi,j ∈
S3 for all i, j, Φ ∈ S3, Θ ∈ S3, λ ∈ R, and σ ∈ R

J = minimize
P ,Y ,ν,Ξ,Ψ
Φ,Θ,λ,σ

λ + ν3 (13a)

subject to E(P ,ν,Ξ,Ψi,j ,Φ,Θ, λ, σ) = 0 (13b)

L(P ,Y ,ν,Ξ,Ψi,j ,Φ,Θ, λ, σ) � 0, (13c)

where (i)E(·) andL(·) are convex matrix equality and inequality
constraints and (ii) it holds that J = λ + ν3 ≤ μ∗2 = J∗ in
which μ∗ =

√
ν∗1ν

∗
2 + ν∗3 is obtained from solving (12).

The proof is included in Appendix B which also provides the
closed form expressions of (13b) and (13c).

As (13) provides a lower bound, it is useful for assessing
the quality of solution from solving (12) either by fixing some
constants apriori or using SCA—and hence assessing the quality

of the upper bound. Furthermore, the SDP relaxation in (13) can
be efficiently solved optimally using any convex optimization
solver. This is in contrast to the nonconvex problem (12) which
is much harder to solve. We note that, however, for this lower
bound J to be useful, its value needs to be not too distant from
an upper bound J̄ , thereby guaranteeing that J ≤ J∗ ≤ J̄ . The
quality of these theoretical bounds are thoroughly investigated
in Section V.

V. CASE STUDIES

We test the proposed approach on the 16-machine, 68-bus
system extracted from the PST toolbox [49], [50]. The same test
system has been used in [16]. The input vector u(t), which con-
sists of iR and iI, and unknown input qm(t), which consists of
Tm and Efd, are obtained from simulations of the whole system
in which each generator is using a transient model with IEEE
Type DC1 excitation system and a simplified turbine-governor
system [16], [51]. To generate dynamic response, we apply
a three-phase fault at Bus 32 of Branch 32-30 and clear the
fault at the near and remote ends after 0.05 and 0.1 seconds.
All DSE simulations are performed for the pre, during, and
post-contingency system within 15 seconds time frame.

We consider that this generator is connected to a PMU with
sampling rate of 60 frames/s. To obtain X and U which contain
upper and lower bounds on the state and input (namely xmin,
xmax, umin, and umax), their minima and maxima inside this
time frame are measured. All of the following simulations are
performed using MATLAB R2016b running on a 64-bit Win-
dows 10 operating system with 2.5 GHz IntelR CoreTM i7-6700
CPU and 16 GB of RAM. We use YALMIP [52] as the interface
and MOSEK [53] solver to solve the SDPs corresponding to the
L∞ observer. It is worth mentioning that the generator response
as well as the estimation via observer are all simulated using
MATLAB’s ode45 with its default settings.

A. Single Generator DSE With L∞ Observer

For the 4th-order model from Section II, in this numeri-
cal test we consider Generator 4 with initial condition x0 =
[1.1548 ω0 0.8632 0.6222], which is obtained from PST.
Realize that the 4th-order model does not include any differ-
ential equations that represent generator’s controller. Thus, in
the following simulations we use unstable generator trajectories
to evaluate the performance of the observer on tracking such
response (a higher order generator model is also tested in sub-
sequent sections). Four different cases based on the 4th-order
model are investigated. Table I lists these cases.

1) Case 1: Here the generator is only subject to unknown
inputs qm(t). To obtain the observer gain matrix (12) is solved
as LMIs by simply fixing ν4 = 1 and ν2 = 50, as discussed in
Section IV. The performance matrix is chosen to be Z = 2×
10−4I , whereas the matrixC is set to be equal to 10Dxh, where
Dxh is the Jacobian matrix of h(·), linearized around x̌ and ǔ
where x̌ = (xmin + xmax)/2 and ǔ = (umin + umax)/2. This
setup gives an observable pair (A,C). Changing this operating
point does not adversely impact the results. The Lipschitz con-
stants γf and γh are obtained from using [37, Theorem 1], where
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TABLE I
NUMERICAL TESTS SUMMARY FOR CASES 1–6

[†] max(‖z(t)‖2) denotes the maximum norm of z(t) for t ∈ [10,15], thereby assessing the asymptotic convergence guarantees. [�]Satisfied Theoretical Guarantees (STG) is
checked when max(‖z(t)‖2) ≤ μ̄‖w(t)‖L∞ .

Fig. 1. The estimation error ‖e(t)‖2 and scaled worst-case disturbance
kµ̄‖w(t)‖L∞ = 0.5276 for Cases 1–4.

Fig. 2. Trajectories of unknown inputs Tm and Efd in Cases 1–4.

the Lipschitz constant γl can be computed as γl = γh + ‖C‖2.
This returns γf = 379.1 and γl = 30.1. We set r1 = 0.9 and
r2 = 2.1 which are both different from the steady-state value
of Tm and Efd that are approximately 0.79 and 1.88 as shown
in Fig. 2. The observer’s initial condition is randomly chosen
as x̂0 = [0.7548 ω0 1.3632 0.8222], which is significantly
different from that of the generator x0. The observer is not
sensitive to initial conditions.

After solving Problem (12), we obtain a performance index
μ̄ = 4.1904× 10−4. Fig. 1 shows that the estimation error norm
‖e(t)‖2 generally converges close to zero—the fluctuations are
caused by uncertainty due to unknown inputs. In addition, we
also observe that the definition ofL∞ stability is indeed satisfied,
since the norm of performance output ‖z(t)‖2 converges to a
value which is less than μ̄‖w(t)‖L∞ = 1.0553 × 10−4. This
finding is summarized in Table I and corroborates the perfor-
mance guarantees from Theorem 1. Note that in Fig. 1 the above

value is scaled with a factor k = 5 × 103 so that it is proportional
with the estimation error norm.

2) Cases 2–4: Cases 2–4 consider process, input, and mea-
surement noises such that the generator’s dynamic model (7) is
expressed as

{
ẋ = Ax+ f(x,u) +Bwqw + vp (14a)

y = Cx+ hl(x,u) +Duu+Dwqw + vm. (14b)

In (14), the vector vp represents process noise while vm rep-
resents measurement noise. The noise is clearly not known to
the observer hence keeping Bw and Dw the same as in Case
1. For Cases 2–4, the Gaussian process noise is generated as-
suming diagonal covariance matrix which entries are the square
of 5% of the largest state changes. For Case 2, the Gaussian
measurement noise covariance matrix is also diagonal with
variance 0.052. The Laplace noise on the PMU measurement
i for Case 3 is characterized by the signal vmi = m− s ·
sgn(R1) · ln(1− 2|R1|), where m = 0, s = 0.02, and R1 is a
number randomly chosen inside (−0.5, 0.5]. For Case 4, Cauchy
noise on each entry i is generated as vmi = a+ b · tan(π(R2 −
0.5)

)
, where a = 0, b = 1× 10−3, and R2 is a random number

inside (0, 1).
The motivation for testing non-Gaussian noise is as follows.

In [6], extensive results using field PMU data from WECC sys-
tem reveal that the Gaussian assumption for measurement noise
is questionable. Therefore, it is necessary to test non-Gaussian
noises. Here we test Gaussian noise, Cauchy noise, and Laplace
noise for the PMU measurements. The latter two non-Gaussian
noises are suitable for being used to test a robust dynamic state
estimator due to the fact that typical noises with heavy-tail
distributions are more challenging to deal with than Gaussian
noise.

The estimation results are depicted in Fig. 3 for Case 3 and
Case 4. We observe that the estimated states and outputs still
follow the actual ones in spite of the presence of process and
measurement noise—the estimation for Case 2 yields similar
results. The estimation error norm for these cases are shown in
Fig. 1. It is worth noting that the definition of L∞ stability is still
satisfied for the three cases. Table I summarizes the comparison
of the norm of performance matrix ‖z(t)‖2 with μ̄‖w(t)‖L∞ ,
where we also compare the Root Mean Square Error (RMSE)
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Fig. 3. Actual and estimated states for (a) Case 3 and (b) for Case 4.

for all cases computed using the following formulation

RMSE =
n∑

i=1

√
√
√
√ 1

tf

tf∑

t=1

(
xi(t)− x̂i(t)

)2
.

It is later found that the choice of r plays a role in error quality,
although not to a great extent. Any r that is sufficiently close
to the steady state value of unknown inputs will return better
estimation results. The next section showcases the performance
of the observer under ramp changes in the unknown inputs.

B. DSE Under Ramp and Step Changes on Tm and Efd

In this numerical experiment, we modify the unknown inputs
Tm and Efd, represented by vector qw(t), by artificially adding
ramp and step changes. Although this does not represent realistic
behavior per se, this kind of change can showcase the perfor-
mance of L∞ observer amidst sudden changes in the unknown
inputs. The resulting unknown input signals are depicted in
Fig. 4. With the modified unknown inputs, we simulate the L∞
observer for Case 2 described in Section V-A. The results of
this experiment are given in Fig. 5. We can see that, albeit the
unknown inputs have been modified and while the value for r

Fig. 4. Trajectories of unknown inputs with ramp and step changes.

Fig. 5. Actual and estimated states for Case 2 with ramp and step changes on
unknown inputs qm(t).

provided to the observer did not change from Case 2, the esti-
mated states and outputs are still on track with generator’s actual
states and outputs. Notice the large errors at some instances due
to these sudden changes and the converging estimated states to
the real ones at the other remaining instances.

C. Robust Observer Performance Under Model Uncertainty

This section is dedicated to show the performance of the
proposed DSE method under model uncertainty. Here we use
Case 2 introduced in Section V-A as a benchmark but other cases
have shown similar performance. To simulate model uncertainty,
we modify the generator dynamics as follows
{
ẋ = (A+ δA)x+ f(x,u) + δf(x,u) +Bwqw + vp

y = Cx+ δhl(x,u) +Duu+Dwqw + vm,

where δhl(x,u) := −Cx+ δh(x,u) and δ ∈ [0, 1] is a con-
stant used to determine the magnitude of model uncertainty. With
this model, the observer dynamics are left intact, as in the change
in the parametric uncertainty is not provided to the estimator
dynamics. Three different values of δ, which are 0.02, 0.05, and
0.1, are used to simulate 2%, 5%, and 10% model uncertainty
in the generator parameters. Fig. 6 shows the estimation error
norm for each percentage of model uncertainty, from which
we can see that the steady state error norm is getting bigger
as the percentage increases. These results are indeed expected
as the discrepancy between the assumed and actual model is
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Fig. 6. Estimation error norm for Case 2 with 2%, 5%, and 10% model
uncertainty.

nothing but disturbance. We observe the L∞ observer is still
somewhat tolerating parametric uncertainty as well as other
sources of unknown inputs from Case 2. This showcases that
the proposed estimator is robust to minor parametric uncertainty,
albeit it theoretically does not account for it. Further theoretical
developments can be pursued to account for major parametric
uncertainty, but this is outside the scope of this work.

D. Comparing L∞ Observer With Other Estimation Methods

As mentioned earlier, various methods have been developed
for DSE in power systems such as EKF, UKF, and Square Root
UKF (SR-UKF) [7]–[12], [14]. Here, we do a comparative study
to measure the performance of the L∞ observer in comparison
with EKF, UKF, and SR-UKF. A brief theoretical background
about these KFs along with their set up for this comparison are
given as follows.
� EKF may be regarded as the simplest KF-based estimator

for nonlinear systems. It basically has the same principle
as the original KF except that it uses the Jacobian matrix of
the nonlinear transformation in KF algorithm. The initial
state error covariance matrix for EKF is set to be

P 0 = diag
([

π
902× 10−3 × 60π10−310−3

])
. (15)

� In contrast to EKF, UKF does not require lineariza-
tion of the dynamics. Based only on the nonlinear pro-
cess/measurement models, it uses an unscented transfor-
mation to extract and estimate the mean and covariance
data that have gone through nonlinear transformations. In
UKF, sigma points are generated to represent Gaussian
distribution. The constants to generate sigma points are set
to be α = 0.1, β = 2, and κ = −1. The initial state error
covariance matrix is the same as in (15).

� SR-UKF is an improved variant and more numerically
stable than UKF [14]. The SR-UKF is set to use the same
constants as those on UKF to generate sigma points. The
square root of the initial state error covariance matrix is
S0 =

√
P 0.

As EKF, UKF, and SR-UKF estimate in discrete-time, the
discrete-time model of the generator is obtained based on the
2th-order Taylor approximation of generator dynamics (5a).
Furthermore, the termBwr is appended to all of these stochastic

Fig. 7. The estimation error norm ‖e(t)‖2 for observer, EKF, UKF, and SR-
UKF considering Case 2.

Fig. 8. Estimation results on generator’s frequency for observer, EKF, UKF,
and SR-UKF for Case 2 for the final half a second in the DSE.

estimator process dynamics, thereby ensuring fairness when
comparing them with the robust observer.

In this comparison two scenarios are considered. The first
scenario is based on Case 2 (see Section V-A), in which the
generator is subject to Gaussian process and measurement noise
and generator unknown inputs. In the second scenario, we use
Case 3 as discussed in Section V-A but with the addition of
2% model uncertainty. The process and measurement noise
covariance matrices for both scenarios are the same as the ones
in Case 2. The numerical test results for the first scenario are
illustrated in Figs. 7 and 8. We particularly observe from these
figures that the observer is able to estimate generator’s state
with relatively very small errors. Albeit SR-UKF can perform an
adequate estimation, the observer’s performance is better. On the
other hand, EKF and UKF give relatively worse estimation than
SR-UKF and the observer. This observation is also supported
from the plots of estimation error norm given in Fig. 7. From
this figure we see that the L∞ observer can perform DSE with
the smallest steady state error norm compared to EKF, UKF, and
SR-UKF. Other test cases show a similar trend.

Interestingly, the L∞ observer is also performing better than
the other methods in the second scenario (discussed above), as
shown in Fig. 9. In order to obtain a clear quantitative com-
parison, we compute their respective RMSE—see Table II for
the corresponding results. We observer that the observer returns
the smallest RMSE, in comparison with the other KF-based
methods.

In addition to RMSE comparison, we also find that the ob-
server is actually more computationally efficient in performing
DSE than EKF, UKF, or SR-UKF. This is corroborated from
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Fig. 9. The estimation error norm ‖e(t)‖2 for observer, EKF, UKF, and SR-
UKF considering Case 3 with 2% model uncertainty.

TABLE II
COMPARISON OF SIMULATION RUNNING TIME Δt (S) AND RMSE FOR

OBSERVER, EKF, UKF, AND SR-UKF

[†] It took 1.2641 sec to obtain the observer gain matrix. This is not included in
the 20.91 sec figure shown in the table, seeing that this computation is offline.
However, this does not change the main takeaway.

numerical data shown in Table II, in which the L∞ observer
has the least simulation running time, followed by UKF and
SR-UKF, while EKF being the least efficient. The reason why
L∞ observer has the least running time is due the fact that it only
utilizes a simple one-step predictor with fixed gain matrix, as
opposed to KF-based estimators; see the observer dynamics (10).
From Table II, one can also note that EKF is less efficient than
UKF and SR-UKF, which contradicts the knowledge that EKF
has smaller computational complexity than UKF and SR-UKF.
We presume that this is caused by implementation issues on
MATLAB, and is not representative of what happens at scale
when a multi-machine network model is considered with hun-
dreds of generators.

E. Extension to 10th-Order Generator Model

In the previous sections, we use a 4th-order transient model
to perform DSE whereby the generator’s controllers are not
modeled. This allowed us to test the estimator’s performance
during unstable transients. In order to further test the proposed
L∞ robust observer on higher-order generator models under
stable conditions, in this section we use a 10th-order generator
model for DSE with a transient generator model, IEEE Type
DC1 excitation system, a simplified steam turbine governor
system [39], [51]. We reformulate the 10th-order model taken
from [39] such that with process and measurement noise, it can
be expressed as

{
ẋ=Ax+ f(x,u) +Bwqw + vp (16a)

y = h(x,u) +Dwqw, (16b)

where the state, output, and input vectors are detailed as follows

x =
[

δ ω e′q e′d VR Efd Rf tg1 tg2 tg3

]�

y =
[

eR eI

]�
, u =

[

iR iI

]�
.

The dynamic response is generated via a similar manner as in
the 4th-order model with the exception that here we consider
Generator 14 as it possesses a bigger damping coefficient than
Generator 4. This consequently gives a reduced oscillation for
the dynamic response, especially after the fault. The simula-
tions are performed before, during, and after the fault for 15
seconds. For this model we simulate the controller dynamics
and study how the observer tracks the steady state response of
the generator. To compute the observer gain matrix, we again
solve problem (12) as LMIs by setting ν4 = 1 and ν2 = 30. The
performance matrix is set to be Z = 2× 10−4I with matrix C
is constructed in a similar fashion as the one in Case 1. Since
there is no closed-form expression for the 10th order model,
the Lipschitz constants γf and γh are chosen to be 200 and 20.
The observer design is not sensitive to values for γf,h; different
values yield similar performance.

In this numerical test we consider the following two cases:
• Case 5: This case considers Gaussian process and mea-

surement noise in which the process noise covariance matrix
is diagonal which entries are the square of 5% of the largest
state changes and the measurement noise covariance matrix is
also diagonal with variance 0.012. The initial conditions of the
observer are set to

x̂
(1)
0 = [0.9998 ω0 1.0729 0.1441 1.1611

1.1609 1.1609 0.1585 0.1585 0.1139]�.

• Case 6: Similar to Case 5 but with Laplace measurement
noise with s = 0.01 (see Section V-A) and a different estimator
initial condition, which is

x̂
(2)
0 = [1.1998 ω0 0.8729 0.3441 0.9611

0.9609 0.9609 0.1985 0.1985 0.1539]�.

Note that both observer’s initial condition in Case 5 and 6 is
different than generator’s initial condition for the generator:

x0 = [1.0998 ω0 0.9729 0.2441 1.0611

1.0609 1.0609 0.1785 0.1785 0.1339]�.

Fig. 10 shows the estimation error norm for the two cases.
The computed performance index for both cases are μ̄ =
5.9026 × 10−4, which acts as an upper bound on the optimal
index, while the worst-case disturbance norm for Case 5 is
‖w(t)‖L∞ = 0.0191 and for Case 6 is ‖w(t)‖L∞ = 0.0496. The
estimation results for the states and outputs are illustrated in
Fig. 11 for Case 6—the results for Case 5 are similar thus not
shown here for brevity. Despite of the presence of process, input,
and measurement noise, the proposed observer is able to give
adequate estimates with relatively small errors.
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Fig. 10. The estimation error ‖e(t)‖2 and scaled worst-case disturbance
kµ̄‖w(t)‖L∞ (k = 5× 103) for Cases 5 and 6.

Fig. 11. Actual and estimated states (a) and two outputs (b) for Case 6.

F. Discussion On the Derived Upper and Lower Bounds

In this section we briefly investigate the applicability of the
derived upper and lower bounds on the optimal solution for the
L∞ observer design problem. This relates to the discussion in
Section III; see Theorems 1 and 2. Specifically, we compare
the derived bounds J̄ and J for both 4th-order and 10th-order

TABLE III
UPPER AND LOWER BOUNDS ON THE PERFORMANCE INDEX

model. Table III shows the upper bounds, lower bounds, and
gaps on the upper and lower bounds for the 4th-order and 10th-
order model. Note that we clearly have J ≤ J∗ ≤ J̄ with gap
no bigger than 10−6, implying that the optimal performance
μ∗ is indeed very close to the computed—and utilized in the
simulations—performance index μ̄. This is important in two
ways. Firstly, the results corroborate the theoretical assertions
made in Theorem 2 and secondly, they entail that the presented
state estimation results are close to being optimal in the L∞
stability sense as defined by Definition 1.

VI. CONCLUSION, PAPER’S LIMITATIONS, FUTURE WORK

This paper introduces a new observer design, developed using
the notion of L∞ stability, for DSE of uncertain synchronous
generator models. The L∞ observer provides a performance
guarantee for the state estimation error norm relative to the
worst case disturbance. As the observer gain remains constant,
it can be computed offline and thus make it suitable for real time
estimation. The numerical test results show that the performance
of L∞ observer is comparable (even better in some cases) to
several mainstream DSE approaches considered in the literature,
such as EKF, UKF, and SR-UKF.

The paper’s limitations are three-fold. First, this work only
focuses on the estimation of generator’s state and does not
include the estimation of Tm(t) andEfd(t). Second, many other
robust DSE methods have been proposed in the very recent
literature. Some of these methods are based on derivative-free
Kalman filtering [30] and H∞ UKF [54], [55]; see the survey
paper [31] and the discussions therein. Third, we only tackled
the problem of decentralized state estimation for a single syn-
chronous machine. To that end, future research directions will
address the aforementioned limitations by (i) deriving a robust
observer for multi-machine network models, (ii) theoretically
accounting for unknown input estimation, and (iii) performing
comparative analysis of the many robust DSE methods in the
recent, contemporary literature.

Finally, designing the L∞ observer considering a discrete-
time machine and measurement model is an interesting future
direction. This is needed seeing that the PMU measurements are
transmitted over digitized communication networks, and hence
discrete-time observer is befitting for this application. This also
guarantees a more consistent comparison with other KF-based
estimation techniques that are simulated in discrete-time.
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APPENDIX A
PROOF OF THEOREM 1

Consider the estimation error dynamics (11) with perfor-
mance output z(t) = Ze(t) and bounded disturbancew(t). Let
V (e) = e�Pe be a Lyapunov function candidate whereP � 0.
From [45, Theorem 1], the estimation error dynamics (11) isL∞
stable with performance level μ =

√
ν1ν2 + ν3 if there exist

constants ν1, ν2, ν3 ∈ R+ such that

ν1‖w‖22 < V (e) ⇒ V̇ (e) < 0 (17a)

‖z‖22 ≤ ν2V (e) + ν3‖w‖22, (17b)

for all t ≥ 0. Note that the first condition (18a) is satisfied if
there exists ν5 > 0 such that

V̇ (e) + ν5
(
V (e)− ν1‖w‖22

) ≤ 0

⇔ ė�Pe+ e�P ė+ ν5e
�Pe− ν5ν1w

�w ≤ 0,

which is equivalent to ψ�Θψ ≤ 0 where

ψ=

⎡

⎢
⎢
⎢
⎣

e

Δf

Δhl

w�

⎤

⎥
⎥
⎥
⎦
,Θ=

⎡

⎢
⎢
⎢
⎣

Q ∗ ∗ ∗
P O ∗ ∗

−L�P O O ∗
Bw

�P −Dw
�L�P O O −ν5ν1I

⎤

⎥
⎥
⎥
⎦

Q=A�P+PA−C�L�P−PLC + ν5P .

Realize that ψ�Θψ ≤ 0 holds if Θ � 0 holds. Since the func-
tion f(·) is locally Lipschitz, then we have

‖Δf‖22 ≤ γ2f‖e‖22 ⇔ Δf�Δf − γ2fe
�e ≤ 0,

which is equivalent to ψ�Γψ ≤ 0 where

Γ = diag
([

−γ2fI I O O
])
.

Since ψ�Γψ ≤ 0 for all admissible ψ, then Γ � 0. From the
S-Lemma [56], thenΘ � 0 holds if there exists ν5 ≥ 0 such that
Θ− ν5Γ � 0. Similarly, from the Lipschitz property of hl(·),
then we have

‖Δhl‖22 ≤ γ2l ‖e‖22 ⇔ Δhl
�Δhl − γ2l e

�e ≤ 0.

This is equivalent to ψ�Πψ ≤ 0 where

Π = diag
([

−γ2l I O I O
])
.

Since ψ�Πψ ≤ 0 for all admissible ψ, then Π � 0. Again,
by the S-Lemma, then we have Θ− ν5Γ � 0 if there exists
ν6 ≥ 0 such that Θ− ν5Γ− ν6Π � 0, which is equivalent to
(12b) given that Y = PL. Next, substituting z(t) = Ze(t) to
the second condition (17b) yields

‖Ze‖22 − ν2V (e)− ν3‖w‖22 ≤ 0

⇔ e�Z�Ze− ν2e
�Pe− ν3w

�w ≤ 0

⇔
[
Z�Z − ν2P O

O −ν3I

]

� 0.

Using congruence transformation and applying the Schur Com-
plement to the above yields (12c). Thus, solvability of (12)
ensures that the estimation error dynamics given in (11) is L∞
stable with performance level μ =

√
ν1ν2 + ν3 and observer

gain L = P−1Y . This completes the proof. �

APPENDIX B
PROOF OF THEOREM 2

From (12), first define Ξ, σ, and λ as Ξ = ν4P , σ = ν4ν1,
and λ = ν1ν2. Then, asΞ = ν4P is equivalent toΞi,j = ν4P i,j

for all i, j, defining

E =

⎡

⎢
⎣

0 1
2 0

1
2 0 0

0 0 0

⎤

⎥
⎦ , e =

⎡

⎢
⎣

0

0

1

⎤

⎥
⎦ , ψi,j =

⎡

⎢
⎣

ν4

P i,j

Ξi,j

⎤

⎥
⎦ , ∀i, j,

this relation can be written as

ν4P i,j −Ξi,j = ψ
�
i,jEψi,j − e�ψi,j

= trace(EΨi,j)− e�ψi,j = 0, (18)

only when Ψi,j = ψi,jψ
�
i,j holds. Realize that

Ψi,j = ψi,jψ
�
i,j ⇔ Ψi,j � ψi,jψ

�
i,j and rank(Ψi,j) = 1,

then by using the Schur Complement such that

Ψi,j � ψi,jψ
�
i,j ⇔

[
Ψi,j ∗
ψ�

i,j 1

]

� 0, (19)

the bilinear term ν4P can be replaced with Ξ while adding
constraints (18), (19), and enforcing rank(Ψi,j) = 1 for all i, j.
Next, define new variables σ and λ such that ν4ν1 = σ and
ν1ν2 = λ. These equalities are equivalent to

ν4ν1 − σ = φ�Eφ− e�φ = trace(EΦ)− e�φ = 0 (20a)

ν1ν2 − λ = θ�Eθ − e�θ = trace(EΘ)− e�θ = 0, (20b)

where φ =
[

ν1 ν4 σ
]�

and θ =
[

ν1 ν2 λ

]�
only if we

have Φ = φφ� and Θ = θθ�. Note that

Φ = φφ� ⇔ Φ � φφ� and rank(Φ) = 1

Θ = θθ� ⇔ Θ � θθ� and rank(Θ) = 1

Again, from using Schur Complement such that

Φ � φφ� ⇔
[
Φ ∗
φ� 1

]

� 0, Θ � θθ� ⇔
[
Θ ∗
θ� 1

]

� 0,

(21)

ν4ν1 and ν1ν2 can be replaced with σ and λ with the addition
of constraints (22), (20), rank(Φ) = 1, and rank(Θ) = 1. By
neglecting all of the nonconvex rank one constraints, we obtain
an SDP relaxation as follows

minimize
P ,Y ,ν,Ξ,Ψi,j ,

Φ,Θ,λ,σ

λ + ν3 (22a)

subject to
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⎡

⎢
⎢
⎢
⎣

Q+ ν5γ
2
fI + ν6γ

2
l I ∗ ∗ ∗

P −ν5I ∗ ∗
−Y � O −ν6I ∗

Bw
�P −Dw

�Y � O O −σI

⎤

⎥
⎥
⎥
⎦
� 0 (22b)

(20), (21), (22), (23), (12c) (22c)

P � 0, Ξ � 0, ν4 > 0, ν1,2,3,5,6 ≥ 0, λ ≥ 0, σ ≥ 0, (22d)

where Q = A�P + PA−C�Y � − Y C +Ξ. The con-
straints in (24) can be represented by

E(P ,ν,Ξ,Ψi,j ,Φ,Θ, λ, σ) = 0 (23a)

L(P ,Y ,ν,Ξ,Ψi,j ,Φ,Θ, λ, σ) � 0, (23b)

where (23a) and (23b) represents all matrix equality and inequal-
ity constraints respectively. As (24) is less constrained than (12)
due to relaxation, then λ + ν3 ≤ μ∗2 where μ∗ =

√
ν∗1ν

∗
2 + ν∗3

is obtained from solving (12). This ends the proof. �
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