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Key Points: 

 Wavelength dependence of permafrost dissolved organic carbon (DOC) 
photomineralization revealed a high lability to visible light. 

 Iron catalyzes the photomineralization of old permafrost DOC (> 4,000 a BP) derived 
from soil lignin and tannin to carbon dioxide (CO2). 

 Photomineralization rates of permafrost DOC to CO2 are double that of modern DOC, 
which will increase future arctic amplification.   

Abstract 
Once thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils 
may be oxidized to carbon dioxide (CO2) by 2100, amplifying climate change.  However, 
predictions of this amplification strength ignore the oxidation of permafrost C to CO2 in 
surface waters (photomineralization).  We characterized the wavelength dependence of 
permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron 
catalyzes photomineralization of old DOC (4,000-6,300 a BP) derived from soil lignin and 
tannin.  Rates of CO2 production from photomineralization of permafrost DOC are two-fold 
higher than for modern DOC.  Given that model predictions of future net loss of ecosystem C 
from thawing permafrost do not include the loss of CO2 to the atmosphere from DOC 
photomineralization, current predictions of an average of 208 Pg C loss by 2299 may be too 
low by ~14%.     

Plain Language Summary 
The thawing of organic carbon stored in arctic permafrost soils, and its oxidation to carbon 
dioxide (a greenhouse gas), is predicted to be a major, positive feedback on global warming.  
However, current estimates of the magnitude of this feedback do not include the oxidation of 
permafrost soil organic carbon flushed to sunlit lakes and rivers.  Here we show that ancient 

mailto:cward@whoi.edu
mailto:rmcory@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020GL087085&domain=pdf&date_stamp=2020-06-09


 

 
©2020 American Geophysical Union. All rights reserved. 

dissolved organic carbon (> 4,000 years old) draining permafrost soils is readily oxidized to 
carbon dioxide by sunlight.  As a consequence, current estimates of additional global 
warming from the permafrost carbon feedback are too low. 

1 Introduction 
Current estimates are that 5 to 15% of the ∼1,000 Pg of the soil organic carbon (C) 

stored in surface permafrost soils could be emitted as greenhouse gases by 2100 given the 
current trajectory of global warming (Schuur et al., 2015; Plaza et al., 2019), with additional 
C lost in lateral transfer from soils to surface waters (Plaza et al., 2019).  Models assessing 
the sensitivity of the climate system to thawing permafrost soils estimate that decomposition 
of organic C in these soils could result in 0.3 °C to 0.4 °C additional global warming (i.e., 
arctic amplification) by 2100 to 2299, respectively (McGuire et al., 2018).  However, none of 
these predictions include the oxidation of organic C upon export to sunlit surface waters.   

Oxidation of dissolved organic carbon (DOC) to carbon dioxide (CO2) by sunlight 
(photomineralization) currently accounts for up to 30% of the CO2 emitted to the atmosphere 
from arctic surface waters (Cory et al., 2014).  As permafrost DOC is exported to sunlit 
waters, its oxidation to CO2 will depend on whether permafrost DOC is labile to 
photomineralization, which is currently debated (Stubbins et al., 2016; Ward & Cory, 2016; 
Selvam et al., 2017; Shirokova et al., 2019).  The lability of terrestrially-derived DOC to 
photomineralization is hypothesized to depend on iron and DOC chemical composition 
(Miles & Brezonik, 1981; Gao & Zepp, 1998; Xie et al., 2004; Ward & Cory, 2016; Gu et al., 
2017).  To test these hypothesized controls, we made the first direct measurements of the 
amount, source, and age of CO2 produced from photomineralization of permafrost DOC 
collected on younger and older glacial surfaces, and from two common vegetation types in 
the Arctic (Table S1; Ping et al., 1998; Trusiak et al., 2019).  Here we show that (i) the 
lability of permafrost DOC to photomineralization depends on sunlight wavelength, (ii) iron 
controls the lability of permafrost DOC to photomineralization, and (iii) old carboxylic acid 
C (4,000 to 6,300 a BP) derived from lignin and tannin is mineralized to CO2 by sunlight.  
Collectively, our results support the inclusion of photomineralization in model predictions 
and experimental studies of arctic amplification of climate change.   

2 Methods 

2.1 Permafrost soil collection 
Soils were collected from the frozen permafrost layer (> 60 cm below the surface) at five 
sites underlying moist acidic tussock or wet sedge vegetation, and on three glacial surfaces on 
the North Slope of Alaska during summer 2018 (Table S1; Mull & Adams, 1989; Walker et 
al., 2005; Hobbie & Kling, 2014).  See the Supporting Information for soil collection 
protocols, including precautions to minimize radiocarbon (14C) contamination, and for a 
summary of the experimental design.  DOC was leached from each permafrost soil (leachate) 
at the Woods Hole Oceanographic Institution (WHOI) as described in the Supporting 
Information. 

2.2 14C and δ13C analyses of DOC 
The 14C and stable carbon (13C) isotopic compositions of DOC were analyzed from each 
permafrost leachate at the National Ocean Sciences Accelerator Mass Spectrometry 
(NOSAMS) facility at WHOI (Table S2) following Beaupré et al. (2007).  Each permafrost 
leachate was diluted with UVC-oxidized MilliQ water (Millipore Simplicity ultraviolet, UV, 
system; 1.5 hr; 1200 W medium pressure mercury arc lamp) to achieve a total C mass 
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between 800 and 2000 g.  The diluted permafrost leachate was acidified with UVC-oxidized 
trace-metal grade phosphoric acid (85%) to pH < 2 in a precombusted quartz reactor (450 C; 
4 hr) and the dissolved inorganic carbon (DIC) was purged with high-purity helium gas in the 
dark.  The DOC was then oxidized with UVC light to DIC for 4 hr (1200 W medium pressure 
mercury arc lamp), and the resultant CO2 was extracted cryogenically.  On average, 1370 ± 
240 g of C were extracted from each permafrost leachate (± 1 standard error, SE; n = 6; 
Table S2).  A subsample of the CO2 was analyzed for 13C using a VG Prism-II or Optima 
stable isotope ratio mass spectrometer (instrumental precision of 0.1‰; Coplen et al., 2006), 
and the δ13C (‰) was calculated as follows: 

δ13C = (13Rsample/13Rstandard – 1)             (1) 
where 13R is the isotope ratio of a sample or standard (VPDB), as defined by: 

13R = (13C/12C)                     (2) 
The remaining CO2 was reduced to graphite with H2 and an iron catalyst, and then analyzed 
for 14C isotopic composition using an accelerator mass spectrometer at the NOSAMS facility 
(Longworth et al., 2015).  The 14C (‰) and radiocarbon age of DOC were calculated from 
the fraction modern (Stuiver & Polach, 1977; McNichol et al., 2001) using the oxalic acid I 
standard (NIST-SRM 4990).  14C analyses of DOC had an instrumental precision of 2-6‰ 
(Longworth et al., 2015; McNichol et al., 2001).  

DOC leached from one permafrost soil (Toolik moist acidic tundra) was prepared and 
analyzed for 14C and 13C twice to quantify the standard error of duplicate analyses (Table S2).  
14C and δ13C analyses of DOC had standard errors of 1‰ and 0.1‰, respectively (1 SE; n = 
2; Table 1).  A procedural blank was quantified manometrically by oxidizing MilliQ water 
with UVC light in a precombusted quartz reactor (450 C; 4 hr) for 1.5 hr, acidifying to pH < 
2, and purging the DIC as described above.  The procedural blank was 4 g of C, which was 
< 0.5% of the total C masses extracted from the permafrost leachates.  

2.3 Apparent quantum yield spectra  
The CO2 produced from photomineralization of permafrost DOC was measured as a function 
of sunlight wavelength.  The lability of DOC to photomineralization is defined as the 
apparent quantum yield spectrum (CO2 produced per mol photon absorbed by DOC; hereafter 
called the yield spectrum, φPM,λ).  Yield spectra of permafrost DOC were directly measured 
for the first time with a custom-built high-powered (≥ 100 mW), narrow-banded (± 10 nm) 
light-emitting diode (LED) system from soils collected in 2018 (Figure S1).  Each permafrost 
leachate was equilibrated to room temperature (~24 hr) and then placed in 20 gas-tight, flat-
bottomed precombusted (450 C; 4 hr) 12 mL quartz vials with butyl rubber septa and GL-18 
caps (light-exposed vials) and four gas-tight precombusted (450 C; 4 hr) 12 mL borosilicate 
exetainer vials (dark control vials; Labco, Inc.).  Vials were placed in an inner aluminum 
housing (painted black matte to minimize light scattering), with the flat bottom facing upward 
toward the light source, and then exposed to ≥ 100 mW, narrow-banded (± 10 nm) LEDs at 
278, 309, 348, 369, and 406 nm alongside the dark controls for 12 or 30 hr (Table S3).  The 
LEDs were tuned such that each permafrost leachate absorbed the same about of light at each 
wavelength. After LED exposure, light-exposed and dark control waters were immediately 
analyzed for DIC (Apollo SciTech, Inc.) and for chromophoric dissolved organic matter 
(CDOM; Cory et al., 2014).  The experiment above was then repeated for the analysis of 
photochemical oxygen (O2) consumption to quantify the apparent quantum yield spectra of 
photo-oxidation (φPO,λ) from each permafrost DOC.  Dissolved O2 was measured in each 
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light-exposed and dark control vial on a membrane inlet mass spectrometer (Bay Instruments; 
Kana et al., 1994). 

At each LED wavelength, φPM,λ and φPO,λ were calculated as the concentration of DIC 
produced and O2 consumed, respectively, divided by the light absorbed by CDOM.  The 
amount of light absorbed by CDOM (mol photon m-2 nm-1) was quantified for each vial 
exposed to a LED using absorption coefficients of CDOM (aCDOM,λ) and the photon flux 
spectrum (Cory et al., 2014).  The photon flux spectrum was quantified from the solar 
irradiance spectrum from each LED source, which was measured by radiometry and chemical 
actinometry (see Supporting Information).  φPM,λ and φPO,λ are reported as the average ± 1 SE 
of experimental replicate vials (n = 4).   

2.4 Δ14C and δ13C of CO2 produced from light  

The 14C and δ13C of DIC produced following exposure of DOC to UV and visible light were 
quantified from permafrost leachates prepared from each permafrost soil collected in 2018, 
except for Sagwon moist acidic tundra (Figure S1).  Each permafrost leachate was 
equilibrated to room temperature and then placed in up to four precombusted (450 C; 4 hr) 
600 mL quartz flasks with ground glass stoppers and no headspace.  The flasks were exposed 
to custom-built LED arrays consisting of ten ≥ 100 mW, narrow-banded (± 10 nm) 309 or 
406 nm chips alongside one or two foil-wrapped dark control flasks (Table S2).  Exposure 
times ranged from 8 to 25 hr to achieve similar concentrations of DIC produced from each 
permafrost DOC sample and at each wavelength (Table S4).  

After LED exposure, foil-wrapped light-exposed and dark control flasks were 
immediately transferred to foil-wrapped, precombusted 500 mL borosilicate glass bottles 
(450 C; 4 hr) in a N2-filled glove bag, preserved with saturated mercuric chloride, and 
plugged with gas-tight ground glass stoppers (McNichol et al., 1994).  Those bottles were 
stored in the dark at room temperature for ≤ 1 week until preparation for carbon isotope 
analyses at the NOSAMS facility.  Bottles were kept foil-wrapped while each water sample 
was acidified with trace-metal grade phosphoric acid (85%) to pH < 2 and stripped of DIC 
with high-purity N2 gas.  The resultant CO2 was trapped and purified cryogenically and its 
concentration was quantified manometrically.  The 14C and 13C of the CO2 were analyzed at 
the NOSAMS facility (Table S2) and converted to 14C and δ13C values as described above.  
14C analyses of DIC had an instrumental precision of 1-2‰ (Longworth et al., 2015; 
McNichol et al., 2001).  The reported precision of δ13C is 0.1‰ (Coplen et al., 2006).  

The 14C and δ13C of CO2 produced from the photomineralization of DOC were 
calculated as follows: 

∆ C-CO2 
14

λ
=

(∆14C-DICLight,λ*[DIC]Light,λ) – (∆14C-DICDark*[DIC]Dark)

([DIC]Light,λ – [DIC]Dark)
           (3) 

δ C-CO2 
13

λ
=

(δ13C-DICLight,λ*[DIC]Light,λ) – (δ13C-DICDark*[DIC]Dark)

([DIC]Light,λ – [DIC]Dark)
            (4) 

The 14C and δ13C of CO2 produced in each light-exposed flask were calculated relative to 
one or two dark controls (Tables S2, S4) and are reported as the average ± 1 SE of replicate 
values for the experiments conducted alongside two dark controls (Table 1).  The 
concentration, 14C, and δ13C of DIC in the dark controls are reported as the average ± 1 SE 
of replicate flasks (n = 2; Table S4).  The 14C age of CO2 produced is the age of DIC in light-
exposed flask minus the 14C age of DIC in the dark control (Table 1).  This approach to 
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quantify the 14C and δ13C of CO2 produced from photomineralization of organic C was 
previously described in detail for polystyrene (Ward et al., 2019).  In this previous study, 
experimental reproducibility of 14C and δ13C of CO2 produced from photomineralization 
was 5‰ and 0.1‰, respectively (± 1 SE; n = 3). 

3 Results and Discussion 
All permafrost DOC was labile to photomineralization at all wavelengths measured 

(Figure 1a), and the yield spectrum always decreased exponentially with increasing 
wavelength from the UV to the visible (p < 0.05; Figure 1a).  The magnitude of the 
photomineralization yield varied up to 8-fold among permafrost DOC samples (Figure 1a) 
and was significantly, positively correlated with the concentration of dissolved iron (p < 
0.001 as shown at 309 nm in Figure 1b; see Supporting Information).  There were no 
significant correlations of the photomineralization yield with dissolved cations other than iron 
or with any measure of DOC concentration or composition (see Supporting Information). 

Our results are the first to demonstrate in natural samples that the lability of 
permafrost DOC to photomineralization is controlled by dissolved iron.  Although 
photomineralization of terrestrially-derived DOC has been shown to increase with addition or 
decrease with removal of iron in the laboratory (Miles & Brezonik, 1981; Gao & Zepp, 1998; 
Xie et al., 2004; Gu et al., 2017), evidence is lacking for a mechanism by which iron 
enhances photomineralization.  Here we present new experimental evidence and a synthesis 
of literature results that collectively support a mechanism of iron-catalyzed photo-
decarboxylation of lignin- and tannin-derived carboxylic acids within old permafrost DOC.   

Iron is hypothesized to catalyze the photo-decarboxylation of organic acids by a 
Ligand-Metal-Charge-Transfer reaction (Mangiante et al., 2017) where Fe(III) is a cyclic 
catalyst that is photo-reduced to Fe(II) while the C in carboxylic acids (hereafter “carboxyl 
C”) is oxidized to CO2 (Miles & Brezonik, 1981; Gao & Zepp, 1998; Xie et al., 2004).  Two 
lines of evidence from our study strongly support iron-catalyzed photo-decarboxylation of 
permafrost DOC to CO2.  First, loss of carboxyl C (quantified by 13C nuclear magnetic 
resonance) upon exposure of permafrost DOC to sunlight was significantly, positively 
correlated with the dissolved iron concentration (p < 0.05; Figure S2), as expected if photo-
decarboxylation is the mechanism of CO2 production.  The only other study that quantified 
photochemical loss of carboxyl C from permafrost DOC concluded that it accounted for up to 
90% of the CO2 produced from photomineralization (Ward & Cory, 2016).  However, this 
prior study used DOC from one site (with only one iron concentration) and thus was unable 
to link iron abundance to DOC photo-decarboxylation.  Second, the ratio of photochemical 
CO2 production per dissolved O2 consumption by DOC was ≥ 1 for all permafrost DOC that 
also contained > 1 µM total dissolved iron (Figure S3).  A ratio ≥ 1 for photochemical CO2 
produced per O2 consumed is considered evidence for photo-decarboxylation because this 
reaction is expected to proceed with a stoichiometry of ≥ 2:1 mol CO2 produced per mol O2 
consumed (Miles & Brezonik, 1981; Xie et al., 2004).  While ratios ≥ 1 for photochemical 
CO2 produced per O2 consumed have previously been observed in high-iron waters (Miles & 
Brezonik, 1981; Xie et al., 2004; Cory et al., 2015), here we show ratios ≥ 1 for DOC from 
various permafrost soils concurrent with photochemical loss of carboxyl C.   

Isotopic signatures of the CO2 produced by sunlight indicate that iron is catalyzing the 
oxidation of carboxyl C attached to organic matter derived from lignin and tannin.  
Photochemical production of 13C-depleted CO2 (Table 1) increased significantly with the 
ratio of photochemical CO2 produced per mol of O2 consumed (p < 0.05; Figure S4).  
Therefore, as photo-decarboxylation accounts for more of the total CO2 produced (as 
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indicated by increasing CO2/O2; Figure S4), the source of the CO2 is increasingly 13C-
depleted carboxyl C, such as that derived from lignin and tannin (Ball & Aluwihare, 2014).  
Photochemical production of 13C-depleted CO2 is interpreted as resulting from 
photomineralization of lignin- or tannin-derived DOC (Spencer et al., 2009; Franke et al., 
2012) because lignin and tannin are relatively more depleted in 13C compared to other 
fractions of DOC (Benner et al., 1987; see Supporting Information).  In addition, the 13C 
enrichment of DOC remaining after photomineralization has been correlated with 
photochemical loss of lignin (Spencer et al., 2009), and high-resolution mass spectrometry 
revealed that lignin- and tannin-derived compounds within permafrost DOC are preferentially 
degraded by sunlight compared to other fractions of DOC (Ward & Cory, 2016; Ward et al., 
2017).  Thus, our results indicate that iron-catalyzed photo-decarboxylation of lignin and 
tannin in permafrost DOC is producing CO2 (Table 1, Figures S2, S4).    

The carboxyl C derived from lignin and tannin that was photomineralized to CO2 was 
old, from 4,000 to 6,300 a BP (Table 1, Figure 2).  The 14C composition of CO2 produced 
from photomineralization of permafrost DOC (-546‰ to -397‰) was always ≤ 70‰ 
different from the initial, bulk 14C-DOC signature (-585‰ to -411‰; Table 1, Figure 2).  
The linear relationship between the initial, bulk permafrost 14C-DOC and the 14C-CO2 
produced by photomineralization (p < 0.05; Figure 2) indicates that the bulk age of 
permafrost DOC was a strong predictor of the age of DOC photomineralized to CO2.  
Collectively, our results demonstrate that old carboxyl C (4,000 to 6,300 a BP) derived from 
lignin and tannin and associated with iron is photomineralized to CO2.    

The presence of iron may explain contrasting literature results from high (Ward & 
Cory, 2016; Selvam et al., 2017; Shirokova et al., 2019) to little or no (Stubbins et al., 2016; 
Shirokova et al., 2019) lability of permafrost DOC to photomineralization.  For example, 
undetectable photomineralization of permafrost DOC from Russian arctic thaw slumps 
(Stubbins et al., 2016) may have been due to the 100-fold dilution of the DOC with deionized 
water.  Although dissolved iron was not reported (Stubbins et al., 2016), dilution likely also 
resulted in the precipitation of iron (oxy)hydroxides and thus lower dissolved iron 
concentrations (Miller et al., 2009).  In a study of Russian arctic surface waters that likely 
contained permafrost DOC (Shirokova et al., 2019), up to 13% of the DOC pool was 
photomineralized to CO2, consistent with the presence of dissolved iron (3-7 µM).  Provided 
that all permafrost DOC contains carboxyl C (Ward & Cory, 2016; Feng et al., 2017; Ward et 
al., 2017) and that permafrost soils generally contain high levels of leachable iron (Ping et al., 
1998; Herndon et al., 2015; Heslop et al., 2019; Trusiak et al., 2019), arctic permafrost DOC 
is labile to photomineralization in proportion to the iron present.  Given that the export of 
iron is currently strongly, positively correlated with DOC export from arctic soils to surface 
waters (Trusiak et al., 2019), we expect that iron and DOC export may continue to co-vary as 
permafrost soils thaw.  Therefore, we predict that the yield spectrum of permafrost DOC will 
be within the range reported here in the future (Figure 1a).  

The photomineralization yield spectra of permafrost DOC directly measured in this 
study have significantly shallower spectral slopes compared to those quantified indirectly for 
arctic surface water DOC (two-tailed, unpaired t-test; p < 0.001; Figure S5).  Thus, 
permafrost DOC has relatively lower lability to photomineralization at UV wavelengths and 
higher lability at visible wavelengths (different at 95% confidence interval; Figure S5).  If 
permafrost DOC comprises 100% of the DOC in surface water, photomineralization rates 
will increase by two-fold compared to current rates (Figure 3a) due to the higher lability of 
permafrost DOC at visible wavelengths multiplied by the ~10-fold greater photon flux in the 
visible versus the UV light region (Table S5).  It follows that photomineralization rates 
increase in proportion to the permafrost DOC exported to surface waters (Figure 3b).   
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4 Implications 

The uncertainty in model predictions of future ecosystem C gain or loss crosses zero 
(McGuire et al., 2018).  For example, under the RCP8.5 scenario a net ecosystem loss of C of 
208 ± 307 Pg C is predicted by 2299 (average ± 1 SD).  The large uncertainty in model 
predictions of permafrost C storage in this scenario includes a 20% probability that the net C 
storage is between +100 (gain) or -100 (loss) Pg C (see Supporting Information).  
Photomineralization of DOC to CO2 is always a loss to the atmosphere, and as the net C gain 
or loss for any particular year or over time nears zero, the relative importance of 
photomineralization increases.  Given that photomineralization rates of permafrost DOC are 
nearly two-fold higher than for modern DOC in arctic surface waters (Figure 3a), and 
assuming from 2010 to 2299 75% of DOC in surface waters was delivered from permafrost 
soils, then the photomineralization rates of 20 g C m-2 y-1 reported in Cory et al. (2014) would 
increase to 39 g C m-2 y-1.  Using a surface area of water in permafrost regions of 6% (Cooley 
et al., 2019), ~9 Pg CO2 could be produced from the photomineralization of permafrost DOC 
by 2299 (see Supporting Information).  In addition, if potentially more than half of future 
terrestrial C losses are lateral in hydrologic flow (Plaza et al., 2019), a pathway missing from 
models used in McGuire et al. (2018), photomineralization of that C would occur upon 
exposure to sunlight.  For example, taking the predicted net ecosystem loss of 208 Pg C by 
2299 under RCP8.5 (McGuire et al., 2018), potentially another ~100 Pg C could be lost 
laterally and produce ~21 Pg C as CO2 from photomineralization in surface waters (Cory et 
al., 2014; see Supporting Information).  CO2 from photodegradation of permafrost DOC is 
conservative because it does not account for (a) increased lability of permafrost DOC to 
microbial respiration following exposure to sunlight (Cory et al., 2013; Ward et al., 2017), 
and (b) increased annual sunlight exposure due to more ice-free days for surface waters in a 
warmer Arctic (Šmejkalová et al., 2016).  Therefore, reducing the uncertainty on whether 
permafrost thaw will be a net sink or source of C to the atmosphere requires representing 
processes such as photochemistry in models of the future arctic C balance. 
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Figure 1.  Controls on the lability of permafrost DOC to photomineralization.  (a) 
Wavelength-dependent apparent quantum yield spectrum for photomineralization (φPM,λ) of 

permafrost DOC.  Each data series was fit with a least-squares exponential model where R2 > 
0.83, p < 0.05.  (b) Apparent quantum yield for photomineralization at 309 nm (φPM,309) 
versus total dissolved iron concentration in permafrost leachates prior to light exposure.  
Closed symbols indicate φPM,309 measured following LED exposure at 309 nm.  Open 

symbols indicate φPM,309 estimated from an exponential fit following exposure to broadband 
light (see Methods).  Data in (b) were fit using a least-squares regression where R2 = 0.87, t-
statistic = 7.8, p < 0.001, excluding the open red symbol (see Supporting Information).  Open 

symbols for Imnavait moist acidic tundra were previously reported (Ward & Cory, 2016).  
All values are the average ± 1 SE of experimental replicates (n = 2 and 4 for open and closed 

symbols, respectively; see Methods).  φPM,λ at other wavelengths versus dissolved iron are 
reported in the Supporting Information. 
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Figure 2.  14C of bulk permafrost DOC was a strong predictor of the 14C-CO2 produced 
from photomineralization of DOC.  14C-CO2 produced from exposure of permafrost DOC to 

UV (309 nm, diamond symbols) and visible (406 nm, square symbols) light versus 14C of 
initial, bulk permafrost DOC plotted with the 1:1 line.  When all data are fit using a least-

squares regression, R2 = 0.66, t-statistic = 3.4, p < 0.05.  Values for photochemically 
produced 14C-CO2 are shown as the average ± 1 SE of experimental replicates (n = 2). 
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Figure 3.  Photomineralization rates were higher for permafrost DOC than for surface water 
DOC due to higher lability in the visible light region.  (a) Wavelength-dependent water 

column rates of photomineralization for Imnavait moist acidic tundra permafrost DOC and 
Imnavait Creek DOC (turquoise versus black line, respectively).  Solid lines show the 

average photomineralization rate spectrum and the similar color shading shows the upper and 
lower 95% confidence intervals.  Rates of photomineralization were calculated using the 

different wavelength-dependent apparent quantum yields for photomineralization (φPM,λ) for 
Imnavait moist acidic tundra permafrost DOC or Imnavait Creek DOC (Figure S5; see 
Supporting Information).  The red dashed and solid lines mark the wavelength of peak 

photomineralization rates (330 nm versus 402 nm) for Imnavait Creek and Imnavait moist 
acidic tundra permafrost DOC, respectively.  (b) Calculated photomineralization rates 

increased with an increasing fraction of permafrost DOC in the surface water DOC pool.  
Percent increase in photomineralization rates as permafrost DOC comprises 0-100% of the 
DOC pool in Imnavait Creek, Kuparuk River, and Toolik Lake (compared to no permafrost 
DOC in the DOC pool).  Only the φPM,λ was varied in the water column rate calculations, 

using a ‘mixed’ φPM,λ calculated as a mixture of the φPM,λ for permafrost DOC with the φPM,λ 
for the surface water DOC (see Supporting Information).  All values are shown as the average 

± 1 SE of calculated rates for surface water DOC mixed with each of the five permafrost 
DOCs in this study (n = 5). 
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Table 1.  Δ14C and δ13C of initial, bulk permafrost DOC and the CO2 produced by UV and 
visible light. 
 

 Light 
source 

Toolik moist 
acidic tundra 

Imnavait moist 
acidic tundra 

Imnavait wet 
sedge tundra 

Sagwon wet 
sedge tundra 

Sagwon moist 
acidic tundra 

14C-DOC (‰)  – 436 ± 1 – 474 – 585 – 411 – 519 

14C age of DOC  
(a BP) 

 4,520 ± 5 5,080 6,990 4,300 5,890 

δ13C-DOC (‰)  – 25.5 ± 0.1 – 25.4 – 26.1 – 27.8 – 26.9 

14C-CO2 

produced (‰) UV – 487 ± 4 – 465 ± 8 – 546 ± 11 – 397 ± 1 N/A 

 Visible – 506 – 454 ± 8 – 538 ± 13 – 402 N/A 

14C age of CO2 
produced (a BP) UV 5,300 ± 55 4,950 ± 110 6,270 ± 190 4,000 ± 5 N/A 

 Visible 5,600 4,800 ± 120 6,150 ± 220 4,070 N/A 

δ13C-CO2 
produced (‰) UV – 30.2 ± 0.4 – 31.0 ± 0.4 – 31.8 ± 1.8 – 35.8 ± 0.6 N/A 

 Visible – 29.8 – 28.3 ± 0.4 – 29.2 ± 2.0 – 36.0 N/A 

Note. The 14C and δ13C of the CO2 produced from photomineralization of permafrost DOC are reported following exposure to 
LEDs at 309 (UV) or 406 nm (visible).  When available, all values are reported as the average ± 1 SE of experimental replicates 
(n = 2).   

 


