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Flexible Cube Tilt Lattice with Anisotropic Cosserat
Effects and Negative Poisson’s Ratio
Zach Rueger, Chan Soo Ha, and Roderic S. Lakes*
A 3D lattice structure consisting of pivoting cubes with flexible links at the
corners is presented. It exhibits anisotropic negative Poisson’s ratio �0.54
and �0.75. Size effects occur in torsion and bending; these effects are
consistent with Cosserat elasticity but not with classical elasticity. Cosserat
elastic solids exhibit sensitivity to strain gradients; size effects occur in
torsion and bending; also reduction in stress concentrations. The observed
Cosserat effects also reveal anisotropy.
1. Introduction

Negative Poisson’s ratio materials are by now well known. A 3D
isotropic negative Poisson’s ratio material based on transformed
open cell polyurethane foam was reported[1] in 1987; it had a
Poisson’s ratio �0.7; metal foams of similar structure can have
Poisson’s ratio as small as �0.8.[2] Negative Poisson’s ratio
materials have been called “dilational”[3] because they easily
undergo volume changes but are difficult to shear. An ideal
dilational material would approach the isotropic lower limit on
Poisson’s ratio �1. Hierarchical two phase composites were
developed and studied; Poisson’s ratio approaches�1 as contrast
between constituent moduli is increased. A 2D honeycomb with
inverted hexagonal cells[4] can exhibit negative Poisson’s ratio; a
2D chiral lattice[5] exhibits a Poisson’s ratio of �1 over a range of
strain as shown by experiment and analysis.

Hinged structures are of interest in part because they can be
readily shown to exhibit negative Poisson’s ratio, and in part
because with the advent of 3D printing, one can seek to
approximate such lattices in physical form. Structures of hinged
polygons, called hinged tessellations, have been studied from the
perspective of mathematics[6–8] rather than physical properties.
These are the earliest known hinged polygon constructions. A
Poisson’s ratio of�1 can be attained via inverse homogenization
in 2D structures with rotating rigid squares connected at the
corners by ideal hinges.[9] Rotating squares were considered[10]

as a model for the negative Poisson’s ratio in some crystals.
Rotating hinged squares were developed independently to
achieve a Poisson’s ratio �1.[11] Related 2D systems with
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rotating hexamers;[12,13] rotating
rhombi,[14] triangles,[15] and prisms,[16] also
give rise to negative Poisson’s ratio. Related
structures with hinged components can
exhibit negative Poisson’s ratio and zero
bulk modulus, with arbitrarily large volu-
metric strain.[17]

It had been suggested in view of the
original foams that a coarse cell structure is
needed to control the Poisson’s ratio[18] and
that moments carried by the structural
elements constitute a hidden state variable
that gives rise to a negative Poisson’s ratio.
Indeed many such materials do have cells of large size. However
theories that incorporate distributed moments, as presented
below, allow the same range of Poisson’s ratio as in classical
elasticity.[19] Negative Poisson’s ratio is known to occur in
materials in the vicinity of a phase transformation. These
materials have fine scale structure; they constitute a counterex-
ample to the suggestion that a coarse structure is necessary.
Further details on causes of negative Poisson’s ratio are provided
elsewhere.[20]

A 3D structure of cubes connected by ideal hinges or pivots
was found to exhibit anisotropic negative Poisson’s ratio.[21] It is
also of interest because it does not obey classical elasticity.
Stretching of the lattice causes tilting of the cubes at the hinges.
Void space appears in the structure so there is a volume change.
The structure expands laterally under tension so there is a
negative Poisson’s ratio. The symmetry at first sight appears to
be cubic; orthotropic anisotropy arises from the connectivity of
the hinges. Young’s modulus is zero but Poisson’s ratio depends
on direction. If the hinges are ideal, the structure has zero
resistance to axial stretching but is rigid with respect to torsion
and bending. In a classical solid, the same Young’s modulus that
governs tensionmust also apply to bending. Classical elasticity is
insensitive to gradients in strain such as those in bending. Such
extreme sensitivity to strain gradients may be interpreted in the
context of Cosserat elasticity, a generalized continuum theory of
elasticity which allows sensitivity to strain gradients.

The Cosserat theory of elasticity[22,23] is a continuum theory
that incorporates local rotation of points as well as displacement
of points. Micropolar elasticity[24] incorporates an inertia term
that affects wave propagation. The stress σij (force per unit area)
can be asymmetric. The resulting distributed moment from this
asymmetry is balanced by a couple stress mij (a torque per unit
area). The antisymmetric part of the stress is related to rotations
colorblue of points: σ

antisym
ij ¼ κeijk rk � ϕk

� �
in which κ is an

elastic constant, ϕk is the rotation of points, calledmicro-rotation,
eijk is the permutation symbol, and rk ¼ 1

2 eklmuml is “macro”
rotation based on the antisymmetric part of gradient of
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Figure 1. Lattice structure, oblique view. Scale bar, foreground, 10mm.

www.advancedsciencenews.com www.pss-b.com
displacement ui. The constitutive equations[24] for linear
isotropic Cosserat elasticity are:

σij ¼ 2Geij þ λekkδij þ κeijk rk � ϕk
� � ð1Þ

mij ¼ αϕk;kδij þ βϕi;j þ γϕj;i ð2Þ

The usual Einstein summation convention for repeated
indices is used. The comma indicates partial differentiation. The
six isotropic Cosserat elastic constants are expressed as the
following technical constants which are helpful for physical
insight. Here, λ is a Lam�e constant from elasticity theory. The
range of Poisson’s ratio is the same in Cosserat solids as in
classical solids.

Young0s modulus E ¼ G 3λþ 2Gð Þ
λþ G

ð3Þ

Shear modulus G ð4Þ

Poisson0s ratio ν ¼ λ

2 λþGð Þ ð5Þ

Characteristic length; torsion ℓt ¼
ffiffiffiffiffiffiffiffiffiffiffi
βþ γ

2G

r
ð6Þ

Characteristic length; bending ℓb ¼
ffiffiffiffiffiffi
γ

4G

r
ð7Þ

Coupling number N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ

2Gþ κ

r
ð8Þ

Polar ratio Ψ ¼ βþ γ

αþ βþ γ
ð9Þ

Specific nonclassical effects include size effects in which
slender bars in torsion[25] or bending appear to have higher
moduli than thicker ones, and reduction in the concentration of
stress or strain around holes or other heterogeneities.

The characteristic lengths govern the size scale at which
nonclassical effects may be expected. The coupling number
governs the magnitude of the effects.

If the material is anisotropic, these constants can be
interpreted as technical constants with direction dependence
as is done in classical elasticity. Specifically, one can determine
Young’s modulus E and Poisson’s ratio v in different directions
without using the classical tensorial constants Cijkl. Similarly in
the Cosserat case one can infer constants based on measure-
ments with strain gradients in different directions.

Cosserat elastic constants can be determined from size
dependence of rigidity in torsion and bending.[25] Such
Phys. Status Solidi B 2019, 256, 1800512 1800512 (
experiments disclosed purely classical behavior in aluminum[26]

and also in a particulate composite containing aluminum beads
in an epoxy matrix.[25] Cosserat effects were observed in a dense
closed cell foam[27] and in low density negative Poisson’s ratio
foam.[28] Cosserat effects were observed in in a two-dimensional
circular cell polymer honeycomb[29] and in a 2D lattice[30]

originally developed to exhibit chirality and a Poisson’s ratio
�1.[5] Strong Cosserat effects were observed in a lattice[31]

designed to manifest such behavior.
Structures with ideal hinges are of conceptual interest but

they are not so easy to fabricate. In particular they cannot be
made by 3D printing. In the present study, we fabricate and study
a flexible structure made of cubes connected by deformable links
at their corners. This structure is similar in geometry to a hinged
lattice studied theoretically;[21] the deformable links are non-ideal
hinges. In the present research, Poisson’s ratio and sensitivity to
gradients are determined experimentally for the flexible cube
structure.
2. Experimental Section

The lattice structure (Figure 1) is comprised of cubes of side
length a ¼ 6mm connected by flexible links 1mm long at the
corners. Figure 2 shows the detailed structure of the link
elements. Preliminary trials were done using different link
lengths. The thickness of the links was limited by the resolution
of the 3D printer. The cubes were provided with a slight tilt to
prevent contact between them during compression. The lattices
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 6)
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Figure 2. Lattice structure, close up view. Scale bar, 5mm.

www.advancedsciencenews.com www.pss-b.com
were physically embodied using a 3D Systems sPro 60 HS-HD
selective laser sintering 3D printer. The parent material was a
polyamide stated to be equivalent to nylon 12. Lattices of
different size were made to enable size effect measurements.
Each lattice was cemented to metal end pieces to provide
appropriate end conditions. The specimen length was three
times the width. That aspect ratio was considered sufficient to
minimize end effects according to Saint Venant’s principle.
Indeed,[32] if Poisson’s ratio is not extreme, an aspect ratio of one
to one suffices to limit the error to about 3%. The width in the
transverse directions was the same. In any case, use of the same
aspect ratio for each size specimen implies the role of end effects
is independent of specimen size. The longitudinal axis is defined
as a center line in the long direction of the specimen.

Specimens were 3, 4, 6, and 8 cubes in width. A specimen 10
cubes in width was also made but difficulties in the 3D printing
process rendered it unusable. Due to the connectivity of the
alternating link structure, specimens fewer than 3 cubes in
width did not have sufficientmechanical integrity to be included.

Compression tests were done to determine Young’s modulus
in the absence of imposed gradients. Poisson’s ratio was
determined from compression testing by measuring transverse
M ¼ 4
21

G
a
2

� �4
θ
1796þ 126 449þ 2740�ℓ2 þ 3960�ℓ4

� �
�ℓ
2 þ 693 152þ 2280�ℓ2 þ 6615�ℓ4

� �
�ℓ
2
b

8 19þ 465�ℓ2 þ 990�ℓ4
� �

þ 1485 6þ 49�ℓ2
� �

�ℓ
2
b

ð11Þ
deformation via digital photography and via a micrometer.
Torsional and bending rigidities for each specimen were

measured using broadband viscoelastic spectrometry (BVS). The
BVS makes use of a pair of orthogonal Helmholtz coils to
generate a torque upon a magnet at the free end. Bending or
torsion can be achieved depending on which coil is excited by an
electric current of knownmagnitude. Themethod allows torsion
Phys. Status Solidi B 2019, 256, 1800512 1800512 (
and pure bending tests to be conducted on the same specimen.
Themagnetic field acts upon a high intensity permanent magnet
attached to the specimen’s end piece via a ceramic stalk. The
torque M is given by the cross product M ¼ μ� B in which m is
the magnetization vector of the magnet and B is the magnetic
field imposed by the Helmholtz coil. Torque was calculated from
the voltage across a 1Ω resistor in series with each coil. Torque
sensitivity was calibrated via measurements on the well
characterized 6061 aluminum alloy.

Deformation of each specimen was measured frommotion of
a laser beam reflected from a mirror cemented to the magnet
attached to the bottom of the specimen or to the bottom end
piece of each specimen. colorblue The top end was fixed.
Mounting mirrors on the end piece was done for the larger
specimens to eliminate possible error from compliance of the
ceramic stalk. A position sensitive silicon light detector was used
to convert either horizontal or vertical displacement of the laser
beam to a change in voltage. Vertical displacements correspond
to bending and horizontal displacements correspond to torsion.
The light detector was calibrated via motion from precision
vertical and horizontal translation stages.

The input signal was a sinusoidal signal with a frequency of
1Hz from an SRSModel DS345 function generator. A frequency
of 1Hz is well below any resonant frequencies so a quasi-static
interpretation is appropriate. The same frequency was used for
all tests, so viscoelastic effects are decoupled from size effects.
2.1. Analysis and Interpretation

Simple compression, in which there are no imposed gradients,
reveals Young’s modulus E and Poisson’s ratio ν. For analyzing
and interpreting torsion and bending data, analytical solutions
for square cross sections of isotropic Cosserat solids were used.
Size effects are quantified by Ω as the ratio of structural rigidity
to its classical counterpart.

For torsion of a square cross section Cosserat elastic bar of
width 2a, the twisting moment M is as follows, with θ as the
angular displacement per length. For a classically elastic solid,

M ¼ 898
399

Ga4θ ð10Þ

The structural rigidity is M
θ .

For a Cosserat solid when κ ! 1, corresponding to N ¼ 1,
the total torque M[33] simplifies to
in which �ℓ ¼ 2ℓt=a, �ℓb ¼ 2ℓb=a. The ratio of Cosserat rigidity to
classical rigidity is defined as Ω, called the rigidity ratio or
relative stiffness. This solution is superior in the regime of
strong coupling or for β=γ < 0, to that of ref. [34], which
overestimates the effects for largeN approaching or equal to 1. In
the present experiments the shear modulus G is obtained from
the asymptotic rigidity as width becomes large. The
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 6)
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Figure 3. Torsion size effects. The solid curve is theoretical for
G¼ 2.5MPa, ℓt ¼ 5:2mm, and N¼ 1. Classical elasticity predicts Ω
independent of width as illustrated by the horizontal dashed line. The
smallest specimen was 3 cubes across; the largest was 8 cubes across, for
all tests.

Figure 4. Torsion size effects after 90� rotation about the longitudinal
axis. The solid curve is theoretical for G¼ 2.4MPa, ℓt ¼ 5:4 mm, and
N¼ 1. Classical elasticity predicts Ω independent of width as illustrated
by the horizontal dashed line.
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characteristic length ℓt is obtained from the increase in torsion
relative stiffness Ω as width becomes small. Equation (11)
contains ℓb but the rigidity is very weakly dependent on ℓb. If
N < 1 and Ψ is not too far from its upper limit 1.5, the plot of Ω
vs. width 2a levels off for small width. That is not seen in the
present experiments. Torsion experiments reveal Ψ only if
N < 1.

For bending of a rectangular bar of width 2a, the rigidity ratio
(relative stiffness) depends on the bending characteristic length
ℓb and the Poisson’s ratio.[35] If β=γ ¼ � ν, the rigidity ratio is
Ω ¼ M

1=R
1
EI, with M as moment, I as moment of inertia of the

cross section and R as radius of curvature,

Ω ¼ 1þ 24 ℓb=2að Þ 2 1� νð Þ� � ð12Þ

For arbitrary values of Poisson’s ratio, the rigidity ratio is, (to
fourth order in ℓb=2a),

Ω ¼ ½1þ 24
1þ 2 β

γ νþ ν2

1þ ν

ℓb

2a

	 
2

� 480
β

γ
þν

	 
2 44� 38νþ 3N2 1� νð Þ 13� 9νð Þ
N2 1þ νð Þ 22� 19νð Þ

ℓb

2a

	 
4

�

ð13Þ

In the experiments the Young’smodulus E and Poisson’s ratio
v were obtained obtained from compression tests. The
characteristic length ℓb was obtained from the increase in
bending relative stiffness Ω as width becomes small. N and β=γ
were obtained from the detailed shape of the curve.
Figure 5. Bending size effects. The solid curve is theoretical for
E¼ 0.91MPa, ℓb ¼ 8:5mm, and N¼ 0.21; β=γ ¼ 0:6. Classical elasticity
predicts Ω ¼ 1 independent of width as illustrated by the horizontal
dashed line.
3. Results and Discussion

The average density for these structures was 0.47 g/cc. Poisson’s
ratio v obtained from compression was �0.54 and �0.75 in two
orthogonal transverse directions; Young’s modulus E in the
Phys. Status Solidi B 2019, 256, 1800512 1800512 (
longitudinal direction was 0.91MPa. As with the cube structure
with ideal hinges,[21] orthotropic anisotropy arises from the
connectivity of the flexible hinge-like links.

Results of torsionsizeeffect studiesareshowninFigure3and4.
The specimen was rotated 90� about its longitudinal axis between
these tests. Such a rotation changes the direction of strain gradient
in bending but not in torsion. It is entirely distinct from the small
rotations, less than 1�, of the free end during testing. There is
minimal difference in the elastic constants obtained from the two
experimentsas isexpected: the torquewas in thesamedirectionfor
both and the same strain gradients apply. The goodness of fit was
R2 ¼ 0:94 for 0� rotation andR2 ¼ 0:91 for 90� rotation. Curvefits
based on Equation (11) involve both ℓt and ℓb. Because rigidity is
strongly dependent on ℓt but very weakly dependent on ℓb, the
value ofℓb from the fit is not sufficiently precise to bemeaningful.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4 of 6)
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Figure 6. Bending size effects after 90� rotation about the longitudinal
axis. The solid curve is theoretical for E¼ 0.91MPa, ℓb ¼ 4:7 mm, and
N¼ 0.99; β=γ ¼ 0:8. Classical elasticity predicts Ω ¼ 1 independent of
width as illustrated by the horizontal dashed line.
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We remark that an initial value of ℓb was input from the bending
tests as 8.5 and 4.7mm, respectively. Thefitting for torsion did not
alter these initial values.

For bending, rotation of the specimen about its longitudinal
axis makes a difference in the pertinent component of
deformation gradient as indicated by the difference in Ω and
in ℓb in Figure 5 and 6. The goodness of fit was R2 ¼ 0:94 for 0�

rotation and R2 ¼ 0:95 for 90� rotation about the longitudinal
axis. The Young’s modulus E was obtained from compression
experiments. By contrast to a similar structure with ideal hinges,
the Young’s modulus does not vanish. The characteristic lengths
differ as is expected from the anisotropic nature of the structure.
The Cosserat anisotropy differs from classical anisotropy in that
for bending, the stress is in the longitudinal direction for both
orientations. Only the gradient in stress depends on rotation
about the longitudinal axis.

A summary of the elastic constants of the cube structure is as
follows. G¼ 2.45MPa, ℓt ¼ 5:3mm, and N¼ 1 for torsion;
E¼ 0.91MPa, ν1 ¼ �0:54, ν2 ¼ �0:75; ℓb1 ¼ 8:5mm, and
N1 ¼ 0:21; ℓb2 ¼ 4:7mm, and N2 ¼ 0:21. For comparison with
the characteristic lengths, the cube width was 6mm. Because the
lattice is anisotropic, one does not expect the isotropic
interrelations among the elastic constants to apply.

Bending in the direction shown in Figure 5 revealed the
largest magnitude of size effects in this series. By contrast to a
similar cube structure with ideal hinges,[21] the present cube
structure, which has flexible hinge-like ligaments, does not have
a zero value of Young’s modulus E in tension/compression. The
zero E in the ideal hinged cube structure[21] combined with
rigidity in torsion and bending imply Cosserat characteristic
lengths that tend to infinity. In the present cube structure the
cubes are linked with flexible ligaments that, in contrast with
perfect hinges, have a nonzero resistance to rotation; they also
have a finite resistance to translation. As a result, the Cosserat
effects are of finite magnitude. In a related vein, a 3-D printed
material[36] inspired by an ideal structure of hinged rotating
Phys. Status Solidi B 2019, 256, 1800512 1800512 (
squares[11] exhibited a Poisson’s ratio of�0.8 in comparison with
�1 for the ideal hinged structure.

Cosserat size effects in the present lattice were of modest
magnitude compared with those in a prior triangular cell lattice[31]

designed for strong effects. The torsional characteristic length,
5.3mm, is somewhat smaller than the cube width, 6mm. The
maximum torsional size effect, less than a factor of 2.5, was
considerablysmaller thanthefactor35observed inthe triangularcell
lattice.[31]One reason is that thepresent lattice required at least three
cubes in the transversedirectionof the smallest specimen toprovide
a unit cell in view of the alternating structure of the ligaments. It is
also a different structure. In bending the characteristic length in one
direction was larger than in the other but the maximum size effect
was less than a factor of 4, again inpart as a result of the unit cell size
and in part from the structural geometry.

Idealized hinged structures are of interest in part because
visualization and analysis are facilitated. Ideal hinges are not so
easy to fabricate, particularly in lattices for which many hinges
are desired. Flexible hinge-like ligaments resist rotation and have
compliance to compression and shear, unlike ideal hinges which
freely rotate and are rigid to compression and shear. Flexible
ligaments therefore capture only a portion of the intended
behavior, both in classical and in Cosserat elasticity.
4. Conclusions

A lattice structure consisting of pivoting cubes with flexible links
at the corners is made by 3D printing and studied experimen-
tally. Poisson’s ratio is negative and anisotropic. Size effects
occur in torsion and bending; these effects are consistent with
Cosserat elasticity but not with classical elasticity. The Cosserat
effects also reveal anisotropy.
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