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A B S T R A C T   

The Turing reaction-diffusion model and the French Flag Model are widely accepted in the field of development 
as the best models for explaining embryogenesis. Virtually all current attempts to understand cell differentiation 
in embryos begin and end with the assumption that some combination of these two models works. The result may 
become a bias in embryogenesis in assuming the problem has been solved by these two-chemical substance-based 
models. Neither model is applied consistently. We review the differences between the French Flag, Turing 
reaction-diffusion model, and a mechanochemical model called the differentiation wave/cell state splitter model. 
The cytoskeletal cell state splitter and the embryonic differentiation waves was first proposed in 1987 as a 
combined physics and chemistry model for cell differentiation in embryos, based on empirical observations on 
urodele amphibian embryos. We hope that the development of theory can be advanced and observations relevant 
to distinguishing the embryonic differentiation wave model from the French Flag model and reaction-diffusion 
equations will be taken up by experimentalists. Experimentalists rely on mathematical biologists for theory, and 
therefore depend on them for what parameters they choose to measure and ignore. Therefore, mathematical 
biologists need to fully understand the distinctions between these three models.   

1. Introduction 

Models allow us to consider and explore how a phenomenon occurs. 
The Turing reaction-diffusion model and the French Flag Model are 
widely accepted in the field of development as the best models for 
explaining embryogenesis. Since 1952, the model of choice has been 
Alan Turing’s reaction-diffusion driven instability (Turing, 1952). Lewis 
Wolpert introduced the French Flag model in 1968 (Wolpert, 1968) and 
elaborated it into the concept of positional information in 1969 (Wol
pert, 1969). Virtually all attempts to understand cell differentiation in 
embryos begin and end with some combination of these two models. 
However, the result may become a bias in embryogenesis by assuming 
that the problem has been solved by these chemical substance-based 
models even when the models have clearly failed (Chhabra et al., 2019). 

In addition to the Turing reaction-diffusion model and the French 
Flag Model, there have also been physico-chemical models (or mecha
nochemical models). The problem of tissue folding (morphogenesis 

without considering causes of cell differentiation) had been analyzed as 
a problem in laminate mechanics since at least Wilhelm His in 1874 
(Gordon, 1999; His, 1874, 1888). These alternative models have been 
proposed and developed for embryogenesis (Brodland, 2011; Fletcher 
et al., 2017; Gordon and Brodland, 1987; Nikolopoulou et al., 2017) but 
largely ignored by biologists. Why is this so? In 1924, the biological 
science community saw a double embryo resulted experimentally 
(Spemann and Mangold, 1924, 2001) (Fig. 1). The dorsal lip of the 
blastopore was called the “organization center” or “organiser” because it 
seemed to have the ability to organize, or induce an entire new sec
ondary embryo from the surrounding tissue of the host. Many substances 
were then tested for the ability to induce. Biologists tried substances as 
diverse as fish liver (positive result) and banana peels (no effect), 
reviewed in (Gordon, 1999). The astonishing variety of substances that 
could act as inducers clearly implicated physico-chemical causes. 
However, any analysis of physico-chemical model would have required 
nonlinear multiphysics finite element and computing capabilities which 
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simply did not exist at that time. 
Such research has just begun (Brodland, 2011, 2015; Brodland et al., 

2010; Crawford-Young et al., 2018; Fletcher et al., 2017; Gleghorn et al., 
2013; Lu et al., 2015; Nikolopoulou et al., 2017). Partially because of the 
bias against physico-chemcial models, virtually all model of embryo cell 
differentiation assume diffusing molecules acting as morphogens. No 
‘physico-chemical’ model was proposed until Gordon and Brodland in 
1987 (Gordon and Brodland, 1987). Their differentiation wave/cell 
state splitter model is considered as a mechanochemical model and 
represents a radical departure back to what was considered the insoluble 
approach. The result is that very few scientists are even aware that a 
mechanochemical model of development exists even as their results 
make them demand a new model (Chhabra et al., 2019). 

It used to take supercomputers to work out the consequences of 
models of morphogenesis (Hunding, 1991, 1993; Hunding et al., 1990). 
However, with the increase in speed of computers by factors of 104 to 
108 since 1990, following Moore’s Law (Colleaga, 2019; Moore, 1965; 
Sneed, 2015), computational morphogenesis proceeds apace (Igamber
diev et al., 2018). 

In this mini-review paper, we explain the fundamental differences 
between the French flag gradient model, the Turing reaction-diffusion 
model, and the differentiation wave/cell state splitter model (Gordon 
and Gordon, 2016a, b; Gordon, 1999) so that the distinctions between 
these three models can be understood. It has been suggested that these 
concepts may not be clear to the mathematical biology community. For 
instance, Fig. 1E in Chen and Zou (2019), showing a morphogen 
gradient in the context of the French flag model of embryogenesis, was 
incorrectly cited as being from the book Embryogenesis Explained by 
Gordon and Gordon (2016a) who do not accept the idea that gradients 
direct embryogenesis. Rather Gordon and Gordon regard gradients as an 

epiphenomenon produced in the wake of mechanochemical differenti
ation waves. We hope that this paper can make mathematical biologists 
pay more attention to the existence and development of ‘physico-
chemical’ models in the study of embryogenesis. Eventually, the 
development of theory can be advanced. Moreover, we hope that ex
perimentalists will take up those observations relevant to distinguishing 
the embryonic differentiation wave model from the French Flag model 
and reaction-diffusion equations. 

2. The Turing reaction-diffusion model 

The history of the idea of gradients in morphogenesis was reviewed 
by Charles Child (1941), and goes back at least to Theodor Boveri in 
1901 (Boveri, 1901). A gradient was regarded as a monotonic function 
along a single direction, such as CðxÞ. In 1952 Alan Turing coined the 
word morphogen for molecules in spatiotemporally oscillating (some
times) concentration gradients generated by at least two interacting 
kinds of molecules with different diffusion coefficients (Turing, 1952) 
(Fig. 2). A Turing gradient is a vector field Tm(rn,t) whose m components 
are concentrations of m � 2 chemically interacting substances in a 
Euclidean space r of n dimensions, and t is time. In the Turing 
reaction-diffusion (RD) model, because some solutions are spatially 
periodic, positional information cannot be defined uniquely, i.e., there 
may be no one-to-one mapping between concentration of a given sub
stance and coordinate along a given direction. Nevertheless, Turing did 
assume that a cell changes kind by reading and responding to the local 
concentration of at least one of the two or more morphogens, resulting in 
a periodic pattern of cell differentiation. 

Turing’s RD model has received increasing attention for tissue 
pattern formation and has been extended by Gierer, Meinhardt and 

Fig. 1. Transplantation of the dorsal lip of the blastopore from (A) the embryo of one light colored species of salamander to (B) an embryo of a darkly pigmented 
species resulted in two neural plates consisting of cells from the host, which further developed into conjoined twins, from (Twitty, 1966) (Gordon and Gordon, 
2016b) with permission of Macmillan Education. 

N.K. Gordon et al.                                                                                                                                                                                                                              



BioSystems 196 (2020) 104169

3

others (Gierer and Meinhardt, 1972; Kondo and Miura, 2010). For 
instance, within the framework of Turing RD model, Gierer and Mein
hardt provided several important advances (Gierer and Meinhardt, 
1972). First, they explicitly pointed out that the primary patterns of 
morphogens can be generated with only a two-component system 
including a short-range activation and a long-range inhibition. And 
Gierer and Meinhardt also found that there are only two possible re
alizations of the required two components: the activator/inhibitor sys
tem and the substrate-depletion model (Gierer and Meinhardt, 1972; 
Murray, 2011, 2013). Moreover, incorporating realistic nonlinear re
action kinetics and pre-patterng that are often found in developing 
systems, the Gierer-Meinhardt models obtained robust observed pat
terns that scale with growing tissue size (Gierer and Meinhardt, 1972). 
Therefore, although it is difficult to apply the original Turing RD model 
directly to complex living systems, it has been shown that the general 
principles underlying the Turing pattern formation may apply to a broad 
range of real situations (Kondo and Miura, 2010; Roth, 2011). None
theless, Gierer and Meinhardt (1972) remains an elaboration of the 
Turing model with the same limitations for explaining morphogenesis. 

It is worthwhile to point out that the word “morphogen” has come 
into use for any chemical gradients presumed to be related to morpho
genesis. Currently, morphogens are considered to be secreted signaling 
molecules that (i) are generated in a restricted part of a tissue, (ii) are 
transported by various mechanisms, such as diffusion, motor molecules 
on cytoskeleton, active transport, and relay mechanisms, to the 
remainder of the tissue, either through the cells and their junctions or 
extracellularly, (iii) bind to regulatory regions of DNA or specific re
ceptors, and (iv) initiate an intracellular signal transduction that impacts 
the expression of target genes in a concentration-dependent manner 
(Umulis and Othmer, 2015). The Turing reaction-diffusion model does 
not require a source and a sink (Othmer and Pate, 1980) because each 
cell is a source and sink. This may be why so many biologists invoking 
French flag model gradient in morphogenesis, which grew out of Turing 
reaction-diffusion model, generally ignore the need for both sources and 
sinks over a whole tissue. 

3. The French Flag model 

The French flag model was first proposed by Lewis Wolpert in the 
1960s as a way to explain morphogenesis (Wolpert, 1968). What Wol
pert added to the monotonic gradient idea is that cell differentiation 
depends on such gradients in a quantitative fashion, i.e., he introduced 
the idea that a cell can figure out its coordinates in an embryo based on 
local concentrations of morphogens and act upon them (Wolpert, 1969, 

1996, 2000) (Fig. 3). These coordinates thus provide the cell what he 
called “positional information” (Wolpert, 1969). The two-gradient the
ory of Leopold von Ubisch (von Ubisch, 1936, 1938, 1952) may have 
anticipated Wolpert’s theory (Marí-Beffa and Knight, 2005). 

Thus, in effect Wolpert combined the earlier idea of a monotonic 
gradient with Turing’s concept of cells differentiating in response to a 
morphogen gradient, to create a one-to-one mapping of a gradient in one 
direction along one of the three Euclidean orthogonal coordinates: (head 
to tail, dorsal to ventral, left to right). Note that warping of these three 
axes by tissue movements was not considered, which is best handled by 
Lagrangian rather than Euclidean continuum mechanics (Jacobson and 
Gordon, 1976). Unless diffusion in tissues is anisotropic, the distortions 
of tissues by movements would also change the directions of each pur
ported gradient relative to a given cell in them, so that they could cease 
to be orthogonal. 

The actual French flag has three colored stripes of equal widths 
(basically a one-dimensional pattern), each taken as analogous to a 
specific differentiated cell type. It thus concerns itself with only one axis 
of the embryo or developing tissue (as, for example, localized develop
ment of a limb (Delgado and Torres, 2016, 2017)). In the French flag 
gradient model each cell measures the local morphogen concentration 
between a lower and an upper threshold. We can designate these 
threshold intervals in one direction as ðmi;miþ1Þ; i ¼ 0;…;n 1, where 
n ¼ 3 for a tripartite flag pattern. Positional information is thus a 
“rounding” to the discrete “step” ðmi; miþ1Þ, and determines which cell 
type that cells in morphogen concentration interval i are supposed to 
become. Each cell effectively uses its rounded coordinate in a lookup 
table (Proposition 33 in (Gordon, 1999)) stored in the DNA and responds 
with the correct, discrete gene expression pattern for that cell type 
(Wolpert, 1969). 

There is no question that concentration gradients do exist in embryos 
and other developing systems. As we shall discuss here, the major 
question is whether these are causes or effects of the patterning mech
anism. The best-known example is the maternal bicoid gradient in 
Drosophila (Ephrussi and St Johnston, 2004; Struhl et al., 1989) which 
has been the subject of many models (Coppey et al., 2007; Grimm et al., 
2010; Kavousanakis et al., 2010; Lipshitz, 2009; Little et al., 2011; Wu 
et al., 2007; Xie and Hu, 2016). Given the observation of gradients of 
transcription factors, it became common for embryologists and molec
ular biologists to speak of a “morphogen gradient” across a tissue, with 
mathematical biologists providing general models (Dalessi et al., 2012; 
Kerszberg and Changeux, 1994; Lei and Song, 2010; MacWilliams and 
Papageorgiou, 1978; Papageorgiou, 1980; Shvartsman and Baker, 
2012). The morphogen is released from a site of “induction” and 
spreads, creating a gradient of morphogens across a tissue. It also re
quires a sink, either degradation en route or at the opposite boundary, to 
reach steady state (Chaplain and Stuart, 1991; Conway, 1993; Shostak, 
1973; Srinivasan et al., 2002; Zinski et al., 2017), or both. Regeneration 
of amphibian limbs has been interpreted as providing evidence that cells 
have positional values (Kumar et al., 2007; Pescitelli and Stocum, 1981). 

Some of supporting evidence for the French flag model and the po
sitional information theory is from the patterning and the regeneration 
experiments in Drosophila and other model systems. There are a number 
of other experimental observations or measurements to provide evi
dence for the hypothesis that cells have positional values upon which the 
French flag model and the positional information model were built. A 
review paper by Wolpert (2011) listed some of them including the 
anterior-posterior patterning of the Drosophila wing imaginal disc via 
morphogen Decapentaplegic (Dpp), the dorso-ventral patterning of the 
vertebrate neural tube, gradients in the early Xenopus embryo, and 
pattern formation of the developing zebrafish embryo. For example, in 
the Drosophila wing imaginal disc Dpp is secreted at a strip near the 
anterior-posterior compartment boundary and considered as a 
long-range morphogen to control patterning and growth through 
forming a concentration gradient across the wing disc (Tabata and 
Takei, 2004). In the ventral neural tube Sonic hedgehog probably 

Fig. 2. Schematic drawing of a one-dimensional Turing pattern using two 
morphogens and 20 cells in a line (Schweisguth and Corson, 2019), with 
permission of Elsevier. The dashed line is an unstable solution to the equations. 
Note that Alan Turing himself used periodic boundary conditions (Gordon, 
2016; Turing, 1952), which emphasizes that he did not require sources or sinks 
at the ends. 
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provides a signal gradient (Dessaud et al., 2010); BMP4, which acts as a 
morphogen in the early Xenopus embryo, is believed to pattern the 
dorso-ventral (DV) mesoderm and neuroectoderm in a 
concentration-dependent manner (Niehrs, 2010). Moreover, in the 
zebrafish embryo, it is thought that molecules of the nodal family form a 
morphogen gradient that guides pattern formation. Cells experiencing 
high levels of nodal signaling develop into mesoderm while cells become 
ectoderm when they sense low concentrations of nodal signaling (Har
vey and Smith, 2009). 

The French flag model has received quite a bit of theoretical atten
tion, including attempts to achieve the same pattern by other mecha
nisms (Aguilar-Hidalgo et al., 2015; Bakowska et al., 1982; Benazet and 
Zeller, 2009; Bowers, 2005; Chavoya et al., 2010a, 2010b; Chavoya and 
Duthen, 2007, 2008; Denetclaw and Ordahl, 2000; Devert et al., 2011; 
Gunji and Ono, 2012; Herman, 1972; Herman and Liu, 1973; Hill
enbrand et al., 2016; Jaeger, 2009; Jaeger and Reinitz, 2006; Joa
chimczak and Wrobel, 2012; Knabe et al., 2010; Lindenmayer and 
Rozenberg, 1972; Liu et al., 2005; Lynn and Tucker, 1976; Miller, 2003, 
2004; Miller and Banzhaf, 2003; Othmer and Pate, 1980; Pecze, 2018; 
Pont et al., 2016; Quininao et al., 2015; Sarr et al., 2014; Sinner et al., 
2015; Sutantyo et al., 2016; Tautu, 1975; Wolpert, 1968, 1969, 1970; 
Wolpert et al., 2019; Woolley et al., 2011; Xiong et al., 2013; Xu et al., 
2012; Zadorin et al., 2017). It, together with morphogen gradients, has 
become the accepted model of embryogenesis, widely mentioned in 
textbooks and monographs across many disciplines (Arthur, 1987, 1988; 
Baltimore, 2002; Chauvet, 1996; Furcht and Hoffman, 2008; Gray and 
Williams, 1989; Heming, 2003; Ho and Saunders, 1984; Luo et al., 1997; 
Marí-Beffa and Knight, 2005; Nadel, 2003; Ord and Stocken, 1998; 
Purves and Lichtman, 1985; Rose, 1998, 2005; Saunders, 1982; Smith 
and Wood, 1992; Smith and Szathmary, 2000), with only a few 
expressing any doubts (Held, 1992; van der Wal et al., 1997). It has even 
been discussed in at least one newspaper (Anonymous, 2000) and has 
penetrated the public via popular books (Carroll, 2005; Wolpert, 1991). 
“Despite a huge literature on morphogens, even Lewis Wolpert, who 
coined the phrase in 1969 (Wolpert, 1969), has expressed doubts about 
the reality of positional information (Kerszberg and Wolpert, 2007; 
Wolpert, 2011)” (Gordon and Gordon, 2016a). 

This widespread acceptance of the French Flag Model grew out of a 
confluence of factors. First, classical embryology was originally taught 

as a subset of anatomy with heavy emphasis on the four-dimensional 
nature of the embryo. The embryo begins as a single cell and trans
forms over time into many cell types in somewhat precisely replicated 
positions and forms, which had to memorized. Unlike studying the 
anatomy of an adult where an organ such as the heart is fully formed and 
can always be found in the same position, in an embryo everything 
constantly changes with time. The result is a tendency to look at an 
embryo at one point in time and ignore the rest of development either 
before or after that point, particularly if that point in time contains a 
measurable gradient of something to which subsequent development 
can be attributed. This attitude was further reinforced by a dramatic 
switch in embryology when the classical anatomical approach was 
largely replaced by the molecular biology approach. Classical anatom
ical embryology is no longer widely taught outside of medicine and 
engineering (Gordon, 2013; Gordon and Melvin, 2003). The entire field 
of molecular developmental biology is based on the premise that since 
different cell types express different subsets of genes, everything should 
be understandable by figuring out the gene networks and gene expres
sion patterns, with the implicit assumption that mathematical biologists 
have justified this approach. In 1970 Francis Crick showed that diffusion 
gradients could be established on the time scale of embryogenesis in a 
Nature paper that at the time of this writing has 618 citations (Crick, 
1970). The subsequent discovery of gene gradients that he called for 
seemed to prove the idea that something creates gradients which creates 
changes in gene expression in a causal, gradient-based manner. Due to 
lack of a better model, the French flag gradient model has persisted. 

There are still unsettled central issues with the morphogen gradient 
model, the positional information model and the French flag model, 
despite their popularity. Still under investigation or under debate are 
how positional information is set up, how it is recorded, and then how it 
is interpreted by the cells (Wolpert, 2011). Limited information exists on 
how gradients are formed. The diffusive mechanism, coupled with the 
uptake by cell-surface receptors and subsequent degradation, is 
considered as the most plausible explanation for how morphogen gra
dients are generated at the level of the DNA (Lander et al., 2002). 
However, whenever doubts about the functioning of these so-called 
“morphogen” gradients have been raised (including by Wolpert 
(Beloussov and Gordon, 2018; Kerszberg and Wolpert, 2007; Richardson 
and Wolpert, 2009; Wolpert, 2011; Wolpert, 2017)), alternatives, 

Fig. 3. “Three models for the generation of gradients of molecules presumed to be ‘morphogens’, i.e., molecules that cells hypothetically use to decide, according to 
the concentration of the morphogen, whether or not to differentiate. a) Diffusion through the extracellular space. b) Planar transcytosis. c) Displacement during 
growth” (Gordon and Gordon, 2016a). From (Tabata, 2001) with permission of Springer Nature. 
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elaborations, and transport mechanisms other than simple diffusion are 
proposed including endocytosis and transcytosis or even anthropomor
phic concepts like “bucket brigades” (Chen and Zou, 2019). Second, in 
spite of the popularity of the model, these concepts remain unproven 
even though gradients undoubtedly exist. Numerous molecules have 
been proposed to be morphogens (Hiscock and Megason, 2015; Nüs
slein-Volhard and Wieschaus, 1980). As new biologically active mole
cules are discovered, they are often added to the list (Inui et al., 2012) 
and then later sometimes removed (Franceschi, 1992). There is no good 
evidence for the quantitative analysis of any reported gradients, and 
there is no molecular basis of the positional values available in any 
system (Wolpert, 2011). Furthermore, mechanistic issues were raised 
with the idea that a signaling gradient specifies differential gene 
expression in a concentration-dependent manner which involves 
threshold and temporal effects (Wolpert, 2011). Therefore, although 
there exist diverse proposed mechanisms and models for 
morphogen-mediated patterning, lack of quantitative measurement of 
gradients and limited knowledge on how gradients are built and 
explained remain a consistent problem. 

There are further problems with the French flag gradient model 
(Gordon and Gordon, 2016a):  

1. The speed of development may not permit steady state to be reached 
(Berezhkovskii et al., 2011; Bergmann et al., 2007; de Lachapelle and 
Bergmann, 2010a; Yin et al., 2013). This is sometimes considered an 
advantage in cases where the steady state could not possibly lead to 
the correct morphology. So we have a steady state invoked except 
when we don’t want it (Bergmann et al., 2008; Saunders and 
Howard, 2009). In any case, the rate of development varies sub
stantially with temperature over a species’ temperature range for 
normal development (Bachmann, 1969; Duellman and Trueb, 1986; 
Volpe, 1957). This would have to be matched to the temperature 
dependence of diffusion of the molecule (Cussler, 2009) which is 
itself dependent on the temperature variation of the viscosity of the 
medium through which the molecule diffuses (Seeton, 2006).  

2. Ordinary diffusion gradients do not scale well (Barkai and Shilo, 
2009; McHale et al., 2006). The consequence is that for embryos of 
different sizes there should be widely different proportions of parts, 
but we know that is not the case (de Lachapelle and Bergmann, 
2010b). There is a limit on the “range” of a morphogen gradient 
(Kanodia et al., 2011). This limits their potential role in growing 
tissues (Hamaratoglu et al., 2009; Yin et al., 2012). Amphibian em
bryo eggs vary from 0.75 mm to 35 mm in diameter (Table 2 in 
(Tuszynski and Gordon, 2012)), and yet produce adults with sub
stantially the same body plan. As we have a common ancestor with 
amphibians, our own eggs at 0.07 mm extend the diameter range 
down by another order of magnitude. Scale independence requires 
that diffusion, reaction rate, and/or source intensity be manipulable 
by the embryo (Umulis and Othmer, 2015). 

3. The fundamental principle of gradients is that cells in high concen
trations will respond in one way, while those at low concentrations 
respond in a different way, while those in the middle respond in yet 
another way. Fluctuations in gradients always occur, especially if the 
number of diffusing molecules is low. Fluctuations of purported 
morphogen concentrations make response to particular concentra
tion thresholds problematic (Eldar et al., 2002; Morishita and Iwasa, 
2009; Wu et al., 2007).  

4. Each cell has to be able to “read” the morphogen concentration 
accurately (Bothma et al., 2010; Gurdon and Bourillot, 2001; Ker
szberg, 1996, 1999; MacWilliams and Papageorgiou, 1978; Tamari 
and Barkai, 2012), lest boundaries between tissues become ragged 
(Emberly, 2008). Gradients are frequently invoked without any 
explanation of how a cell measures a concentration. Yet in embryos 
boundaries between tissues are generally sharp, at the cellular level. 

There is also widespread misunderstanding by biologists of Alan 

Turing’s (Turing, 1952) reaction-diffusion equations which can set up 
spatially or temporally periodic patterns. These patterns in themselves 
appear incapable of explaining more than one step of cell differentiation 
(Gordon, 2016). It is generally ignored that Turing invoked both 
chemical and mechanical instabilities (Turing, 1952; Vilaca et al., 
2019). Note that pattern formation by mechanical instabilities goes back 
to Lord Rayleigh’s work on drop formation from “one-dimensional” 
cylinders of fluid (Rayleigh, 1879a; b, 1892), which we have applied to 
cell sorting (Gordon et al., 1972, 1975). Mechanical instabilities have 
also been proposed as the basis for feather spacing patterns (Murray and 
Oster, 1984b; Perelson et al., 1986), with reaction-diffusion patterns 
claimed to be a subset of those generable mechanically (Murray and 
Oster, 1984a). The French Flag model works solely by chemical diffu
sion ignoring any mechanical component. The Embryonic Differentia
tion Waves Model including both mechanical and chemical components 
suggests the possibility of an underlying theory encompassing both 
differentiation waves and reaction-diffusion (x1.15 in (Gordon, 1999)). 

4. The Embryonic Differentiation Waves Model 

A mechanochemical model for cell differentiation based on differ
entiation waves was first proposed in 1987 by Gordon and Brodland 
(1987). (The clothesline model (von Uexküll, 1926) may have antici
pated differentiation waves (p. 36 in (Gordon, 1999)).) The Gordon and 
Brodland model uses a mechanically sensitive bistable organelle made of 
microtubules and microfilaments (Burnside, 1971, 1973; Gordon and 
Jacobson, 1978; Jacobson and Gordon, 1976) that occurs in the apical 
ends of cells within cell sheets when they are ready to differentiate. This 
orgnanelle is called the cell state splitter (Bj€orklund and Gordon, 2006; 
Gordon and Gordon, 2016b; Gordon and Brodland, 1987). Competent 
cells are under mechanical tension with the microtubule mat and 
microfilament ring in radial mechanical opposition, metastabilized in 
most cells by an intermediate filament ring (Martin and Gordon, 1997). 
Depending on where the cell is within a sheet, the tension is resolved by 
its apical end either contracting or expanding, a binary response. The 
resolution of the instability begins at one point with an “organiser” 
consisting of a cell or small subset of cells experiencing a mechanically 
induced contraction and a different cell or small subset of cells at a 
substantial distance in another place experiencing an expansion. Once a 
wave begins, the contraction or expansion wave, which is visible in 
time-lapse microscopy (Crawford-Young et al., 2018; Gordon and 
Bj€orklund, 1996), is propagated to adjacent cells (Fig. 4). Halting of 
wave propagation may involve mechanical forces at boundaries, or the 
propagating wave reaching cells that do not have their bistable cell state 
splitter ready to respond. An actual physical wave of contraction was 
found that traverses the presumptive neural epithelium of the devel
oping salamander, the axolotl (Ambystoma mexicanum) in 1990 
(Figure 59 in (Gordon, 1999); (Brodland et al., 1994)). It is 0.1 mm wide 
and deep on this 2 mm diameter embryo (Gordon and Bj€orklund, 1996). 
Additional waves were then discovered on the axolotl embryo (Gordon 
et al., 1994), although not in the South African clawed toad Xenopus 
laevis, perhaps due to an overlying superficial epithelium (Nieuwkoop 
et al., 1996). The trajectory of each wave corresponds to differentiation 
of a different classically defined embryonic tissue (Gordon et al., 1994). 
Waves can begin at a point and expand outward, initiate along a line and 
travel as a moving furrow, or begin as a circle moving inward, 
depending on the mechanics of the cell sheet within the embryo as a 
whole. Entire sections of cell sheets can be observed contracting as a unit 
(Gordon and Gordon, 2016a). Note that the morphogenetic furrow of 
the Drosophila eye imaginal disc can be interpreted as a differentiation 
wave (Alicea et al., 2018; Gordon, 1999). 

The trajectories of contraction and expansion waves were super
imposed on the axolotl fate map, which illustrates developmental 
anatomy of the axolotl over time (Cleine and Slack, 1985; Piekarski and 
Olsson, 2007; Vogt, 1925, 1929), in (Bj€orklund and Gordon, 1994; 
Gordon et al., 1994). This revealed that there is a unique bifurcating 
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sequence of expansion and contraction waves (the “differentiation tree” 
(Alicea and Gordon, 2016; Martin and Gordon, 1995)) that correlates 
with tissue types determined up to neural tube closure (Bj€orklund and 
Gordon, 1994). The binary nature of the branches of the differentiation 
tree may be represented as a differentiation code (Gordon and Gordon, 
2016a, 2019; Gordon, 1999), providing a discreteness different from 
that of the French flag. One of two readied signal transduction pathways 
from the cell state splitter to the nucleus results in changes in gene 
expression (Bj€orklund and Gordon, 1993; Gordon and Gordon, 2016a). 
There are two pathways, one for contraction, the other for expansion. 

This pair of pathways amounts to a one-bit signal from the cell state 
splitter to the nucleus. 

Each of the signal transduction pathways used in the cell state 
splitter model consists of multiple elements such as wnt. These are 
commonly invoked as morphogens in the French flag model, but their 
functions in the cell state splitter model are as components of the 
contraction or expansion signal transduction pathway, active during the 
change of state of the cell. The initial phase is classically called 
“commitment” or “determination” to a later “differentiated” state. All 
the other activity, such as changes in gene expression, signaling proteins 
like wnt, release of additional morphogens, and epigenetic changes, are 
the result of commitment/determination and subsequent differentiation 
of the cell after the response of the cytoskeleton to mechanical signals 
(Gordon and Gordon, 2016a). As these molecules appear or are activated 
when the individual cell contracts or expands its apical surface, their 
concentrations will vary across the tissue containing that cell. In other 
words, a differentiation wave generates one or more gradients as it 
travels through a tissue, and the gradients thus may be regarded as 
epiphonema subsequent to wave passage. Cells in the cell state splitter 
model require no more than an epigenetic mechanism for keeping track 
of the number of contraction and expansion waves they participate in, 
which can be based on well documented mechanisms such as changes in 
HOX genes as tissues differentiate (Papageorgiou, 2014). 

According to the cell state splitter model, embryonic differentiation 
does not occur due to gradients. Embryonic differentiation is temporally 
and spatially directed by biochemical/mechanical/ion-electrical differ
entiation waves in an active medium, a sheet of cells. The mathematics 
applicable should be that of activation waves. These are solitary “kink 
waves”, also called “front waves” (Gordon, 1999; Kuramoto, 1984). 
They are not ordinary superimposable waves nor solitons (Scott et al., 
1973), both of which can pass through one another unaffected. Common 
examples of kink waves are propagating phase transitions or fires. Dif
ferentiation waves are kink waves because they cause a change in cell 
type. 

The passage of the differentiation wave will produce a temporary 
gradient of cytoskeletal rearrangement, signal transduction and gene 
expression strictly as a by-product. If the differentiation wave begins at a 
boundary and travels away from it, higher levels of specific gene 
expression can be expected at the boundary zone as it experienced the 
differentiation wave sooner and has had more time to up regulate pro
duction of the specific gene products being measured. The reverse would 
be true with down regulation of a specific gene product. By changing the 
model on which the mathematical assumptions are based from 
morphogen diffusion to differentiation waves this new model may 
resolve many of the troubling aspects of attempting to do the mathe
matics of differentiation using diffusion based models. This includes the 
rises in the boundary regions of differentiating tissue reported by Chen 
and Zou (2019). We therefore propose that the cell state splitter model of 
embryonic differentiation waves be tested against the French flag model 
by the ability to correctly predict spatiotemporal gradients. If the dif
ferentiation wave model is correct such testing will match observations 
in living embryos while the French flag model will fail to do so. The 
differentiation wave model predicts that gradients should follow after 
initiation of participation of a cell in a differentiation wave, and thus 
reflect the trajectories of the waves, which are generally not straight 
lines, making this a robust prediction. There is still a critically important 
role for the study of gradients in embryonic development: gradients can 
be used to plot the presence and trajectories of cell state splitter differ
entiation waves. In classical embryological terms, passage of a differ
entiation wave through a cell determines its fate, while the gene 
products generated cause its differentiation to a new cell type. 

5. Conclusion 

The story of differentiation waves versus morphogen gradients is far 
from over, with at least one call to test their relative success in modelling 

Fig. 4. “A contraction [differentiation] wave is depicted propagating from one 
cell to the next in an epithelial layer of cells. This initiates differentiation of the 
cell, which starts to produce cell type specific molecules, shown in red. If these 
molecules increase in number over time, as the wave propagates, a gradient of 
the molecules will develop across the epithelium, especially because differen
tiation waves propagate slowly, taking hours to cross it. The differentiation [or 
at least commitment] has already occurred, so the gradient is not causal of 
differentiation. In fact, the gradient may be called an irrelevant epiphenom
enon” (Gordon and Gordon, 2016a), with permission of World Scientific Press. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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embryogenesis via computer models (Miller, 2017). All three models, 
gradient French flag, embryonic differentiation waves, and Turing 
reaction-diffusion claim to explain what causes a change of state of the 
cells from one cell type to another (Figs. 2–4). As we have noted, in the 
plethora of models are some that combine models, as in the “global 
wave” with local Turing effects of (Inaba et al., 2019) (which is equiv
alent to “Type 2 Cell sheet alternating differentiation wave” in (Gordon 
and Gordon, 2016a), without invoking a Turing mechanism). All three 
models propagate in space, changing the state of the material they pass 
through, and are therefore examples of kink waves (Gordon, 1999; 
Kuramoto, 1984). In all three approaches to explain embryogenesis, the 
spatial and temporal construction and control of boundary conditions 
has hardly been explored. 

The embryonic differentiation wave model assumes the whole pro
cess can be regarded as a bifurcating sequence of construction and 
execution of cybernetic control systems (Gordon and Stone, 2016). The 
goals of each control system are to change the state of differentiation of 
subsets of cells and establish the conditions for generating the next pair 
of control systems. 

Insofar as each embryonic differentiation wave has mechanical, 
chemical and ionic components (Gordon, 1999), it might be a means by 
which global controls of embryogenesis occur, with some waves 
traversing more than one embryonic tissue, as has been observed in 
axolotl embryos (Gordon and Stone, 2016). This may provide a 
consolidation of global bioelectric observations in embryos (Mathews 
and Levin, 2018; Pietak and Levin, 2018) with embryonic differentiation 
waves. There are many opportunities here for mathematical biologists to 
suggest critical experiments and predict their outcomes, in a hopefully 
convergent cycle: experiments and observations, formal mathematics, 
and computer simulations (Jacobson and Gordon, 1976). The embryonic 
differentiation waves potentially represent a paradigm shift (Barresi and 
Gilbert, 2020; Miller, 2017; Papageorgiou, 2001). As such, it will 
probably be ignored until the contradictions and elaborations of 
gradient models become obvious to newcomers to the field (Kuhn, 
1996). Perhaps that time has come. 

It has been understood since at least Charles Darwin’s time that 
observation is driven by theory: “I am a firm believer, that without 
speculation there is no good and original observation” (Darwin, 1887). 
By noting that the French Flag gradient model is not the only model for 
cell differentiation, we hope that the development of theory can be 
advanced, so that observations relevant to distinguishing the embryonic 
differentiation wave model from the French Flag model and 
reaction-diffusion equations will be taken up by experimentalists. Ex
perimentalists rely on mathematical biologists for theory, and therefore 
depend on them for what parameters they choose to measure and to 
ignore. 
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