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Abstract
Barium titanate (BaTiO3; BTO) is a well-known lead-free piezoelectricmaterial commonly used for
sensors and actuators applications. There are several traditionalmethods to fabricate bulk BTO
ceramics; however,most of thosemethods have restrictions regarding being able to produce a
functional and complex shape for specific application needs. Recently, additivemanufacturing
techniques such as binder jetting have enabled the fabrication of complex designs of piezoelectric
ceramics. However, the density achieved is relatively low thus narrowing their applications. This paper
presents the fabrication of high-density BaTiO3 ceramics using Freeze-formExtrusion Fabrication
(FEF). The influence onmaterial properties for different ceramic particle size was assessed. It was
found that parts printed using finer BaTiO3 particle sizes achieved better results in terms of density,
piezoelectric, and dielectric properties. For this study, the 100 nmBaTiO3 samples achieved 85.24%
density, a high piezoelectric property of 204.61pC/Nand dielectric permittivity of 2551. These results
demonstrated the feasibility of using FEF additivemanufacturing to fabricate high-quality functional
ceramics with designed geometry in amold-free fashion.

1. Introduction

Ferroelectric ceramics with piezoelectric properties are widely used in industry for sensors and actuators
applications [1–4]. Lead oxide ceramics, such as lead zirconate titanate or PZT is widely used for electronic
applications due to its good piezoelectric coefficient [4–6]. However, lead oxide is a toxicmaterial that increase
environmental pollution [5, 6]. Therefore, the fabrication of lead-free ceramics with excellent piezoelectric
properties is an area of research interest. Barium titanate (BaTiO3; BTO) is one of themost used lead-free
ceramics due to its good piezoelectric (d33:∼190 pC/N) properties for building sensors, capacitors, and energy
storage devices [6]. Nonetheless, the piezoelectric theoretical value of BaTiO3 is relatively low in comparison
with the theoretical value of PZT (d33:∼500–600 pC/N) [7].Many studies have been focus on improving the
piezoelectric coefficient of BaTiO3.Huan et al fabricated BaTiO3/PVBdisks by traditionalmanufacturing to
analyze the grain size influence on the piezoelectric property by evaluating different settings for a two-step
sintering process. Results demonstrate that two-step sintering achieves a grain size of 1 μmand amaximum
piezoelectric coefficient of 519 pC/N [8]. Zhu et al fabricated BiFeO3-BaTiO3 disks to evaluate the sintering
effect on the piezoelectric property and grain growth, obtaining a high value of 208 pC/N [9]. However, the
capacity to fabricate different designs by traditionalmanufacturing as described in [8, 9]were limited to the
mold’s shape and size.

Additivemanufacturing enables the fabrication of complex designs of ceramics at a relatively low cost [10].
Different additivemanufacturing techniques, such asmaterial extrusion, binder jetting, direct energy deposition

RECEIVED

18 July 2019

REVISED

25 September 2019

ACCEPTED FOR PUBLICATION

2October 2019

PUBLISHED

16October 2019

© 2019 IOPPublishing Ltd

https://doi.org/10.1088/2053-1591/ab4a36
https://orcid.org/0000-0001-9013-8115
https://orcid.org/0000-0001-9013-8115
https://orcid.org/0000-0001-5203-6708
https://orcid.org/0000-0001-5203-6708
https://orcid.org/0000-0002-6232-9704
https://orcid.org/0000-0002-6232-9704
mailto:arenteriamarquez@miners.utep.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab4a36&domain=pdf&date_stamp=2019-10-16
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab4a36&domain=pdf&date_stamp=2019-10-16


and stereolithography have been reported in the fabrication of ceramics [11, 12].Many studies have been
focusing on the fabrication of different geometries of piezoelectric ceramics using 3Dprinting techniques. Kim
et al fabricated BaTiO3/PVDFnanocomposites through fused depositionmodeling technique achieving a
piezoelectric response after thermal poling of d31 of 21×10−3 pC/N [13]. Gaytan et al fabricated BaTiO3

samples using binder jetting 3Dprinting technique achieving a theoretical density of 65.2% and a piezoelectric
coefficient of 74.1 pC/N [14]. Although different additivemanufacturing techniques were used to fabricate
piezoelectric ceramics with complex designs, the density andmechanical properties were relatively low
comparedwith the theoretical values.

Freeze-formExtrusion Fabrication (FEF) is a free-forming technique of AdditiveManufacturing. FEF
consists in the extrusion of an aqueous paste through a nozzle, which is deposited in a layer-by-layer fashion at
low temperature (i.e., freezing point of the paste) [15]. This paste extrusion technique has some advantages
comparedwith othermaterial extrusionmethods. FEF is an inexpensive and fast printingmethod used for rapid
prototyping process technology [16]. FEF also enables the fabrication of high-density ceramics with good shape
retention andmechanical properties [17]. Huang et al fabricated aluminumoxide (Al2O3) ceramics using freeze-
form extrusion, resulting in high-density ceramics with an average of 90%of the theoretical value [18]. Li et al
fabricated complex structures of Al2O3 usingCeramicOnDemand Extrusion (CODE) technique, achieving
good dimensional accuracy after sintering (15%–19% shrinkage) and high-density ceramics with 97.5%
theoretical value [19]. Although this technique is widely used due to the return of goodmaterial property, there
is still little work reported on the feasibility of printing ferroelectric ceramics.

This paper describes amethod to fabricate high-density bulk BaTiO3 piezoelectric ceramics suspensions
using polyvinyl alcohol (PVA) in deionizedwater solution. PVA is a water-soluble and biodegradable polymer
that presents an elastic structure at low temperatures [20, 21]. This elastic structure facilitates the extrusion
process and improves shape retention of desired geometry due to shear-thinning behavior [22]. Furthermore,
the evaluation of different particle size in the ceramic suspensions needs to be evaluated. Literature suggests that
grain size plays an important role on density andmaterial properties of ceramics [23]. Therefore, formulation of
the suspension and powder particle size have an essential role to fabricate high-density ceramics. Here, three
different BaTiO3 particle sizes were evaluated using the same binder content. Aiming to determinate the optimal
results in terms ofmaterials properties with respect to the theoretical values of pure BaTiO3. This study proves
the feasibility of using FEF technique in the fabrication of excellentmate applications.

2. Experimental details

2.1.Materials, synthesis and fabrication
Three different particle size of BaTiO3 powder (100 nm, 300 nm, and 500 nm; Inframat,Manchester, CT)were
selected to evaluate the effect of the piezoelectric response of ceramics. Polyvinyl alcohol (PVA) powder
(Mw∼89,000–98,000; SigmaAldrich, St. Louis,MO)was used as a binder for the paste fabrication.

A PVA aqueous solutionwas prepared by dissolving 13 wt%PVApowder in deionizedwater under a heavy
stirring of 500 rpm. The PVA inwater solutionwas let to dwell and stirred for 20 min to ensure homogenization.
Then, the solutionwas placed on a hot plate at 90 °C for 20 min. The heating process allowed a complete
dissolution of PVApowder in aqueous solution. After that, 70 wt%BaTiO3 powder (e.g., 100 nm, 300 nm,
500 nm)was added gramby gram to the PVA solution andmixed by hand using a glass rod until a homogenous
paste was obtained. The BaTiO3 content in the slurry was determined by its capability toflow through the 1 mm
nozzle without experience any clogging. The paste was gently deposited into a syringe tube (60 ml; Soft-Ject,
Virginia Beach, VA). Figure 1 illustrates the paste preparation process. Thefinal paste composition represents
28.5 vol%of solid loadings, 7.4 vol%of binder and 64.1 vol%of solvent. This is in good agreement with
literature as researches reported solid loading contents of up to 30 vol%of BaTiO3 for slurry fabrication [21].
After the paste preparation, the loaded syringe was placed in the fridge at 5 °C for 2 h. The paste was aged at low
temperature to activate the elastic structure of PVA [22], which helped to achieve a constantmaterial flow rate
due to an increase in the viscoelastic response [23]. Aging also contributes to an increase in the storagemodulus
(G′), which facilitated the layer-by-layer stacking ofmaterial [23]. The extrusion of paste in a cold environment
improved shape retention of green bodies, and facilitated the stack ofmaterial to a higher number of layers and
compiled different geometries.

2.2. Printing process
Ceramic samples were printed in amodifiedPrintrbot SimpleMetal 3Dprintingmachine. Figure 2(a) describes
the 3Dprinting structure, which consists of a piston that applies force over a plunger to extrude thematerial
through a nozzle. A cylindrical geometry was selected to evaluate the particle size influence of BaTiO3. The
dimensions of the sample were set to 25 mm for the outer diameter, 10 mm for the inner diameter and 13 mm
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height. The ceramic suspensions were deposited onto an aluminum froze plate at−40 °C,whichwas placed into
the 3Dprinter substrate. The plate was coveredwith a thinfilm to facilitate the detach of green bodies after the
printing process. Figures 2(b) and (c) shows a cylinder and a square 3Dprinted structures respectively using FEF
technique. Samples were printed using a nozzle diameter of 1 mm,with a speed of 10 mm s−1, layer height of
0.6 mmand infill set to 80%.

After printing, the aluminumplate was removed from the printer bed and placed in the freezer at –60 °C
(Thermo Scientific TSUTMSeries−86 °CUprightUltra-Low) for 2 h to dry some of thewater by sublimation to
retain printed structural shape. Samples were detached from the aluminumplate, and it was found that the
samples accumulatedwater on the bottom surface. To obtain homogeneous dried green bodies, the samples
were turned upside down and placed back to the freezer for 30 min. A freeze-dried process contributes to shape
retention and avoidwarping of green bodies [24]. After that, the samples were placed in the oven (Lab
companionOF-01E) at 40 °C for 24 h to remove any remainingwater from the green body. Drying process at
low temperatures for extended periods helps to avoid the generation ofmicro cracks in the green bodies [25, 26].

2.2.1. Post-processing
To increase the density of the green bodies without causing any defect, such as externalmicro cracks, the
sintering cycle of the sampleswere scheduled as follows. First, debinding to allow the PVAburnout followed by
sintering of the sample to enable the grain size growth. All the samples were debinded at 600 °C for one hour and
5 °Cmin−1 ramp, then sintered at 1250 °C for two hours using 5 °Cmin−1 ramp. Lastly, samples were cool

Figure 1. Schematic procedure for BTO/PVA aqueous paste.

Figure 2. (a) Structure of 3Dprintingmachine used for paste extrusion (b) 3Dprinted cylinder structure (c) 3Dprinting process of a
square structure.
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down at a 5 °Cmin−1 ramp to room temperature. After sintering, the samples were polished using 240-grit
sandpaper to facilitate the dipole alignment poling process. Figure 3 shows twoBaTiO3 ceramic samples, a green
body after drying (left) and a sintered and polish sample (right). Conductive silver paint was applied on top and
bottom surfaces and dried at 200 °C for 30 min. Thermal polingwas performed under an electrical field of
5.4 KV cm−1 and submerged in silicon oil at 90 °C for two hours [27].

2.2.2.Material characterization
Rheological properties of each BaTiO3-PVA suspensionwasmeasured in aDHR-2 rheometer (TA Instruments,
NewCastle, DE)with a parallel plate geometry. The gap between the plates was set to 1.2 mm, and the test was
performed at 25 °C. The apparent density of the samples wasmeasured by using the Archimedes’method. Then,
comparedwith the theoretical value of pure BaTiO3 of 6.02 g cm

−3 [28]. The piezoelectric coefficient was
calculated using a d33meter (APCYE2730A). Dielectric permittivity was calculated using an LCRmeter (1920
Precision, IET lab). The grainmorphology characterization for different 3Dprinted BaTiO3 ceramics was
observed by scanning electronmicroscope (SEM, TM-1000Hitachi). Crystal structuredwas analyzed by x-ray
diffraction (XRD) usingCuKα radiation on aD8discover diffractometer (Bruker).

3. Results and discussion

The slurry composition plays a critical role during the printing process, especially for shape retention and
printability [29]. The rheological properties of the slurry are highly influenced by the solid loadings content. Low
solid loading contents produces a low viscous suspension, with aNewtonian behavior [30], whichmakes it
unsuitable for printing. Low viscous slurries will tend to collapse as the number of layers ofmaterial increase
[22]. In another hand, high solid loadings contents produces high viscous slurries with a high shear-thinning
behavior [30]. High viscous suspensions restrict particlemobility, [30] increasing the probabilities of clogging
during printing.Moreover, the shear stress over thewalls of the nozzle will rise and higher yield strengthwill be
required [22].

Figure 4 shows the results of viscosity as a function of shear rate for different BaTiO3-PVA suspensions
varying powder particle size. A high influence on the rheological results was observed for different ink
compositions. The ceramics suspensions index for a shear thinning behavior [23, 31] since a reduction in
viscosity was observedwhen increasing the applied shear rate. The shear thinning behavior can be attributed to
the PVA content in the suspensions. PVAbehaves as a non-Newtonian fluid and exhibits different viscoelastic
properties depending on the concentration andmolecular weight [31]. Additionally, a higher initial viscosity at
low shear rates was observed forfiner particles, which decreases at high shear rates. The stress profile under
different shear rates is shown infigure 5. It was found that a higher yield strengthwas required forfiner particle
size to generate the initial flow through the nozzle. Once theflow is initialized, the yield strength required for
printing stabilizes and remains in a constant range. The change in the yield strength to a constant phase can be
attributed to a laminar flowbehavior of the suspensions [29], which facilitate the deposition ofmaterial onto the
substrate. Furthermore, literature indicates that particle size plays an important role in the rheology of the
suspensions. Finer sizes increases the contact between the particles dispersed in the suspension increasing the

Figure 3.BaTiO3 ceramic samples, green body (left) and sintered and polished (right).
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viscosity [32]. The increase in viscosity can be attributed to liquid trapped inside aggregates of powderwithin the
paste [33].Moreover, finer particles are affected byVan derWalls forces, producing agglomerations in the
slurries, which limits thematrixfluid [30]. In addition, the yield strength required to initialize theflowwill
increase, affecting the printing process.

3.1. SEMandXRDanalysis
The SEMs from the top surface and cross-sectionwere observed to gain information about themicrostructure
and the porosity of the samples for different powder particles. The sintered samples were fractured to observe the
microstructure from the cross-sectional area. Figure 6(A)) presents a sample that was fabricated using 100 nm
particle size. The average grain grow off 1.18 μmwas observed. Samples using 300 nmand 500 nmparticle
size are illustrated infigures 6(B)–(C)) respectively. An average grain size off 0.871 μmfor the 300 nmandf
0.757 μmfor the 500 nmwere observed. It was found that the average grain size after sintering decrease when

increasing the powder particle size. Literature suggests that the final grain size after sintering is highly dependent
of sintering temperature, exposure time and powder particle size [34]. Furthermore, reducing the powder
particle size results in a higher curvature of the ceramic powder,meaning that a lower change in energy is

Figure 4.Evolution of viscosity as a function of shear rate for BaTiO3-PVA suspensionswith 100 nm, 300 nm and 500 nmparticle
size.

Figure 5. Stress behavior as a function of shear rate for BaTiO3-PVA suspensions with 100 nm, 300 nm, and 500 nmparticle size.
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required during sintering [35]. Figures 6(D):(F) show the top surface for the 100 nm, 300 nmand 500 nm
respectively. A reduction on the number of pores and pores sizes were observedwhen decreasing the powder
particle size. The 100 nm sample showed a few voids ranging from50μmto 1μm.However, the voids are not
very deep as some grains can be observed inside the void. The 300 nm sample presents amore porous surface as
voids of around 70μmwere observed. The 500 nm sample showed voids in the range of 25μmto 5μmat higher
magnifications. However, the number of voids around the top surfaceweremore than the 100 nmand 300 nm
samples. The results obtained from the top surface complements the grain growth and porosity observed from
the cross-sectional area. The reduction of pores for the 100 nm sample can be attributed to a higher rate of
densification and amore uniform grain boundary.

TheXRD for different BaTiO3 particle size are shown infigure 7. The samples were evaluated in a range 2θ:
from20° to 80° at room temperature after poling process. The peaks observed infigure 7(A) index for tetragonal
crystal structure [36, 37]. The peaks splitting observed around at 2θ: 45°, 51°, 56° and 75° indicates a phase
transformation from cubic structure. Furthermore, the peak splitting observed at (002) and (200) confirms the

Figure 6.BaTiO3 samples after sintering at 1250 °C.Cross-section for (A) 100 nm sample (B) 300 nm sample and (C) 500 nm sample.
Top surface and surfacemicrostructure for (D) 100 nm sample (E) 300 nm sample and (F) 500 nm samples.

Figure 7. (A)XRD for BaTiO3 for 100 nm, 300 nmand 500 nmpowder particle size in range 2θ: from 20° to 80°. (B)XRDat peaks
(002) and (200) in a range 2θ: from40° to 50°.
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tetragonality phase of the samples, as shown infigure 7(B). Phase transformation onBaTiO3 can be observed for
heat treatments above 1000 °C [38].Moreover, BaTiO3 remains in the tetragonal crystal structure at room
temperature, however the curie temperature at which it will transform to cubic is 120 °C [39]. The 100 nm
sample showed a higher peak splitting intensity, which indicates a higher degree of crystallinity. These results are
in good agreementwith literature according to the following points. Several studies indicate that ferroelectric
domain is influence by the size of the crystals [40], which can be controlled by the heat treatment temperature
[39–42]. The BaTiO3 samples were exposed to the same treatment temperature of 1250 °C for the same period of
time. The difference on degrees of crystallinity are attributed to thefinal grain growth obtained during the
sintering process.

3.2.Material properties
Figure 8(A) shows the density results obtained for different particle size after sintering process. The relative
densities for the 100 nm, 300 nmand 500 nmwere 5.13±.35 g cm−3, 4.35±.32 g cm−3 and
4.09±.42 g cm−3 respectively; which correspond to 85.24%±5.74%, 72.19%±5.27% and
67.94%±6.91%of the theoretical value for pure BaTiO3. It was found that the relative density after sintering
increasedwhen reducing the powder particle size. This is in good agreementwith the grain-growth observed
from the SEMsmicrostructure. Coarse powder particles showed a lower increase in the final grain-growth,
which increase the number of voids on the samples. Additionally a higher level of porosity can led to lower
material properties. The piezoelectric coefficient results are presented infigure 8(B). A positive increment on the
d33 was observed forfiner powder particles. The piezoelectric coefficient (d33)were 204.61±16.87 pC/N,
127.63±8.19 pC/Nand 112.2±7.99 pC/N for the 100 nm, 300 nmand 500 nm respectively; which
correspond to 107.12%±8.83, 66.82%±4.29 and 58.74%±4.18 of the theoretical value of 191 pC/N [28].
The increment on the piezoelectric coefficient can be attributed to the higher grain growth at themicron level
when usingfiner particles [28, 40, 41]. Different studies suggest that there is a strong dependency in the grain size
and the piezoelectric properties [28]. Furthermore, BaTiO3 crystalline structure is influenced by the domain
walls width, which contributes to the piezoelectric response. Grain size in themicron level decrease the 90°
domainwidth, producing a smaller domainwalls [8]. The decrease in the domainwalls facilitate its rotation,
which increase the sensibility to an external stress or electrical signal [8, 42]. Figure 8(C) shows the dielectric
permittivity (ε) results, themeasurements were performed at 25 °Cwith a frequency of 1 kHz. The dielectric
permittivity obtained for the 100 nm, 300 nm, and 500 nm,whichwere 2250±270, 1636.34±199.7 and
1333.07±157 respectively. These values correspond to 115.38%±13.84, 83.89%±10.24 and
68.35%±8.05 of the theoretical value of BaTiO3 of 1950 at 90 °C [40]. Different studies suggest that the
dielectric constant increase when the grain growth is at themicron level [43–45]. Additionally, a uniform grain-
size distribution is required to achieve a higher permittivity [46, 47]. Furthermore, residuals of binder content of
the samplemay influence the dielectric permittivity results. Literature suggest that impurities such as carbon
residuesmay be encapsulated inside the sample increasing the permittivity [48, 49]. Finer particles reached
higher density with a significant lower number of voids, reducing the space in the grain boundaries, preventing
the escape of carbon from the sample during sintering increasing the permittivity.

The results obtained for density andmaterial properties are comparable with previous studies that report the
fabrication of piezoelectric ceramics usingAdditiveManufacturing. For robocasting, [4] reported a density of
65.3%, a piezoelectric coefficient of 200 pC/Nand a dielectric permittivity of 4730 at 1 KHz for BaTiO3. In the
fabrication of PZT composites a piezoelectric coefficient of 300 pC/Nand dielectric permittivity if 2250 at 10
KHz [50]. In another hand, for binder jetting, [14] a density of 65.2%, a piezoelectric of 74 pC/Nand a dielectric
permittivity of at 1KHz for BaTiO3were reported. This study contributes with a fabricationmethod for BaTiO3

Figure 8.Average result of density, piezoelectric coefficient and dielectric constant.
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ceramics with higher density and similarmaterial properties as previous publishedworks. Proving the feasibility
of the slurry composition and FEF technique.

4. Conclusion

A simplemethod to fabricate high-density BaTiO3 ceramics using freeze-form extrusion fabrication (FEF)was
presented. Three different particle size of BaTiO3were investigated in terms of their influence on density,
piezoelectric coefficient, and dielectric permittivity. Results showed thatfiner BaTiO3 particles could lead to
bettermaterial property due to a higher grain growth after sintering. Using 100 nmparticle size, a density of
5.13±.35 g cm−3 can be achieved, which correspond to 85.24%±5.74 of the theoretical value. A high
piezoelectric coefficient (d33) of 204.61±16.87 pC/Nwas obtained, corresponding to 107.12%±8.83 of the
theoretical value of 191 pC/N.Adielectric constant of 2551.09±270 at 1KHzwas obtained, representing
115.38%±13.84 of the theoretical of 1950. The grain size andmorphology was observed through SEM,which
corroborated the experimental results on density, piezoelectric and dielectric. XRD analysis confirmed the
tetragonal crystal structure in the samples after sintering. These results demonstrated the feasibility of using FEF
technique as an inexpensivemethod for rapid prototyping design of bulk piezoelectric devices such as sensors
and actuators with the possibility of a high degree of customization and excellentmaterial properties.
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