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ABSTRACT

Term frequency is a common method for identifying the importance
of a term in a document. But term frequency ignores how a term
interacts with its text context, which is key to estimating document-
specific term weights. This paper proposes a Deep Contextualized
Term Weighting framework (DeepCT) that maps the contextualized
term representations from BERT to into context-aware term weights
for passage retrieval. The new, deep term weights can be stored
in an ordinary inverted index for efficient retrieval. Experiments
on two datasets demonstrate that DeepCT greatly improves the
accuracy of first-stage passage retrieval algorithms.
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1 INTRODUCTION

State-of-the-art search engines use ranking pipelines in which an
efficient first stage uses a query to fetch an initial set of documents,
and one or more re-ranking algorithms to improve and prune the
ranking. Typically the first stage ranker is bag-of-words retrieval
model that use term frequency (#f) to determine the document-
specific importance of terms. However, tf does not necessarily
indicate whether a term essential to the meaning of the document,
especially when the frequency distribution is flat, e.g., passages.
In essence, tf ignores the interactions between a term and its text
context, which is key to estimating document-specific term weights.

This paper seeks to improve term importance estimation in first-
stage retrieval models by using deep language models like BERT [3]
to capture a term’s contextual features. We present the Deep Con-
textualized Term Weighting framework (DeepCT). DeepCT learns a
contextualized term representation model based on BERT, and a
mapping function from representations to term weights. The trans-
former encoder of BERT allows DeepCT to capture semantic and
syntactic features from a term’s linguistic context, helping DeepCT
to identify semantically important terms from the text. DeepCT
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generates deep, context-aware document-specific term weights that
can replace the standard tf.

This paper also present a novel approach that runs DeepCT at
offline index time, making it possible to use it in first-stage retrieval
where efficiency is crucial. Our approach applies DeepCT over each
passage in the corpus, and stores the context-aware term weights in
an ordinary inverted index to replace tf. The index can be searched
efficiently using common bag-of-words retrieval models such as
BM25 or statistical query likelihood models.

Experiments demonstrate that DeepCT significantly improves the
accuracy of first-stage retrieval. More accurate first-stage document
rankings also provide better candidates for downstream rerank-
ing, and improves end-to-end accuracy and/or efficiency. Analysis
shows that DeepCT’s main advantage is the ability to differentiate
between key terms and other frequent but non-central terms. Code
and data are made public available 1.

2 RELATED WORK

Document Term Weighting. Most firsi-stage retrieval models
such as BM25 and query likelihood use term frequencies (tf) to term
importance in a document. A popular alternative to ¢f are graph-
based methods, e.g., TextRank [6]. A few recent work investigated
using word embeddings [5] for document term weighting, but most
of them only learn a global idf-like term weight because the word
embeddings are context-independent. Qur work aims to learn #f-
like term weights that are context-specific.

Neural Approaches for First Stage Ranking. Most neural
ranking models are cost-prohibitive to be used in the first stage [1,
2, 10]. Recent research addresses this efficiency problem in two
ways. One way is to learn latent embedding representations of
queries and documents [13]. However, fix-dimension representa-
tions introduce the specificity vs. exhaustiveness trade-off [14].
Another approach modifies the bag-of-words document represen-
tations using neural network. Mitra et al. [8] uses neural rankers
to generate term-document scores, but it is time-consuming when
applied at a large-scale. Nogueira et al. [11] proposed to generate
queries from documents using neural machine translation and in-
dex queries as document expansion terms [11, 12]. Our work are
orthogonal to [11, 12] - their approaches add terms to documents,
while our method weights existing terms; future work may consider
combining the two approaches.

3 DeepCT

DeepCT Framework DeepCT leverages the transformer encoder of
BERT to extract a word’s contextual features. In the transformer,
a term gradually absorbs contextual information based on its at-
tention to every other term in the same text. At the last layer, the
transformer generates a contextualized term embedding for every

!https://github.com/AdeDZY/DeepCT


https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3397271.3401204
https://github.com/AdeDZY/DeepCT

term in the input text, which can be viewed as a feature vector
that characterizes the term’s syntactic and semantic role in a given
context.

DeepCT then linearly combines a term’s contextualized embed-
ding into a term importance score:

Gpd=wTgq+b (1)

where T; 4 is term t’s contextualized embedding in text d; and, w
and b are the linear combination weights and bias.

Train DeepCT DeepCT is trained end-to-end using a per-token
regression task. Given the ground truth term weight for every word
in text d, denoted as {y; 4, - - ., yn, 4}, DeepCT aims to minimize the
mean square error (MSE) between the predicted weights j and the
ground truth weights y:

lossmse = ) > Ur.d—r.a)"- ®
d

It is an open question how to obtain the ground truth term
weights y. As search queries can reflect the key idea of a document,
we propose query term recall as an estimation of the ground truth
term weights:
|Qd. ¢l

1Qal
Qg is the set of queries for which passage d is judged relevant. Qy ;
is the subset of Q; that contains term ¢. In other words, QTR(t, d)
is the percentage of d’s queries that mention term t.

Index with DeepCT The queries are only used to generate train-
ing labels. During testing, the model is query-independent — the
prediction is solely based on the document content. This allows
estimated term weights to be calculated and stored during offline
indexing.

We run the trained DeepCT model over all passages in the col-
lection. Most predictions fall into 0-1 (because the ground truth
weights are in 0-1, as shown in Eq.3). The predicted weights are
then scaled into an integer that can be used with existing retrieval
models. We call the scaled weight tfpccpcr to convey that it is an
alternate way of representing the importance of term ¢ in d:

tfpeepct(t, d) = round(y; g * N). @

N scales the predicted weights into a integer range. We use N = 100
in this work as two digits of precision is sufficient for this task.
Terms with negative weights are discarded.

theepCT is used to replace the original tf in the inverted index.
The new index, DeepCT-Index, can be searched by mainstream
bag-of-words retrieval model like BM25 or query likelihood model.
The context-aware term weight tfpcepet is expect to bias the re-
trieval models to central terms in the pasessag, preventing off-topic
passages being retrieved.

Efficiency The main difference between DeepCT-Index and a
typical inverted index is that the term weight is based on tfpceper
instead of tf. This calculation is done offline. No new posting lists
are created, thus the query latency does not become longer. To
the contrary, a side-effect of Eq 4 is that theepCT of some terms

Yt,a = QTR(t,d) = ©)

becomes negative, which may be viewed as a form of index pruning.
We leave that aspect of this work for future investigation.

4 EXPERIMENTAL METHODOLOGY

Datasets used MS MARCO [9] and TREC-CAR [4]. MS MARCO is
a passage retrieval dataset with 8.8M passages [9]. The training set
contains approximately 0.5M pairs of queries and relevant passages.
The development (dev) set contains 6,980 queries and their relevance
labels. The test set contains 6,900 queries, but the relevance labels
are hidden by Microsoft. Therefore, the dev set is our main evaluation
set. In a few experiments, we also evaluated on the test set by
submitting our rankings to the MS MARCO competition. TREC-
CAR [4] consists of 29.7M English Wikipedia passages. Following
prior work [10, 11], we use the automatic relevance judgments. The
training set have 3.3M query-passage pairs. The test set contains
1,860 queries.

First-Stage Retrieval Baselines. We compare DeepCT term
weights with three popular term weighting methods used in first-
stage retrieval.

e tf uses standard term frequency weights, e.g., as used by
BM25.

e TextRank [6] is a widely-used graph-based term weighting
approach. We use the open source PyTextRank implementa-
tion?. Term weights from TextRank are in the range (0, 1);
we scale them to integers as described in Eq. 4 for indexing.

e Doc2Query [11] is a supervised baseline. It trains a neural
sequence-to-sequence model to generate potential queries
from passages, and indexes the queries as document expan-
sion terms. We use the Doc2Query MS MARCO index re-
leased by the authors. No such index is available for TREC-
CAR, so we use published values for that dataset [11].

We used the Anserini toolkit to index documents using the above
three term weights as well as the proposed DeepCT term weights.
First-stage ranking was done by two popular retrieval models: BM25
and query likelihood with Jelinek-Mercer smoothing (QL). We fine-
tuned BM25 parameters ky and b, and QL smoothing factor A through
a parameter sweep on 500 queries from the training set.

The transformer of DeepCT was initialized with pre-trained BERT
parameters. For MS MARCO, we used the official pre-trained BERT
(uncased, base model) [3]. For TREC-CAR, we follow Nogueira
and Cho [10] and used a pre-trained BERT model released by the
authors. DeepCT was trained for 3 epochs on the training split of
our datasets, using a learning rate of 2¢”> and a max input text
length of 128 tokens.

Evaluation used MRR@10, the official MS MARCO evaluation
metric. For TREC-CAR, we also report MAP at depth 1,000 following
the evaluation methodology used in previous work [10, 11].

5 EXPERIMENTAL RESULTS

Three experiments investigate DeepCT’s first-stage retrieval accu-
racy, its impacts on down-stream rerankers, and why DeepCT term
weights are effective.

5.1 First-Stage Retrieval using DeepCT

The first experiment examines whether DeepCT improves first-stage
retrieval accuracy over baseline retrieval methods. It also compares
DeepCT to several supervised rerankers.

Zhttps://github.com/DerwenAl/py textrank
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Table 1: Ranking accuracy of BM25 and QL using indexes built with three baselines and three DeepCT methods. Win/Tie/Loss
are the number of queries improved, unchanged, or hurt, compared to tf index on MRR@10. * and T indicates statistically

significant improvements over tf index and Doc2Query.

MS MARCO dev TREC-CAR
Index BM25 oL BM25 oL
MRR@10 W/T/L MRR@10 W/T/L MRR@10 MAP W/T/L | MRR@10 MAP W/T/L
tf 0.191 -/~ 0.189 ~/~i- 0233  0.174 ~/~/- 0211  0.162 ~/~/-
TextRank |0.130 662/4556/1762 | 0.134 702/4551/1727 || 0.160  0.120 167/1252/441[0.157  0.118 166/1327/367
Doc2Query | 0.221*  1523/4431/1026 | 0.224*  1603/4420/957 || - 0.178 ~/~1- - - ~/-/-
DeepCT | 0.243*T 2022/3861/1097 | 0.230*  1843/4027/1110 | 0.332*  0.246* 615/1035/210 | 0.330°  0.247* 645/1071/144

Table 2: Retrieval accuracy of BM25 with DeepCT com-
pared with several supervised rerankers on the MS MARCO
dataset using official evaluation on dev and hidden test set.?

. dev test
Ranking Method MRR@10 MRR@10
Single- | Official BM25 0.167 -30% | 0.165 -31%
Stage | DeepCT BM25 (this work) | 0.243 - 0.239 -
Feature-based LeToR 0.195 -20% | 0.191 -20%
Multi- K-NRM [15] 0.218 -10% | 0.198 -17%
Stage Duet V2 [7] 0.243 +0% | 0.245 +2%
Conv-KNRM [2] 0.247 +2% | 0.247 +3%
BERT ReRanker [10] 0.365 +50% | 0.359 +50%

Comparison to First-stage Retrieval Baselines. Table 1 shows
the first-stage retrieval accuracy of BM25 and QL using indexes
generated by four methods. The TextRank index failed to beat
the common tf index. The Doc2Query index was effective for MS
MARCO, but only marginally better for TREC-CAR. On the other
hand, DeepCT outperformed the baselines by large margins. It im-
proved BM25 by 27% on MS MARCO and 46% on TREC-CAR. It
produced similar gains for QL, showing that DeepCT is useful to dif-
ferent retrieval models. DeepCT-Index also surpassed Doc2Query
by large margins, which also used deep neural networks and super-
vised training.

It is uncommon in prior research for a non-#f term weighting
method to generate such substantially better rankings. These results
show that tf is no longer sufficient, and that better term importance
signals can be generated with deep document understanding.

Comparision to Supervised Rerankers. We further compared
the single-stage DeepCT retrieval to several multi-stage rerank-
ing pipelines. Table 2 shows results from the MS MARCO leader-
board®. It lists representative reranking approaches for feature-
based learning-to-rank, previous state-of-the-art neural rerankers
(non-ensemble versions), and BERT-based rerankers. All rerankers
used the top 1,000 passages from BM25.

A single-stage BM25 retrieval from DeepCT-Index was better
than several reranking pipelines. It is more accurate than feature-
based LeToR, a widely used reranking approach in modern search
engines. It is also more accurate than a popular neural reranking

3Statistical significance is unknown because the MS MARCO website publishes only

summary results.
*http://www.msmarco.org/leaders.aspx

Table 3: Reranking accuracy of two rerankers applied to pas-
sages retrieved using BM25 from DeepCT index and the tf
index. Dataset: MS MARCO dev.

Conv-KNRM BERT
Recall reranker reranker
MRR@10 MRR@10

Depth | tf DeepCT tf DeepCT tf DeepCT
10 40% 49% 0.234 0.270 0.279 0.320
20 49% 58% 0.244 0.277 0.309 0.343
100 68% 76% 0.256 0.274 0.349 0.368
200 75% 82% 0.256 0.269 0.358 0.370
1000 | 86% 91% 02561 0.264 |03711 0.376

T The values are not exactly the same as in Table 2 due to differences in the initial
rankings generated from our BM25 and the official BM25 from MS MSARCO.

model K-NRM [15]. Compared to Duet V2 (the official reranking base-
line) and Conv-KNRM [2], DeepCT achieves similar accuracy while
being more efficient as it does not need the reranking stage. The
results demonstrate that it is possible to move some of the complex
ranking process to offline analysis, building deep yet simple text
representations that can be retrieved very efliciently.

Finally, strong neural rerankers like the BERT reranker were
much more effective than DeepCT BM25. The next section studies
whether the two approaches can be used together.

5.2 Combine DeepCT with Rerankers

This experiment examines whether a first-stage ranking produced
by DeepCT BM25 can be used together with later-stage rerankers
to improve end-to-end performance. Table 3 reports the perfor-
mance of two rerankers applied to candidate passages retrieved
from the standard #f and the DeepCT index. The two rerankers
were Conv-KNRM [2], which has medium accuracy, and BERT
ReRanker [10], which has high accuracy. We tested various rerank-
ing depths. Reranking at a shallower depth has higher efficiency
but may miss more relevant passages.

The recall values show the percentage of relevant passages in
the reranking passage set. DeepCT had higher recall at all depths,
meaning a ranking from DeepCT provided more relevant passages
to a reranker. Both rerankers consistently achieved higher MRR@10
by using DeepCT compared to using tf: For Conv-KNRM, the best

“We did not run this experiment on MS MARCO test set because test set results can
only be evaluated by submitting to the MS MARCO competition. The organizers
discourage too many submission from the same group to avoid "P-hacking”.
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Table 4: Visualization of DeepCT term weights. Red shades
reflect the normalized term weights. Query terms are bold.
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Query do atoms make up dna
" DNA only has 5 different atoms - carbon, hydrogen,
On- oxygen, nitrogen and phosphorous. According to one
Topic  estimation, there are about 204 billion atoms in each DNA.
" |Genomics in Theory and Practice. What is Genomics.
Genomics is a study of the genomes of organisms. It main
Off- task is to determine the entire sequence of DNA or the
Topic  composition of the atoms that make up the DNA and the
chemical bonds between the DNA atoms.
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Figure 1: Term weight distribution of the top-10 terms in
passages with highest weights. The X-axis shows the term’s
rank ordered by weight. The Y-axis shows the average term
weight normalized by total passage term weight.

MRR@10 improved from 0.256 to 0.278, and the required rerank-
ing depth decreased from 100 to 50. For BERT ReRanker, DeepCT
enabled it to achieve similar accuracy using much fewer passages.
Reranking the top 100-200 passages from DeepCT produced sim-
ilar MRR@10 as reranking the top 1,000 passages from #f index,
meaning that the reranker can be 5-10x more efficient.

In summary, DeepCT puts relevant passages at the top, so that
downstream rerankers can achieve similar or higher accuracy with
much smaller candidate sets, leading to lower computational cost
in the retrieval pipeline.

5.3 Sources of Effectiveness

The last experiment aims to understand the sources of effectiveness
of DeepCT-Index through several analyses.

Table 4 visualizes DeepCT weights. It shows that DeepCT is able to
emphasize central terms and suppress non-central terms. Non-central
terms are assigned with low weight even they are frequent. For
example, in the off-topic passage, “DNA” has low DeepCT weight
even though it is mentioned 3 times. On the other hand, “Genomics”
has higher weight even though is is mentioned fewer times. This
extent of independence from frequency signals is uncommon in
previous term weighting approaches.

Figure 1 compares the term weight distribution of DeepCT-Index
and tf indexThe original #f distribution is flat. DeepCT-Index as-
signs high weights to a few central terms, resulting in a skewed
term weight distribution. Such skewed distribution confirms our
observations from the case study that DeepCT-Index aggressively
emphasizes a few central terms and supresses the others.

6 CONCLUSION

Most first-stage rankers are efficient bag-of-words retrieval models
that use term frequency signals. This paper presents DeepCT, a deep
learning approach that better estimates term importance for first
stage retrieval. DeepCT uses the transformer encoder of BERT to
capture contextual features of words, and maps the features into
document-specific term weights. Trained on a supervised per-token
regression task, DeepCT is capable of producing context-aware term
weights that reflect the essential meanings of the document. Impor-
tantly, DeepCT moves the neural document processing to the offline
indexing time — the term weights can be stored in a typical inverted
index and used with efficient retrieval models such as BM25.

Experimental results show that DeepCT improves the accuracy of
popular first-stage retrieval algorithms by up to 40%. Running BM25
on DeepCT-Index can be as effective as several previous state-of-
the-art rankers that need to run slow deep learning models at the
query time. The higher-quality ranking enabled by DeepCT-Index
improves the accuracy/efficiency tradeoff for later-stage re-rankers.
Analysis shows that DeepCT is capable of finding the central words
in a text even if they are mentioned only once. We view Deep(T as
an encouraging step from “frequencies” to “ meanings”.

For several decades, first-stage retrieval models have relied on
term frequency signals (tf). Results from this paper indicate that tf
is no longer sufficient. With recent advances in deep learning and
NLP, it is time to revisit the indexers and retrieval models, towards
building new deep and efficient first stage rankers.
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