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ABSTRACT
Bag-of-words document representations play a fundamental role
in modern search engines, but their power is limited by the shal-
low frequency-based term weighting scheme. This paper proposes
HDCT, a context-aware document term weighting framework for
document indexing and retrieval. It first estimates the semantic
importance of a term in the context of each passage. These fine-
grained term weights are then aggregated into a document-level
bag-of-words representation, which can be stored into a standard
inverted index for efficient retrieval. This paper also proposes two
approaches that enable training HDCT without relevance labels. Ex-
periments show that an index using HDCT weights significantly im-
proved the retrieval accuracy compared to typical term-frequency
and state-of-the-art embedding-based indexes.
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1 INTRODUCTION
The bag-of-words plays a fundamental role in modern search en-
gines due to its efficiency and ability to produce detailed term
matching signals. Most bag-of-words representations and retrieval
models use term weights based on term frequency (tf ), for example
tf.idf and BM25 [32]. However, being frequent does not necessarily
lead to being semantically important. Identifying central words in a
text also requires considering the meaning of each word and the
role it plays in a specific context.

Recently, there has been rapid progress in text understanding
with the introduction of deep contextual word representations such
as ELMo [30] and BERT [36]. These methods assign to each word a
representation that is a function of the entire text. They were shown
to capture the characteristics of a word’s semantics and syntax, and
more importantly, how they vary across linguistic contexts [37].

This paper proposes a novel framework that uses the contextual
word representations from BERT [36] to generate more effective
document termweights for bag-of-words retrieval.We present HDCT,
a Context-aware Hierarchical Document Term weighting frame-
work. HDCT first estimates a term’s context-specific importance in
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each passage, by projecting each word’s BERT representation into
a real-valued term weight. In this way, the term weight estimation
can take into account word orders, dependencies, and complex inter-
actions within the local context. Estimating at the passage level also
allows HDCT to handle long documents that exceed BERT’s length
limit [14]. Next, HDCT combines the local passage term weights into
a global document bag-of-words representation. The document rep-
resentation provides the retrieval model with both document-level
and passage-level key terms, so that documents can be matched to
queries accurately. These representations can be generated offline,
stored in an inverted index, and retrieved efficiently with standard
bag-of-words retrieval algorithms such as BM25.

Training HDCT requires having ground truth information about
a term’s importance in a passage. It is impractical to manually
label every term in every training document. This paper proposes
three strategies that automatically generate training labels using
documents, relevance feedback, and pseudo-relevance feedback.

The first strategy solely relies on document contents. An ideal
system should be able to automatically build a search engine for
any document collection without human labeling effort. Towards
this goal, we propose a content-based weak-supervision strategy that
exploits the internal structure of documents. It mines labels from
certain document fields that were shown to provide a high-quality
summary of the document (e.g., titles [19] and web inlinks [15]),
helping HDCT to recognize essential terms in a passage.

The second and the third strategies leverage search logs and
relevance feedback to align HDCT with user search intents. When
relevance signals are available, it is intuitive to bias document term
weights towards their related queries [10]. We propose a relevance-
based supervision strategy that trains HDCT using term distribution in
a document’s relevant queries. Sometimes user queries are available
but not relevance signals, for example, if privacy regulations do
not permit collecting user clicks. We propose a PRF-based weak-
supervision strategy that trains HDCT on machine-generated pseudo-
relevant feedback (PRF) labels.

Experiments show that the content-trained HDCT significantly
improves bag-of-words retrieval models like BM25 and RM3 [22],
and can be competitive with some supervised learning-to-rank
pipelines. An analysis shows that BERT-based term weights are
more effective than term frequencies at the passage level. The hier-
archical document modeling approach successfully combines the
passage-specific term weights for document retrieval, outperform-
ing other approaches that combine passage retrieval scores.

Section 2 reviews related work. Sections 3 and 4 describe the
HDCT framework and the three strategies to generate training la-
bels. Experimental methodologies and results are presented in Sec-
tions 5 and 6. Section 7 concludes the paper. Code, data, and hyper-
parameter study can be found in our virtual appendices. 1

1http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/
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2 RELATED WORK
Document Representations in Ad-Hoc Search. Modern search
engines were built upon bag-of-words document representations.
One of the central problems in bag-of-words is how to quantify the
context-specific importance of a term in a particular document. The
most widely-used term weighting approaches are term frequency
(tf ) based methods, such as BM25 [32] and Query Likelihood [22].

One alternative is statistical machine translation methods [3].
They weight a document term using its probability of translating
into a query term. Statistical machine translation models have not
been used much because they are difficult to train due to data
sparsity, and were not more effective than tf -based retrieval with
pseudo-relevance feedback [22] in most situations.

Another alternative is graph-based methods [4, 26, 33]. They
construct a graph for each document, where nodes represent terms
and edges represent relationships among words. Terms are then
weighted using graph ranking methods such as PageRank. Graph-
based methods were shown effective for short text [4]; but only
marginal improvements over standard BM25 were observed on
standard document retrieval datasets [4, 33].

Contextualized neural language models [14, 30] use deep neural
networks to capture how a word interacts with other words in its
context [37]. Compared to statistical machine translation models
and graph-based models, these neural models are easier to train and
can model more complicated word relations. They open new possi-
bilities for estimating context-specific term importance. Although
much recent work has applied contextualized neural language mod-
els like BERT [14] to IR tasks, prior work mainly focused on using
BERT as black-box re-ranker [9, 27, 28, 31]. Our previous work [8]
preliminarily studies using BERT to weight terms for initial ranking,
but it is limited to sentences and short passages. It is still an open
question whether these contextualized neural language models can
be leveraged to generate better bag-of-words representations for
longer documents, which are commonly seen in ad-hoc search.

Besides bag-of-words, recent research also investigates neural
document representations for ad-hoc search. Most of prior work uses
dense text representations that enable a query to match every docu-
ment to some degree, which makes them impractical for first-stage
ranking in large-scale datasets [11, 13, 16, 18, 39]. Zamani et al. [42]
proposed a different approach named SNRM. SNRM learns high dimen-
sional but sparse embeddings in which queries and documents are
represented by a set of “latent words”, so that they can be searched
with standard inverted index. SNRM was shown to outperform tradi-
tional bag-of-words retrieval and several neural ranking/re-ranking
models [42]. One challenge faced by representing a document into
a single embedding is that it discards the original words in the
document, therefore it may lose accurate term matching signals,
which are critical to text retrieval [16].

Passage-Level Evidence. In document retrieval, themostwidely-
used way to incorporate passage-level evidence is to combine pas-
sage scores, which estimates the relevance score between queries
and individual passages and aggregate passage scores into a docu-
ment score. A large number of methods along this line of research
have been proposed in the past few decades [20, 21, 23, 34, 38].
A less common approach is to combine passage representations,
which uses passage-level term statistics to build document repre-

sentations, and performs document-level retrieval. For example,
recent work from Catena et al. [5] models document tf using a
weighted sum of term frequencies per passage based on position of
the passage in the document. It is an open question how to go be-
yond these simple statistics and mine deeper signals from passages
to better represent documents.

Weak Supervision for IR. IR research mainly focuses on two
types of weak relevance signals: content-based signals [1–3, 19, 25]
and pseudo-relevance feedback based signals [13, 41, 42]. Content-
based approaches are motivated by the observation that the doc-
ument content often exhibits some relevance relations between
pieces of text. Research on this topic dates back at least 20 years
when Jin et al. [19] used title-document pairs to train statistical
translation models. Recently, MacAvaney et al. [25] revisited this
topic to train a neural ranking model. Pseudo-relevance feedback
(PRF) based approaches make use of the rankings from a search
engine to generate pseudo-relevant labels [13, 41, 42]. One limita-
tion of PRF-based approaches is that they rely on the availability
of queries and the quality of the pseudo-relevance labels [25]. In
general, recent research on both of the above two types of weak
supervision focused on embeddings [41, 42] or neural ranking mod-
els [13, 25]. Their effectiveness in learning discrete bag-of-words
document representations remains to be studied.

3 THE HDCT FRAMEWORK
This section presents the hierarchical document term weighting
framework, HDCT, as shown in Figure 1(a).

Given a document 𝑑 , HDCT estimates passage-level term weights
using contextual term representations generated by BERT [36].
Next, HDCT combines the passage-level termweights into document-
level term weights. The output is a document bag-of-words rep-
resentation that can be stored in a standard inverted index and
retrieved by common bag-of-words retrieval models like BM25 .

3.1 Passage-Level TermWeighting
The first step of HDCT estimates a term’s importance in a passage.
Unlike traditional term weighting methods that use term frequency
signals, we aim to consider the specific meanings and roles of a
term in the passage using BERT.

Given a document 𝑑 , HDCT first splits it into a sequence of pas-
sages 𝑃𝑑 = {𝑝1, ..., 𝑝𝑛}. The max input text length of BERT is 512
tokens after tokenization – about 300 to 400 English words before
tokenization. Meanwhile, prior research shows that fixed-size pas-
sages of 200-300 wordsmore are effective than natural passages [20].
Therefore, passages in HDCT consist of consecutive sentences that
make up to about 300 words.

Next, HDCT estimates term importance in each passage. Fig-
ure 1(b) shows the details of this step. Given a passage 𝑝 , HDCT
generates contextual token embeddings using BERT, which trans-
forms a token into a contextual embedding based on its attention to
every other word in the passage. Tenney et al. [37] show that these
embeddings can characterize a token’s syntactic features (e.g., word
dependencies) and semantic features (e.g., named entity labeling),
which can help estimate a term’s importance.
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Figure 1: The HDCT architecture.

HDCT feeds these contextualized token embeddings into a linear
layer. It maps a token’s embedding into a real-number weight:

𝑦𝑡,𝑝 = 𝑤 ·𝑇BERT (𝑡, 𝑝) + 𝑏. (1)

𝑇BERT (𝑡, 𝑝) is token 𝑡 ’s contextualized embedding in passage 𝑝;𝑤
and 𝑏 are the linear combination weights and bias; and, 𝑦𝑡,𝑝 is the
predicted weight for token 𝑡 in the passage 𝑝 . 𝑦𝑡,𝑝 are mostly in the
range of 0-1. This is because our training labels are in 0-1, so the

model learns to generate predictions also in that range.

HDCT then scales the real-valued predictions into a tf -like integer
that can be used with existing retrieval models. We call this weight

tf𝐵𝐸𝑅𝑇 to convey that it is an alternate way of representing the

importance of term 𝑡 in passage 𝑝 using BERT:

tfBERT (𝑡, 𝑝) = 𝑟𝑜𝑢𝑛𝑑 (𝑁 ∗
√
𝑦𝑡,𝑝 ). (2)

𝑦𝑡,𝑝 is the prediction from Eq (1). 𝑁 scales the prediction into

an integer range, e.g. 𝑁 = 100 keeps two digit precision. The

square-root function is used for smoothing – it brings low predicted

weights up, e.g.
√
0.01 = 0.1, preventing the document representa-

tion from being dominated by a few highly-weighted terms. Two

post-processing steps are applied: 1) To handle BERT’s subwords,

we use the weight of the first subwords for the entire word, and

2) When a term occurs multiple times in the passage, we take the

maximum weight across the multiple occurrences.

After the scaling and post-processing, we generate a bag-of-

words vector representation of the passage 𝑝:

P-BoWHDCT (𝑝) = [tfBERT (𝑡1, 𝑝), .., tfBERT (𝑡𝑚, 𝑝)] . (3)

Its terms are from the original text of the passage; the term weights

are a tf -like integer based on predictions from BERT.

The above steps are applied to every passage 𝑝1, ..., 𝑝𝑛 in the

document 𝑑 . At the end, HDCT generates a sequence of bag-of-words
passage vectors.

{P-BoWHDCT (𝑝1), ..., P-BoWHDCT (𝑝𝑛)}. (4)

Although called bag-of-words, the term weights are based on

the linguistic context of the passage, which is very different from

traditional tf based bag-of-words. As shown in Table 1, HDCT em-
phasize terms that are topical to a passage, even if they have low

Table 1: Visualization of an HDCT weighted passage. Deeper

color represents higher weights.

a troll is generally someone who tries to get attention by

posting things everyone will disagree, like going to a susan

boyle fan page andwriting susan boyle is ugly on the wall.

tf (e.g. ‘troll’); they also depress non-topical terms in the passage

even if they have high tf (e.g. ‘boyle’).

3.2 Document-Level TermWeighting

The previous step generates a sequence of passage bag-of-words

representations. The next question is how to combine the passages

for document retrieval.

A widely-used approach is to index and retrieve the passages

independently, and aggregate passage scores at query time [20,

21, 23, 34, 38]. However, passage-level retrieval often faces the

challenge of lacking document-level context [38].

HDCT uses a different approach that aggregates passage repre-
sentations rather than passage scores. A term’s importance in the

document is a weighted sum of its importance in each passage:

D-BoWHDCT (𝑑) =
𝑛∑
𝑖=1

𝑝𝑤𝑖 × P-BoWHDCT (𝑝𝑖 ) . (5)

𝑝𝑤𝑖 models the importance of the i-th passage 𝑝𝑖 to the document
𝑑 . This work explores two options for determining 𝑝𝑤𝑖 . The first

one uses 𝑝𝑤𝑖 = 1 (sum); it weights all passages equally. The second
one uses 𝑝𝑤𝑖 = 1

𝑖 ( decay); it discounts passages based on the

position, as prior research found that passages at the beginning of

a document tend to attract more attention from readers and are

more important for relevance estimation [5, 38]. Following [38], we

use the reciprocal of position as the weight of a passage.

Besides passage position, it is also intuitive to weight passages

from their content. This work does not explicitly model this factor.

However, as will be discussing in the next section, we can train

HDCT to down-weight all terms in a passage, hence implicitly weight
passages based on content.
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Finally, HDCT stores BoWHDCT, the document bag-of-words rep-
resentation, into an inverted index, where the new context-aware
term weights replace the standard term frequency fields in the
inverted lists [7]. We call it the HDCT index.

3.3 Retrieval with HDCT Index
To retrieve documents from HDCT indexes, we use the standard
BM25 formula. The tf field in BM25 is replaced with the context-
aware term weights stored in the HDCT index. HDCT is expected to
improve retrieval by identifying key terms in a document.

This work also investigates whether HDCT index is compatible
with pseudo-relevance feedback retrieval algorithms. Let 𝐷𝑅 =

{𝑑1, 𝑑2, ..., 𝑑𝑘 } be the top k documents retrieved from a HDCT in-
dex in response to the query using standard BM25. An expanded
query is generated using RM3 [22]: 𝑃𝑅𝑀3 (𝑡, 𝑞 |𝑅) = (1 − 𝜆)𝑃 (𝑡 |𝑞) +
𝜆
∑
𝑑∈𝐷𝑅

𝑃 (𝑡 |𝑑)𝑃 (𝑞 |𝑑), where 𝑃 (𝑡 |𝑑) is estimated with the HDCT
term weights:

𝑃 (𝑡 |𝑑) = D-BoWHDCT (𝑑, 𝑡)∑
𝑡𝑖 D-BoWHDCT (𝑑, 𝑡𝑖 )

. (6)

We than retrieve documents by running the expanded query against
the HDCT index.

In terms of efficiency, HDCT does not introduce new words into
documents, so the index does not become larger. Usually, the index
can be smaller as some terms’ weight becomes 0 during the scaling
in Eq (2).

3.4 HDCT BoW vs. Classic BoW
Being bag-of-words (BoW) representation, HDCT shares the advan-
tages of classic bag-of-words document representations: efficient
retrieval, support for fine-grained term signals [16], and higher in-
terpretability compared to latent topic models and embeddings. On
the other hand, unlike traditional tf bag-of-words, HDCT does not
assume term independence when estimating term weights. Build-
ing upon BERT’s transformer architecture [36], HDCT takes into
account word orders, dependencies, and complex interactions.

Moreover, HDCT investigates the potential of using the passage-
level content understanding for document modeling. In most prior
work, passages only provide limited signals for bag-of-words re-
trieval, such as passage term frequencies or passage positions [5, 20,
21, 23, 34, 38]. HDCT uses a deep neural network to extracts richer
evidence from passages, leveraging the deep content understanding
from passages to build the document representations.

4 TRAINING STRATAGIES FOR HDCT
This section first introduces a general training framework for HDCT.
Then it proposes three strategies to generate training labels using
documents, relevance feedback, and pseudo-relevance feedback.

HDCT needs to fine-tune the BERT parameters and learn the
linear layer parameters𝑤,𝑏. These parameters are learned through
a passage-level per-token regression task. As shown in Figure 1(b),
assume we have the ground truth term weight for a term 𝑡 in a
passage 𝑝 , denoted as 𝑦𝑡,𝑝 . We feed the passage 𝑝 to HDCT, let HDCT
predict term weights 𝑦𝑡,𝑝 , and tries to minimizes the mean square
error between the predictions 𝑦𝑡,𝑝 and the ground truth 𝑦𝑡,𝑝 :

𝑀𝑆𝐸 =
∑
𝑝

∑
𝑡 ∈𝑝

(𝑦𝑡,𝑝 − 𝑦𝑡,𝑝 )2 . (7)

However, it is impractical to manually label the importance of
every term in every passage (𝑦𝑡,𝑝 ). To automatically generate la-
bels, the key question is, what evidence do we have that shows a
term’s importance for document retrieval?. This paper proposes three
training strategies: a content-based approach for cases where only
the documents are available, a relevance-based approach for cases
where rich query-document relevance assessments are assailable,
and a pseudo-relevance based approach for cases where search
queries can be collected but the relevance labels or user activities
are not accessible.

4.1 Supervision from Document Content
A generally applicable search system should be able to build a good
search engine just from the document collection. Towards this
goal, the first training strategy mines labels from the documents
themselves.

In many domains, the documents are loosely structured with var-
ious sources of textual information (fields), such as title, keywords,
and inlinks (anchor text). Various researches have shown that these
fields behave like real user queries [15, 19]. They provide a short
summary of what a document is about and which search intents
it may satisfy. These short, highly representative fields provide
evidence about which terms bear high importance in the document.

Let 𝐹𝑑 be a reference field that we use to train HDCT, e.g., the
inlink field. We denote 𝐹 = {𝑓1, ..., 𝑓𝑚}, where each element 𝑓𝑖 is a
text instance of the reference field. Some fields only have a single
instance, e.g., a document usually has one title. Some fields may
have multiple instances, e.g., a web page can have thousands of
inlinks. The content-based strategy mines weak supervision signal
about a term’s importance by checking if, and how frequently, the
term appears in the reference field.

Formally, given a training document 𝑑 , its passages {𝑝1, ..., 𝑝𝑛},
and its reference field 𝐹𝑑 = {𝑓1, ..., 𝑓𝑛}, the content-based weak-
supervision approach generates labels as the following:

𝑦𝑡,𝑝 =
|𝐹𝑑,𝑡 |
|𝐹𝑑 |

, 𝑝 ∈ {𝑝1, ..., 𝑝𝑛}, (8)

where 𝑡 is token from passage 𝑝 , and |𝐹𝑑,𝑡 |
|𝐹𝑑 | is percentage of field

instances that contain 𝑡 . When there is a single instance, e.g., a
document title, Eq (8) generates a binary label indicating if term 𝑡

appears in the field or not. When there are multiple instance, e.g.
inlinks, Eq 8 is a real number between 0 and 1. In the latter case,
a token is considered more important if it is mentioned by a large
portion field instances, reflecting the “collective wisdom”.

As shown in Eq (8), the labels 𝑦𝑡,𝑝 are actually passage inde-
pendent and only depend on the document’s reference field 𝐹𝑑 .
That means, if the document’s title is “Yellowstone National Park”,
then the target term-weights for “yellowstone” will always be 1
regardless of which passage it appears in. Section 6.3 discusses the
effects of such global labels in detail.

The training passage 𝑝 and its target term weights derived from
the reference field, are used to train HDCT by minimizing the MSE
loss in Eq (7). These training labels are automatically extracted from
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the document content; no task-specific data collecting or labeling
is required. It makes HDCT applicable to cold-start scenarios.

4.2 Supervision from Relevance and
Pseudo-Relevance Feedback

When search queries and their relevant documents are available,
they can provide rich information about people’s search intents and
interests. We would want the document term weights to align with
patterns found in these search data. For example, “cast” should have
high weight in movie-related documents as many search queries
are looking for a movie’s cast.

Given a training document 𝑑 , its passages 𝑃𝑑 = {𝑝1, ..., 𝑝𝑛}, and
its relevant queries 𝑄𝑑 = {𝑞1, ..., 𝑞𝑏 }, we generate the relevance-
based training labels as follows:

𝑦𝑡,𝑝 =
|𝑄𝑑,𝑡 |
|𝑄𝑑 |

, 𝑝 ∈ {𝑝1, ..., 𝑝𝑛}. (9)

𝑡 is a term from passage 𝑝 in document 𝑑 . |𝑄𝑑,𝑡 |
|𝑄𝑑 | is the percentage

of 𝑑’s relevant queries that mention term 𝑡 . If most of 𝑑’s queries all
mention 𝑡 , then 𝑡 is likely to be essential for this document. Same
as the content-based supervision, the labels are global – they are
based on a document’s queries rather than passage-specific ones.
We leave the discussion to Section 6.3.

In some cases, the search queries are available, but the relevance
feed-backs such as clicks are not accessible (for example, in privacy-
sensitive scenarios). Inspired by Zamani et al. [42], we propose
a pseudo-relevance feedback based (PRF-based) weak-supervision
strategy for HDCT, which collects pseudo-relevant documents for
the queries instead of using true relevant documents.

It takes an existing retrieval system, e.g., BM25, to retrieve docu-
ments for the queries. For each query, the top𝐾 retrieved documents
are considered to be pseudo-relevant to the query. It then collects
a document’s pseudo-relevant queries, PRF-𝑄𝑑 , and generates the
PRF-based training labels using the same way as Eq (9):

𝑦𝑡,𝑝 =
|PRF-𝑄𝑑,𝑡 |
|PRF-𝑄𝑑 |

, 𝑝 ∈ {𝑝1, ..., 𝑝𝑛}. (10)

The relevance-based and PRF-based labels relies on some existing
relevance assessments or a query log. The labels take time and effort
to obtain, but they are expected to improve the accuracy of HDCT
by tailoring HDCT for the retrieval task.

4.3 Global Labels for Local Term Weighting
In the above three approaches, the target term weights (labels) are
derived globally from the entire document, rather than being locally
dependent on specific passages. One would expect these global
labels to be less effective for passage term weighting. However,
in practice, as the contextualized word representation for a word
always varies with the passage, HDCT can still generate local term
weights even though the training labels are global.

Moreover, these global labels let HDCT capture the global impor-
tance of passages. Some passages introduce noise, e.g., advertise-
ments, navigation bars, or large blocks of equations. These passages
do have their own locally important words, but they should not
have high weights in the document. The document-derived labels

teach HDCT to down-weight the entire passage. For example, low-
quality passages often do not cover any inlink terms. Rather than
trying to find the locally important words, HDCT gives 0 weight to
all words in these passages. As a result, the entire passage makes
little contribution to the document bag-of-words representation.
We will illustrate the passage-weighting effect in Section 6.3.

5 EXPERIMENTAL METHODOLOGIES
This section presents our experimental methodologies, including
datasets, baselines, and experimental methods.

5.1 Datasets
Experimental evaluation of HDCT used 4 document retrieval datasets
with different characteristics.

ClueWeb09-B is a widely used text retrieval collection. The
original collection contains 50 million web pages; we used the
spam-filtered subset of 33 million documents. Spam was filtered
using the Waterloo spam score [6] with a threshold of 60. The
documents were split into a total of 100 million passages using a
non-overlappingwindow of around 300words. A document consists
of 4 fields: title, URL, inlinks, and body.

ClueWeb09-C. Running HDCT over ClueWeb09-B is time con-
suming, making it slow to experiment with different model config-
urations. Therefore, we created ClueWeb09-C, a 10% subset of the
original corpus. It consists of a 10% random sample of ClueWeb09-
B documents, plus all documents that were in the original TREC
judgment pool (in the qrels files)2. In total, there are 3.4 million
documents and 10 million passages.

ClueWeb12-C. ClueWeb12-B13 is another standard text retrieval
collection used in IR research. We created the 10% subset, called
ClueWeb12-C, using the same method described above. Spam filter
was not applied as suggested in [12]. In total, there are 5 million
documents and 13 million passages. A document consists of four
fields (title, URL, inlinks, and body).

The 2009-2014 TREC Web Tracks provided 200 queries with rel-
evance assessments for ClueWeb09, and 100 queries for ClueWeb12.
They were used for evaluating HDCT. Two versions of queries were
evaluated: a short keyword query (title query) and a longer natural
language query (description query). Evaluation used NDCG@20,
the main metric for the TRECWeb Tracks; MAP@1000, to show the
effectiveness at deeper rankings; and MRR, to be consistent with
MS-MARCO-Doc.

The MS-MARCO Document Ranking dataset (MS-MARCO-
Doc)3 is a benchmark dataset for web document retrieval recently
released in the TREC 2019 Deep Learning Track. The dataset has 4
million documents, which produced 12 million passages. A docu-
ment consists of 3 fields (title, URL, and body). The dataset comes
with a training set of 0.37 million queries and the corresponding
relevant documents. Evaluation was on the dev set, which contains
5193 queries4. Evaluation used the mean reciprocal rank (MRR) as
suggested in the official instructions.

2If not included, many queries ended up with few or no relevant documents, making
the evaluation results unstable.
3https://microsoft.github.io/TREC-2019-Deep-Learning/
4The relevance assessments for the official test set were not public at the time the
paper was written.

https://microsoft.github.io/TREC-2019-Deep-Learning/
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5.2 Baselines and Experimental Methods
Our main baseline is tf, the standard term frequency based docu-
ment index, e.g., as used by Luccene and Indri. We compare tf to
several experimental HDCT methods.

On the ClueWeb datasets (ClueWeb09-B/C and ClueWeb12-C),
we tested three experimental HDCT methods:

• HDCT-titlewas trained with the content-based weak super-
vision strategy, using titles as the reference field. It generated
term weights for every document in the collection, and built
an inverted index that were used for retrieval.

• HDCT-inlink was trained with the content-based weak su-
pervised strategy, using inlinks as the reference field. We
removed URL inlinks, and the most frequent inlinks like
“next page” that has been linked to more than 10, 000 docu-
ments in the collection.

• HDCT-PRFaol was trained with the PRF-based weak supervi-
sion strategy using the AOL query log [13, 25] and pseudo-
relevance labels. We removed queries that are URLs and the
100 most frequent ones. We randomly sampled 500K unique
queries, which is about the same scale as the MS-MARCO-
Doc training query set used in HDCT-PRFmarco. It was also
of the same scale as used in prior research [24]. 10 docu-
ments [25, 41] were retrieved for each query using BM25FE,
a strong baseline that ensembles BM25 scores on each field
(see Retrieval Models for more details); we sampled 1 from
the top 10 documents to reduce computational cost.

Four HDCT methods were tested on MS-MARCO-Doc:

• HDCT-title was trained with document titles. MS-MARCO-
Doc do not have inlink data, so HDCT-inlink is not available.

• HDCT-PRFaolwas trained with the PRF-based strategy using
the AOL query log and pseudo-relevance labels.

• HDCT-PRFmarcowas trained with the PRF-based weak super-
vision strategy using the MS-MARCO-Doc training queries
and pseudo-relevance labels. Same as the AOL query logs,
we retrieved top 10 documents for each query using BM25FE
and sample 1 to generate the training data. HDCT-PRFaol
and HDCT-PRFmarco allows us to compare the differences
between out-of-domain and in-domain queries.

• HDCT-supervisedwas a fully-supervisedmodel trainedwith
the relevance-based supervision. It used 0.37 million rele-
vance assessments in the MS-MAROC-Doc training set.

All models were trained for 100K steps with a batch size of 16
and a learning rate of 2𝑒 − 5; training over 100K steps did not lead
to significant improvements. BERT parameters was initialized with
the official pre-trained BERT (uncased, base model) [36]. Max input
length was set to 512 tokens. The scaling coefficient N in Eq (2)
and the passage weights 𝑝𝑤 in Eq (5) were selected based on the
dataset. We chose 𝑁 from {10, 100}, and the passage weights from
{sum, decay}. Unless otherwise specified, the rest of paper reports
the best configuration of each dataset, that is 𝑁 = 10 with sum for
ClueWeb datasets, and 𝑁 = 100 with decay for MS-MARCO-Doc.

Training HDCT took about one day on 4 TPUs. Indexing needs to
run HDCT over the entire corpus, so the cost depends on the corpus
size. It took HDCT less than 1 day × 4 TPUs to index ClueWeb09-C,
ClueWeb12-C, and MS-MARCO-Doc (3-5 million documents, 10-13

million passages), and 6 days × 4 TPUs to index ClueWeb09-B (33
million documents, 100 million passages).

Retrieval Models. The tf and HDCT indexes were tested with
three widely-used retrieval models.

BM25. The BM25 retrieval model [32] is a widely-used well-
performing bag-of-words retrieval model.

BM25FE. BM25FE is an ensemble of BM25 rankers on different
document fields. Field scores are linearly combined in the ensem-
ble, where the weights are searched through a parameter sweep.
ClueWeb datasets used title, URL, inlink, and body. MS-MARCO-
Doc used title, URL and body; inlink was not available in this dataset.
HDCT only weighted terms in the body field.

BM25+RM3. The relevance model RM3 [22] is a popular query ex-
pansion technique using pseudo-relevance feedback. BM25+RM3 has
been shown to improve the original BM25, and has been considered
a strong baseline. We also tested the compatibility between HDCT
index and BM25+RM3 as described in Section 3.3.

We used the Anserini [40] implementation of the above retrieval
models. We tuned the parameters of these retrieval models on the
evaluation query sets through 2-fold cross-validation. These include:
the 𝑘1 and 𝑏 parameters in BM25, the field weights in BM25FE, and
the number of feedback documents, the number of feedback terms,
and the feedback coefficient in BM25+RM3.

Embedding-Based Retrieval Baselines. We compared HDCT,
which uses discrete bag-of-words, to two retrieval models that use
embeddings: RLM [41] and SNRM [42]. Same as HDCT, they support
efficient full-collection retrieval. RLM [41] makes use of word em-
bedding similarities for pseudo-relevance feedback. SNRM [42] is the
current state-of-the-art embedding-based index. It converts docu-
ments into sparse 20, 000-dimension embeddings, and store them in
an inverted index. RLM and SNRM are both trained using a PRF-based
weak supervision approach [41, 42]. The authors did not release the
trained models or indexes, and we were not able to fully optimize
our own implementations due to the large amount of training data
they require 5. Therefore, we report the results reported by the
authors on the ClueWeb09-B dataset [41, 42].

Supervised Re-Ranking Baselines. HDCT is designed for full-
collection retrieval. We also compared it to two strong re-ranking
systems, which are more computationally complex and require
training data. The first, LeToR, is a popular feature-based learning-
to-rank method using Coordinate Ascent [9, 11, 31]. The second,
BERT-FirstP, is a neural BERT-based re-ranker [9]. BERT-FirstP
has shown improved performance over previous state-of-the-art
neural ranking models [9]. Both methods adopt the settings used
by Dai et al. [11] and re-ranked the top 100 documents retrieved by
Galago SDM.

6 EXPERIMENTAL RESULTS
Four experiments were conducted to study: the retrieval effective-
ness of content-trained HDCT; the effects of stronger supervision
using relevance-based and PRF-based labels; the effects of differ-
ent types of hierarchical document modeling; and whether HDCT
improves pseudo-relevance feedback.

5RLM and SNRM used 6 million queries and 6×107 to 6×1013 training examples [41, 42].
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Table 2: Effectiveness of content-trained HDCT indexes on the ClueWeb09-C dataset. ∗ indicates statistically significant improve-
ments over tf, the standard inverted index using term frequency.

ClueWeb09-C Title Query Description Query
Retrieval
Model

Indexing
Term Weight MRR NDCG@20 MAP@1000 MRR NDCG@20 MAP@1000

BM25

tf 0.493 – 0.307 – 0.248 – 0.570 – 0.321 – 0.238 –
HDCT-title 0.592∗ 20% 0.342∗ 11% 0.254 3% 0.608 7% 0.362∗ 13% 0.257∗ 8%
HDCT-inlink 0.586∗ 19% 0.356∗ 16% 0.265∗ 7% 0.625 9% 0.377∗ 17% 0.264∗ 11%

BM25FE

tf 0.591 – 0.322 – 0.250 – 0.651 – 0.357 – 0.269 –
HDCT-title 0.604 2% 0.358∗ 11% 0.263∗ 5% 0.663 2% 0.376∗ 5% 0.274 2%
HDCT-inlink 0.615 4% 0.361∗ 12% 0.270∗ 8% 0.643 -1% 0.385∗ 8% 0.280∗ 4%

BM25+RM3

tf 0.563 – 0.350 – 0.278 – 0.581 – 0.351 – 0.257 –
HDCT-title 0.610∗ 8% 0.369∗ 6% 0.280 1% 0.634∗ 9% 0.386∗ 10% 0.276∗ 7%
HDCT-inlink 0.630∗ 12% 0.397∗ 14% 0.298∗ 7% 0.663∗ 14% 0.399∗ 14% 0.285∗ 11%

Table 3: Effectiveness of content-trained HDCT indexes on the ClueWeb12-C dataset. ∗ indicates statistically significant improve-
ments over tf, the standard inverted index using term frequency.

ClueWeb12-C Title Query Description Query
Retrieval
Model

Indexing
Term Weight MRR NDCG@20 MAP@1000 MRR NDCG@20 MAP@1000

BM25

tf 0.545 – 0.211 – 0.050 – 0.535 – 0.183 – 0.043 –
HDCT-title 0.607∗ 11% 0.230∗ 9% 0.054∗ 8% 0.621∗ 18% 0.218∗ 19% 0.053∗ 22%
HDCT-inlink 0.603 10% 0.232∗ 10% 0.055∗ 11% 0.602∗ 13% 0.215∗ 17% 0.052∗ 19%

BM25FE

tf 0.584 – 0.229 – 0.054 – 0.554 – 0.197 – 0.048 –
HDCT-title 0.611 5% 0.236 3% 0.058∗ 6% 0.631∗ 12% 0.218∗ 11% 0.053∗ 9%
HDCT-inlink 0.613∗ 5% 0.241∗ 5% 0.060∗ 11% 0.619∗ 12% 0.217∗ 10% 0.053∗ 10%

BM25+RM3

tf 0.567 – 0.216 – 0.051 – 0.503 – 0.186 – 0.043 –
HDCT-title 0.642∗ 13% 0.235∗ 9% 0.056∗ 10% 0.635∗ 26% 0.221∗ 19% 0.054∗ 25%
HDCT-inlink 0.622∗ 10% 0.241∗ 12% 0.058∗ 11% 0.61∗0 21% 0.220∗ 19% 0.053∗ 21%

Table 4: Effectiveness of content-trained HDCT indexes onMS-
MARCO-Doc. ∗: statistically significant improvements over
tf, the standard inverted index using term frequency.

MS-MARCO-Doc Dev Query
Retrieval
Model

Indexing
Term Weight MRR

BM25
tf 0.254 –

HDCT-title 0.287∗ 13%

BM25FE
tf 0.283 –

HDCT-title 0.300∗ 6%

BM25+RM3
tf 0.250 –

HDCT-title 0.288∗ 15%

6.1 Performance of Content-Trained HDCT
When building a search system for a new document collection, it is
often the case that there are no relevance labels to train machine
learning models. Typically, people would build a tf -based inverted
index and use out-of-the-box retrieval models like BM25. Our goal is
to construct a better index using content-trained HDCT without re-
lying on any additional labels. The first experiment tests if content-
trained HDCT can outperform standard tf -based retrieval models,
strong supervised re-ranking models, and competitive embedding-
based retrieval models.

Comparison to Standard tf Index. Tables 2-4 show the re-
trieval effectiveness of several content-trained HDCT indexes on
the ClueWeb09-C, ClueWeb12-C and MS-MARCO-Doc datasets.
HDCT-title and HDCT-inlink use document title/inlinks as the
reference field to generate training labels. The baseline is a typical
term-frequency (tf ) based inverted index.

Significant and robust gains from HDCT over tf were observed
on all datasets and query sets under various retrieval models.

When BM25was used, HDCT indexes were 10%-20% more accurate
than the tf index.It shows that HDCT weights are more effective
than simply counting term frequencies in the document.

When BM25FE was used, the gap between HDCT and tf was
smaller, but HDCT still outperformed tf in most cases. It shows
that the content-trained HDCT can provide new information not
covered by titles and inlinks. Titles and inlinks are often short and
incomplete. Sometimes they have low text quality. Learning from a
large number of titles/inlinks of different styles and qualities helps
HDCT to capture general patterns of term importance, generating
smoother and cleaner term weights than the original text fields.

RM3 is a pseudo-relevance feedback retrieval model originally
designed for tf weights. Our results show that HDCTweights also fits
into RM3. HDCT brought significantly improvements to the original
tf -based BM25+RM3. The combination of HDCT-inlink index and
BM25+RM3 retrieval achieved the best accuracy on ClueWeb09-C. Its
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Table 5: Effectiveness of HDCT-inlink on the ClueWeb09-B dataset. We report MAP@100 because LeToR and BERT-FirstP re-
ranked the top 100 documents. Superscripts 1-8 indicate statistically significant improvements over the corresponding meth-
ods, as labeled in the first column, e.g., 14 means that this result is statistically significantly better than methods 1 and 4.

ClueWeb09-B Title Query Description Query
Method MRR NDCG@20 MAP@100 MRR NDCG@20 MAP@100
1 BM25, tf 0.477 -12% 0.272 -8% 0.154 -4% 0.471 -6% 0.234 -7% 0.134 -7%
2 BM25FE, tf 0.5301 -2% 0.268 -9% 0.157 -3% 0.51113 3% 0.2501 -0% 0.1391 -4%
3 BM25+RM3, tf 0.5201 -4% 0.29412 -0% 0.164 1 +2% 0.473 -6% 0.2491 -1% 0.138 -5%
4 LeToR 0.543 – 0.29512 – 0.1611 – 0.50312 – 0.2511 – 0.145123 –
5 BERT-FirstP 0.53814 -1% 0.28612 -3% 0.16612 +3% 0.5321236 +6% 0.2721234 +8% 0.1511236 +4%
6 BM25, HDCT 0.5431234 +0% 0.3031235 +3% 0.1631 +1% 0.51013 +1% 0.2671234 +6% 0.14313 -1%
7 BM25FE, HDCT 0.5431234 +0% 0.3031235 +3% 0.1631 +1% 0.5211234 +3% 0.2711234 +8% 0.145123 +0%
8 BM25+RM3,HDCT 0.5971−7 +10% 0.3261−7 +11% 0.1801−7 +12% 0.52512346 +4% 0.27412346 +9% 0.148123 +2%

Table 6: Comparison between HDCT and embedding-based re-
trieval models. Dataset: ClueWeb09-B, title queries. Results
for RLM are from [41]; results for SNRM are from [42]. HDCT
were evaluated using the methodology in [41, 42] to be di-
rectly comparable. Statistic significance test are not avail-
able as [41, 42] reported aggregated results.

RLM [41] SNRM [42] HDCT-inlink

tf Baseline 0.224 – 0.229 – 0.246 –
Retrieval – – 0.235 +3% 0.270 +10%
Retrieval+PRF 0.236 +5% 0.248 +8% 0.289 +17%

NDCG@20 has a 14% improvement from tf -based BM25+RM3, 22%
from the the tf -based BM25FE, and 29% from the tf -based BM25.

Comparison to Supervised Re-ranking Systems. Next, we
test HDCT on the ClueWeb09-B dataset. ClueWeb09-B is a standard
test collection widely used in IR research. It allowed us to compare
HDCT to other published results. Table 5 compares HDCT-inlink,
the best model found on ClueWeb09-C, to the standard tf retrieval
models and two supervised re-ranking systems: LeToR [9, 11, 31];
and BERT-FirstP [9]. They were trained on around 10, 000 rele-
vant query-document pairs. HDCT-inlink was not trained on any
relevance labels.

HDCT-inlink outperformed the standard tf on ClueWeb09-B,
which has 10× irrelevant documents as ClueWeb09-C. It demon-
strates the robustness of HDCT to larger and noisier collections.

HDCT-inlink was also as good as or better than some of the
re-ranking systems. On query titles, retrieval using BM25+RM3 from
HDCT-inlinkwas significantly more accurate than both re-rankers.
On query descriptions, it outperformed LeToR and was on-par with
BERT-FirstP at the top of the ranking. Neural ranking models
like BERT-FirstP need a large amount of training data [9, 31].
ClueWeb09-B is a realistic condition in which only a moderate
amount of training data is available. These results indicate that
under such conditions, HDCT can be very competitive with some
state-of-the-art supervised re-ranking pipelines without using any
relevance labels.

In terms of efficiency, re-ranking models like BERT-FirstP are
computationally expensive at the query time [27, 29]. HDCT index is
built offline and uses simple bag-of-words retrieval at query time,
making it preferable in efficiency-sensitive scenarios.

Comparison to Embedding-Based Retrieval. HDCT only uses
exact term matching signals for retrieval. Embedding-based re-
trieval models, on the other hand, can match text fuzzily using
embeddings. We compare HDCT to two embedding-based retrieval
models: RLM [41] and SNRM [42]. Results are shown in Table 6. As
discussed in Section 5, we report their performance in the original
papers [41, 42], and re-evaluated HDCT using their methodology to
be directly comparable 6.

As shown in Table 5, RLM was used in a pseudo-relevant back
scenario (Retrieval+PRF) [41]. Its retrieval accuracy was lower
than the other two methods. SNRM and HDCT can be used for stand-
alone retrieval (Retrieval, where HDCT used BM25), or be combined
with psuedo-relevance back (Retrieval+PRF, where HDCT used
BM25+RM3). HDCT achieved higher absolute NDCG@20 values, and
larger relative improvements from the corresponding tf baseline.
In SNRM, documents are semantically matched by latent topics in
embeddings, but may lose term specificity. This is a common issue
in controlled vocabularies [35] and representation-based neural
ranking models [16, 17]. HDCT represents documents using the free-
text vocabulary. It has higher precision as it preserves the exact
term matching signals which are critical in IR [16].

Summary. The analysis in this section shows that one can train
effective HDCT models solely from the content of documents. HDCT
is more accurate than strong tf -based baselines and state-of-the-art
weakly-supervised embedding baselines. Being an efficient full-
collection retrieval model, HDCT can be same or more accurate than
the supervised and more complex re-ranking models under low-
resource or cold-start conditions.

6.2 Effects of Relevance and Pseudo-Relevance
Labels

The previous experiment demonstrates the effectiveness of content-
trained HDCT. The next experiment studies HDCT’s performance
when it was trained with stronger supervision from real search
queries and relevance labels provided. Table 7 shows the effective-
ness of HDCT models training using relevance labels and pseudo-
relevance labels on the MS-MARCO-Doc dataset. We examined two
types of pseudo-relevance labels that reflect what people might use

6NDCG@20 values of HDCT-inlink in Table 6 are different fromTable 5 due to different
evaluation methodologies. [41, 42] used the ClueWeb09-A qrels files. We followed the
settings in [9, 11] and used ClueWeb09-B subset.
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Table 7: Effectiveness of HDCT when trained with relevance
labels and pseudo-relevance labels. Dataset: MS-MARCO-
Doc. Superscripts 1-5 indicate statistically significant im-
provements over the corresponding methods, as labeled in
the second column.

MS-MARCO-Doc Dev Query
Retrieval
Model

Indexing
Term Weight MRR

BM25FE

1 tf 0.283 –
2 HDCT-title 0.30013 +6%
3 HDCT-PRFaol 0.2911 +3%
4 HDCT-PRFmarco 0.307123 +8%
5 HDCT-supervised 0.3201234 +13%

in different settings: generated using in-domain and out-of-domain
queries. All indexes were retrieved with BM25FE, the strongest re-
trieval model on MS-MARCO-Doc.

HDCT-supervised is a fully-supervisedmodel that used in-domain
queries and true relevance labels. As shown in Table 7 , it is the
most effective, outperforming the title-trained one by 7%. Docu-
ment titles are not necessarily aligned with user search intents [41].
Relevance-based labels can bias HDCT towards the retrieval task.

HDCT-PRFaol used out-of-domain pseudo-relevance labels from
AOL queries. Results in Table 7 show that they were not effective.
We observed similar results on ClueWeb datasets (results were not
shown due to space limitations). Domain difference is a common
challenge in weak-supervision [25]; this experiment reveals that it
has a significant impact on HDCT.

HDCT-PRFmarco was trained on in-domain pseudo-relevance la-
bels. It was the closest to the fully-supervised model, demonstrat-
ing that our PRF-based weak-supervision strategy is useful for
in-domain queries. User activities, such as clicks, are not always ac-
cessible due to privacy regulations. In this case, the search queries
alone can provide important evidence to build better document
representations.

Summary. This experiment shows that the relevance-based su-
pervision strategy can align HDCT with the search tasks, making
it more effective than the content-trained models. Collecting rele-
vance labels or user activities may be expensive or not permitted.
Our PRF-based weak-supervision strategy provides a way to im-
prove with the queries alone, which are often easier to collect.

6.3 Effects of Hierarchical Document Modeling
HDCT uses a two-level hierarchy that first estimates term weights in
passages, and then combine them into document-level termweights.
This section first studies the effectiveness of HDCT’s term weighting
at the passage-level. It then compares different ways of combining
passages. Finally, it analyzes its behavior through a case study.

Table 8 shows the results of several passage-based document
retrieval approaches. TruncateDocument truncates a document
into a single passage of 512 tokens to fit BERT. PassageRetreival
indexes and retrieves individual passages, and combines passage
scores at the query time. A document’s score is the average or
maximum of its passage scores [9, 20, 38]. Both methods were

Table 8: Different ways of combining passages. ptf stands
for passage term frequency. pHDCT stands for the passage-
level term weights from HDCT. MARCO and CW09-B stand
for MS-MARCO-Doc (dev queries) and ClueWeb09-B (title
queries). HDCT was trained using titles on MARCO, and in-
links on CW09-B. Retrieval model: BM25. Superscripts 1-9 in-
dicate statistically significant improvements over the corre-
sponding methods.

Method
MARCO
MRR

CW09-B
NDCG@20

1 ptf +TruncateDocument 0.2403 0.18934

2 pHDCT+TruncateDocument 0.26513457 0.200134

3 ptf +PassageRetrievalAvg 0.212 0.131
4 pHDCT+PassageRetrievalAvg 0.2433 0.1483

5 ptf +PassageRetrievalMax 0.2363 0.212134

6 pHDCT+PassageRetrievalMax 0.2611345 0.2331−5

7 tf 0.24535 0.2721−6

8 HDCT, sum 0.2801−7 0.3031−7,9

9 HDCT, decay 0.2871−8 0.2861−7

tested with term frequencies in passages (ptf ), or HDCT’s BERT-
based passage-level term weights (pHDCT).

Passage Level Effectiveness. The BERT-based passage term
weights (pHDCT) were more effective than term frequencies (ptf )
in retrieving passages. In TruncateDocument, a document only
has one passage. Ranking these passages using pHDCT had signif-
icantly higher accuracy than using ptf, showing that pHDCT can
better capture the key terms in a passage. The results from the
PassageRetrieval approaches also show HDCT’s passage-level ef-
fectiveness. pHDCT generated more accurate query-passage rele-
vance scores, so its final document rankings were also more accu-
rate than ptf.

Alternative Ways to Combine Passages. Next, we compare
various ways to combine the passage-specific term weights. A sim-
ple way is to truncate a document into a single passage. How-
ever, as shown in Table 8, there is a large gap between pHDCT +
TruncatedDocument to HDCT, showing that the first few hundred
words is not sufficient for effective document retrieval, and it is
necessary to consider all passages in the document.

PassageRetrievalmakes use of all passages combining passage
retrieval scores at the query time. As shown in Table 8, none of the
passage retrieval approaches were as good as HDCT. They focus on
the local content but lose the global context. For example, a passage
discussing “the act to protect Yellowstone” is likely to be mistakenly
retrieved by a query that looks for general “act” (Table 9, P6).

HDCT combines passage representations at the index time. Our
results show that it is significantly better than truncating docu-
ments or combining passage scores. The effectiveness of passage
weighting depend on the dataset. The simple unweighted sum is
robust across dataset. The position-decayed sum (decay) is less
effective on ClueWeb09-B, probably due to that the position decay
is too strong for the longer documents in ClueWeb09-B.

Case Study. Table 9 illustrates HDCT’s hierarchical document
modeling process. TheWikipedia web page of Yellowstone National
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Table 9: An example of HDCT-inlink weighted passages of a
ClueWeb09-B document. This document has 36 passages. P1-
P36 show 5 termswith highest HDCTweights from 6 passages.
The first and the last rows show 10 terms from the document
with highest tf and HDCT weights.

Yellowstone National Park - Wikipedia

tf Doc
yellowstone: 247, park: 243, national: 147, 2007: 96,
http:89, fire: 84, retrieve: 82, service:67, 03:47, year: 41

HDCT

P1 yellow:10, stone:10, park:9, national:9, yellowstone:3
P6 park:8, act:8, public: 3, 1872: 4, superintendent: 3
P18 yellowstone:10, bison:6, herd:5, park:5, animal:4
P23 fire:14, yellowstone:5, 1988:5, forest:8, rockies:4
P32 yellowstone:10, volcano:7, lake:6, national:4, dome:2
P36 wikipedia:1
Doc
(sum)

yellowstone:315, park:204, national:146, lake:31,
grand:30, us:22, montana:22, fire:43, forest:33, teton:21

Park from ClueWeb09-B contains over 10, 000 words, and covers
a wide range of topics including the park’s history, geology, and
recreation. As shown in Table 9, the original tf correctly favors
important concepts like “yellowstone”, but also favors non-content
words such as “2007” and “retrieve”.

HDCT successfully identifies essential terms in each passage, e.g.,
the act that created the park (P6), wildlife (P18), fires (P23), and
scenes (P32). HDCT also recognized that these are different aspects of
the central topic “Yellowstone”. These examples show that HDCT is
able to identify passage-specific key terms although it is not trained
on passage-specific labels (Section ).

HDCT then sums up the passages, generating a document bag-of-
words that characterizes the entire document. It correctly shows
the central terms of the entire document, e.g. “yellowstone”. It also
provides an overview of the diverse topics discussed in different
passages, such as ‘fire’, ‘lake’, and ‘grand teton’. HDCT’s document
vector are more representative than tf, leading to higher retrieval
effectiveness as shown in previous experiments.

Table 9 also shows how HDCT implicitly down-weights unimpor-
tant passages. P36 is the Wikipedia disclaimer “All text is available
under the term of...”. Instead of giving high weights to locally-
important terms, HDCT-inlink decides that the entire passage is
not important. The highest term weight is 1 for ‘wikipedia’; all
other terms receive 0 weights. As a result, the disclaimer passage
contributes little to the final document representation.

Summary. The passage retrieval experiment proves that HDCT
better captures key terms in a passage than tf. When combining
passages for document retrieval, we show that HDCT’s approach
that aggregates passage representations is more effective than the
widely-used approach that aggregates passage scores. The case
study demonstrates that HDCT can emphasize a document’s recur-
ring theme terms, identify specific topical terms in different pas-
sages, down-weight noisy terms, and suppress off-topic passages.

6.4 Effects of HDCT on RM3
Section 6.1 shows that HDCT significantly improved the pseudo-
relevance feedback (PRF) retrieval algorithm BM25+RM3. The last ex-
periment studies the effects of HDCT on PRF retrieval. HDCT weights

Table 10: BM25+RM3 using tf and HDCT-inlink term weights.
Dataset: ClueWeb09-B (title queries). Superscripts 1-4 indi-
cate statistically significant improvements over the corre-
sponding methods.

Method BM25 RM3 NDCG@20
1 tf tf 0.294
2 tf HDCT 0.295
3 HDCT tf 0.32012
4 HDCT HDCT 0.32612

affect PRF in two ways: Through the quality of the initial docu-
ment ranking; and through the terms and frequencies used by the
PRF algorithm. This experiment separates those effects by varying
whether tf or HDCT weights are used in the document retrieval
(BM25) and PRF (RM3) stages. Table 10 presents the results.

HDCTweights improve pseudo relevance feedback by providing a
better document ranking to the PRF algorithm (the two BM25 HDCT
rows). The HDCT weights neither help nor hurt the PRF algorithm
(the two RM3 HDCT rows), perhaps because the HDCT document
representation is focused on a small number of central terms.

7 CONCLUSION
This paper presents HDCT, a context-aware document term weight-
ing framework for ad-hoc search. In HDCT, a term’s weight is based
on its context-specific importance in each individual passage, rather
than the widely-used term frequencies. The output of HDCT is in
the form of standard bag-of-words, allowing efficient and effective
retrieval from an inverted index.

A content-based weak-supervision strategy is presented to train
HDCT without using relevance labels. The content-trained HDCT
achieved significant and robust improvements over standard tf -
weighted retrieval models, strong embedding-based approaches,
and some supervised learning-to-rank systems. Only relying on the
document collection, this training strategy makes HDCT applicable
to new collections and low-resource domains.

Further study shows that search-specific labels such as queries
and clicks can improve HDCT by aligning it with the user search
intents. Our PRF-based weak-supervision strategy provides a way
to leverage the queries without using relevance labels or user clicks,
which are sometimes harder to collect than the queries.

Analysis demonstrates the advantages of HDCT’s hierarchical doc-
ument modeling approach. A passage retrieval experiment shows
that HDCT better captures key terms in a passage than tf. The
passage-level evidence cannot be directly combined by aggregating
their retrieval scores. HDCT successfully translates its passages-level
gains into document retrieval by combining passage term weights.
HDCT provides the retrieval model with both global and passage-
specific key terms, so that documents can be accurately retrieved
through an efficient bag-of-word retrieval.
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