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Abstract

Randomly initialized first-order optimization al-
gorithms are the method of choice for solving
many high-dimensional nonconvex problems in
machine learning, yet general theoretical guaran-
tees cannot rule out convergence to critical points
of poor objective value. For some highly struc-
tured nonconvex problems however, the success
of gradient descent can be understood by study-
ing the geometry of the objective. We study one
such problem — complete orthogonal dictionary
learning, and provide converge guarantees for ran-
domly initialized gradient descent to the neigh-
borhood of a global optimum. The resulting rates
scale as low order polynomials in the dimension
even though the objective possesses an exponen-
tial number of saddle points. This efficient con-
vergence can be viewed as a consequence of neg-
ative curvature normal to the stable manifolds
associated with saddle points, and we provide
evidence that this feature is shared by other non-
convex problems of importance as well.

1. Introduction

Many central problems in machine learning and signal pro-
cessing are most naturally formulated as optimization prob-
lems. These problems are often both nonconvex and high-
dimensional. High dimensionality makes the evaluation
of second-order information prohibitively expensive, and
thus randomly initialized first-order methods are usually em-
ployed instead. This has prompted great interest in recent
years in understanding the behavior of gradient descent on
nonconvex objectives (Hardt et al., 2015; Ge et al., 2015;
Hardt et al., 2016; Dauphin et al., 2014). General analysis
of first- and second-order methods on such problems can
provide guarantees for convergence to critical points but
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these may be highly suboptimal, since nonconvex optimiza-
tion is in general an NP-hard probem (Bertsekas, 1999).
Outside of a convex setting (Nesterov, 2013) one must as-
sume additional structure in order to make statements about
convergence to optimal or high quality solutions. It is a
curious fact that for certain classes of problems such as ones
that involve sparsification (Lee et al., 2013; Bronstein et al.,
2005) or matrix/tensor recovery (Keshavan et al., 2010; Jain
et al., 2013; Anandkumar et al., 2014) first-order methods
can be used effectively. Even for some highly nonconvex
problems where there is no ground truth available such as
the training of neural networks first-order methods converge
to high-quality solutions (Zhang et al., 2016).

Dictionary learning is a problem of inferring a sparse rep-
resentation of data that was originally developed in the
neuroscience literature (Olshausen & Field, 1996), and has
since seen a number of important applications including
image denoising, compressive signal acquisition and signal
classification (Elad & Aharon, 2006; Mairal et al., 2014).
In this work we study a formulation of the dictionary learn-
ing problem that can be solved efficiently using randomly
initialized gradient descent despite possessing a number of
saddle points exponential in the dimension. A feature that
appears to enable efficient optimization is the existence of
sufficient negative curvature in the directions normal to the
stable manifolds of all critical points that are not global min-
ima '. This property ensures that the regions of the space
that feed into small gradient regions under gradient flow do
not dominate the parameter space. Figure 1 illustrates the
value of this property: negative curvature prevents measure
from concentrating about the stable manifold. As a con-
sequence randomly initialized gradient methods avoid the
“slow region” of around the saddle point.

The main results of this work is a convergence rate for ran-
domly initialized gradient descent for complete orthogonal
dictionary learning to the neighborhood of a global mini-
mum of the objective. Our results are probabilistic since
they rely on initialization in certain regions of the parameter
space, yet they allow one to flexibly trade off between the
maximal number of iterations in the bound and the probabil-

'As well as a lack of spurious local minimizers, and the exis-
tence of large gradients or strong convexity in the remaining parts
of the space
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Figure I. Negative curvature helps gradient descent. Red:
“slow region” of small gradient around a saddle point. Green:
stable manifold associated with the saddle point. Black: points
that flow to the slow region. Left: global negative curvature normal
to the stable manifold. Right: positive curvature normal to the
stable manifold — randomly initialized gradient descent is more
likely to encounter the slow region.

ity of the bound holding. The sample complexity required
for the concentration results in the paper to hold with high
probability is p € O(n*) up to polylog(n) factors, where p
is the number of samples and n is the dimensionality of the
space.

While our focus is on dictionary learning, it has been re-
cently shown that for other important nonconvex problems
such as phase retrieval (Chen et al., 2018) performance
guarantees for randomly initialized gradient descent can
be obtained as well. In fact, in Appendix C we show that
negative curvature normal to the stable manifolds of saddle
points (illustrated in Figure 1) is also a feature of the popu-
lation objective of generalized phase retrieval, and can be
used to obtain an efficient convergence rate.

2. Related Work

Easy nonconvex problems. There are two basic impedi-
ments to solving nonconvex problems globally: (i) spurious
local minimizers, and (ii) flat saddle points, which can
cause methods to stagnate in the vicinity of critical points
that are not minimizers. The latter difficulty has motivated
the study of strict saddle functions (Sun et al., 2015b; Ge
et al., 2015), which have the property that at every point in
the domain of optimization, there is a large gradient, a direc-
tion of strict negative curvature, or the function is strongly
convex. By leveraging this curvature information, it is pos-
sible to escape saddle points and obtain a local minimizer in
polynomial time.? Perhaps more surprisingly, many known

This statement is nontrivial: finding a local minimum of a
smooth function is NP-hard.

strict saddle functions also have the property that every lo-
cal minimizer is global; for these problems, this implies
that efficient methods find global solutions. Examples of
problems with this property include variants of sparse dictio-
nary learning (Sun et al., 2017), phase retrieval (Sun et al.,
2016), tensor decomposition (Ge et al., 2015), community
detection (Bandeira et al., 2016) and phase synchronization
(Boumal, 2016).

Minimizing strict saddle functions. Strict saddle func-
tions have the property that at every saddle point there is a
direction of strict negative curvature. A natural approach to
escape such saddle points is to use second order methods
(e.g., trust region (Conn et al., 2000) or curvilinear search
(Goldfarb, 1980)) that explicitly leverage curvature infor-
mation. Alternatively, one can attempt to escape saddle
points using first order information only. However, some
care is needed: canonical first order methods such as gra-
dient descent will not obtain minimizers if initialized at a
saddle point (or at a point that flows to one) — at any critical
point, gradient descent simply stops. A natural remedy is
to randomly perturb the iterate whenever needed. A line
of recent works shows that noisy gradient methods of this
form efficiently optimize strict saddle functions (Lee et al.,
2016; Du et al., 2017; Jin et al., 2017). For example, (Jin
et al., 2017) obtains rates on strict saddle functions that
match the optimal rates for smooth convex programs up to
a polylogarithmic dependence on dimension.’

Randomly initialized gradient descent? The aforemen-
tioned results are broad, and nearly optimal. Nevertheless,
important questions about the behavior of first order meth-
ods for nonconvex optimization remain unanswered. For
example: in every one of the aforemented benign noncon-
vex optimization problems, randomly initialized gradient
descent rapidly obtains a minimizer. This may seem un-
surprising: general considerations indicate that the stable
manifolds associated with non-minimizing critical points
have measure zero (Nicolaescu, 2011), this implies that a
variety of small-stepping first order methods converge to
minimizers in the large-time limit (Lee et al., 2017). How-
ever, it is not difficult to construct strict saddle problems
that are not amenable to efficient optimization by randomly
initialized gradient descent — see (Du et al., 2017) for an
example. This contrast between the excellent empirical per-
formance of randomly initialized first order methods and
worst case examples suggests that there are important ge-
ometric and/or topological properties of “easy nonconvex
problems” that are not captured by the strict saddle hypoth-
esis. Hence, the motivation of this paper is twofold: (i) to
provide theoretical corroboration (in certain specific situa-

3This work also proves convergence to a second-order station-
ary point under more general smoothness assumptions.



Efficient Dictionary Learning with Gradient Descent

tions) for what is arguably the simplest, most natural, and
most widely used first order method, and (ii) to contribute
to the ongoing effort to identify conditions which make
nonconvex problems amenable to efficient optimization.

3. Dictionary Learning over the Sphere

Suppose we are given data matrix ¥ = [yl, .. .yp} €
R™*P_ The dictionary learning problem asks us to find a
concise representation of the data (Elad & Aharon, 2006), of
the formY =~ A X, where X is a sparse matrix. In the com-
plete, orthogonal dictionary learning problem, we restrict
the matrix A to have orthonormal columns (A € O(n)).
This variation of dictionary learning is useful for finding
concise representations of small datasets (e.g., patches from
a single image, in MRI (Ravishankar & Bresler, 2011)).

To analyze the behavior of dictionary learning algorithms
theoretically, it useful to posit that Y = Ay X for some
true dictionary Ag € O(n) and sparse coefficient matrix
X € R™"*P, and ask whether a given algorithm recovers
the pair (Ao, X).* In this work, we further assume that the
sparse matrix X is random, with entries i.i.d. Bernoulli-
Gaussian’. For simplicity, we will let Ay = I; our argu-
ments extend directly to general Ag via the simple change
of variables ¢ — Agq.

(Spielman et al., 2012) showed that under mild conditions,
the complete dictionary recovery problem can be reduced
to the geometric problem of finding a sparse vector in a
linear subspace (Qu et al., 2014). Notice that because Ay is
orthogonal, row(Y") = row(X ). Because X is a sparse
random matrix, the rows of Xy are sparse vectors. Under
mild conditions (Spielman et al., 2012), they are the sparsest
vectors in the row space of Y, and hence can be recovered
by solving the conceptual optimization problem
min ||g*Y|, st. 'Y #0.

This is not a well-structured optimization problem: the ob-
jective is discontinuous, and the constraint set is open. A
natural remedy is to replace the /° norm with a smooth
sparsity surrogate, and to break the scale ambiguity by con-
straining q to the sphere, giving

. 1L . e
min fpr(q) = Ezhu(q yp) st ges™h (D)
k=1

Here, we choose h,(t) = plog(cosh(t/p)) as a smooth
sparsity surrogate. This choice is motivated by convenience
of analysis and analogous performance guarantees should

“This problem exhibits a sign permutation symmetry:
AoXo = (AoI")(I'* X ) for any signed permutation matrix I
Hence, we only ask for recovery up to a signed permutation.

S[X()]ij = Vijﬂij, with Vi]' ~ N(O, 1), Qij ~ Bern(&)
independent.

Separable Objective fg.) Dictionary Learning fpr,
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Figure 2. Left: The separable objective for n = 3. Note the simi-
larity to the dictionary learning objective. Right: The objective for
complete orthogonal dictionary learning (discussed in section 6)
forn = 3.

be obtainable for other choices. This objective was analyzed
in (Sun et al., 2015a), which showed that (i) although this
optimization problem is nonconvex, when the data are suffi-
ciently large, with high probability every local optimizer is
near a signed column of the true dictionary Ay, (ii) every
other critical point has a direction of strict negative curva-
ture, and (iii) as a consequence, a second-order Riemannian
trust region method efficiently recovers a column of A .
The Riemannian trust region method is of mostly theoreti-
cal interest: it solves complicated (albeit polynomial time)
subproblems that involve the Hessian of fpy,.

In practice, simple iterative methods, including randomly
initialized gradient descent are also observed to rapidly ob-
tain high-quality solutions. In the sequel, we will give a
geometric explanation for this phenomenon, and bound the
rate of convergence of randomly initialized gradient descent
to the neighborhood of a column of Ay. Our analysis of
fpL is probabilistic in nature: it argues that with high proba-
bility in the sparse matrix X o, randomly initialized gradient
descent rapidly produces a minimizer.

To isolate more clearly the key intuitions behind this analy-
sis, we first analyze the simpler separable objective

min fsep(q) = Zhu(qi) st. gesS*t (@
i=1

Figure 2 plots both fsep, and fpr, as functions over the
sphere. Notice that many of the key geometric features in
fpL are present in fsep; indeed, fsep can be seen as an
“ultrasparse” version of fpr, in which the columns of the
true sparse matrix X ¢ are taken to have only one nonzero
entry. A virtue of this model function is that its critical
points and their stable manifolds have simple closed form
expressions (see Lemma 1).

8Combining with a deflation strategy, one can then efficiently
recover the entire dictionary Ag.
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4. Outline of Important Geometric Features

Our problems of interest have the form

min f(q) st. qe€S"

where f : R™ — R is a smooth function. We let V f(q) and
V2£(q) denote the Euclidean gradient and hessian (over
R™), and let grad [f] (q) and Hess [f] (q) denote their Rie-
mannian counterparts (over S”~1). The projection operator
onto S"~! is denoted by Pg»-1.We will obtain results for
Riemannian gradient descent defined by the update

q — expg(—ngrad[f](q))

for some step size 7 > 0, where exp, : TSt 1 — snt
is the exponential map (Absil et al., 2009). The Rieman-
nian gradient on the sphere is given by grad[f](q) =
(I - qq")Vf(q).

We let A denote the set of critical points of f over S"~1 —
these are the points g s.t. grad [f] (§) = 0. We let A denote
the set of local minimizers, and A its complement. Both
fsep and fpr, are Morse functions on S"~1,7 we can assign
an index « to every g € A, which is the number of negative

eigenvalues of Hess [f] (q).

Our goal is to understand when gradient descent efficiently
converges to a local minimizer. In the small-step limit, gradi-
ent descent follows gradient flow lines v : R — M, which
are solution curves of the ordinary differential equation

¥(t) = —grad [f] (v(t))

To each critical point o € A of index A, there is an asso-
ciated stable manifold of dimension dim(M) — X, which
is roughly speaking, the set of points that flow to o under
gradient flow:

t—o0
~ a gradient flow line s.t. v(0) = q

Wia) = {q eM

lim~(t) = } '

Our analysis uses the following convenient coordinate chart

plw) = (w/1- Jul*) =gw) @

where w € B (0). We also define two useful sets:

C={qeS" g > |wl..}

Ce = {q esnt

I 54 C} : )
[lw]l

"Strictly speaking, fpr, is Morse with high probability, due to
results of (Sun et al., 2017).

Figure 3. Negative curvature and efficient gradient descent.
The union of the light blue, orange and yellow sets is the set
C. In the light blue region, there is negative curvature normal
to OC, while in the orange region the gradient norm is large, as
illustrated by the arrows. There is a single global minimizer in the
yellow region. For the separable objective, the stable manifolds of
the saddles and maximizers all lie on OC (the black circles denote
the critical points, which are either maximizers "~", saddles "<",
or minimizers ""). The red dots denote OC¢ with ¢ = 0.2.

The set C is simply the subset of S*~! where the n-th co-
ordinate is largest in magnitude and positive. Since the
problems considered here are symmetric with respect to a
signed permutation of the coordinates we can consider a
certain C and the results will hold for the other symmetric
sections as well. We will show that at every point in C aside
from a neighborhood of a global minimizer for the separable
objective (or a solution to the dictionary problem that may
only be a local minimizer), there is either a large gradient
component in the direction of the minimizer or negative
curvature in a direction normal to OC. For the case of the
separable objective, one can show that the stable manifolds
of the saddles lie on this boundary, and hence this curva-
ture is normal to the stable manifolds of the saddles and
allows rapid progress away from small gradient regions and
towards a global minimizer 3. These regions are depicted in
Figure 3.

In the sequel, we will make the above ideas precise for the
two specific nonconvex optimization problems discussed
in Section 3 and use this to obtain a convergence rate to
a neighborhood of a global minimizer. Our analysis are
specific to these problems. However, as we will describe in
more detail later, they hinge on important geometric charac-
teristics of these problems which make them amenable to

8The direction of this negative curvature is important here,
and it is this feature that distinguishes these problems from other
problems in the strict-saddle class where this direction may be
arbitrary
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efficient optimization, which may obtain in much broader
classes of problems.

5. Separable Function Convergence Rate

In this section, we study the behavior of randomly initialized
gradient descent on the separable function fs.,. We begin
by characterizing the critical points:

Lemma 1 (Critical points of fsep). The critical points of
the separable problem (2) are
A= {Psu-1la]|a € {-1,0,1}*" |lal| >0}. (5

c

vnlogn

For every ae € A and corresponding a(a), for pp <
the stable manifold of o takes the form

Pgn1 [a(a) +b] |

W¥(a) =14 supp(a(a))Nsupp(b) = 2, (6)
bl <1
where ¢ > 0 is a numerical constant.
Proof. Please see Appendix A O

By inspecting the dimension of the stable manifolds, it
is easy to verify that that there are 2n global minimizers
at the 1-sparse vectors on the sphere +€;, 2" maximizers
at the least sparse vectors and an exponential number of
saddle points of intermediate sparsity. This is because the
dimension of W*(«) is simply the dimension of b in 6, and it
follows directly from the stable manifold theorem that only
minimizers will have a stable manifold of dimension n — 1.
The objective thus possesses no spurious local minimizers.

When referring to critical points and stable manifolds from

now on we refer only to those that are contained in C or on

its boundary. It is evident from Lemma 1 that the critical

points in A all lie on dC and that |J W*(a) = dC , and
acA

there is a minimizer at its center given by g(0) = €,,.

5.1. The effect of negative curvature on the gradient

We now turn to making precise the notion that negative cur-
vature normal to stable manifolds of saddle points enables
gradient descent to rapidly exit small gradient regions. We
do this by defining vector fields u'(g),i € [n — 1] such
that each field is normal to a continuous piece of 9C; and
points outwards relative to C; defined in 4. By showing
that the Riemannian gradient projected in this direction is
positive and proportional to ¢, we are then able to show

that gradient descent acts to increase ((q(w)) = ﬁ -1

geometrically. This corresponds to the behavior illustrated
in the light blue region in Figure 3.

Lemma 2 (Separable objective gradient projection). For
any w such that q(w) € C¢,i € [n — 1], we define a vector
ul) ¢ Tq(w)Sn71 by

0 Jj ¢ {in},
j=n.

uy) = < sign(w;)

_wil
an

If nlog (i) <w;and pp < %6, then

uD*grad(fsep)(g(w)) > ¢ [wllo €,

where ¢ > 0 is a numerical constant.
Proof. Please see Appendix A. O

Since we will use this property of the gradient in C, to derive
a convergence rate, we will be interested in bounding the
probability that gradient descent initialized randomly with
respect to a uniform measure on the sphere is initialized in
C¢. This will require bounding the volume of this set, which
is done in the following lemma:

Lemma 3 (Volume of C¢). For C¢ defined as in (4) we have

Vol(Ce) 1 log(n)

B o VA O St =M 74
Vol(S*—1) — 2n n ¢

Proof. Please see Appendix D.3. O

5.2. Convergence rate

Using the results above, one can obtain the following con-

vergence rate:

Theorem 1 (Gradient descent convergence rate for separa-
ble function). For any 0 < (o < 1, 7 > plog (i) Rie-
mannian gradient descent with step size n < min {%, g
on the separable objective (2) with i < ”if)gn, enters an

L ball of radius r around a global minimizer in

16 (4 (1)

iterations with probability

P >1—2log(n)Co,

where c;, C > 0 are numerical constants.

Proof. Please see Appendix A. O
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We have thus obtained a convergence rate for gradient de-
scent that relies on the negative curvature around the stable
manifolds of the saddles to rapidly move from these regions
of the space towards the vicinity of a global minimizer. This
is evinced by the logarithmic dependence of the rate on (.
As was shown for orthogonal dictionary learning in (Sun
et al., 2017), we also expect a linear convergence rate due
to strong convexity in the neighborhood of a minimizer, but
do not take this into account in the current analysis.

6. Dictionary Learning Convergence Rate

The proofs in this section will be along the same lines as
those of Section 5. While we will not describe the positions
of the critical points explicitly, the similarity between this
objective and the separable function motivates a similar
argument. It will be shown that initialization in some C, will
guarantee that Riemannian gradient descent makes uniform
progress in function value until reaching the neighborhood
of a global minimizer. We will first consider the population
objective which corresponds to the infinite data limit

br. (@) = )IgOfDL(Q) =Ean,, 0BG [ hu(@®)]. (8)
and then bounding the finite sample size fluctuations of the
relevant quantities. We begin with a lemma analogous to
Lemma 2:

Lemma 4 (Dictionary learning population gradient). For
any w such that g(w) € Ce,r < |w;|, p < c175/2\/C the
dictionary learning population objective 8 obeys

w D grad[f517](a(w)) > cor®¢

where cg depends only on 6, ¢y is a positive numerical
constant and u'? is defined in 7.

Proof. Please see Appendix B O

Using this result, we obtain the desired convergence rate
for the population objective, presented in Lemma 11 in
Appendix B. After accounting for finite sample size fluctua-
tions in the gradient, one obtains a rate of convergence to
the neighborhood of a solution (which is some signed basis
vector due to our choice Ag = I)

Theorem 2 (Gradient descent convergence rate for dictio-
nary learning). Forany 1l > (o > 0,5 > f’ Riemannian

c50s
nlog np
tionary learning objective 1 with i < CZQ,//ETJ,G € (0,3),

enters a ball of radius css from a target solution in

gradient descent with step size n < on the dic-

C’g( 1>
T< — +nlo
né g(o

iterations with probability

P >1 - 2log(n)¢o — Py — csp™®

where Py is given in Lemma 10 with y = %
n
and c;,C; are positive constants. Additionally, P, <

,0) + log n) for some

9
exp( &b.Cop Co)p + npolylog(n ,#, Co

&6, ¢o) > 0
Proof. Please see Appendix B O

The two terms in the rate correspond to an initial geometric
increase in the distance from the set containing the small
gradient regions around saddle points, followed by conver-
gence to the vicinity of a minimizer in a region where the
gradient norm is large. The latter is based on results on the
geometry of this objective provided in (Sun et al., 2017).

7. Discussion

The above analysis suggests that second-order properties -
namely negative curvature normal to the stable manifolds
of saddle points - play an important role in the success
of randomly initialized gradient descent in the solution of
complete orthogonal dictionary learning. This was done by
furnishing a convergence rate guarantee that holds when the
random initialization is not in regions that feed into small
gradient regions around saddle points, and bounding the
probability of such an initialization. In Appendix C we
provide an additional example of a nonconvex problem for
which an efficient rate can be obtained based on an analysis
that relies on negative curvature normal to stable manifolds
of saddles - generalized phase retrieval. An interesting
direction of further work is to more precisely characterize
the class of functions that share this feature.

The effect of curvature can be seen in the dependence of the
maximal number of iterations 7" on the parameter (y. This
parameter controlled the volume of regions where initializa-
tion would lead to slow progress and the failure probability
of the bound 1 — PP was linear in (y, while 7" depended
logarithmically on (y. This logarithmic dependence is due
to a geometric increase in the distance from the stable man-
ifolds of the saddles during gradient descent, which is a
consequence of negative curvature. Note that the choice of
Co allows one to flexibly trade off between 7" and 1 — P. By
decreasing (j, the bound holds with higher probability, at
the price of an increase in 7. This is because the volume of
acceptable initializations now contains regions of smaller
minimal gradient norm. In a sense, the result is an extrapo-
lation of works such as (Lee et al., 2017) that analyze the
Co = 0 case to finite (p.

Our analysis uses precise knowledge of the location of
the stable manifolds of saddle points. For less symmetric
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problems, including variants of sparse blind deconvolution
(Zhang et al., 2017) and overcomplete tensor decomposition,
there is no closed form expression for the stable manifolds.
However, it is still possible to coarsely localize them in
regions containing negative curvature. Understanding the
implications of this geometric structure for randomly ini-
tialized first-order methods is an important direction for
future work. One may also hope that studying simple model
problems and identifying structures (here, negative curva-
ture orthogonal to the stable manifold) that enable efficient
optimization will inspire approaches to broader classes of
problems.
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