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Abstract. Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space
into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We overview the

theory of classical MDS, along with its optimality properties and goodness of fit. Further, we present
a notion of MDS on infinite metric measure spaces that generalizes these optimality properties. As

a consequence we can study the MDS embeddings of the geodesic circle S1 into Rm for all m, and

ask questions about the MDS embeddings of the geodesic n-spheres Sn into Rm. Finally, we address
questions on convergence of MDS. For instance, if a sequence of metric measure spaces converges to a

fixed metric measure space X, then in what sense do the MDS embeddings of these spaces converge to

the MDS embedding of X?

1. Introduction

Given n objects and a notion of dissimilarity between them, the classical multidimensional scaling
(MDS) algorithm extracts a configuration of n points in Euclidean space whose pairwise distances “best”
approximate the given dissimilarities. A typical source of dissimilarity data is the distance between high-
dimensional objects, in which case MDS serves as a non-linear dimensionality reduction and visualization
technique. As such, the MDS algorithm is a popular technique for pattern recognition problems. In this
paper, we survey the classical algorithm, and describe an extension to (possibly infinite) metric measure
spaces.

The coordinates extracted from an MDS embedding satisfy a least squares optimization problem.
While there are several popular choices of MDS loss function (metric or non-metric), we primarily
focus on the classical algorithm which minimizes a form of loss function known as strain. The classical
algorithm is algebraic and not iterative, simple to implement, and guaranteed to discover a configuration
which optimizes the strain function. Furthermore, if the input dissimilarities can be realized as distances
in a Euclidean space, then classical MDS is guaranteed to recover such a configuration (unique up to
translation and orthogonal transformation). However, not all dissimilarity data admits a Euclidean
realization. In this case MDS produces a mapping into Euclidean space that distorts the inter-point
pairwise distances as little as possible. We make these ideas precise in Section 2.

The classical story is told using finite samples of points, finite dissimilarity matrices, and finite em-
bedding coordinates. Our goal is to extend to an infinite setting, where our input dissimilarity data is
replaced by a metric measure space: a metric space (with possibly infinitely many points) equipped with
some probability measure. This allows us to consider spaces whose points are weighted unequally, along
with notions of convergence as more and more points are sampled from an infinite shape.

In more detail, a metric measure space is a triple (X, d, µ) where (X, d) is a compact metric space,
and µ is a Borel probability measure on X. In Section 4 we generalize the the classical MDS algorithm to
metric measure spaces, and we show that this generalization minimizes the infinite analogue of strain. As
a motivating example, we consider the MDS embedding of the circle with the (non-Euclidean) geodesic
metric, and equipped with the uniform measure. By using the properties of circulant matrices, we
identify the MDS embeddings of evenly-spaced points from the geodesic circle into Rm, for all m. As
the number of points tends to infinity, these embeddings lie along the curve

√
2
(
cos θ, sin θ, 13 cos 3θ, 13 sin 3θ, 15 cos 5θ, 15 sin 5θ, . . .

)
∈ Rm.

As this example illustrates, it is useful to consider the situation where a sequence of metric measure
spaces Xn converges to a fixed metric measure space X as n → ∞. We survey various notions of
convergence in Section 6.

Convergence is well-understood when each metric space has the same finite number of points, for
example by Sibson’s perturbation analysis [22]. However, we are also interested in convergence when the
number of points varies and is possibly infinite. We survey results of [1, 14] on the convergence of MDS
when n points {x1, . . . , xn} are sampled from a metric space according to a probability measure µ, in
the limit as n → ∞. The law of large numbers describes how the finite measures 1
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to µ as n → ∞. In [13], we reprove these results when instead we are given an arbitrary sequence
of probability measures µn → µ. The measures µn may now be unequally weighted, or have infinite
support, for example.

Organization. We present an overview on the theory of classical MDS in Section 2. In Section 3, we
present necessary background information on operator theory and infinite-dimensional linear algebra.
We define a notion of MDS for infinite metric measure spaces in Section 4. In Section 5, we identify the
MDS embeddings of the geodesic circle into Rm, for all m, as a motivating example. Lastly, in Section 6,
we survey different notions of convergence of MDS.

Related Work. The reader is referred to the introduction of [25] and to [10, 12] for some aspects of
the history of MDS. There are a variety of papers that study some notion of robustness or convergence
of MDS, including [1, 21, 22, 23]. Furthermore, [19, Section 3.3] considers embedding new points in
psuedo-Euclidean spaces, [11, Section 3] considers infinite MDS in the case where the underlying space is
an interval (equipped with some metric), and [7, Section 6.3] discusses MDS on large numbers of objects.

2. Classical Scaling

Multidimensional scaling (MDS) is a set of statistical techniques concerned with the problem of using
information about the dissimilarities between n objects in order to construct a configuration of n points in
Euclidean space. The input dissimilarities between the objects need not be based on Euclidean distances.

Definition 2.1. An (n× n) matrix D is called a dissimilarity matrix if it is symmetric and

drr = 0, with drs ≥ 0 for all r 6= s.

The first property above is called refectivity (the dissimilarity between an object and itself is zero),
and the second property is called nonnegativity. Symmetry requires that the dissimilarity from object
r to s is the same as that from s to r. Note that there is no need to satisfy the triangle inequality.
A dissimilarity matrix D is called Euclidean if there exists a configuration of points in some Euclidean
space whose interpoint distances are given by D.

The goal of MDS is to map the objects x1, . . . , xn to a configuration (or embedding) of points
f(x1), . . . , f(xn) in Rm so that the given dissimilarities d(xi, xj) are well-approximated by the Euclidean
distances ‖f(xi) − f(xj)‖2. The different notions of approximation give rise to the different types of
MDS.

If the dissimilarity matrix can be realized exactly as the distance matrix of some set of points in Rm
(i.e. if the dissimilarity matrix is Euclidean), then MDS will find such a realization. Furthermore, MDS
can be used to identify the minimum Euclidean dimension m admitting such an isometric embedding.
However, some dissimilarity matrices or metric spaces are inherently non-Euclidean (cannot be embedded
into Rm for any m). When a dissimilarity matrix is not Euclidean, then MDS produces a mapping into
Rm that distorts the interpoint pairwise distances as little as possible. Though we introduce MDS below,
the reader is also referred to [2, 8, 12] for more complete introductions.

Classical multidimensional scaling (cMDS) is also known as Principal Coordinates Analysis (PCoA),
Torgerson Scaling, or Torgerson–Gower scaling. The cMDS algorithm minimizes a loss function called
strain, and one of the main advantages of cMDS is that its algorithm is algebraic and not iterative.
Therefore, it is simple to implement, and it is guaranteed to discover the optimal configuration in Rm.
In this section, we describe the cMDS algorithm, and then discuss some of its optimality properties and
goodness of fit.

As an illustrative example, we consider ten U.S. cities equipped with the road distance between
them, which is a non-Euclidean distance. The classical MDS algorithm produces a two dimensional
configuration of points (see Figure 1), where the points represent the different cities. The Euclidean
pairwise distances (distances as the crow flies) between the cities in the MDS embedding are the Euclidean
distances that best approximate the road distances between them.

Let D = (dij) be an n× n dissimilarity matrix. Let A = (aij), where aij = − 1
2d

2
ij . Define the matrix

B to be the double mean-centering of A, with entries given by

brs = ars −
1

n

n∑
s=1

ars −
1

n

n∑
r=1

ars +
1

n2

n∑
r,s=1

ars. (1)

Since D is a symmetric matrix, it follows that A and B are each symmetric, and therefore B has n
real eigenvalues.
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Figure 1. Reconstruction of a map of 10 U.S. cities using MDS

Assume for convenience that there are at least m positive eigenvalues for matrix B, where m ≤ n. By
the spectral theorem of symmetric matrices, let B = ΓΛΓ>, with Γ containing unit-length eigenvectors
of B as its columns, and with the diagonal matrix Λ containing the eigenvalues of B in decreasing
order along its diagonal. Let Λm be the m × m diagonal matrix of the largest m eigenvalues sorted
in descending order, and let Γm be the n ×m matrix of the corresponding m eigenvectors in Γ. The

coordinates of the MDS embedding into Rm are then given by the n ×m matrix X = ΓmΛ
1/2
m . More

precisely, the MDS embedding consists of the n points in Rm given by the n rows of X. The procedure
for classical MDS can be summarized in the following algorithm.

Algorithm 1: Classical MDS

input: Dissimilarity matrix D
compute: Compute the matrix A = (aij), where aij = − 1

2d
2
ij

perform : Perform double-centering to A: define B by (1)
compute: Compute the eigendecomposition of B = ΓΛΓ>

select : Select the m largest nonnegative eigenvalues of B to obtain Λm

output : Coordinate matrix given by X = ΓmΛ
1/2
m

We give a small example.

Example 2.2. We implement Algorithm 1 on the following 4× 4 dissimilarity matrix D.

D =


0 2 2 1
2 0 2 1
0 2 2 1
1 1 1 0

 A = −1

2


0 4 4 1
4 0 4 1
0 4 4 1
1 1 1 0

 B =
1

16


13 −15 5 −3
−15 21 −7 1

5 −7 −3 5
−3 1 5 −3


The eigenvalues of B are 2.159 . . ., 0.192 . . ., 0, and −0.602 . . ., and the MDS embedding of D in R2 is
drawn in Figure 2.

This dissimilarity matrix is not Euclidean. Indeed, label the points x1, x2, x3, x4 in order of their
row/column in D. In any isometric embedding in Rn, the points x1, x2, x3 would be mapped to an
equilateral triangle. The point x4 would need to get mapped to the midpoint of each edge of this triangle,
which is impossible in Euclidean space.

The following fundamental criterion determines algebraically whether a dissimilarity matrix D is Eu-
clidean or not.
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x1

x2 x3

x4

Figure 2. MDS embedding of the 4× 4 distance matrix in Example 2.2.

Theorem 2.3. [2, Theorem 14.2.1] Let D be a dissimilarity matrix, and define B by equation (1). Then
D is Euclidean if and only if B is a positive semi-definite matrix.

Moreover, if B is positive semi-definite of rank m, then a perfect realization of the dissimilarities can
be found by a collection of points in m-dimensional Euclidean space.

Let D be a dissimilarity matrix, and define B via (1). A measure of the goodness of fit of MDS, even

in the case when D is not Euclidean, can be obtained as follows. If X̂ is a fitted configuration in Rm with
centered inner-product matrix B̂, then a measure of the discrepancy between B and B̂ is the following
strain function [16],

tr((B− B̂)2) =
n∑

i,j=1

(bi,j − b̂i,j)2. (2)

Theorem 2.4. [2, Theorem 14.4.2] Let D be a dissimilarity matrix. Then for fixed m, the strain

function in (2) is minimized over all configurations X̂ in m dimensions when X̂ is the classical solution
to the MDS problem.

The reader is referred to [8, Section 2.4] for a summary of a related optimization procedure with a
different normalization, due to Sammon [20].

3. Preliminaries

We are interested in studying the MDS embeddings of spaces with possibly infinitely many points,
and distance matrices aren’t enough to store infinitely many pairwise distances. Instead, we use kernels,
which roughly speaking are distance functions that compute the pairwise distance between any two points
in the space. For example, the kernel corresponding to the geodesic distance on a circle is illustrated in
Figure 3b.

(a) Distance matrix of ten points. (b) Distance kernel of infinitely many points.

Figure 3. Distance matrix or kernel corresponding to (A) ten equally-spaced points,
and to (B) all of the points, on the circle equipped with the geodesic metric.

This section introduces the reader to concepts in infinite-dimensional linear algebra and operator
theory used throughout the paper.
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Kernels and Operators. Let X be a metric space equipped with a measure µ. We denote by L2(X,µ)
the set of square-integrable real-valued L2-functions with respect to the measure µ. We note that L2(X,µ)
is furthermore a Hilbert space, after equipping it with the inner product given by 〈f, g〉 =

∫
X
fg dµ.

A real-valued L2-kernel K : X ×X → R is a continuous measurable square-integrable function. The
kernels that we consider in this paper are symmetric, meaning that K(x, s) = K(s, x) for all x, s ∈ X.
A symmetric kernel is positive semi-definite if

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0

holds for any m ∈ N, any x1, . . . , xm ∈ X, and any c1, . . . , cm ∈ R. At least in the case when X is a
compact subspace of Rm (and probably more generally), a symmetric kernel is positive semi-definite if∫

X

∫
X

K(x, s)f(x)f(s)µ(dx)µ(ds) ≥ 0

for any f ∈ L2(X,µ).

Definition 3.1 (Hilbert–Schmidt Integral Operator). Let (X,Ω, µ) be a σ-finite measure space, and let
K be an L2-kernel on X ×X. Then the integral operator

[TKφ](x) =

∫
X

K(x, s)φ(s)µ(ds),

which defines a linear mapping from the space L2(X,µ) into itself, is called a Hilbert–Schmidt integral
operator.

Hilbert–Schmidt integral operators are both continuous (and hence bounded) and compact operators.

Definition 3.2. A Hilbert–Schmidt integral operator is a self-adjoint operator if K(x, y) = K(y, x)
holds for almost all (x, y) ∈ X ×X (with respect to µ× µ).

Definition 3.3. A bounded self-adjoint operator T on a Hilbert space H is a positive semi-definite
operator if 〈Tx, x〉 ≥ 0 for any x ∈ H.

It follows that the eigenvalues of a positive semi-definite operator A, when they exist, are real.

The Spectral Theorem. Classical MDS relies on the fact that symmmetric matrices are orthogonally
diagonalizable with real eigenvalues. Furthermore, positive semi-definite matrices (having nonnegative
eigenvalues) may be represented as matrices of Euclidean inner products. The following two theorems
give analogues of these results for kernels instead of matrices.

Theorem 3.4 (Spectral theorem on compact self-adjoint operators). Let H be a Hilbert space, and
suppose T : H → H is a bounded compact self-adjoint operator. Then T has at most a countable number
of nonzero eigenvalues λn ∈ R, with a corresponding orthonormal set {en} of eigenvectors, such that

T (·) =
∞∑
n=1

λn〈en, ·〉 en.

Furthermore, the multiplicity of each nonzero eigenvalue is finite, zero is the only possible accumulation
point of {λn}, and if the set of nonzero eigenvalues is infinite then zero is an accumulation point.

A fundamental theorem that characterizes positive semi-definite kernels is the Generalized Mercer’s
Theorem.

Theorem 3.5 (Generalized Mercer’s Theorem). [15, Lemma 1] Let X be a compact topological Hausdorff
space equipped with a finite Borel measure µ, and let K : X×X → C be a continuous positive semi-definite
kernel. Then, there exists a scalar sequence {λn} ∈ `1 with λ1 ≥ λ2 ≥ · · · ≥ 0, and an orthonormal
system {φn} of continuous square-integrable functions with respesct to µ, such that the expansion

K(x, s) =
∞∑
n=1

λnφn(x)φn(s), x, s ∈ supp(µ)

converges uniformly, where supp denotes the support of a measure µ.
5



Therefore, given X and K as in Theorem 3.5, the associated Hilbert–Schmidt integral operator

[TKφ](x) =

∫
X

K(x, s)φ(s)µ(ds)

is also positive semi-definite. Moreover, the eigenvalues of TK can be arranged in non-increasing order
λ1 ≥ λ2 ≥ . . . ≥ 0, indexed according to their algebraic multiplicities, and the orthonormal system {φn}
gives the corresponding eigenfunctions of TK .

4. MDS of Infinite Metric Measure Spaces

Classical multidimensional scaling (cMDS) can be described either as a strain-minimization problem,
or as a linear algebra algorithm involving eigenvalues and eigenvectors. Indeed, one of the main theoret-
ical results for cMDS is that the linear algebra algorithm solves the corresponding strain-minimization
problem (see Theorem 2.4). In this section, we describe how to generalize both of these formulations to
(possibly infinite) metric measure spaces.

This will allow us to discuss the MDS embedding of the circle, for example, without needing to restrict
attention to finite subsets thereof.

Definition 4.1. A metric measure space is a triple (X, d, µ) where

• (X, d) is a compact metric space, and
• µ is a Borel probability measure on X, i.e. µ(X) = 1.

Given a metric space (X, d), by a measure on X we mean a measure on the Borel σ-algebra of X.
When it is clear from the context, the triple (X, d, µ) will be denoted by only X. The reader is referred
to [17, 18] for details on metric measure spaces, and for interpretations of these concepts in the context
of object matching.

Let (X, d, µ) be a metric measure space, with d a L2-function on X ×X. We say that X is Euclidean
if it can be isometrically embedded into (`2, ‖ · ‖2). X is furthermore Euclidean in the finite-dimensional
sense if there is an isometric embedding X → Rm.

MDS on Infinite Metric Measure Spaces. Let (X, d, µ) be a metric measure space, where d is an
L2-function on X ×X.

We propose the following MDS method on infinite metric measure spaces:

(i) From the metric d, construct the kernel KA : X ×X → R defined as

KA(x, s) = − 1
2d

2(x, s). (3)

(ii) Obtain the kernel KB : X ×X → R via

KB(x, s) = KA(x, s)−
∫
X

KA(w, s)µ(dw)−
∫
X

KA(x, z)µ(dz) +

∫
X

∫
X

KA(w, z)µ(dw)µ(dz). (4)

Assume KB ∈ L2(X ×X). Define TKB
: L2(X)→ L2(X) as

[TKB
φ](x) =

∫
X

KB(x, s)φ(s)µ(ds). (5)

(iii) Let λ1 ≥ λ2 ≥ . . . denote the eigenvalues of TKB
, with corresponding eigenfunctions φ1, φ2, . . . ∈

L2(X) forming an orthonormal system in L2(X).

(iv) DefineKB̂(x, s) =
∞∑
i=1

λ̂iφi(x)φi(s), where λ̂i = λi if λi ≥ 0, and otherwise λ̂i = 0. Let TKB̂
: L2(X)→

L2(X) be the Hilbert–Schmidt integral operator associated to the kernel KB̂ . The eigenfunctions

φi for TKB
(with eigenvalues λi) are also the eigenfunctions for TKB̂

(with eigenvalues λ̂i). By
Mercer’s Theorem (Theorem 3.5), KB̂ converges uniformly.

(v) Define the MDS embedding of X into `2 via the map f : X → `2 given by

f(x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x),

√
λ̂3φ3(x), . . .

)
(6)

Similarly, define the MDS embedding of X into Rm via the map fm : X → Rm given by

fm(x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x), . . . ,

√
λ̂mφm(x)

)
6



The procedure for infinite classical MDS can be summarized in the following algorithm.

Algorithm 2: Classical MDS on Infinite Spaces

input: Metric measure space (X, d, µ)
compute: Compute the kernel KA by (3)
perform : Perform double-centering to KA: define the kernel KB by (4)
compute: Compute the eigenvalues and eigenfunctions of the operator TKB

defined by (5)
select : Select the nonnegative eigenvalues of TKB

to obtain a new operator TKB̂

output : MDS embedding of X into `2 via the map f : X → `2 given in (6)

Table 1. A comparison of various aspects of classical and infinite MDS. This table
is constructed analogously to that on [27] Principal Component Analysis (PCA) and
Functional Principal Component Analysis (FPCA).

Elements Classical MDS Infinite MDS

Data (X, d) with |X| <∞ (X, d, µ)

Distance Representation Di,j = d(xi, xj), D ∈Mn×n KD(x, s) = d(x, s) ∈ L2
µ⊗µ(X ×X)

Linear Operator

brs = ars − 1
n

n∑
s=1

ars

− 1
n

n∑
r=1

ars + 1
n2

n∑
r,s=1

ars

[TKB
φ](x) =

∫
X

KB(x, s)φ(s)µ(ds)

Eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn λ̂1 ≥ λ̂2 ≥ . . .

Eigenvectors v(1), v(2), . . . , v(m) ∈ Rn φ1(x), φ2(x), . . . ∈ L2(X)

Embedding in Rm or `2 f(xi) =
(√

λ1v
(i)
1 ,

√
λ2v

(i)
2 , . . . ,

√
λmv

(i)
m

)
f(x) =

(√
λ̂1φ1(x),

√
λ̂2φ2(x),

√
λ̂3φ3(x), . . .

)

Strain Minimization
n∑

i,j=1

(bi,j − b̂i,j)2
∫ ∫ (

KB(x, s)−KB̂(x, s)
)2
µ(dx)µ(ds)

Proposition 4.2. [13, Proposition 6.3.1.] The MDS embedding map f : X → `2 is continuous.

The following theorem generalizes Theorem 2.3 to metric measure spaces.

Theorem 4.3. [13, Theorem 6.3.3.] A metric measure space (X, d, µ) is Euclidean if and only if TKB

is a positive semi-definite operator on L2(X,µ).

We show that MDS for metric measure spaces minimizes the loss function Strain(f), defined as

Strain(f) = ‖TKB
− TKB̂

‖2HS = Tr((TKB
− TKB̂

)2) =

∫ ∫ (
KB(x, s)−KB̂(x, s)

)2
µ(dx)µ(ds).

This result generalizes [2, Theorem 14.4.2], or equivalently [24, Theorem 2], to the infinite case.

Theorem 4.4. [13, Theorem 6.4.3.] Let (X, d, µ) be a metric measure space. Then Strain(f) is mini-
mized over all maps f : X → `2 or f : X → Rm when f is the MDS embedding given in Section 4.

5. MDS of the Circle

Let S1 be the unit circle equipped with arc-length distance and the uniform measure ( dθ2π ). Using

our definition of MDS as an integral operator, we show that MDS maps S1 into an infinite dimensional
sphere of radius π

2 sitting inside `2. The embedded circle occupies an infinite number of dimensions in
7



`2, and in fact, the infinite dimensional space is needed—the embedding is better (in the sense of strain
minimization) than the MDS embedding into Rm for any finite m.

It is instructive to consider how MDS on finite samples of S1 converges to the MDS integral operator
on the entire circle. We start with the easiest case: let S1

n be the sample of n evenly-spaced points on
S1.

Proposition 5.1. The classical MDS embedding of S1
n lies, up to a rigid motion of Rm, on the curve

γm : S1
n → Rm defined by

γm(θ) = (a1,n cos(θ), a1,n sin(θ), a3,n cos(3θ), a3,n sin(3θ), a5,n cos(5θ), a5,n sin(5θ), . . .) ∈ Rm,

where limn→∞ aj,n =
√
2
j (with j odd).

Figure 4. MDS embedding of S1
1000.

Figure 4 shows the MDS configuration in R3 of 1000 equally-spaced points on S1 obtained using the
three largest positive eigenvalues.

We sketch the outline of this computation; full details are given in [13]. Let D be the arc-length
distance matrix for S1

n. Following the steps of classical MDS, define A = (aij) with aij = − 1
2d

2
ij , and let

B be the doubly mean-centered version of matrix A. A matrix M is called circulant if cyclically shifting
all rows of M down by one has the same effect as cyclically shifting all columns of M left by one. Both
D and the double mean centering matrix have this property, and therefore the MDS symmetric matrix
B is circulant. In coordinates, it has the following form:

B =



b0 b1 b2 . . . b3 b2 b1
b1 b0 b1 . . . b4 b3 b2
b2 b1 b0 . . . b5 b4 b3
...

...
...

...
...

...
b3 b4 b5 . . . b0 b1 b2
b2 b3 b4 . . . b1 b0 b1
b1 b2 b3 . . . b2 b1 b0


.

For example, if D is the distance matrix for n = 7 equally-spaced points on the circle, then we compute

D =
2π

7



0 1 2 3 3 2 1
1 0 1 2 3 3 2
2 1 0 1 2 3 3
3 2 1 0 1 2 3
3 3 2 1 0 1 2
2 3 3 2 1 0 1
1 2 3 3 2 1 0


and B =

2π2

49



4 3 0 −5 −5 0 3
3 4 3 0 −5 −5 0
0 3 4 3 0 −5 −5
−5 0 3 4 3 0 −5
−5 −5 0 3 4 3 0

0 −5 −5 0 3 4 3
3 0 −5 −5 0 3 4


.

The complex eigenvectors of such a matrix are given by the discrete Fourier modes, namely xk(n) :=

(w0
n, w

k
n, . . . , w

(n−1)k
n )> for 0 ≤ k ≤ n − 1, where wn = e2πi/n. Since the first entry of each vector xk is

8



one, the eigenvalue of xk can be computed simply by taking the dot product of the first row of B with
xk. Note that the vector of all ones has eigenvalue zero.

Since B is symmetric, each complex eigenvector can be split into its real and imaginary part, which
forms two real eigenvectors—this explains the sine and cosine representation of eigenvectors in the propo-
sition. It turns out that the odd Fourier modes have positive eigenvalues, and the even Fourier modes
have negative eigenvalues. Since MDS retains coordinates corresponding to positve eigenvalues, we are
left with only the odd Fourier modes.

How does this finite MDS computation compare to the MDS integral operator on all of S1? Let S1

be the unit circle with arc-length distance and uniform measure. If φk(x) = eikx, then one may check
(use integration by parts) that

−1

2

∫ y=x+π

y=x−π
(y − x)2eiky

dy

2π
=

1

k2
(−1)k+1eikx.

Despite not having performed the double mean centering step to the kernel function, this computation
shows that the (complex) eigenfunctions of MDS on S1 are φk(x) = eikx with λk = 1

k2 (−1)k+1, k 6= 0.
Indeed, the mean centering step associates the eigenfunction φ0(x) = 1 with the eigenvalue 0, and the
other Fourier basis functions remain invariant to the double mean centering since they are perpendicular
to φ0. Thus, as expected from Proposition 5.1, the MDS embedding γ of S1 is

γ(θ) =
√

2(cos θ, sin θ, 13 cos 3θ, 13 sin 3θ, 15 cos 5θ, 15 sin 5θ, . . .) ∈ `2,

where the
√

2 is a normalization factor we picked up moving from a complex to a real eigendecomposition.
A couple of observations:

(1) Applying the `2 Euclidean distance formula to the image of γ shows that for all θ ∈ S1,

‖γ(θ)‖2`2 = 2
∑
k odd

1

k2
=
π2

4
.

That is, the MDS embedding lies on an infinite-dimensional sphere of radius π
2 in `2.

(2) The `2 distance between γ(θ1) and γ(θ2) gives an approximation of the arc-length distance
between angles θ1 and θ2:

(θ1 − θ2)2 ≈ ‖γ(θ1)− γ(θ2)‖2`2 = 4
∑
k odd

(1− cos (k(θ1 − θ2)))

k2
.

We leave it to the reader to verify that the expression above constitutes the odd modes in the
Fourier series expansion of the periodic function (θ1 − θ2)2. In fact, the error of MDS comes
precisely from the even modes:

(θ1 − θ2)2 = ‖γ(θ1)− γ(θ2)‖2`2 −

(
4
∑
k even

1− cos(k(θ1 − θ2))

k2

)
.

For this example, the issue of convergence of MDS on finite samples to MDS on the manifold is
intuitively clear: the discrete Fourier modes converge (pointwise on the sample points) to the Fourier
basis φ(θ) = eikθ. However, in general the issue of convergence is not as straightforward. In the next
section of the paper we survey results on convergence.

The MDS embeddings of the geodesic circle are closely related to [26], which was written prior to
the invention of MDS. In [26, Theorem 1], von Neumann and Schoenberg describe (roughly speaking)
which metrics on the circle one can isometrically embed into the Hilbert space `2. The geodesic metric
on the circle is not one of these metrics. However, the MDS embedding of the geodesic circle into `2

must produce a metric on S1 which is of the form described in [26, Theorem 1]. See also [28, Section 5]
and [3, 6, 9].

6. Convergence of MDS

We saw in the prior section how MDS on an evenly-spaced sample from the geodesic circle generalizes
to the MDS integral operator on the entire circle. In this section, we address convergence questions for
MDS more generally. Convergence is well-understood when each metric space has the same finite number
of points [22], but we are also interested in convergence when the number of points varies and is possibly
infinite.
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6.1. Robustness of MDS with Respect to Perturbations. In a series of papers [21, 22, 23], the
authors consider the robustness of multidimensional scaling with respect to perturbations of the under-
lying dissimilarity or distance matrix, as illustrated in Figure 5. In particular, [22] gives quantitative
control over the perturbation of the eigenvalues and vectors determining an MDS embedding in terms
of the perturbations of the dissimilarities. These results build upon the fact that if λ and v are a simple
(i.e., non-repeated) eigenvalue and eigenvector of an n×n matrix B, then one can control the change in
λ and v upon a small symmetric perturbation of the entries in B.

Figure 5. Perturbation of the given dissimilarities.

Sibson’s perturbation analysis shows that if one has a converging sequence of n × n dissimilarity
matrices, then the corresponding MDS embeddings of n points into Euclidean space also converge. In
the following sections, we consider the convergence of MDS when the number of points is not fixed.
Indeed, we study the convergence of MDS when the number of points is finite but tending to infinity,
and alternatively also when the number of points is infinite at each stage in a converging sequence of
metric measure spaces.

6.2. Convergence of MDS by the Law of Large Numbers. Whereas Sibson’s perturbation analysis
was for MDS on a fixed number of points, we now survey results on the convergence of MDS when n
points {x1, . . . , xn} are sampled from a metric space according to a probability measure μ, in the limit
as n → ∞, i.e. when more and more points are sampled. In [1], Bengio et al. study converging measures
which are averages of Dirac delta functions, namely μn = 1

n

∑n
i=1 δxi

, with all n of the random points
xi weighted equally (see Figure 6). Unsurprisingly, these results rely on the law of large numbers.

Figure 6. Illustration of a notion of convergence of measures discussed in [1].

Consider a data set Xn = {x1, . . . , xn} sampled independent and identically distributed (i.i.d.) from
an unknown probability measure μ on X. To generalize MDS, Bengio et al. define a corresponding data-
dependent kernel that generalizes the mean centering matrix B (as defined in Section 4). Consequently,
they study the convergence of eigenvalues and eigenfuctions of the integral operator associated to the
kernel as the number of sampled points increases, and they show the convergence of the MDS embeddings
under desirable conditions. They use a fundamental result on the convergence of eigenvalues of this type
of integral operator from [14].

6.3. Convergence of MDS for Arbitrary Measures. In [13], we reprove the results of the previous
section under a a different setting which is more general in the sense that we allow for an arbitrary
sequence of convergent measures, but which is easier in the sense that this sequence is fixed (i.e. deter-
ministic, not random).

Indeed, let X be a compact metric space. Suppose μn is an arbitrary sequence of probability measures
on Xn for all n ∈ N, such that μn converges to μ in total variation as n → ∞. Roughly speaking,
this notion of convergence of measures implies the uniform convergence of integrals against bounded
measurable functions. For example, a measure μn =

∑n
i=1 λiδxi

in this sequence may again be a sum of
Dirac delta functions, although now the weights λi > 0 (with

∑
i λi = 1) need not be identically equal to

1
n (Figure 7a). Much more generally, the support of any μn is now allowed to be infinite, as illustrated
in Figure 7b. Following [1, 14], we give some first results towards showing that the MDS embeddings
of (X, d, μn) converge to the MDS embedding of (X, d, μ) [13]. We similarily define a data-dependent
kernel that generalizes the mean centering matrix B (as defined in Section 4). It is important to note
that these kernels depend on the measure on the space. We again show convergence of eigenfunctions
and consequently of MDS embeddings.
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(a) Convergence of arbitrary measures with finite support.

(b) Convergence of arbitrary measures with infinite support.

Figure 7. Illustration of convergence (in total variation) of arbitrary measures.

6.4. Convergence of MDS with Respect to Gromov–Wasserstein Distance. We now consider
the more general setting in which (Xn, dn, μn) is an arbitrary sequence of metric measure spaces, con-
verging to (X, d, μ) in the Gromov–Wasserstein distance, as illustrated in Figure 8a for the finite case
and Figure 8b for the infinite case. We remark that Xn need to no longer equal X, nor even be a subset
of X. Indeed, the metric dn on Xn is allowed to be different from the metric d on X. Sections 6.2 and
6.3 are the particular case when (Xn, dn) = (X, d) for all n, and the measures μn are converging to μ.
We now want to consider the case where metric dn need no longer be equal to d.

TheWasserstein (or Kantorovich–Rubinstein) metric is a distance function defined between probability
distributions on a given metric space X. Intuitively, if each distribution is viewed as a unit amount of
“dirt” piled on X, the distance between two distributions is the minimum amount of work required to
transform one pile of dirt into the other. More generally, the Gromov–Wasserstein distance between
metric measure spaces takes into account not only the variation in measures, but also the variation in
metrics between these spaces. Applications of the notion of Gromov–Wasserstein distance arise in shape
and data analysis [18].

(a) Convergence of mm-spaces equipped with measures of finite support.

(b) Convergence of mm-spaces equipped with measures of infinite support.

Figure 8. Illustration of Gromov–Wasserstein convergence of arbitrary metric measure
spaces (mm-spaces).

Conjecture 6.1. Let (Xn, dn, μn) for n ∈ N be a sequence of metric measure spaces that converges to
(X, d, μ) in the Gromov–Wasserstein distance. Then the MDS embeddings converge.

Question 6.2. Are there other notions of convergence of a sequence of arbitrary (possibly infinite) metric
measure spaces (Xn, dn, μn) to a limiting metric measure space (X, d, μ) that would imply that the MDS
embeddings converge in some sense? We remark that one might naturally try to break this into two
steps: first analyze which notions of convergence (Xn, dn, μn) → (X, d, μ) imply that the corresponding
operators converge, and then analyze which notions of convergence on the operators imply that their
eigendecompositions and MDS embeddings converge.
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7. Conclusion

MDS is concerned with problem of mapping the objects x1, . . . , xn to a configuration (or embedding)
of points f(x1), . . . , f(xn) in Rm in such a way that the given dissimilarities dij are well-approximated
by the Euclidean distances between f(xi) and f(xj). We study a notion of MDS on metric measure
spaces, which can be simply thought of as spaces of (possibly infinitely many) points equipped with
some probability measure. We explain how MDS generalizes to metric measure spaces. Furthermore,
we describe in a self-contained fashion an infinite analogue to the classical MDS algorithm. Indeed,
classical multidimensional scaling can be described either as a strain-minimization problem, or as a
linear algebra algorithm involving eigenvalues and eigenvectors. We describe how to generalize both of
these formulations to metric measure spaces. We show that this infinite analogue minimizes a strain
function similar to the strain function of classical MDS.

As a motivating example for convergence of MDS, we consider the MDS embeddings of the circle
equipped with the (non-Euclidean) geodesic metric. By using the known eigendecomposition of circulant
matrices, we identify the MDS embeddings of evenly-spaced points from the geodesic circle into Rm, for
all m. Indeed, the MDS embeddings of the geodesic circle are closely related to [26], which was written
prior to the invention of MDS.

Lastly, we address convergence questions for MDS. Convergence is understood when each metric space
in the sequence has the same finite number of points, or when each metric space has a finite number of
points tending to infinity. We are also interested in notions of convergence when each metric space in
the sequence has an arbitrary (possibly infinite) number of points. For instance, if a sequence of metric
measure spaces converges to a fixed metric measure space X, then in what sense do the MDS embeddings
of these spaces converge to the MDS embedding of X?

Several questions remain open. In particular, we would like to have a better understanding of the
convergence of MDS under the most unrestrictive assumptions of a sequence of arbitrary (possibly
infinite) metric measure spaces converging to a fixed metric measure space. Is there a version that holds
under convergence in the Gromov–Wasserstein distance, which that allows for distortion of both the
metric and the measure simultaneously (see Conjecture 6.1 and Question 6.2)? Despite all of the work
that has been done on MDS by a wide variety of authors, many interesting questions remain open (at
least to us). For example, consider the MDS embeddings of the n-sphere for n ≥ 2.

Question 7.1. What are the MDS embeddings of the n-sphere Sn, equipped with the geodesic metric,
into Euclidean space Rm?

To our knowledge, the MDS embeddings of Sn into Rm are not understood for all positive integers m
except in the case of the circle, when n = 1. The above question is also interesting, even in the case of
the circle, when the n-sphere is not equipped with the uniform measure. As a specific case, what is the
MDS embedding of S1 into Rm when the measure is not uniform on all of S1, but instead (for example)
uniform with mass 2

3 on the northern hemisphere, and uniform with mass 1
3 on the southern hemisphere?

We note the work of Blumstein and Kvinge [4], where a finite group representation theoretic perspec-
tive on MDS is employed. Adapting these techniques to the analytical setting of compact Lie groups
may prove fruitful for the case of infinite MDS on higher dimensional spheres.

We also note the work [5], where the theory of an MDS embedding into pseudo Euclidean space is
developed. In this setting, both positive and negative eigenvalues are used to create an embedding.
In the example of embedding S1, positive and negative eigenvalues occur in a one-to-one fashion. We
wonder about the significance of the full spectrum of eigenvalues for the higher dimensional spheres.
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[15] Thomas Kühn. Eigenvalues of integral operators generated by positive definite Hölder continuous kernels on metric
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