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We estimate, in a number field, the number of elements and the maximal number

of linearly independent elements, with prescribed bounds on their valuations. As a

by-product, we obtain new bounds for the successive minima of ideal lattices. Our

arguments combine group theory, ramification theory, and the geometry of numbers.

1 Introduction

It was a decisive moment in the history of mathematics when Minkowski [12] realized

that certain geometric ideas are very powerful in tackling difficult arithmetic problems.

In particular, Minkowski [12] proved that in a number field k of degree d > 1 and

discriminant �, every ideal class can be represented by an integral ideal of norm less

than |�|1/2. His proof relied on two ideas. First, the natural embedding k ↪→ k ⊗Q R

allows one to regard the ring of integers o as a lattice in Rd of covolume |�|1/2. Second,

a lattice in Rd contains a nonzero lattice point in a convex body symmetric about the

origin, as long as the volume of the body exceeds 2d times the covolume of the lattice.

Here and later, a convex body means a convex, compact set with non-empty interior

in the ambient Euclidean space. The second idea was extended by Blichfeldt [2] and
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2 M. Frączyk et al.

van der Corput [4] to exhibit more lattice points in larger convex bodies. It leads to the

following estimate that we state partly for motivation, partly as a technical ingredient

for our investigations. For a modern exposition of the quoted results, see [6, Chapter 2,

Sections 5.1 and 7.2].

Theorem 1 (Minkowski [12], Blichfeldt [2], van der Corput [4]). Let n ⊂ o be a nonzero

ideal, and let B ⊂ k ⊗Q R be a convex body symmetric about the origin. Then,

|n ∩ B| � vol(B)

2d|�|1/2[o : n]
.

Blichfeldt [2] also established an upper bound of similar quality in the case when

n ∩ B contains d linearly independent vectors.

Theorem 2 (Blichfeldt [2]). Let n ⊂ o be a nonzero ideal, and let B ⊂ k ⊗Q R be a convex

body symmetric about the origin. Assume that n ∩ B contains d linearly independent

vectors. Then,

|n ∩ B| � (d + 1)! vol(B)

|�|1/2[o : n]
.

In fact, Blichfeldt proved a more general result, namely Theorem 7 in Section 3.

The original source [2] is an account of an AMS Sectional Meeting held in 1920 (written

by B. A. Bernstein), so it does not contain any proof. What is worse, we could only find

sketches of the proof in the literature. Hence, we include a detailed proof in Section 3,

without claiming any originality.

Our principal goal in this paper is to provide an upper bound for |n ∩ B| in

the complementary case when n ∩ B does not contain d linearly independent vectors.

More precisely, with certain arithmetic applications in mind, we restrict ourselves to

the special convex bodies considered by Minkowski [12] in his seminal work. They

are the archimedean analogues of ideal lattices, and they are defined as follows. As

before, let k be a number field of degree d > 1. Let � := Hom(k,Q), and let K be the

compositum of the fields σ(k) for σ ∈ �. Then, K/Q is a finite Galois extension whose

Galois group G := Gal(K/Q) acts transitively and faithfully on �. In this way, G is a

transitive permutation group of degree d. Fixing an embedding Q ↪→ C, we can think of

the elements of � as the embeddings σ : k ↪→ C, and we can identify k ⊗Q R with the set

of column vectors (zσ ) ∈ C� satisfying zσ = zσ for all σ ∈ �. See [13, Chapter I, Section

5] for more details. Let (Bσ ) be a collection of positive numbers such that Bσ = Bσ for all
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Counting Bounded Elements of a Number Field 3

σ ∈ �. We shall focus on convex bodies of the form

B := {
(zσ ) ∈ C� : zσ = zσ and |zσ | � Bσ for all σ ∈ �

}
, (1)

and we note for later reference that

vol(B) �d

∏
σ∈�

Bσ . (2)

Here and later, the symbols 	d, 
d, �d have their usual meaning in analytic number

theory: X 	d Y (resp. Y 
d X) means that |X| � CY holds for an absolute constant C > 0

depending only on d, while X �d Y abbreviates X 	d Y 	d X.

Theorem 3. Let n ⊂ o be a nonzero ideal, and let B ⊂ k ⊗Q R be a convex body of the

form (1). Let m be the maximal number of linearly independent lattice vectors contained

in n ∩ B. If m < d, then

|n ∩ B| 	d |�|min
(

1
2 , m

2d−2m

)
. (3)

Further, if m < d and G is 2-homogeneous (i.e., it acts transitively on the 2-element

subsets of �), then

|n ∩ B| 	d |�| m
2d−2 . (4)

Theorems 2 and 3 yield a practical estimate for the number of elements of k that

are bounded in every archimedean and non-archimedean valuation of k.

Corollary 1. Let n ⊂ o be a nonzero ideal, and let B ⊂ k ⊗Q R be a convex body of the

form (1). Then,

|n ∩ B| 	d |�|1/2 + vol(B)

|�|1/2[o : n]
. (5)

By combining Theorems 1 and 3, we see that if the volume of our convex body is

sufficiently large compared with the covolume of our ideal lattice, then the intersection

contains several linearly independent lattice vectors.

Corollary 2. Let n ⊂ o be a nonzero ideal, and let B ⊂ k ⊗Q R be a convex body of the

form (1). Let m be the maximal number of linearly independent lattice vectors contained

in n ∩ B. If m < d, then

vol(B) 	d |�|min
(
1, d

2d−2m

)
[o : n]. (6)
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4 M. Frączyk et al.

Further, if m < d and G is 2-homogeneous, then

vol(B) 	d |�| d−1+m
2d−2 [o : n]. (7)

If m = 0, then (3) and (4) are trivial, while (6) and (7) boil down to the Minkowski

bound vol(B) 	d |�|1/2[o : n]. If m = 1 or m = d − 1, then (3) and (4) (resp. (6) and (7))

are identical. For 2 � m � d − 2, the bound (4) is stronger than (3) (resp. (7) is stronger

than (6)), but its scope is restricted by the assumption that G is 2-homogeneous. The

list of finite 2-homogeneous groups is known by the work of many people, in particular

by the classification of finite simple groups. For further details and references, see [8,

Proposition 3.1], [3, Theorem 5.3], [7, p. 198]. We emphasize that Corollaries 1 and 2 are

arithmetic in nature, that is, they would break down for general lattices in k ⊗Q R.

Corollary 3. Let n ⊂ o be a nonzero ideal, and let B ⊂ k ⊗Q R be a convex body of the

form (1). If B does not contain a lattice basis of n, then vol(B) 	d |�|[o : n].

Interestingly, when k is totally real, the conclusion of Corollary 3 also follows

from a celebrated result of McMullen [11, Theorem 4.1] proved by topological arguments.

In another direction, when the radii Bσ are equal, the conclusion of Corollary 3 says that

the last successive minimum of n is 	d |�|1/d[o : n]1/d. Here and later, we understand

successive minima with respect to the closed Euclidean ball centered at the origin. For

n = o, this bound was deduced earlier by Bhargava et al. [1, Theorem 1.6] with a more

direct approach. We will return to these connections in Section 4. In fact, we can control,

to some extent, all successive minima of ideal lattices.

Theorem 4. Let λ1 � · · · � λd be the successive minima of a nonzero ideal n ⊂ o

embedded as a lattice in k ⊗Q R. Then, for all m ∈ {1, . . . , d − 1}, we have

λ1 · · · λm 
d |�|max
(
0, m

d − 1
2

)
[o : n]

m
d ; (8)

λm+1λm+2 · · · λd 	d |�|min
(

1
2 ,1− m

d

)
[o : n]1− m

d . (9)

If G is 2-homogeneous, then the exponents of |�| in (8) and (9) can be improved to m(m−1)
2d(d−1)

and (d−m)(d+m−1)
2d(d−1)

, respectively.

The example k = Q(p1/d) mentioned by Bhargava et al. below their [1, Theorem

1.6] shows that the 2-homogeneous case of Theorem 4 cannot be improved in general.

Indeed, if p > d > 1 are prime numbers and n = o, then G ∼= Aff(Fd) ∼= (Z/dZ) �
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Counting Bounded Elements of a Number Field 5

(Z/dZ)× is sharply 2-transitive, while λm �d |�| m−1
d(d−1) holds for all m ∈ {1, . . . , d}. The

last relation follows from the straightforward upper bound λm 	d p
m−1

d combined with

|�| �d pd−1 and Minkowski’s result (12) quoted below. The same example also shows

that Corollary 3 cannot be improved in general. In contrast, the sharpness of (3)–(4) and

(8)–(9) is less clear to us.

Theorem 4 readily yields two-sided bounds for individual successive minima,

extending the result of Bhargava et al. [1, Theorem 1.6] mentioned in the previous

paragraph.

Corollary 4. Let λ1 � · · · � λd be the successive minima of a nonzero ideal n ⊂ o

embedded as a lattice in k ⊗Q R. Then, for all m ∈ {1, . . . , d}, we have

�
max

(
0, 1

d − 1
2m

)
[o : n]

1
d 	d λm 	d �

min
(

1
2d−2m+2 , 1

d

)
[o : n]

1
d in general; (10)

�
m−1

2d(d−1) [o : n]
1
d 	d λm 	d �

d+m−2
2d(d−1) [o : n]

1
d if G is 2-homogeneous. (11)

To form an idea of the accuracy of (11), it is instructive to observe that the two

sides differ by a factor of �
1

2d . Moreover, the product of the left-hand side over m ∈
{1, . . . , d} equals �

1
4 [o : n], while the same for the right-hand side equals �

3
4 [o : n]. This

should be compared with the product of the λms, which by Minkowski’s theorem [6, p.

124, Theorem 3] is

λ1 · · · λd �d |�| 1
2 [o : n]. (12)

The proof of Theorem 3 combines group theory, ramification theory, and the

geometry of numbers. The main idea is to obtain an upper bound for |n∩B| by projecting

n ∩ B onto well-chosen “coordinate subspaces” RS of C� for S ⊂ �, and then compare it

with the lower bound of Theorem 1. We make sure that the projections of n∩ B generate

lattices in their ambient spaces RS, and then we succeed by bounding from below the

product of covolumes of those lattices. The proof of Theorem 4 is similar, but it focuses

on successive minima in place of lattice point counts. In order to formulate the key

arithmetic ingredient of both proofs, Theorem 5 below, we need to introduce further

notation.

For a nonzero prime ideal p ⊂ o dividing a rational prime p, let ep (resp. fp)

denote the ramification index (resp. inertia degree) of the local field extension kp/Qp.

By [13, Chapter III, Section 2], the exponent of p in the different ideal of o equals ep − 1

when p � ep, and it lies between ep and ep − 1 + vp(ep) when p | ep (which can only occur
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6 M. Frączyk et al.

for p � d). Therefore, the tame discriminant �tame, defined as

�tame :=
∏
p

pd−fp with fp :=
∑
p|p

fp, (13)

divides the discriminant �, and it satisfies

|�| < 2d3
�tame. (14)

The last bound is rather crude, and it can be verified as follows. The ratio �/�tame

divides the norm of the ideal
∏

p�d
∏

p|p pvp(ep), which is a divisor of the principal ideal∏
p�d

∏
p|p(ep). Therefore,

|�|
�tame

�
∏
p�d

∏
p|p

ed
p <

∏
p�d

2d
∑

p|p ep < 2d3
.

Theorem 5. Let n ⊂ o be a nonzero ideal, and let m ∈ {1, . . . , d}. For any m-subsets

X ⊂ n and S ⊂ �,

∏
g∈G

det2(σ (x))
σ∈gS
x∈X is divisible by �

|G| max
(
0, 2m

d −1
)

tame [o : n]|G| 2m
d . (15)

If G is 2-homogeneous, then the exponent of �tame can be improved to |G|m(m−1)
d(d−1)

.

Note that d divides |G|, and also
(d

2

)
divides G when G is 2-homogeneous, so the

exponents of �tame and [o : n] are nonnegative integers. The next theorem is very similar

to the 2-homogeneous case of Theorem 5. We do not need it for the proof of Theorem 3,

but we present it for its intrinsic beauty and interest.

Theorem 6. Let n ⊂ o be a nonzero ideal, and let m ∈ {2, . . . , d}. For any m-subset

X ⊂ n, ∏
S⊂�|S|=m

det2(σ (x))σ∈S
x∈X is divisible by �

(d−2
m−2)

tame [o : n]2(
d−1
m−1). (16)

The determinants in (15) and (16) are only defined up to a factor of ±1 because

we have not specified any ordering on X and S. However, their squares are well defined.

If m = d, then Theorems 5 and 6 follow from the fact that either det(σ (x))σ∈�
x∈X is zero or

it equals the covolume of a full rank sublattice of n. Another relatively simple special
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Counting Bounded Elements of a Number Field 7

case is when n = o and X = {1, x, . . . , xm−1} for some x ∈ o. Then, Theorem 6 and the

2-homogeneous case of Theorem 5 are consequences of the Vandermonde determinant

formula and the definition of the (usual) discriminant � of k. Not surprisingly, we shall

only use the divisibility conclusion when the participating determinants are nonzero.

On the other hand, it seems to be an interesting and difficult problem to characterize

the vanishing of these determinants. One result in this direction is Chebotarev’s theorem

from 1926: if p is a prime, k is the p-th cyclotomic field, and the elements of X are p-

th roots of unity, then none of these determinants vanish (see [16] for a proof and for

useful references). Another result is the following simple observation: if k contains a

proper subfield k′ with m = [k : k′], and the m-subset X ⊂ k is linearly dependent over

k′, then there is an m-subset S ⊂ � such that all embeddings σ ∈ S coincide on k′,
whence det(σ (x))σ∈S

x∈X = 0. Motivated by this example, we ask the following question:

Question. Assume that X ⊂ k and S ⊂ � satisfy |X| = |S| and det(σ (x))σ∈S
x∈X = 0. Does

there exist a subfield k′ of k such that X is linearly dependent over k′, and all embeddings

σ ∈ S coincide on k′?

If X is of size m and G is m-homogeneous (e.g., when G = Sd or G = Ad), then the

answer to this question is affirmative. Indeed, in this case, the vanishing of one m × m

minor of det(σ (x))σ∈�
x∈X implies the vanishing of all m × m minors, which can happen if

and only if X is linearly dependent over Q.

2 Non-Archimedean Investigations

In this section, we prove Theorems 5 and 6. The two sides of (15) and (16) are rational

integers; hence, it suffices to show, for every rational prime p, that the exponent of p

is at least as large on the left-hand side as on the right-hand side (with the convention

that the p-exponent of zero is infinity).

We fix p and an embedding Q ↪→ Qp, then we can think of the elements of � as

the embeddings σ : k ↪→ Qp. For each σ ∈ �, there is a unique prime ideal p | p and a

unique Qp-linear extension σ̃ : kp ↪→ Qp of σ . Denoting by Ip the set of σs corresponding

to a given p, the extension map σ 
→ σ̃ is a bijection Ip
∼→ HomQp

(kp,Qp) with inverse

being the restriction map. In particular, Ip is a Gal(Qp/Qp)-orbit on � of cardinality

[kp : Qp] = epfp. Let vp be the unique additive valuation on Qp extending the normalized

additive valuation on Qp, and let vp be the normalized additive valuation on kp. By

“normalized” we mean that vp(Q×
p ) = Z and vp(k

×
p ) = Z. Then, we have the important
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8 M. Frączyk et al.

identity

vp(σ̃ (x)) = 1

ep
vp(x), σ̃ ∈ HomQp

(kp,Qp), x ∈ k×
p . (17)

See [13, Chapter II, Section 8] for more details. Let lp be the maximal unramified

subextension of kp/Qp, then

[kp : lp] = ep and [lp : Qp] = fp.

Identifying Ip with HomQp
(kp,Qp) as above, we can break up Ip into fp subsets Ip,l of

equal size ep according to how lp gets embedded into Qp. In the end, two elements of

� belong to the same subset Ip,l if and only if they induce the same non-archimedean

valuation | · |p on k and their Qp-linear extensions agree on lp; we shall call two such

elements of � inertially equivalent.

The proofs of Theorems 5 and 6 rely on the key observation that the p-adic

valuation of the participating determinants can be estimated in terms of the inertial

equivalence classes Ip,l.

Proposition 1. Let n ⊂ o be a nonzero ideal, and let m ∈ {1, . . . , d}. For any m-subsets

X ⊂ n and S ⊂ �,

vp

(
det2(σ (x))σ∈S

x∈X

)
�

∑
p|p

1

ep

fp∑
l=1

sp,l

(
2vp(n) + sp,l − 1

)
, (18)

where sp,l abbreviates |S ∩ Ip,l|, and vp(n) stands for the exponent of p in n.

Proof. We recall that K is the compositum of the fields σ(k) for σ ∈ �, and we write K̃

for the extension of Qp generated by K. We denote by d̃ the degree [K̃ : Qp], and by õ the

ring of integers of K̃. We shall think of õm as the set of column vectors of length m with

entries in õ.

The m-set S ⊂ � is partitioned into the sp,l-sets Sp,l := S ∩ Ip,l. Accordingly, the

m × m matrix A := (σ (x))σ∈S
x∈X decomposes into the sp,l × m blocks Ap,l := (σ (x))

σ∈Sp,l
x∈X .

Strictly speaking, these matrices are only defined up to a permutation of the rows and

the columns, but this ambiguity disappears once we choose an ordering of the rows and

the columns.

We shall assume that det A �= 0, for otherwise (18) is trivial. The natural

isomorphism from õ
m to

∏
p

∏
l õ

sp,l maps Aõ
m into

∏
p

∏
l Ap,lõ

m; hence, it induces a
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Counting Bounded Elements of a Number Field 9

surjective homomorphism from õ
m/Aõ

m onto
∏

p

∏
l(õ

sp,l/Ap,lõ
m). In particular,

vp

(
[õm : Aõ

m]
)

�
∑
p|p

fp∑
l=1

vp

(
[õsp,l : Ap,lõ

m]
)
.

The left-hand side equals d̃ · vp(det A), hence (18) will follow if we can show that

vp

(
[õsp,l : Ap,lõ

m]
)

� d̃

ep
sp,l

(
vp(n) + sp,l − 1

2

)
. (19)

Let us fix p | p and l ∈ {1, . . . , fp}. We shall assume that Sp,l is not empty, for

otherwise (19) is trivial. We write

t := sp,l and B := Ap,l (20)

to simplify notation, and we list the elements of Sp,l as {σ1, . . . , σt}. By (17), we have

vp(σ̃i(x)) = 1

ep
vp(x), i ∈ {1, . . . , t}, x ∈ k×

p . (21)

We also list the elements of X as {x1, . . . , xm} in such a way that

vp(n) � vp(x1) � · · · � vp(xm).

In particular, vp is constant on each column of

B =

⎛
⎜⎜⎝

σ1(x1) · · · σ1(xm)

...
. . .

...

σt(x1) · · · σt(xm)

⎞
⎟⎟⎠ ,

and it is non-decreasing from left to right. As the σis are inertially equivalent, their Qp-

linear extensions σ̃i coincide on lp, and we can identify lp with its image in K̃ via any

of these embeddings. A nice feature resulting from this identification is that the σ̃is are

lp-linear, not just Qp-linear.

We are ready to prove (19). We shall use the fact that the left-hand side of (19),

which is [õt : Bõm] in our new notation (20), remains unchanged if we multiply B by

elements of GLm(õ) on the right and by elements of GLt(õ) on the left. Writing olp (resp.

okp ) for the ring of integers of lp (resp. kp), we shall also utilize the fact that the group
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10 M. Frączyk et al.

of units o
×
lp

contains a full set of representatives for the nonzero residue classes modulo

pokp in okp . This is because the residue fields of lp and kp have equal cardinality pfp .

First, we perform invertible elementary column operations over olp in order to

increase the additive valuations of the columns of B. Specifically, we run the following

algorithm:

(1) set j = 1;

(2) for each j′ ∈ {j + 1, . . . , m}, if vp(xj′) = vp(xj), then choose w ∈ o
×
lp

such that

vp(xj′ − wxj) > vp(xj) and replace xj′ by xj′ − wxj;

(3) reorder (xj+1, . . . , xm) in such a way that vp is non-decreasing on the new

sequence;

(4) replace j by j + 1;

(5) if j < m, then go to step (2); otherwise, finish.

We end up with a matrix

C =

⎛
⎜⎜⎝

σ̃1(y1) · · · σ̃1(ym)

...
. . .

...

σ̃t(y1) · · · σ̃t(ym)

⎞
⎟⎟⎠

with y1, . . . , ym ∈ okp such that

vp(n) � vp(y1) < · · · < vp(ym).

In particular, vp(yj) � vp(n) + j − 1 for all j ∈ {1, . . . , m}.
Second, we perform invertible elementary row operations over õ to transform C

into

D =

⎛
⎜⎜⎜⎜⎜⎝

z1,1 z1,2 · · · z1,t · · · z1,m

0 z2,2 · · · z2,t · · · z2,m
...

. . .
. . .

...
. . .

...

0 . . . 0 zt,t . . . zt,m

⎞
⎟⎟⎟⎟⎟⎠

with zi,j ∈ õ such that (cf. (21))

vp(zi,j) � 1

ep

(
vp(n) + j − 1

)
, i � j.

In particular, Dõ
m is a subgroup of ñ1 × · · · × ñt, where

ñi :=
{

z ∈ õ : vp(z) � 1

ep

(
vp(n) + i − 1

)}
, i ∈ {1, . . . , t}.
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Counting Bounded Elements of a Number Field 11

This implies, using that ep divides the ramification degree of the local field extension

K̃/Qp,

vp

(
[õt : Dõ

m]
)

�
t∑

i=1

vp

(
[õ : ñi]

) =
t∑

i=1

d̃

ep

(
vp(n) + i − 1

)
. (22)

The inequalities (22) and (19) are equivalent because their left-hand sides are

equal and their right-hand sides are also equal (cf. (20)). The proof of Proposition 1 is

complete. �

Proof of Theorem 5. For any g ∈ G, it follows from Proposition 1 that

vp

(
det2(σ (x))

σ∈gS
x∈X

)
�

∑
p|p

1

ep

fp∑
l=1

∑
σ∈Ip,l

1gS(σ )

⎛
⎝2vp(n) +

∑
σ ′∈Ip,l\{σ }

1gS(σ ′)

⎞
⎠ .

We average both sides over g ∈ G, utilizing that G acts transitively and faithfully on �.

For any σ ∈ �, we obtain readily that

1

|G|
∑
g∈G

1gS(σ ) = 1

|G|
∑
g∈G

1S(g−1σ) = |S|
d

= m

d
. (23)

As a consequence, for any distinct σ , σ ′ ∈ �, we see that

1

|G|
∑
g∈G

1gS(σ )1gS(σ ′) � 1

|G|
∑
g∈G

(
1gS(σ ) + 1gS(σ ′) − 1

) = 2m

d
− 1. (24)

This bound is trivial when m < d/2, in which case we shall only use that the left-hand

side is nonnegative. Combining these inequalities and noting that |Ip,l| = ep, we infer

that

1

|G|
∑
g∈G

vp

(
det2(σ (x))

σ∈gS
x∈X

)
�

∑
p|p

fp

(
vp(n)

2m

d
+ (ep − 1) max

(
0,

2m

d
− 1

))
.

Now from [o : p] = pfp it is clear that

∑
p|p

fpvp(n) = vp

(
[o : n]

)
,
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12 M. Frączyk et al.

while (13) implies that

∑
p|p

fp(ep − 1) = d − fp = vp(�tame).

Therefore, the last inequality can be rewritten as

1

|G|
∑
g∈G

vp

(
det2(σ (x))

σ∈gS
x∈X

)
� 2m

d
vp

(
[o : n]

) + max
(

0,
2m

d
− 1

)
vp(�tame).

The rational prime p was arbitrary here, so we have proved (15).

If G is 2-homogeneous, then we can improve (24) to

1

|G|
∑
g∈G

1gS(σ )1gS(σ ′) = 1

|G|
∑
g∈G

1S(g−1σ)1S(g−1σ ′) =
(|S|

2

)
(d

2

) = m(m − 1)

d(d − 1)
.

As a result, we can replace max
(
0, 2m

d − 1
)

by m(m−1)
d(d−1)

in the subsequent argument, and

hence also in (15). The proof of Theorem 5 is complete. �

Proof of Theorem 6. For any m-subset S ⊂ �, it follows from Proposition 1 that

vp

(
det2(σ (x))σ∈S

x∈X

)
�

∑
p|p

1

ep

fp∑
l=1

∑
σ∈Ip,l

1S(σ )

⎛
⎝2vp(n) +

∑
σ ′∈Ip,l\{σ }

1S(σ ′)

⎞
⎠ .

We sum both sides over all m-subsets S ⊂ �, using that

∑
S⊂�|S|=m

1S(σ ) =
(

d − 1

m − 1

)
for any σ ∈ �;

∑
S⊂�|S|=m

1S(σ )1S(σ ′) =
(

d − 2

m − 2

)
for any distinct σ , σ ′ ∈ �.

From here, we proceed as in the proof of Theorem 5 and conclude

∑
S⊂�|S|=m

vp

(
det2(σ (x))σ∈S

x∈X

)
� 2

(
d − 1

m − 1

)
vp

(
[o : n]

) +
(

d − 2

m − 2

)
vp(�tame).

The rational prime p was arbitrary here, so the proof of Theorem 6 is complete. �
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Counting Bounded Elements of a Number Field 13

3 Archimedean Investigations

In this section, we prove Theorems 3–4 and Corollaries 1–4. We shall combine

Theorems 1 and 5 with the following lesser known result of Blichfeldt [2], of which

Theorem 2 is a special case.

Theorem 7 (Blichfeldt [2]). Let � ⊂ Rm be a lattice, and let C ⊂ Rm be a convex body

containing the origin. If � ∩ C contains m linearly independent lattice vectors, then

|� ∩ C| � m!
vol(C)

det(�)
+ m � (m + 1)!

vol(C)

det(�)
. (25)

Proof. The second inequality is clear by vol(C) � det(�)/m!; hence, we focus on the

first inequality. In this proof, a polytope (resp. simplex) will always mean a convex

lattice polytope (resp. simplex) with vertices lying in �. For other terminology, we

follow the book [5]. By the initial assumptions on C, the convex hull of � ∩ C is an

m-dimensional polytope, which can be decomposed into m-simplices according to [5,

Proposition 2.2.4]. The corresponding triangulation of � ∩ C can be refined to a full

triangulation by decomposing recursively the participating m-simplices into smaller

m-simplices. Alternatively, one can obtain a full triangulation of � ∩ C by ordering its

elements in such a way that no point belongs to the convex hull of previous points,

and then taking the placing/pushing triangulation for that ordering. We fix a full

triangulation of � ∩ C, and we denote by T the set of m-simplices that participate in

it. We define a graph on T by declaring that two elements of T are connected by an edge

if and only if their intersection is an (m − 1)-simplex. One can show that this graph is

connected, which forces

|T | � |� ∩ C| − m.

For details, see [5, Theorem 2.6.1], [14, Theorem 3.2] and their proofs. On the other hand,

as C is convex and each element of T has volume at least det(�)/m!, we also have

vol(C) � vol(∪T ) � det(�)

m!
|T |.

Combining these two bounds, we get the first inequality of (25). As remarked earlier, the

second inequality of (25) is straightforward, so the proof of Theorem 7 is complete. �

Proof of Theorem 3. If m = 0, then (3) and (4) are trivial, so we shall assume that

0 < m < d. We write V for the R-span of n ∩ B, so that V is an m-dimensional R-

subspace of k ⊗Q R, and n ∩ V is an m-dimensional lattice in V. We fix a basis X ⊂ n
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14 M. Frączyk et al.

of n ∩ V, and we think of its elements as the columns of the d × m complex matrix

M := (σ (x))σ∈�
x∈X . Strictly speaking, M is only defined up to a permutation of the rows and

the columns, but this ambiguity disappears once we choose an ordering of � and X. By

construction, the columns of M are linearly independent over R, and we claim that they

are also linearly independent over C. Indeed, if c : X → C satisfies
∑

x∈X c(x)σ (x) = 0

for all σ ∈ �, then complex conjugating the equations and switching from σ to σ , we get

that
∑

x∈X c(x)σ (x) = 0 for all σ ∈ �. As a result, the real and imaginary parts of c(x)

must vanish for all x ∈ X, which proves the claim. Hence, rank(M) = m, and there exists

an m-subset S ⊂ � such that det(σ (x))σ∈S
x∈X �= 0. We fix S ⊂ � along with X ⊂ n.

For any Galois automorphism g ∈ G, the image of det(σ (x))σ∈S
x∈X under g equals

det(σ (x))
σ∈gS
x∈X . Therefore, these m×m minors of M are nonzero, and by (14) and Theorem

5 they satisfy

∏
g∈G

∣∣∣det(σ (x))
σ∈gS
x∈X

∣∣∣ 
d |�||G| max
(
0, m

d − 1
2

)
[o : n]|G| m

d . (26)

Moreover, the exponent of |�| can be improved to |G|m(m−1)
2d(d−1)

when G is 2-homogeneous.

Fixing g ∈ G for a moment, the multilinearity of the determinant shows that

there is a choice of σ̃ ∈ {Re(σ ), Im(σ )} for each σ ∈ gS such that

∣∣∣det(σ (x))
σ∈gS
x∈X

∣∣∣ � 2m
∣∣∣det(σ̃ (x))

σ∈gS
x∈X

∣∣∣ . (27)

The left-hand side is positive; hence, the right-hand side is also positive. Let f : C� →
RgS be the product of the R-linear surjections fσ : C → R given by

fσ (z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re(z), σ ∈ gS and σ̃ = Re(σ );

Im(z), σ ∈ gS and σ̃ = Im(σ );

0, σ �∈ gS.

Tautologically, σ̃ = fσ ◦ σ holds for all σ ∈ gS; hence, f restricts to an R-linear

isomorphism V
∼→ RgS, and � := f (n ∩ V) is a lattice in RgS of covolume

∣∣∣det(σ̃ (x))
σ∈gS
x∈X

∣∣∣.
In addition, C := f (B) is an o-symmetric convex body in RgS, which lies in the orthotope∏

σ∈gS[−Bσ , Bσ ] by (1). Clearly, � ∩ C contains f (n ∩ B), which in turn contains m linearly

independent lattice vectors. Now, we combine these observations with Theorem 7 and

(27) to infer that

|n ∩ B| � |� ∩ C| � 4m(m + 1)!

∏
σ∈gS Bσ∣∣∣det(σ (x))

σ∈gS
x∈X

∣∣∣ .
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Counting Bounded Elements of a Number Field 15

We keep the two sides of the last inequality and take their geometric mean over

g ∈ G. Using also (2), (23), and (26), we obtain

|n ∩ B| 	d
vol(B)

m
d

|�|max
(
0, m

d − 1
2

)
[o : n]

m
d

. (28)

Finally, we invoke Theorem 1 to estimate from above the right-hand side in terms of the

left-hand side:

|n ∩ B| 	d |n ∩ B|m
d |�|min

(
m
2d , 1

2 − m
2d

)
. (29)

This bound is equivalent to (3) in the light of 0 < m < d. If G is 2-homogeneous, then

the exponent of |�| can be improved to m(m−1)
2d(d−1)

in (28), and to m(d−m)
2d(d−1)

in (29), so that the

resulting bound is equivalent to (4). The proof of Theorem 3 is complete. �

Proof of Corollary 1. If n ∩ B contains d linearly independent vectors, then (5) follows

from Theorem 2. If n∩B does not contain d linearly independent vectors, then (5) follows

from Theorem 3. The proof of Corollary 1 is complete. �

Proof of Corollary 2. In the light of Theorem 1, the bound (6) follows from (3), while

the bound (7) follows from (4). The proof of Corollary 2 is complete. �

Proof of Corollary 3. Assume that B does not contain a lattice basis of n. Then, by

an observation of Mahler [10] (see also [6, Chapter 2, Section 10.2]), the scaled body 1
dB

does not contain d linearly independent lattice vectors from n. Hence, by Corollary 2, it

follows that

vol(B) 	d vol( 1
dB) 	d |�|[o : n].

The proof of Corollary 3 is complete. �

Proof of Theorem 4. We borrow several ideas from the proof of Theorem 3 without

further mention. Let x1, . . . , xm ∈ n be linearly independent lattice vectors whose

Euclidean norms in k ⊗Q R are the successive minima λ1, . . . , λm, respectively. Let X be

the m-set {x1, . . . , xm} ⊂ n, and let V be the R-span of X. Then, V is an m-dimensional R-

subspace of k ⊗Q R, and n ∩ V is an m-dimensional lattice in V of successive minima

λ1 � · · · � λm. In particular, the covolume of n ∩ V is �d λ1 · · · λm. We fix an m-

subset S ⊂ � such that det(σ (x))σ∈S
x∈X �= 0. For any g ∈ G, there exists an orthogonal

projection f of k ⊗Q R onto an m-subspace such that the covolume of f (n ∩ V) is at least
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16 M. Frączyk et al.

2−m
∣∣∣det(σ (x))

σ∈gS
x∈X

∣∣∣. Since the covolume of f (n ∩ V) cannot exceed the covolume of n ∩ V,

we infer that

λ1 · · · λm 
d

∣∣∣det(σ (x))
σ∈gS
x∈X

∣∣∣ , g ∈ G.

Taking the geometric mean of both sides over g ∈ G, and using (26), we obtain (8). Taking

the reciprocal of (8), and then multiplying both sides by (12), we arrive at (9). If G is

2-homogeneous, then the exponent of |�| in (26) can be improved to |G|m(m−1)
2d(d−1)

, and our

argument yields the following variants of (8) and (9):

λ1 · · · λm 
d |�|m(m−1)
2d(d−1) [o : n]

m
d ; (30)

λm+1λm+2 · · · λd 	d |�| (d−m)(d+m−1)
2d(d−1) [o : n]1− m

d . (31)

The proof of Theorem 4 is complete. �

Proof of Corollary 4. We observe that (8) and (30) are also valid for m = d, while (9)

and (31) are also valid for m = 0. Indeed, these special cases amount to (12). Now, taking

the m-th root of (8) and (30) readily yields the lower bound of (10) and (11). Similarly,

taking the (d − m)-th root of (9) and (31) readily yields the upper bound of (10) and (11)

with m + 1 in place of m. The proof of Corollary 4 is complete. �

4 Connections to the Work of McMullen [11] and Bhargava et al. [1]

If the number field k is totally real, then we can identify the R-algebra k ⊗Q R with

the set of column vectors (zσ ) ∈ R� . The multiplicative group (R�)× acts on R� by

multiplication; hence, so does its subgroup

A :=
{
(aσ ) ∈ (0, ∞)� :

∏
σ∈�

aσ = 1
}

.

Let us consider the induced action of A on the space of lattices of R� . Geometrically,

the space of lattices can be described as GL(R�)/GL(Z�), and the induced action of A is

given by left multiplication by positive diagonal matrices of determinant 1. In particular,

this action is continuous and preserves the covolume. The group of totally positive units

o
×+ is cocompact in A (cf. Dirichlet’s unit theorem) and stabilizes the lattice o; hence, the

orbit Ao is compact. By a striking result of McMullen [11, Theorem 4.1], the compactness

of Ao implies the existence of a ∈ A such that the successive minima of the lattice ao

are equal: μ1 = · · · = μd. As we shall explain in the next paragraph, this fact gives rise

to a short alternative proof of Corollary 3 (when k is totally real). We note in passing
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Counting Bounded Elements of a Number Field 17

that Levin et al. [9, Theorem 1.1] have extended McMullen’s theorem to closed orbits of

lattices; these orbits arise from direct sums of totally real number fields and their full

rank additive subgroups [15, Proposition 5.7].

Let μ be the common value of μ1 = · · · = μd, and let D be the closed Euclidean

unit ball in R� centered at the origin. Then, ao ∩ μD contains d linearly independent

vectors. Let n ⊂ o be a nonzero ideal, and let B ⊂ R� be an orthotope of the form∏
σ∈� [−Bσ , Bσ ]. We claim that if B does not contain a lattice basis of n, then

vol(B) � (2dμ)d|�|1/2[o : n]. (32)

This is sufficient for the conclusion of Corollary 3, since μd = μ1 · · · μd �d |�|1/2. Let

us assume that (32) is false. Then, vol(aμ−1d−1B) > 2d|�|1/2[o : n]; hence, Theorem 1

guarantees the existence of a nonzero lattice point x ∈ n ∩ aμ−1d−1B. By our initial

remarks, xo∩xa−1μD contains d linearly independent vectors, so by no ⊂ n and BD ⊂ B it

follows that n∩d−1B also contains d linearly independent vectors. Finally, by the earlier

quoted observation of Mahler [10] (see also [6, Chapter 2, Section 10.2]), we conclude that

B contains a lattice basis of n.

Corollary 3 can also be connected to the work of Bhargava et al. [1] in multiple

ways. Let k be an arbitrary number field, and let λ1 � · · · � λd be the successive minima

of o embedded as a lattice in k ⊗Q R. Then, [1, Theorem 1.6] states that

λd 	d |�|1/d. (33)

We claim that (33) follows from Corollary 3, while a weaker version of Corollary 3

follows from (33). To justify the first claim, we set Bσ := 1
d+1λd for all σ ∈ � in (1).

Clearly, B contains no lattice basis of o; hence, vol(B) 	d |�| by Corollary 3, which is

equivalent to (33) by (2). To justify the second claim, we start from (33). Let n ⊂ o be a

nonzero ideal, and let B ⊂ k⊗QR be a convex body of the form (1) not containing a lattice

basis of n. As o ∩ λdD contains d linearly independent vectors, we can proceed as in the

previous paragraph but with a ∈ A (resp. μ) replaced by 1 ∈ k (resp. λd). We deduce the

following variant of (32):

vol(B) � (2dλd)d|�|1/2[o : n] 	d |�|3/2[o : n].

That is, (33) alone implies a version of Corollary 3 in which |�| is replaced by |�|3/2.
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