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We estimate, in a number field, the number of elements and the maximal number
of linearly independent elements, with prescribed bounds on their valuations. As a
by-product, we obtain new bounds for the successive minima of ideal lattices. Our

arguments combine group theory, ramification theory, and the geometry of numbers.

1 Introduction

It was a decisive moment in the history of mathematics when Minkowski [12] realized
that certain geometric ideas are very powerful in tackling difficult arithmetic problems.
In particular, Minkowski [12] proved that in a number field k of degree d > 1 and
discriminant A, every ideal class can be represented by an integral ideal of norm less
than |A[Y/2. His proof relied on two ideas. First, the natural embedding k < k ®g R
allows one to regard the ring of integers o as a lattice in R? of covolume |A|'/2. Second,
a lattice in R? contains a nonzero lattice point in a convex body symmetric about the
origin, as long as the volume of the body exceeds 2¢ times the covolume of the lattice.
Here and later, a convex body means a convex, compact set with non-empty interior

in the ambient Euclidean space. The second idea was extended by Blichfeldt [2] and
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2 M. Fraczyk et al.

van der Corput [4] to exhibit more lattice points in larger convex bodies. It leads to the
following estimate that we state partly for motivation, partly as a technical ingredient
for our investigations. For a modern exposition of the quoted results, see [6, Chapter 2,
Sections 5.1 and 7.2].

Theorem 1 (Minkowski [12], Blichfeldt [2], van der Corput [4]). Let n C o be a nonzero
ideal, and let B C k ® R be a convex body symmetric about the origin. Then,

vol(B)

nNBl > ————.
OBl 2 Sa A7200 - al

Blichfeldt [2] also established an upper bound of similar quality in the case when

n N B contains d linearly independent vectors.

Theorem 2 (Blichfeldt [2]). Letn C o be a nonzero ideal, and let B C k Qg R be a convex
body symmetric about the origin. Assume that n N B contains d linearly independent
vectors. Then,

(d + 1)! vol(B)

nNB| <
| | |A[1/2[0 : n]

In fact, Blichfeldt proved a more general result, namely Theorem 7 in Section 3.
The original source [2] is an account of an AMS Sectional Meeting held in 1920 (written
by B. A. Bernstein), so it does not contain any proof. What is worse, we could only find
sketches of the proof in the literature. Hence, we include a detailed proof in Section 3,
without claiming any originality.

Our principal goal in this paper is to provide an upper bound for |n N B| in
the complementary case when n N 5 does not contain d linearly independent vectors.
More precisely, with certain arithmetic applications in mind, we restrict ourselves to
the special convex bodies considered by Minkowski [12] in his seminal work. They
are the archimedean analogues of ideal lattices, and they are defined as follows. As
before, let k be a number field of degree d > 1. Let ¥ := Hom(k, Q), and let K be the
compositum of the fields o (k) for o € X. Then, K/Q is a finite Galois extension whose
Galois group G := Gal(K/Q) acts transitively and faithfully on X. In this way, G is a
transitive permutation group of degree d. Fixing an embedding Q < C, we can think of
the elements of ¥ as the embeddings o : k — C, and we can identify k ®y R with the set
of column vectors (z,) € C* satisfying z- = z, for all 0 € X. See [13, Chapter I, Section

5] for more details. Let (B,,) be a collection of positive numbers such that B; = B, for all

020z AInr 60 uo Jasn Areiqi AlsiaAiun uojeoulld AQ yH2658S/9Z L BRUI/UIWI/EE0L "0 | /I0p/0B11Sqe-8]01e/UlWwl/Wwod  dno-olwspese//:sdpy woJj papeojumoq



Counting Bounded Elements of a Number Field 3

o € . We shall focus on convex bodies of the form
B:={(z,) e C*:z; =2, and |z,| < B, forallo € X}, (1)
and we note for later reference that

vol(B) =<4 [] B, (2)

oeX

Here and later, the symbols <, >4, <4 have their usual meaning in analytic number
theory: X «<; Y (resp. Y >, X) means that |X| < CY holds for an absolute constant C > 0
depending only on d, while X <, Y abbreviates X «<; ¥ <4 X.

Theorem 3. Letn C o be a nonzero ideal, and let B C k ®q R be a convex body of the
form (1). Let m be the maximal number of linearly independent lattice vectors contained
innNB.If m < d, then

. 1 m
[nN B <4 |A|m1n(2'2d—2m)‘ (3)

Further, if m < d and G is 2-homogeneous (i.e., it acts transitively on the 2-element
subsets of ), then

InNB| <4 |A|72, (4)

Theorems 2 and 3 yield a practical estimate for the number of elements of k that

are bounded in every archimedean and non-archimedean valuation of k.

Corollary 1. Let n C o be a nonzero ideal, and let B C k ®y R be a convex body of the

form (1). Then,
vol(B)

A 20 al’ (5)

InNB| <q |AY* +
By combining Theorems 1 and 3, we see that if the volume of our convex body is
sufficiently large compared with the covolume of our ideal lattice, then the intersection

contains several linearly independent lattice vectors.

Corollary 2. Letn C o be a nonzero ideal, and let B C k ®q R be a convex body of the
form (1). Let m be the maximal number of linearly independent lattice vectors contained
innNB.If m < d, then

vol(B) < 4 |A|min(1'2dii2’")[o s, 6)
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4 M. Fraczyk et al.

Further, if m < d and G is 2-homogeneous, then

d—1+

vol(B) <4 |A| 7d-2 [o : n). (7)

If m = 0, then (3) and (4) are trivial, while (6) and (7) boil down to the Minkowski
bound vol(B) < 4 |A|Y2[o : n]. If m = 1 or m = d — 1, then (3) and (4) (resp. (6) and (7))
are identical. For 2 < m < d — 2, the bound (4) is stronger than (3) (resp. (7) is stronger
than (6)), but its scope is restricted by the assumption that G is 2-homogeneous. The
list of finite 2-homogeneous groups is known by the work of many people, in particular
by the classification of finite simple groups. For further details and references, see [8,
Proposition 3.1], [3, Theorem 5.3], [7, p. 198]. We emphasize that Corollaries 1 and 2 are

arithmetic in nature, that is, they would break down for general lattices in k ®q R.

Corollary 3. Let n C o be a nonzero ideal, and let B C k ®y R be a convex body of the
form (1). If B does not contain a lattice basis of n, then vol(B) <«  |Allo : n].

Interestingly, when k is totally real, the conclusion of Corollary 3 also follows
from a celebrated result of McMullen [11, Theorem 4.1] proved by topological arguments.
In another direction, when the radii B, are equal, the conclusion of Corollary 3 says that
the last successive minimum of n is <4 |A|'/%[o : n]'/%. Here and later, we understand
successive minima with respect to the closed Euclidean ball centered at the origin. For
n = o, this bound was deduced earlier by Bhargava et al. [1, Theorem 1.6] with a more
direct approach. We will return to these connections in Section 4. In fact, we can control,

to some extent, all successive minima of ideal lattices.

Theorem 4. Let A; < --- < Ay  be the successive minima of a nonzero ideal n C o
embedded as a lattice in k ®q R. Then, forallm € {1,...,d — 1}, we have

m_ 1 m
M A Dy A E ) (8)

in(l1-m m
Ami1rmiz Ara Ld |A|mm(2 d)[o R 9

If G is 2-homogeneous, then the exponents of |A| in (8) and (9) can be improved to %

and (d—m)(d+m-1)

a1 respectively.

The example k = Q(p!/%) mentioned by Bhargava et al. below their [1, Theorem
1.6] shows that the 2-homogeneous case of Theorem 4 cannot be improved in general.
Indeed, if p > d > 1 are prime numbers and n = o, then G = Aff(F;) = (Z/dZ) x
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Counting Bounded Elements of a Number Field 5

(z/dZ)* is sharply 2-transitive, while 1, <, |A|d(n57_—11> holds for all m € {1,...,d}. The
last relation follows from the straightforward upper bound 1, <, me_l combined with
A| =<4 p%-1 and Minkowski’s result (12) quoted below. The same example also shows
that Corollary 3 cannot be improved in general. In contrast, the sharpness of (3)-(4) and
(8)—(9) is less clear to us.

Theorem 4 readily yields two-sided bounds for individual successive minima,
extending the result of Bhargava et al. [1, Theorem 1.6] mentioned in the previous

paragraph.

Corollary 4. Let A; < --- < XAy be the successive minima of a nonzero ideal n C o
embedded as a lattice in k ®q R. Then, for all m € {1,...,d}, we have

L

1_ in(o Ll 1
max(o'd 2’”)[o :n)d Lg I Lg Amln(zd‘2m+2'd)[o :nla in general; (10)

A
m—1 1 d+m—2 1 . .
A2d@T o :n]d K4 Ay, Kg A24@TD [0 : n]d if G is 2-homogeneous. (11)

To form an idea of the accuracy of (11), it is instructive to observe that the two
sides differ by a factor of Aﬁ. Moreover, the product of the left-hand side over m ¢
{1,...,d} equals Ai[o : n], while the same for the right-hand side equals A%[o : n]. This
should be compared with the product of the A,,s, which by Minkowski's theorem [6, p.
124, Theorem 3] is

Apothg xd|A|%[o:n]. (12)

The proof of Theorem 3 combines group theory, ramification theory, and the
geometry of numbers. The main idea is to obtain an upper bound for [nN B| by projecting
nN B onto well-chosen “coordinate subspaces” RS of C* for S ¢ %, and then compare it
with the lower bound of Theorem 1. We make sure that the projections of nN B generate
lattices in their ambient spaces RS, and then we succeed by bounding from below the
product of covolumes of those lattices. The proof of Theorem 4 is similar, but it focuses
on successive minima in place of lattice point counts. In order to formulate the key
arithmetic ingredient of both proofs, Theorem 5 below, we need to introduce further
notation.

For a nonzero prime ideal p C o dividing a rational prime p, let e, (resp. fp)
denote the ramification index (resp. inertia degree) of the local field extension k,/Q,.
By [13, Chapter III, Section 2], the exponent of p in the different ideal of o equals e, — 1

when p { e, and it lies between e, and e, — 1 + v, (e,) when p | e, (which can only occur

p
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6 M. Fraczyk et al.

for p < d). Therefore, the tame discriminant A.,,,., defined as
Atame ‘= de_fp with fp = prr (13)
p plp

divides the discriminant A, and it satisfies

IA] < 2%° A (14)

tame*

The last bound is rather crude, and it can be verified as follows. The ratio A/A .

divides the norm of the ideal [],<4 [1,, p"**’, which is a divisor of the principal ideal
[Ip<a [1pp(ey)- Therefore,

A|A| < H He‘pi < H 242 pper o 9d°

tame  p<d plp p<d
Theorem 5. Letn C o be a nonzero ideal, and let m € {1,...,d}. For any m-subsets
XCnandScCZ,
|G| max (0,22 —1 m
[T det*c@)isy is divisibleby  Ajume 0% )[o ]G5 (15)

geG

m(m—1)

If G is 2-homogeneous, then the exponent of A can be improved to |G| AT

tame
Note that d divides |G|, and also (‘21) divides G when G is 2-homogeneous, so the

exponents of A and [o : n] are nonnegative integers. The next theorem is very similar

tame
to the 2-homogeneous case of Theorem 5. We do not need it for the proof of Theorem 3,

but we present it for its intrinsic beauty and interest.

Theorem 6. Let n C o be a nonzero ideal, and let m € {2,...,d}. For any m-subset
X Chn,
2 0ES o it (o 2) 2(4-1
H det®(0(x))57cx is divisible by Ay c [0 n]*im-1), (16)
scx
IS|=m

The determinants in (15) and (16) are only defined up to a factor of +1 because
we have not specified any ordering on X and S. However, their squares are well defined.
If m = d, then Theorems 5 and 6 follow from the fact that either det(c (X))ggg is zero or
it equals the covolume of a full rank sublattice of n. Another relatively simple special
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Counting Bounded Elements of a Number Field 7

case is when n = 0 and X = {1,x,...,x™ !} for some x € o. Then, Theorem 6 and the
2-homogeneous case of Theorem 5 are consequences of the Vandermonde determinant
formula and the definition of the (usual) discriminant A of k. Not surprisingly, we shall
only use the divisibility conclusion when the participating determinants are nonzero.
On the other hand, it seems to be an interesting and difficult problem to characterize
the vanishing of these determinants. One result in this direction is Chebotarev’s theorem
from 1926: if p is a prime, k is the p-th cyclotomic field, and the elements of X are p-
th roots of unity, then none of these determinants vanish (see [16] for a proof and for
useful references). Another result is the following simple observation: if k contains a
proper subfield k' with m = [k : k], and the m-subset X C k is linearly dependent over
k', then there is an m-subset S C X such that all embeddings o € S coincide on ¥/,

whence det(o (X))j,éi, = 0. Motivated by this example, we ask the following question:

Question. Assume that X C k and S C X satisfy |X| = |S| and det(a(x))gggf, = 0. Does
there exist a subfield k' of k such that X is linearly dependent over k’, and all embeddings

o € S coincide on k'?

If X is of size m and G is m-homogeneous (e.g., when G = S; or G = A,), then the

answer to this question is affirmative. Indeed, in this case, the vanishing of one m x m

g€eX

minor of det(o (x))7<¢

implies the vanishing of all m x m minors, which can happen if

and only if X is linearly dependent over Q.

2 Non-Archimedean Investigations

In this section, we prove Theorems 5 and 6. The two sides of (15) and (16) are rational
integers; hence, it suffices to show, for every rational prime p, that the exponent of p
is at least as large on the left-hand side as on the right-hand side (with the convention
that the p-exponent of zero is infinity).

We fix p and an embedding Q — (QTP, then we can think of the elements of ¥ as
the embeddings o : kK — Q,,. For each o € X, there is a unique prime ideal p | p and a
unique Q,-linear extension ¢ : k, < Q, of 0. Denoting by I, the set of o's corresponding
to a given p, the extension map o — ¢ is a bijection I, — Home(kp,Qp) with inverse
being the restriction map. In particular, I, is a Gal(Q,/Qp)-orbit on ¥ of cardinality
[k, : Qp] = e,f,. Let v, be the unique additive valuation on Q, extending the normalized
additive valuation on Qp, and let v, be the normalized additive valuation on kp. By

“normalized” we mean that Vp (Q;) = 7 and v, (k,f) = Z. Then, we have the important

020z AInr 60 uo Jasn Areiqi AlsiaAiun uojeoulld AQ yH2658S/9Z L BRUI/UIWI/EE0L "0 | /I0p/0B11Sqe-8]01e/UlWwl/Wwod  dno-olwspese//:sdpy woJj papeojumoq



8 M. Fraczyk et al.
identity

1 __
V(6 (x) = e—vp(x), o€ Home(kp,Qp), Xxe k;‘. (17)
p

See [13, Chapter II, Section 8] for more details. Let lp be the maximal unramified

subextension of k,,/Q,, then
[k, :l,1=e, and L, : Q1 =1,.

Identifying I, with Home(kp,(QTp) as above, we can break up I, into f, subsets I,; of

equal size e, according to how [, gets embedded into @. In the end, two elements of

p
T belong to the same subset I,,; if and only if they induce the same non-archimedean

valuation | - |, on k and their Q,-linear extensions agree on [,; we shall call two such

lp
elements of X inertially equivalent.

The proofs of Theorems 5 and 6 rely on the key observation that the p-adic
valuation of the participating determinants can be estimated in terms of the inertial

equivalence classes I ;.

Proposition 1. Letn C o be a nonzero ideal, and let m € {1,...,d}. For any m-subsets
XCnandScC %,

fo
1
v, (det2 (o (x));§§) >3 . > s, 1(2v,m) +5,,— 1), (18)
plp =1

where s, ; abbreviates |[SN1, |, and v, (n) stands for the exponent of p in n.

Proof. We recall that K is the compositum of the fields o (k) for 0 € X, and we write K
for the extension of Q, generated by K. We denote by d the degree [K : Qpl, and by o the
ring of integers of K. We shall think of 5™ as the set of column vectors of length m with
entries in o.

The m-set S C ¥ is partitioned into the s, ;-sets S, ; := SN I, ;. Accordingly, the
0€Sp
xeX

oeS

m x m matrix A := (0(x))7y

decomposes into the Spy X M blocks A, = (0(x))
Strictly speaking, these matrices are only defined up to a permutation of the rows and
the columns, but this ambiguity disappears once we choose an ordering of the rows and
the columns.

We shall assume that detA # 0, for otherwise (18) is trivial. The natural

isomorphism from &™ to [], [];5**' maps As™ into [], [];4,,6™; hence, it induces a
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Counting Bounded Elements of a Number Field 9
surjective homomorphism from 6™ /As™ onto [], [[;(8°!/A, ;6™). In particular,
Fo
~m . axm ~Sy1 . ~m
Vp([o tAs™]) > ZZVP([O Ay ).
plp =1

The left-hand side equals d- Vp(detA), hence (18) will follow if we can show that

B ~ d Sp,l -1
vy ([oSp,l :Ap,lom]) > asp!l (Vp (n) + 5 ) . (19)

Let us fix p | p and ! € {1,...,f,}. We shall assume that S,; is not empty, for

otherwise (19) is trivial. We write

ti=5,, and B:=A,, (20)
to simplify notation, and we list the elements of S ; as {oy,...,0,}. By (17), we have
- 1 . x
Vp(0;(%) = —v, (%), 1efl,..., t}, X € kp. (21)
€p
We also list the elements of X as {x;,...,X,,} in such a way that

V() S v (xp) <o S V(X))

In particular, Vp is constant on each column of

o1(x1) - o1(xy)

o,(xy) - 04(Xy,)

and it is non-decreasing from left to right. As the o;s are inertially equivalent, their Q,-
linear extensions 6; coincide on l,, and we can identify [, with its image in K via any
of these embeddings. A nice feature resulting from this identification is that the &;s are
lp -linear, not just Qp—linear.

We are ready to prove (19). We shall use the fact that the left-hand side of (19),
which is [3° : B6™] in our new notation (20), remains unchanged if we multiply B by
elements of GL,,(0) on the right and by elements of GL;(5) on the left. Writing o; (resp.
okp) for the ring of integers of [, (resp. k,), we shall also utilize the fact that the group
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of units oi contains a full set of representatives for the nonzero residue classes modulo
pog, in Ok, - This is because the residue fields of lp and kp have equal cardinality p/r.
First, we perform invertible elementary column operations over o, in order to

increase the additive valuations of the columns of B. Specifically, we run the following

algorithm:
(1) setj=1;
(2) foreachj e {j+1,...,m},if Vp(Xj/) = Vp(Xj), then choose w € ol’; such that
v, (X — wx;) > v, (X)) and replace X by Xp — WXj;
(3) reorder (Xj+1, ..., X,,) in such a way that v, is non-decreasing on the new

sequence;
(4) replacejbyj+1;
(5) if j < m, then go to step (2); otherwise, finish.

We end up with a matrix
or(yy) - 01(Vm)
C= : - :
o (y)) o oY)
withy,,.... ¥, € Ok, such that

Vp(n) < Vp(Yl) <---< Vp(Ym)-

In particular, v, (¥)) = v,(n) +j—1forallje{l,..., m}.
Second, we perform invertible elementary row operations over o to transform C
into
Z11 Z12 0 Zie o Zim
D— 0 zy, Z%,t ZZ.,m
0 0 z, Zim

with z; ; € 0 such that (cf. (21))

1

Vp(ZL,J) 2 e

(Vp(n) +]_1)l lg]
p

In particular, D&"™ is a subgroup of #i; x --- x @, where

ﬁi::[zeﬁ:vp(z)>é(vp(n)+i—l)], ie{l,...,t.
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Counting Bounded Elements of a Number Field 11

This implies, using that e, divides the ramification degree of the local field extension
K/Qp,

t

Vp( : D5™]) ZV ;e— vy +1i— 1). (22)

SLI

=

The inequalities (22) and (19) are equivalent because their left-hand sides are
equal and their right-hand sides are also equal (cf. (20)). The proof of Proposition 1 is

complete. |

Proof of Theorem 5. For any g € G, it follows from Proposition 1 that

v, (det? (0 ()7 5F°) > Z ZZlgs(a) 2, + D 15007

plp p I=1o0¢ly,; o'ely \{o}

We average both sides over g € G, utilizing that G acts transitively and faithfully on X.

For any o € X, we obtain readily that

1

- I | _m
ﬁz 1,5(0) = |G|le(g lo) = =7 (23)

geG geG
As a consequence, for any distinct 0,0’ € X, we see that

2
= 2195( Ngs©) > 1 Z(lgs(a)+1gs(a’)—1)=7m—1. (24)

geG geG

This bound is trivial when m < d/2, in which case we shall only use that the left-hand
side is nonnegative. Combining these inequalities and noting that |I, ;| = e,, we infer

that

pr

1 oegsS 2m 2m
G va(detz(a(x))xe)g( ) >>f, (Vp(n)7 + (e, — 1) max (0, - 1)) .

geG plp

Now from [o : p] = p/v it is clear that

2 fovp @ = vy (lo: i),

plp
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12 M. Fraczyk et al.

while (13) implies that

D foley =) =d—f,, = v, (Arame)-

plp

Therefore, the last inequality can be rewritten as

1 e 2 2
Gl z (detz(o(X))Xe)g(S) > Fmvp([o : n]) + max (O, Tm — 1) V(A tame)-

geG

The rational prime p was arbitrary here, so we have proved (15).

If G is 2-homogeneous, then we can improve (24) to

_ ('Sl) m(m — 1)
G 3 150145007 = el Z 15 ' o)1s(g o)) = (z—) SRR

geG geG

As a result, we can replace max (0, %— 1) by T m(m 1) in the subsequent argument, and

hence also in (15). The proof of Theorem 5 is complete. |

Proof of Theorem 6. For any m-subset S C X, it follows from Proposition 1 that

vp(detz(a(x))gg) z 2215(0) 2, m+ > 1)

plp € I=1 o€l o'ely1\{o}

We sum both sides over all m-subsets S C X, using that

lc(o0) = d-1 foranyo € %;
S m-—1

Scx
|S|=m

, d-—2 .. ,
Z Ig(o)1lg(c) = m—2 for any distinct 0,0’ € Z.

Scx
|S|=m

From here, we proceed as in the proof of Theorem 5 and conclude

d-1 d-2
| det 2(0(x)35 /2( )V ([o:n])+< )V (Aiame)-

The rational prime p was arbitrary here, so the proof of Theorem 6 is complete. |
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Counting Bounded Elements of a Number Field 13
3 Archimedean Investigations

In this section, we prove Theorems 3-4 and Corollaries 1-4. We shall combine
Theorems 1 and 5 with the following lesser known result of Blichfeldt [2], of which

Theorem 2 is a special case.

Theorem 7 (Blichfeldt [2]). Let A C R™ be a lattice, and let C C R™ be a convex body

containing the origin. If A NC contains m linearly independent lattice vectors, then

anc<m YO L < mg 1 O
det(A)

' Jet) (25)

Proof. The second inequality is clear by vol(C) > det(A)/m!; hence, we focus on the
first inequality. In this proof, a polytope (resp. simplex) will always mean a convex
lattice polytope (resp. simplex) with vertices lying in A. For other terminology, we
follow the book [5]. By the initial assumptions on C, the convex hull of A N C is an
m-dimensional polytope, which can be decomposed into m-simplices according to [5,
Proposition 2.2.4]. The corresponding triangulation of A N C can be refined to a full
triangulation by decomposing recursively the participating m-simplices into smaller
m-simplices. Alternatively, one can obtain a full triangulation of A N C by ordering its
elements in such a way that no point belongs to the convex hull of previous points,
and then taking the placing/pushing triangulation for that ordering. We fix a full
triangulation of A N C, and we denote by 7 the set of m-simplices that participate in
it. We define a graph on 7 by declaring that two elements of 7 are connected by an edge
if and only if their intersection is an (m — 1)-simplex. One can show that this graph is

connected, which forces
T = |ANC| —m.

For details, see [5, Theorem 2.6.1], [14, Theorem 3.2] and their proofs. On the other hand,
as C is convex and each element of 7 has volume at least det(A)/m!, we also have

det(A)

vol(C) > vol(UT) >
m!

IT1.

Combining these two bounds, we get the first inequality of (25). As remarked earlier, the

second inequality of (25) is straightforward, so the proof of Theorem 7 is complete. W

Proof of Theorem 3. If m = O, then (3) and (4) are trivial, so we shall assume that
0 < m < d. We write V for the R-span of n N 3, so that V is an m-dimensional R-

subspace of k ®g R, and n N V is an m-dimensional lattice in V. We fix a basis X C n
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14 M. Fraczyk et al.

of n NV, and we think of its elements as the columns of the d x m complex matrix
M:= (o (X));g. Strictly speaking, M is only defined up to a permutation of the rows and
the columns, but this ambiguity disappears once we choose an ordering of ¥ and X. By
construction, the columns of M are linearly independent over R, and we claim that they
are also linearly independent over C. Indeed, if ¢ : X — C satisfies >,y c(x)o(x) =0
for all o € X, then complex conjugating the equations and switching from o to &, we get
that > » c(x)o(x) = 0 for all o € ¥. As a result, the real and imaginary parts of c(x)
must vanish for all x € X, which proves the claim. Hence, rank(M) = m, and there exists
an m-subset S C ¥ such that det(c (X));S; # 0. We fix S C ¥ along with X C n.

For any Galois automorphism g € G, the image of det(o (X));E)S( under g equals
det(o (X))ZS}S. Therefore, these m x m minors of M are nonzero, and by (14) and Theorem

5 they satisfy

G| max(O,%—%)

[T |dett 3| 4 141 [o: n]€1E, (26)

geG

Moreover, the exponent of |A| can be improved to |G|%%‘:—B when G is 2-homogeneous.

Fixing g € G for a moment, the multilinearity of the determinant shows that

there is a choice of 6 € {Re(c),Im(o)} for each o € gS such that

xeX xeX

det(o (x))°595 ‘ <om ‘det(&(x))aegs . 27)

The left-hand side is positive; hence, the right-hand side is also positive. Let f : C* —
RYS be the product of the R-linear surjections f, : C — R given by

Re(z), o €gS and 6 = Re(o);
f5(2) := {Im(z), o €gS and 6 =Im(o);
0, o ¢gs.

Tautologically, 6 = f, o ¢ holds for all ¢ € gS; hence, f restricts to an R-linear

oegsS
xeX |*

In addition, C := f(B) is an o-symmetric convex body in R95, which lies in the orthotope

isomorphism V S R9S, and A := f(nN V) is alattice in R95 of covolume ‘det(& (%))

HoegS[_Bd'Bﬂ] by (1). Clearly, A NC contains f(n N B), which in turn contains m linearly
independent lattice vectors. Now, we combine these observations with Theorem 7 and
(27) to infer that

Haegs Bo

det(o (x))595|

N Bl <|ANC| <4™(m + 1)!
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Counting Bounded Elements of a Number Field 15

We keep the two sides of the last inequality and take their geometric mean over
g € G. Using also (2), (23), and (26), we obtain

(28)

N Bl K4

Finally, we invoke Theorem 1 to estimate from above the right-hand side in terms of the
left-hand side:

m in(m 1_m
OBl < lnnBIE A i) (29)

This bound is equivalent to (3) in the light of 0 < m < d. If G is 2-homogeneous, then

the exponent of |A| can be improved to % in (28), and to g"d(fd__"f)) in (29), so that the

resulting bound is equivalent to (4). The proof of Theorem 3 is complete. |

Proof of Corollary 1. If nnN B contains d linearly independent vectors, then (5) follows
from Theorem 2. If nN B does not contain d linearly independent vectors, then (5) follows

from Theorem 3. The proof of Corollary 1 is complete. |

Proof of Corollary 2. In the light of Theorem 1, the bound (6) follows from (3), while
the bound (7) follows from (4). The proof of Corollary 2 is complete. ]

Proof of Corollary 3. Assume that B does not contain a lattice basis of n. Then, by
an observation of Mahler [10] (see also [6, Chapter 2, Section 10.2]), the scaled body él’)’
does not contain d linearly independent lattice vectors from n. Hence, by Corollary 2, it
follows that

vol(B) <4 vol(3B) <4 |Allo : n].

The proof of Corollary 3 is complete. |

Proof of Theorem 4. We borrow several ideas from the proof of Theorem 3 without

further mention. Let x;,...,X,, € n be linearly independent lattice vectors whose

m
Euclidean norms in k ®q R are the successive minima 4, ..., A,,, respectively. Let X be
the m-set {x;,...,x,,} Cn, and let V be the R-span of X. Then, V is an m-dimensional R-
subspace of k ®g R, and n N V is an m-dimensional lattice in V of successive minima
A < -+ < Ay In particular, the covolume of n NV is x; A;---4,. We fix an m-

subset S C ¥ such that det(o(x))gg)S( # 0. For any g € G, there exists an orthogonal

projection f of k ®; R onto an m-subspace such that the covolume of f(nN V) is at least
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27" | det(o (X))ZS}S . Since the covolume of f(n N V) cannot exceed the covolume of nN V,

we infer that

i h g |dete )|, geG.

Taking the geometric mean of both sides over g € G, and using (26), we obtain (8). Taking
the reciprocal of (8), and then multiplying both sides by (12), we arrive at (9). If G is
2-homogeneous, then the exponent of |A| in (26) can be improved to |G|%, and our

argument yields the following variants of (8) and (9):

m(m-1) m
Ao hy >g |A|2d@ Do i n]d; (30)
(d—m)(d+m-1) 1—-m
Ama1Aimanhg Lg Al 24@D Jo:n] " d. (31)
The proof of Theorem 4 is complete. |

Proof of Corollary 4. We observe that (8) and (30) are also valid for m = d, while (9)
and (31) are also valid for m = 0. Indeed, these special cases amount to (12). Now, taking
the m-th root of (8) and (30) readily yields the lower bound of (10) and (11). Similarly,
taking the (d — m)-th root of (9) and (31) readily yields the upper bound of (10) and (11)
with m + 1 in place of m. The proof of Corollary 4 is complete. |

4 Connections to the Work of McMullen [11] and Bhargava et al. [1]

If the number field k is totally real, then we can identify the R-algebra k ®g R with
the set of column vectors (z,) € R¥. The multiplicative group (R*)* acts on R* by

multiplication; hence, so does its subgroup

A:=1(@,)€(0,00%: []a, = 1].
oEX
Let us consider the induced action of A on the space of lattices of R*. Geometrically,
the space of lattices can be described as GL(R*)/GL(Z¥), and the induced action of A is
given by left multiplication by positive diagonal matrices of determinant 1. In particular,
this action is continuous and preserves the covolume. The group of totally positive units
oi is cocompact in A (cf. Dirichlet’s unit theorem) and stabilizes the lattice o; hence, the
orbit Ao is compact. By a striking result of McMullen [11, Theorem 4.1], the compactness
of Ao implies the existence of a € A such that the successive minima of the lattice ao
are equal: u; = --- = u,y. As we shall explain in the next paragraph, this fact gives rise

to a short alternative proof of Corollary 3 (when k is totally real). We note in passing
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that Levin et al. [9, Theorem 1.1] have extended McMullen's theorem to closed orbits of
lattices; these orbits arise from direct sums of totally real number fields and their full
rank additive subgroups [15, Proposition 5.7].

Let 1 be the common value of u; = --- = ug4, and let D be the closed Euclidean
unit ball in R* centered at the origin. Then, ao N uD contains d linearly independent
vectors. Let n C o be a nonzero ideal, and let B ¢ R* be an orthotope of the form

[1I,ex[—B, . B,l. We claim that if B does not contain a lattice basis of n, then
vol(B) < (2dw)?|A1Y?[o : nl. (32)

This is sufficient for the conclusion of Corollary 3, since u% = u; ---ug =<4 |AIY2. Let
us assume that (32) is false. Then, vol(au=1d=1B) > 2%¢|A|*/2[o : n]; hence, Theorem 1
guarantees the existence of a nonzero lattice point x € n N au~'d~!B. By our initial
remarks, xoNxa~! D contains d linearly independent vectors, so by no ¢ nand BD C Bit
follows that nNd~!3 also contains d linearly independent vectors. Finally, by the earlier
quoted observation of Mahler [10] (see also [6, Chapter 2, Section 10.2]), we conclude that
BB contains a lattice basis of n.

Corollary 3 can also be connected to the work of Bhargava et al. [1] in multiple
ways. Let k be an arbitrary number field, and let ; < --- < A4 be the successive minima
of 0 embedded as a lattice in k ®g R. Then, [1, Theorem 1.6] states that

hg Lgq AV, (33)

We claim that (33) follows from Corollary 3, while a weaker version of Corollary 3
follows from (33). To justify the first claim, we set B, := d+r1)‘d for all ¢ € ¥ in (1).
Clearly, B contains no lattice basis of o; hence, vol(B) «; |A| by Corollary 3, which is
equivalent to (33) by (2). To justify the second claim, we start from (33). Let n C 0 be a
nonzero ideal, and let B C k®gR be a convex body of the form (1) not containing a lattice
basis of n. As 0 N A;D contains d linearly independent vectors, we can proceed as in the
previous paragraph but with a € A (resp. u) replaced by 1 € k (resp. A;). We deduce the

following variant of (32):
vol(B) < (2dr )% A1M? o : nl <4 |A1F %o : nl.

That is, (33) alone implies a version of Corollary 3 in which |A| is replaced by |A|%/2.

Acknowledgments

We are grateful to the referees for their careful reading and valuable comments. We also thank
Péter P4l Palfy and Gergely Zabradi for helpful discussions.

020z AInr 60 uo Jasn Areiqi AlsiaAiun uojeoulld AQ yH2658S/9Z L BRUI/UIWI/EE0L "0 | /I0p/0B11Sqe-8]01e/UlWwl/Wwod  dno-olwspese//:sdpy woJj papeojumoq



18 M. Fraczyk et al.

Funding

This research was supported by European Research Council grant CoG 648017 (M.F. & G.H.),
the MTA Rényi Intézet Lendiilet Automorphic Research Group (G.H. & P.M.), National Research,
Development and Innovation Office grant K 119528 (G.H. & P.M.), and the Premium Postdoctoral
Fellowship of the Hungarian Academy of Sciences (P.M.)

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]
[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Bhargava, M., A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman, and Y. Zhao. “Bounds on
2-torsion in class groups of number fields and integral points on elliptic curves.” J. Amer.
Math. Soc. To appear, arXiv:1701.02458.

Blichfeldt, H. F. “Notes on geometry of numbers. The October meeting of the San Francisco
section.” Bull. Amer. Math. Soc. 27 (1921): 149-53.

Cameron, P. J. “Finite permutation groups and finite simple groups.” Bull. London Math. Soc.
13 (1981): 1-22.

van der Corput, J. G. “Verallgemeinerung einer Mordellschen Beweismethode in der Geome-
trie der Zahlen.” Acta Arith. 1 (1935): 62-6. Zweite Mitteilung, ibid. 2 (1936): 145-6.

De Loera, J. A., J. Rambau, and F. Santos. Triangulations: Structures for Algorithms and
Applications. Algorithms and Computation in Mathematics, Vol. 25. Berlin: Springer, 2010.
Gruber, P. M. and C. G. Lekkerkerker. Geometry of Numbers. North-Holland Mathematical
Library, Vol. 37, 2nd ed. Amsterdam: North-Holland Publishing Co., 1987.

Huber, M. “The classification of flag-transitive Steiner 3-designs.” Adv. Geom. 5 (2005):
195-221.

Kantor, W. M. “Automorphism groups of designs.” Math. Z. 109 (1969): 246-52.

Levin, M., U. Shapira, and B. Weiss. “Closed orbits for the diagonal group and well-rounded
lattices.” Groups Geom. Dyn. 10 (2016): 1211-25.

Mabhler, K. “A theorem on inhomogeneous diophantine inequalities.” Proc. Kon. Ned. Akad.
Wet. 41 (1938): 634-7.

McMullen, C. T. “Minkowski’s conjecture, well-rounded lattices and topological dimension.”
J. Amer. Math. Soc. 18 (2005): 711-34.

Minkowski, H. “Uber die positiven quadratischen Formen und iiber kettenbruchdhnliche
Algorithmen.” J. Reine Angew. Math. 107 (1891): 278-97.

Neukirch, J. Algebraische Zahlentheorie. Berlin: Springer, 1992.

Rothschild, B. L. and E. G. Straus. “On triangulations of the convex hull of n points.”
Combinatorica 5 (1985): 167-79.

Shapira, U. and B. Weiss. “On the Mordell-Gruber spectrum.” Int. Math. Res. Not. IMRN
2015, no. 14 (2015): 5518-59.

Tao, T. “An uncertainty principle for cyclic groups of prime order.” Math. Res. Lett. 12 (2005):
121-7.

020z AInr 60 uo Jasn Areiqi AlsiaAiun uojeoulld AQ yH2658S/9Z L BRUI/UIWI/EE0L "0 | /I0p/0B11Sqe-8]01e/UlWwl/Wwod  dno-olwspese//:sdpy woJj papeojumoq



	Counting Bounded Elements of a Number Field
	1 Introduction
	2 Non-Archimedean Investigations
	3 Archimedean Investigations
	4 Connections to the Work of McMullen [11] and Bhargava et al. [1]


