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1. Introduction and main results

The purpose of this work is to establish stability estimates for the Bakry-Emery

theorem, which states that the sharp constant for various functional inequalities for

uniformly log-concave measures must be better than the sharp constant for the standard

* Corresponding author.

E-mail addresses: courtade@berkeley.edu (T.A. Courtade), max.fathi@math.univ-toulouse.fr

(M. Fathi).

https://doi.org/10.1016/j.jfa.2020.108523

0022-1236/© 2020 Elsevier Inc. All rights reserved.



2 T.A. Courtade, M. Fathi / Journal of Functional Analysis 279 (2020) 108523

Gaussian measure. We shall primarily focus on two inequalities: the Poincaré inequality
and the logarithmic Sobolev inequality. Our main results for these respective inequalities
are presented in the following two subsections. General remarks and an overview of the
proof strategy follow, and the section is closed with a discussion of related work.

1.1. Poincaré inequality

A probability measure on R™ is said to satisfy a Poincaré inequality with constant C
if for any smooth test function f, its variance satisfies the bound

Var,(7) <€ [ V1P,

The smallest possible constant in this inequality is called the Poincaré constant of u,
which we shall denote by Cp(u). Such inequalities play an important role in several
areas of analysis, probability and statistics, such as concentration of measure, rates of
convergence for stochastic dynamics and analysis of PDEs. This constant is also the
inverse of the spectral gap of the Fokker-Planck (or overdamped Langevin) dynamic
associated with u. A large class of probability measures satisfy such an inequality. In
particular, if a probability measure is more log-concave than the standard Gaussian
measure (that is, u = e~Vdx with HessV > 1,,), then Cp(p) < 1. This result can be
viewed as a consequence of the Brascamp-Lieb inequality [8] or the Bakry-Emery theory

The first main result of the present work establishes a strong form of quantitative
stability for the Poincaré constant for uniformly log-concave measures.

Theorem 1.1. Let 1 = e~ Vdx be a probability measure with HessV > 1,,, and assume
that there exists k functions u; € H'(u), k < n, such that for any i € {1,..,k} we have

/uidu =0; /u?d,u =1; /Vui -Vujdp =0, Vj#i
and
/\Vui\Qdu <l+e

for some € > 0. Then there is a subspace V C R™ with dim(V) = k, and a vector p € V
such that

Wi, Yp,y @ 1) < Cky/e

where 7,y is the standard Gaussian measure on V with barycenter p, and [i is the
marginal of p on V*, which enjoys the same convexity property as . In fact, we may
take C = Tm < 22.
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In the statement of the theorem, W; stands for the classical L' Kantorovitch-
Wasserstein distance [40], and H'(p) = {f; [ (|f]* +|Vf[*)dp < oo} is a weighted
Sobolev space with respect to p.

Theorem 1.1 improves similar quantitative bounds in a result of De Philippis and
Figalli [25]. For comparison, let us precisely state their result:

Theorem 1.2 ([25]). Under the same assumptions and notations as in Theorem 1.1, for
any 0 > 0 there exists C(n,0) such that

Wi(p, Yp,v & ) < C(n, )| 1oge|’1/4+9_

Beyond the significantly improved dependence on € in Theorem 1.1, the fact that our
bound depends on k and not on n is useful for high-dimensional situations, as following
applications demonstrate.

The proof of Theorem 1.2 in [25] is based on a stability version of Caffarelli’s contrac-
tion theorem [12], which is a regularity estimate on the nonlinear Monge-Ampére PDE.
To obtain the improved bound, we shall rely instead on Stein’s method [38,39], which is a
way of quantifying distances between probability measures using well-chosen integration
by parts formulae. See [36] for an introduction to the topic. The main reason why this
allows us to obtain better estimates is that this proof mostly remains at a linear level,
instead of relying on nonlinear tools as in [25]. The other main tool in the proof is that
the test functions in the assumptions of the theorem can be viewed as approximate min-
imizers in a variational problem, which then give rise to an approximate Euler-Lagrange
equation (up to remainder terms of order +/€), which takes the form of an integration by
parts formula. See Section 1.4 for an overview of the strategy of proof and Section 1.5
for a brief summary of related works.

Remark 1.1. When k = n, it is possible to improve the topology, and get an estimate of
order /€ in the stronger Wy distance, using results from [33,23]. We do not know how
to get a Wy estimate when k < n, due to regularity issues for the Poisson equation we
shall make use of in the proof.

Our main result has the following immediate corollary, which can be viewed as a
dimension-free improvement of the Bakry-Emery theorem.

Corollary 1.3. Let u = e~ Vdx be a probability measure with HessV > 1,,. There is a
direction o € S"~! and a vector p € Span(c) such that

Wip, vp,o ® B) < CV/Cp(p)~t = 1,

where v, » i the standard Gaussian measure on Span(o) with barycenter p, and [i is the
marginal of ;1 on Span(o)*.
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This corollary follows from Theorem 1.1 since there must be a function u satisfying
the assumptions of that theorem for any € > Cp(u)~! — 1, by definition of the Poincaré
constant. We make use here of the fact that the bound in Theorem 1.1 depends on k and
not n, unlike Theorem 1.2, to get a dimension-free estimate. A noteworthy consequence is
the following refinement of the classical dimension-free concentration bound Var,(F) <1
for 1-Lipschitz F'.

Corollary 1.4. Let the notation of Corollary 1.3 prevail. For any 1-Lipschitz F : R" —
R, there exists a direction o(F) € S"~! and a vector p(F) € Span(c) such that

Wi Yp,o ® ) < Cy/Var, (F)~t — 1.

At this point, one might wonder if the convexity assumption is necessary. It cannot
simply be dropped: if one looks at a general measure, its Poincaré constant may be equal
to one, for example by rescaling an arbitrary (but nice) measure to enforce this, in which
case there exists a function v satisfying the assumptions, and in general there will not
be a Gaussian factor. However, the convexity assumption will mainly be used to ensure

the functions u; are close to coordinate functions, in a suitable basis of R™, and hence

)

can be dropped if we assume extra knowledge on second moments. This leads to the
following result, with improved dependence on k:

Theorem 1.5. Assume Cp(p) < 1, and that there exists an orthonormal family
{e1,..,ex} C R™ such that Var,(x -e;) > (1 + €)%, for each i < k. Then there ex-
ists p € V = Span(ey, ..., ex) such that

_ ™

Wi vy ® i) < 5 Ve,
where the measures v,y and i are as defined in Theorem 1.1.
1.2. Logarithmic Sobolev inequality

According to the Bakry-Emery theorem [2], probability measures that are more log-
concave than the standard Gaussian measure satisfy the logarithmic Sobolev inequality
(LSI)

Ent,(f?) < QCLSI(M)/Wf\QdM; Crsi(p) <1, (1)

where Ent,(f?) := [ f?log f2du — ([ f?dp)log [ f?du, and Crsi(p) stands for the
sharpest possible constant for p in this inequality. This functional inequality, originally
introduced by Gross [31], is strictly stronger than the Poincaré inequality, and the con-
stant 1 is sharp for the standard Gaussian measure. Moreover, Carlen [13] showed that
for the Gaussian measure equality holds in the LSI if and only if the function f is of
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the form f(xz) = CeP'® for some vector p € R™. The LSI is used to derive Gaussian
concentration inequalities, as well as estimates on the rate of convergence to equilibrium
for certain stochastic processes. We refer to [3] for background on this inequality and its
applications.

We study stability for the bound on the logarithmic Sobolev constant. Our second
main result is the following estimate, showing that if Cprgi(u) is close to one, then p still
approximately splits off a Gaussian factor, provided the approximate optimizer satisfies
regularity assumptions.

Theorem 1.6. Consider a probability measure p = e~V dx on R"™ satisfying Hess V > I,,.
Letu: R" — R be a nonnegative function such thatlogu is \-Lipschitz and [ u?dp = 1.
There exists a constant C(X), depending only on X\, such that if

Ent,,(u?) > 2(1—6)/|Vu|2du 2)

for some € > 0, then there is a direction o € S"~! for which

Wit @ ) < OV ( / |w|2du> " 3)

where vy denotes the standard Gaussian measure on Span (o) with barycenterb=o [ x-
o du, and ji is the marginal of i on Span(c)*, which enjoys the same convexity property
as fi.

The constant C'(\) can, in principle, be made explicit. However, its expression would
be quite complicated and our arguments make no attempt to optimize it, so we do not
attempt to do so. Note that we should expect the bound to get worse if [|Vu|*du is
small, since if u was constant it would be a trivial minimizer of the LSI, no matter what
1 would be, so the bound must rule out that situation in some way. Up to the regularity
assumption that logw is Lipschitz, existence of such a function is a weaker assumption
than the assumption of Theorem 1.1, since Crsi(p) > Cp(p). This fact follows by an
argument due to Rothaus [37], where the LSI for y is linearized by considering a Taylor
expansion around constant functions. It is natural to ask whether a similar argument can
be used to deduce Theorem 1.1 from Theorem 1.6. This does not immediately appear
to be possible since, as noted above, any stability result for the LSI must rule out the
constant functions in some way, apparently precluding a linearization argument.

Like Theorem 1.1, it is possible to give a version of Theorem 1.6 with & orthogonal
minimizers, in the sense that p approximately splits off a k-dimensional factor, provided
J Viogu; - Vilegujdu = 0 for approximate minimizers (u;);<;. The constant C' would
depend on k, but not on the ambient dimension.

Remark 1.2. The assumption that [u?du = 1 is for made convenience, and comes with-
out loss of generality. Indeed, the LSI is homogenous of degree 2, so rescaling u — au



6 T.A. Courtade, M. Fathi / Journal of Functional Analysis 279 (2020) 108523

for & € R affects neither e-optimality in the sense of (2), nor the A-Lipschitz property
assumed of logu. Further, the assumed nonnegativity of u is also for convenience, and
comes without loss of generality since the log-Lipschitz assumption already enforces a
constant sign.

Remark 1.3. Theorem 1.6 can be strengthened to say that, for any t € R, the probability
measure proportional to u'y satisfies (3). The only changes are (i) the barycenter b
becomes b = Z o - [x - ouldu, where Z := [w'dy is a normalizing constant; and (ii)
the constant C will depend on both A\ and ¢t. See Remark 3.3 for details.

An important consequence of the LSI is the classical concentration inequality for
Lipschitz functions, established via Herbst’s argument: If p satisfies (1) and F is L-

Lipschitz, then
/equgexp(/qu+L2/2>. (4)

Equality is attained if p splits off a standard Gaussian factor in a direction o € S™~1,
in which case F(x) = Lo - x achieves equality. The following provides a quantitative
stability estimate for this result, provided p is uniformly log-concave.

Theorem 1.7. Let = e~ Vdx be a probability measure on R™ satisfying Hess V' > 1,,,
and fix any L > 0. There exists a constant C(L) such that if F : R — R satisfies

|Fllsp < L and
L2
/eFd,u > exp (/qu—l— 7(1 - 6/2))

for some € > 0, then there is a direction o € S"~' for which

Wl (/”'a Yo,0 ® ﬂ) S C(L) \/E7 (5)

where vp » and [i are the same as in Theorem 1.0.
1.3. Remarks

The reader will notice that the rate /e appears in all of the stability results. In the
case of the Poincaré inequality, this significantly improves the rate |log e|_1/ 449 in Theo-
rem 1.2, obtained by de Philippis and Figalli. While all of our results are dimension-free
(therefore having optimal dependence on dimension n), we do not know if the depen-
dence on /€ is optimal. Testing on Gaussian measures with variance 1 — € shows that
the optimal rate cannot be better than e, and [25, Remark 1.4] gives computations in
dimension one for a related problem, suggesting the sharp rate could potentially be € in
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the one-dimensional setting (i.e., n = 1). On the other hand, /¢ is the natural bound
in the scheme of our proof, in view of its variational nature: when a quantity to be op-
timized fluctuates from its minimal value by a quantity €, the natural fluctuation of the
distance to the minimizer is of order y/e. This heuristic, together with the fact that our
results are dimension-free, leaves open for speculation the possibility that the optimal
rate could indeed be no better than /e, uniformly in dimension. As it is difficult to
come up with tractable examples in high dimension that are non-Gaussian, this question
remains unsettled for now. That being said, we believe that the dimension-free aspect
of our results is of greatest importance, since it permits application in arbitrary dimen-
sion (e.g., the dimension-free Gaussian concentration results for Lipschitz functions in
Corollary 1.4 and Theorem 1.7).

1.4. Strategy of proof

The proofs of Theorems 1.1 and 1.6 are based on the same broad strategy, with three
main steps. To our knowledge, this way of implementing Stein’s method to study stability
in variational problems is new.

The first step can be stated in a broad abstract framework. Consider a general mini-
mization problem of the form

p—inf [ H(V

and assume the infimum over a class of probability measures P is known, say equal to
zero, and that we can describe the subset of measures pg and associated functions fj
such that [ H(fo,V fo)dpo = 0. Beyond the questions considered in this work, many rel-
evant inequalities from analysis, geometry and probability can be cast in this form, such
as sharp constants for Sobolev inequalities, variational problems in statistical physics,
eigenvalue problems, and so on.

The Euler-Lagrange equation for problems of this form is

/ ud H(fo, ¥ fo) + V- 0o H (fo, ¥ fo)dpp = 0 V.

So any minimization problem of this form gives rise to an integration by parts formula
for measures that achieve the infimum. Now, if we consider a measure ;7 and a function
f1 such that [ H(f1,V f1)du1 < e, the problems we consider in this paper can be stated
as trying to show that p; is close to the class of measures at which the infimum is
reached. At a heuristic level, and maybe under extra assumptions on f1, we expect an
approximate Euler-Lagrange equation of the form

/ WOH(f1,V 1) + V- B H (1, V f1)dps = o(1) x F(IIf]], lull)
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to hold for some class of test functions, and norms || - ||, || - ||’ adapted to the problem. It
is in this way that we obtain an approximate integration by parts identity, which is the
basic setup required for Stein’s method.

The second step is to show that fi; can be replaced up to small error by a function
fo such that f H(fo,Vfo)duo = 0 for some other probability measure. In the present
paper, this is done by considering a transport map 7' sending po onto w1, and proving
that f; o T approximately reaches the infimum when integrating with respect to pg. If
the minimization problem with fixed reference measure ug satisfies some quantitative
stability property, this would mean f; o T is close to some function fy for which the
infimum is reached. We then deduce that fj is close to f; using specific regularity prop-
erties of the transport map, using the convexity assumptions in our problem. In this
work, we specifically rely on the fact that the optimal transport map is a contraction,
due to Caffarelli. This part of the proof seems to be of less general scope than the other
two steps. As a tool, we use stability estimates for the sharp functional inequality with
fixed reference measure. The conclusion is that u; satisfies an approximate integration
by parts formula

/ WO H (fo, Y fo) + V- uH (fo, ¥ fo)dus = o(1) x F(||ull").

The third part of the proof is to compare p; to uo using Stein’s method [38,39] and
the fact that they both satisfy the same integration by parts formula, up to small error.
In our situation, pg is Gaussian in some direction and Stein’s method for such measures
has been well-explored. We expect this type of argument to also apply to non-Gaussian
situations, where Stein’s method has found some successes for other types of problems
[36].

1.5. Related work

Recently, Cheng and Zhou [22] proved a rigidity property for the Bakry-Emery theo-
rem: if such a probability measure has its Poincaré constant equal to one, then it must
be a product measure, with one of the factors being a Gaussian measure of unit variance.
This statement was extended to a more general class of metric spaces in [30]. See also
[32] for a weaker form of this rigidity in R™, and [21] for rigidity in a different class of
measures (and [23] for a corresponding stability estimate). Rigidity for the logarithmic
Sobolev inequality in the full geometric setting, also under the extra assumption that
the minimizer is globally lipschitz, was recently obtained in [35].

The convexity condition assumed in our results is a particular case of the Bakry-Emery
curvature-dimension condition, itself a generalization of Ricci curvature lower bounds.
Splitting theorems for manifolds satisfying a curvature bound and a geometric condition
have been the topic of some interest, going back to work of Cheeger and Gromoll [20,19].
More recently, rigidity and stability for a related (and stronger) isoperimetric inequality
has been established [16] under the stronger curvature-dimension condition with finite
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dimension, using completely different techniques. Stability for spectral estimates when
the dimension is finite were obtained in [17], using a Riemannian needle decomposition (a
technique for reducing the dimension in geometric problems), a rigidity result of Ketterer
on diameter estimates for such spaces and a compactness argument. The results do not
overlap, since our setting corresponds to a subset of the infinite-dimensional case in the
Bakry-Emery theory, and the methods are completely different. It would be interesting
to extend the method developed here to the geometric setting, since it would allow to
get explicit quantitative bounds, without relying on a compactness argument. The main
obstacle at this point is the lack of a geometric analogue of the Caffarelli contraction
theorem.

In the context of the Poincaré inequality, we remark that Cp(x) ! bounds the smallest
positive eigenvalue of the diffusion operator —A+VV - V. As such, Theorem 1.1 may be
viewed as a stability estimate for a particular spectral problem. Stability for other spec-
tral problems have been considered, such as Poincaré inequalities on bounded domains
[9,10] and a lower bound on the spectrum of Schrédinger operators [14], respectively
with applications in shape optimization and quantum mechanics.

In the context of our concentration estimates for Lipschitz functions (Corollary 1.4 and
Theorem 1.7), we note that there has been some recent work on dimension-free stability
for Gaussian concentration inequalities in isoperimetric form [6,15], which improve the
bounds with remainder terms that compare the shape of level sets to halfspaces, and can
be transferred to uniformly log-concave measures via the Caffarelli contraction theorem.
A direct comparison between these different results does not immediately appear to be
possible.

Finally, one can ask whether our techniques can be applied to establish stability of
Bobkov’s inequality [7], which is the functional form of the Bakry-Ledoux isoperimetric
inequality [4]. Unfortunately, Bobkov’s inequality involves an L!-norm of the gradient
instead of an L%-norm, which makes it more difficult to derive a good approximate
integration by parts formula. Hence, adapting our general approach to that problem
would seem to require some new ideas. However, we note that after a first version of
the present work was made publicly available, Mai and Ohta [34, Theorem 6.2] used
the needle decomposition to show that if the Bakry-Ledoux isoperimetric inequality is
almost sharp, then the Poincaré constant is close to one, with quantitative estimates,
and a worsening of the exponent. Combined with our present results, this would imply
a quantitative approximate splitting theorem for measures for which the Bakry-Ledoux
inequality is almost sharp, although with an exponent smaller than 1/2.

2. Stability of the Poincaré inequality
2.1. Proof of Theorem 1.1

First, let us note that the assumptions constrain the value of the Poincaré constant
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Lemma 2.1. Under the assumptions of Theorem 1.1, we have 1 —e < Cp(u) < 1.
Proof. The bound Cp(u) < 1 is true under the uniform convexity assumption of the
potential. This is a classical result on Poincaré inequalities, which can be obtained for

example via the Bakry-Emery theory [3], or the Caffarelli contraction theorem [12]. The
second bound comes from

1= [udp < Co) [ 19uPau < Crlu)(1+9
so that Cp(p) > (14¢€) ' >1—€ O

We have the following bounds on proximity between the Vu; and unit vectors, essen-
tially proved in [25]:

Lemma 2.2. Under the assumptions of Theorem 1.1, there exist unit vectors Wy, .., Wi C
R™ such that

/|Vui—u§i|2du§9e, i=1,...k.

Moreover, if € < (9k)~t, then dim(Span(wy, .., W) = k.

In particular, this lemma implies that the functions u; are close to orthogonal affine
functions.

Proof. The proof follows the arguments of [25], we include it for the sake of completeness.
First, let T be the optimal transport (or Brenier map) [11] sending the standard

Gaussian measure 7y onto u, and define v; := u;0T. According to the Caffarelli contraction
theorem [12], VT is a symmetric, positive matrix satisfying [|[VT||,, < 1. We then have

[vuiay < [vup ot = [ 1VuPds
and
[IvuPaus o [adn=+e [y <o [1vofa
Hence
0< /(|Vui|2 o T — |Vurl2)dy < e(1 + €). (6)

Additionally, since (I1-VT)? <1—(VT)?, we have
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/|VuiOT—Vvi|2d7:/|(I—VT)(VuioT)|2d’y
S/|VuiOT\2d'y—/|VT(VuioT)|2d7
= /(|Vul|2 oT — |Vu|*)dy < e(1 +¢). (7)

Note that [v;dy = [u;du = 0. Since the multivariate Hermite polynomials form an
orthogonal basis for L?(v), we may write

vi(x) = w; -z + z(x),

where w; € R™ and z; : R" — R, satisfying [ z;dy = 0 and [ zz;dy = 0 for j =
1,...,n. Using basic properties of Hermite polynomials,

1
1+e> /|Vvi|2dfy = |w;|* + / |Vzi|2dy > 1+ 3 / |V 2|2 dry.

The second inequality is a refinement of the Gaussian Poincaré inequality for functions
orthogonal to the subspace spanned by constant and linear functions, combined with
|w;|* + [ 22dy = [v?dy = [u?du = 1. Hence,

1
/z?d’y < §/|Vzl-|2d’y <e.

In particular, [ |[Vv; — w;|?dy < 2e and 1 — e < |w;|? < 1. Together with the previous
estimates, we have for @; := w;/|w;],

/|Vui — ) ?dp < 3 </ |Vu; o T — Vug|?dy + / |V, — w;|2dy + |w; — u?ﬁ) < 9e.

To conclude, suppose dim(Span(iy, .., Wg)) < k. Then by linear dependence, there exist
real numbers a1, ..., a such that Z?Zl ajw; =0 and Z?:l a?

this together with orthogonality of the Vu;’s and Cauchy-Schwarz, we have

= 1. In particular, using

k k
2
1= ZC‘?/W%‘IQdu = / ‘ > ai(Vuy —dy)| dp
j=1 j=1
k
< /Z |V — ;> dp < Oke.

j=1

Hence, the last claim of the lemma is proved. 0O

The starting point to implement Stein’s method is the following approximate integra-
tion by parts formula for the measure p and the approximate minimizers u;:
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Lemma 2.3. Let p be a probability measure satisfying a Poincaré inequality with constant
Cp < 1. For any function h € H'(u) and function u satisfying [udp =0, [u?du =1
and [ |Vul?du < 1+e, for some € > 0. We have

1/2
‘/uhdu—/Vu-Vhd,u‘ < \/E</Vh|2du> .

In particular, this applies for u; and p satisfying the assumptions of Theorem 1.1.

Proof. The proof of the lemma is a variant of the argument used in [23,24] to estab-
lish integration by parts formula mimicking the Stein identity for measures satisfying a
Poincaré inequality.

For any h : R — R in the weighted Sobolev space H'(u), we have

2
(/ uhd,u) < Var“(h)/qudu < C’p/|Vh|2du.

Hence the original term, viewed as a function of h, is a continuous linear form in H! ()
endowed with the bilinear form (u,v) — f Vu - Vv, which makes it a Hilbert space if
we work modulo constants. Applying the Riesz representation theorem, there exists a
function g such that

/uhdu: /Vh-ngu Vh € H(p); /|Vg|2du < Cp.

In particular, note that [Vg- Vudy = [u?du = 1.
Hence for any h € H'(p),

/(uh —Vu-Vh)du = /Vh (Vg — Vu)dp

1/2 1/2
< </|Vg—Vu|2d,u> (/vm%m) :

Finally, we can expand the square and get
/|Vg—Vu|2du§Cp—2+1+e§6,

from which the claim follows easily. O

Toward completing the proof of Theorem 1.1, we shall henceforth assume without loss
of generality that p = [zdu = 0.

Assume first that e < 1/(36k). Let (@1, ..,%%) be as in Lemma 2.2, and consider any
orthonormal family (e1, .., e;) such that Span(e, .., ex) = Span (w1, .., wx). Let (ayj;)i j<k
be real numbers such that e; = .} a;;i;. We have
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2
> af SZO‘?J’/WW\?W:/‘Z%J‘V% du
J<k J<k J<k
2
= / €; + Zaij(Vuj - UA}J)’ d,u
J<k
2
S 2|6i|2 +2/ ’ ZO@'J’(VU]‘ - ﬁ}j)‘ du
J<k
< 2+22a§j2/\Vuj — ;| du
J<k J<k
1
< 2—&-220(%(1696) < 2—}—520@.
i<k J<k

Hence, we always have } ., a?j < 4 for each i < k.

After suitable change of coordinates, we may assume without loss of generality that
the vectors (e;);<k coincide with the first & natural basis vectors of R™. From now on, we
write = (y, z) where y is the orthogonal projection of x onto the vector space spanned
by the (e;)i<k, with y; = z - e;, and z its projection onto Span(ey, ..,ex)>. Let i be
the distribution of z when z is distributed according to p, that is ji(dz) = e~V *)dz
with W(z) = —log fspan(eh_,ek) e=V@2)dy. As a consequence of the Prékopa-Leindler
theorem, W inherits uniform convexity from V', that is Hess W > 1,,_, (see for example
).

Consider 1-Lipschitz f : R™ — R; note this ensures f is integrable with respect to
both p and 7, ® fi, where 7y, is the centered standard Gaussian measure on R*. For any
2, there exists a function h(, z) : R¥ — R* satisfying the Poisson equation

f.2) - / F(5, 2)di(s) =y by, 2) — Te(Vyh) (9, 2). (8)
]Rk

In fact, as pointed out by Barbour [5], as a consequence of the representation of
the Ornstein-Uhlenbeck semigroup via convolution with a Gaussian kernel, a solution
h = (hy,...,ht) has coordinates given by

oo
hi(y,z) = =0k, // (f(e_ty +V1—e?w, z) — f(w, z))dvk(w)dt
0 RF
i —t
[ 5 [ wse VI s wdt,
0 — e RF
fori =1,...,k, where the second identity follows from the Gaussian integration by parts

formula.
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Holder-type regularity estimates for solutions of this Poisson equation have recently
been derived in [28,26]. For our purposes, we follow arguments of [18,29] to obtain an up-
per bound on the quantity Zle |Vh;|?. Starting by taking derivatives, we may evaluate
the Jacobian Dh : R™ — R**™ with respect to coordinate system (y, z) as

(e” y+\/1—62th)d7k )dt,

Dh(y, 2)

i t
o
_/ V1—e 2 /w ADVS
0 RF
where A(t) is a diagonal matrix with diagonal entries A;;(¢t) = e~ for 1 < j < k and

Ajj(t) =1 for k < j < n. In particular, for any matrix M € RF>*" an application of
Cauchy-Schwarz gives

(M, Dh(y, z))us|

/\/7_%/| OV fle 'y + V1 —e 2w, 2)) - (M w)|dy(w)dt

—t
< / Wi / [ABVF(e™y + V1 = e, 2)|[M T w|doys (w)
0 R*

Tt 7r
g/—/|MTw|d'yk(w)dt:—/|MTw‘d7k(w)
V1 — e—2t 2
J 1—e 2 a

where the third inequality used |A(t)Vf(e’ty +V1 — e 2tw, z)| < 1 by the definition of
A(t) and the 1-Lipschitz assumption on f. By convexity,

1/2
/|MTw|d'yk(w) < (R/|MTw|2d7k(w) = || M||us.
RF k

So, taking M = Dh(y, z), we find that for all (y, z) € R™,

X 1/2
(Z |vm<y,z>|2> = |Dh(y, =) s < 5. (9)
i=1
It follows that h; € H'(u), justifying the following manipulations:
[ tan= [ sandi= [ (v-h.2) - Tr(vyhxy,z))du
=> / yihi hi) dp.

i<k
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Now, focusing on the ith term in the sum, we expand

/(yihi — € th) du = ZO&U / (Vu] - 1213) . Vhld,u

J<k

+ Z Q5 / (lﬁj - T — uj)hidu + Z Q5 / (ujhz — Vuj : th) du.

i<k i<k

We bound each of the three terms separately. By Cauchy-Schwarz and Lemma 2.2, we

have
2
Zaij / (Vuj - ’LZ)]) . Vh,d,u
J<k
2
<D e ] (D (/ (Vu, —wj)-vmdu> < 36ke/|Vhi|2du.
J<k J<k

Similarly, with additional help from the Poincaré inequality for p and the assumption
that [zdp = [u;dp =0,

2

Zaij/(uﬁj x—u])hzdu

J<k
2
DY ARDY (/ (10 ~17uj)hid,u) < 36ke/|Vh,-|2du.
J<k J<k

Finally, by Lemma 2.3,

2

Zaij / (u]'h,' - Vu]' . th) d/,L

J<k
2
<D e | (D (/ (ujhi—vuj-vm)du) < 4ke/|vm|2du.
J<k J<k

Combining the above estimates with the £;-f norm inequality || - ||, < V|| - ||, on R*
and (9), we obtain

Z/(yi’” —ei Vhi)dp < 14Vke ) (/IVmqu)l/Q

i<k i<k
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1/2

< k14/e Z/|Vhi|2du < Trky/e.

i<k

Recalling the Kantorovitch dual formulation of Wy [40], we have

Wi, v, @ p) = sup /fdu—/fdvkdﬂ < Trkye
Fllflluip<

To finish the proof, we only need to consider ¢ > (36k)~!. In this case, we bypass
Lemma 2.2 and take (eq,...,ex) to be any orthonormal family in R™, and define i in
terms of this family, same as above. By the Poincaré inequality, Var,(z-e;) < 1 for each
i < k, so it follows that

Wl(Ma’yk ®/~_l/) < W?(Mafyk ®ﬁ) <V2k < 77Tk\£7

where the last inequality holds under the assumption that e > (36k)~!.
2.2. Proof of Theorem 1.5

The proof is essentially the same as for Theorem 1.1, except that our extra assump-
tions make Lemma 2.2 unnecessary, which allows us to drop the convexity assumption.

Without loss of generality, we may assume p has its barycenter at the origin. We then
xX-€e;

take u; = NarTHeE) in Lemma 2.3 to get

/mih(x) — O;h(z)dp < Ve (/ VhIQdN>1/2

for any real-valued smooth test function h. We can then introduce the same function
h associated to a 1-Lipschitz function f via the Poisson equation (8), and the proof
continues in the same way as the proof of Theorem 1.1, but is simpler since we directly
conclude:

[ an= [ sandi= [ (- hiw.) - 1209, 0) 0. 2) )

=3 [ whi(o2) = Oty 2 < 5 Ve

i<k

where the final inequality made use of (9) and the ¢£1-f5 norm inequality ||-||¢, < VE||- |z,
on R¥. Note that bypassing Lemma 2.2 gives improved dependence on k.
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3. Stability for the logarithmic Sobolev inequality
8.1. Proof of Theorem 1.6

The proof of Theorem 1.6 follows the strategy for that of Theorem 1.1, relying on
an approximate integration by parts identity for extremizers of the LSI, combined with
Stein’s method. However, the details are sufficiently different that the same argument
can not be applied mutatis mutandis. The following sequence of lemmas provides the
necessary ingredients for the proof.

The following approximate Euler-Lagrange equation for the LSI is the starting point
of the proof. It is used as the counterpart of Lemma 2.3.

Lemma 3.1. Assume p satisfies the LSI (1), and let u : R™ — R satisfy (2) for some
€ > 0. For any smooth function h we have

’/Vh -Vudy — %/hu log(uz/a)d,u'
1/2

<ve(/ |Vu|2du)1/2 ([19nkan -5 [12ron/ain)

where o := [u?dp.

Remark 3.1. The quantity [ |[Vh|?du— % J h?log(u?/a)dy is nonnegative. Indeed, by the
LSI for p, this quantity is at least

L 1 1 n2/ [ h3d
§Entu(h2) - 5/}12 lOg(u2/o<)d,u: 5//12 10g< /f H) du,

u?/ [u?dp

which is proportional to a relative entropy, and therefore nonnegative.

Remark 3.2. We emphasize that Lemma 3.1 does not make any convexity assumptions
on 4, so may be of independent interest for other applications.

Proof. By convexity of the map ¢ —— Ent,(¢) on nonnegative functions, it holds for
t > 0 that

Ent,, (p + 1) > Bt () + / ¥ log (%) dp (10)

provided ¢ > 0 and ¢ + tip > 0.
Now, we observe

2/|Vu|2du+4t/Vu~Vhdu+2t2/|Vh|2du > Ent, ((u + th)?)
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> Ent, (u®) + t/(2uh + th?)log (v /a) dp

>2(1—c¢) / |Vul*du + t/(2uh + th*)log (v’ /) dp,

where the first inequality is the LSI for p applied to the function u + th, the second
inequality is (10), and the third inequality is (2). Rearranging and dividing by 2t gives

1
et_1/|Vu|2dM+t </|Vh|2du— §/h2log (u?/a) d,u)
> /uhlog (u?/c) dufZ/VUthdu.

Optimizing over t > 0 gives

1
E/uhlog (ug/a) d,u—/Vu~Vhdu

<ve(/ |Vu|2du)1/2 ([ 19m2an— [ 21050 )in

We may now replace h with —h to obtain the desired inequality. O

1/2

We now state the Aida-Shigekawa perturbation theorem for the LSI, which will be
needed in the sequel. It will allow us to estimate certain terms that involve an extra
weight u?, using the fact that logu is Lipschitz. The following is a consequence of [I,
Theorem 3.4]:

Theorem 3.2. Let p satisfy (1), and take up to be the probability measure proportional
to ef' i, where F is A\-Lipschitz. There exists a A>0, depending only on A, for which

Ent,,,(f?) < 2X/\Vf\2dup.

In particular, pp satisfies a Poincaré inequality with constant Cp(\) < .

Together with [27, Theorem 1], this yields the following deficit estimate for the Gaus-
sian LSI:

Lemma 3.3. Let the notation of Theorem 5.2 prevail. If v is the standard Gaussian mea-

sure on R™, and dur = v2dy is a centered probability measure, there is a constant
¢(A) < 1 for which

Ent, (%) < 2¢()) / Vol2dy.
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The following specializes Lemma 3.1 under the hypothesis that logu is A-Lipschitz.

Lemma 3.4. Let u, A, €, and u satisfy the assumptions of Theorem 1.6. If g : R™ — R is
Lipschitz, satisfying [ gdu =0, then

[ 99 Viogtwid ~ [ oIV toguldn ~ [ glogudn < glnCOWe
where C(\) is a constant depending only on .

Proof. We may assume without loss of generality that ||g||rip < 1.
Apply Lemma 3.1 to the test function h = g/u. Using the fact that

/|Vu|2du :/|Vlogu|2u2du <A\

this gives
/Vg~Vlog(u)du—/g|V10gu|2d,u—/glogudu
1/2
< \/E</Vu|2dy> (2/|V92u_2d,u+2/92Vlogu|2du

-5 [ww? 1og<u2>du) v

1 1/2
< Ve (2/u2d,u 4 2\ /de,u ~3 /(g/u)Qlog(uz)d,u> . (11)
Now, we claim that for any smooth enough h, we have
1
f§/h2 log u?dp < /|Vh|2du+2)\2/h2d,u. (12)

From the classical entropy inequality, we have
_/h2 logu2dlu < Ent#(hQ) -‘r/h?dﬂ % 1og/e_21°g“du
< 2/|Vh\2du+/h2du % 10g/e—210gudu_

Now, we apply the concentration inequality (4). In particular, since logu is assumed to
be A\-Lipschitz

1 :/u2dﬂ§exp (2/logud,u—|—2)\2> == —/logud,ug A2
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On the other hand, using this together with (4) gives, for any ¢ > 0,

/u_tdp = /e‘“og“d,u < exp (—t/logudu + (t)\)2/2> < et>‘2(1+t/2), (13)

which leads to (12) by taking t = 2.
Applying these estimates to (11) gives

/Vg~V10g(u)duf/g|V10gu|2d,uf/glogudu
, 1/2
< Ver (264’\ +2)\2/de,u—F/|V(g/u)|2du+2>\2/g2u_2d,u)
, 1/2
< Ve (464)\ + 202 4402 /gzu2du> ,
where the last line made use of the Poincaré inequality [ g?du < [ |Vg|*du < 1. Now,

since log u is A-Lipschitz, the measure u~2u satisfies a Poincaré inequality with constant
Cp(A). Hence,

Jzns e f19stutaes (/ gu‘Qdu)Q ( / “_Zd“)_l
:
< Cp(N)e + (/ gu—2du) :

By Cauchy-Schwarz, the Poincaré inequality for u and (13), we have

2
(/gu_Qd,u) < /ggdu X /u_4du < 612)‘2,

which completes the proof. 0O

The next lemma quantifies the proximity between logu and an affine function. It
is used as the counterpart to Lemma 2.2. This step is more complicated than for the
Poincaré inequality, since in this case stability for the Gaussian functional inequality is
a much more difficult problem, as we cannot simply use a spectral decomposition of the
function.

Lemma 3.5. Let u, A, €, and p be as in Theorem 1.6. There exists p € R™ and constants
C1(A) and Co(X), depending only on A, such that

/\Vlogu —p/2|*u?dp < Cl()\)e/ |Vu|?du; (14)

Var,z,(logu —p-x/2) < C’Q()\)e/ |Vul*dpu. (15)
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Proof. Let T be the optimal transport map sending the standard Gaussian measure onto
w1 and define

pi= /EU(T(ﬁ))de(f) = 2/U(T(f))VT(é)VU(T(E))dW(é), (16)

where the second identity follows from Gaussian integration by parts. The Caffarelli
contraction theorem states that T is 1-Lipschitz. Define v(z) = u(T(z+p))e P=/2=IpI/4,
We have

[ = [ur s ppe et e i = [ure)2an) = [vdu=1;
/ widy = / (T (@ + p))2e T+ /2 (2m) 2z = / (€ — p)u(T (€))% (€) = 0.

Hence v?dy is a centered probability measure. Moreover, since logu(T(x + p)) is A-
Lipschitz, the measure v?dy satisfies a Poincaré inequality with a constant Cp(\) by
Theorem 3.2.

We have Ent, (v?) = Ent,(u?) — |p|?/2 and, using the fact that 7" is 1-Lipschitz and
the identity (16),

[190Pdy = [ IVTG@ 4 p)(Viogu) (T + ) ~ /2P0y < [ [FuPdys~ [pP/4.

Hence the deficit in the Gaussian LSI for the probability measure v2dy is smaller than
2¢ [ |Vu|*dp. By Lemma 3.3, this ensures that

[ IVoguo 1) ~p/2P? o Tydy = [ VePay < Cole [ FuPdu )
In a different direction, we use the Gaussian LSI to observe that
2 1 2
(1- e)/|Vu| dp < iEnt“(u )
1
— 5 (a0 + /2 < [ 1voar+ b2/a). as)
Now, the proof continues along similar lines to that of Lemma 2.2. First, we bound
1 2,2
3 |Viogu — p/2|“udy
< [191og(uo D)~ p/2P(u 0 Thdy + [ [(Viogu) o T - Vlog(uo T)P(u? o T)ar.

The first term on the RHS is controlled by (17). The second term is bounded as
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(V105 ) 0 7~ Vlog(u o T) (a0 T)ay

— [t - 9T)(Viogu) o TP 0 Ty

< / |(Vlogu) o T|*(u? o T)dy — / |VT(Vlogu) o T|*(u? o T)dry (19)
= [ 1Vuau - ( [ 1w+ |p|2/4) (20)
<e / IVuldy, (21)

where (19) follows since (I — VT)? < I — (VT)?2, (20) follows by definition of v, and
(21) is due to (18). This establishes (14). Since logu is Lipschitz, the measure u?u
satisfies a Poincaré inequality with constant depending only on A by Theorem 3.2, so
that Var,z,(logu —p-x/2) < Cy(MN)e as desired. O

Combining these estimates leads to the following approximate integration by parts
formula, which is the crucial estimate we need:

Lemma 3.6. Let u, A, €, and u satisfy the assumptions of Theorem 1.0, and let p € R"™
be as in Lemma 3.5. For any Lipschitz function g, we have

[ 6% =@ -p= Vg9 < lglhunC NIV, 22)
where C(X) is a constant depending only on X, and (z), := [ xdp.

Remark 3.3. To modify Theorem 1.6 for measures u’y along the lines of Remark 1.3, one
should modify Lemma 3.4 by repeating the proof mutatis mutandis, except one should
consider the test function h = gu!~!, rather than h = g/u. The following proof can then
be suitably modified to yield an approximate integration by parts formula (22) for the
measure u'p. Lemma 3.5 does not need to be modified.

Proof. Since the statement to prove is invariant to adding a constant to g, we assume
without loss of generality that | gdu = 0, and that ||g||rip < 1. Throughout, we let C'(\)

denote a constant depending only on A which may change line to line.
Letting 8 = [(logu — x - p/2)du, we have by Cauchy-Schwarz

1
5/933-pdu—/glogudu=/9(6—logu+x'p/2)du

1/2 1/2
< </ gQUQd,U,> Varz, (logu —x ~p/2)
< C(MVe,
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where the last line follows from (15), the fact that [ |Vu|?du = [|Vlogul?u?du <

A2, and the estimate [ g?u~2du < C()) established in the final steps of the proof of
Lemma 3.4.

Next, we write

1 1
/Vg-Vlogudu—/ngoguFd,u—§/Vg-pdu+§/gp-Vlogudu

:/Vg-(Vlogu—p/2)d,u+/gV10gu~(p/2—Vlogu)d,u

1/2 1/2 1/2
< <</ Vg|2u_2du> + (/92|Vu|2u_2du> ) </|Vlogu—p/22u2du>
1/2 1/2 1/2
((/ u_2du> + A (/g%f%lu) ) (/ |V logu —p/22u2du>

< C(A)WVe,

IN

where the final inequality follows similarly to before, except using (14).
Summing the estimates and applying Lemma 3.4, we have

/(gx (ff—<ff>u)-p—Vg~p>du+/gp-V10gudu§C(/\)\/E,

where the (), was inserted using the assumption that f gdp = 0. Thus, it only remains
to show that the error term is small. To this end, we again use fgdp = 0 to write

‘/nglogudu‘ = ‘/gp' (Vlogup/2)du‘

1/2 1/2
< pl ( / gQu—Qdu) ( [ IViog —p/2|2u2du>

< C(A)We,

which follows from similar estimates as above, plus the fact that |[p|? < 4 [ |Vu|?du =
4 [|Vlogulu?dy < 4X?, where the first inequality was observed in the proof of

Lemma 3.5. O
Combining this last lemma and Stein’s method, we now prove Theorem 1.6.
Proof of Theorem 1.6. Since the statement to prove is translation invariant, we assume

J zdp = 0. We assume first that e < 1/(4C;()\)), where C; () is as defined in Lemma 3.5.
The same lemma ensures existence of p € R™ such that

/|Vlogu—p/2|2u2du§ C’l()\)e/|Vu|2d,u.
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Thus, using the assumption that e < 1/(4C1())), we apply the elementary inequality
|A — B|> > |A]> — | B|? to the above to conclude

pP = @ - c1a) [ 1Valdu > [ [VuPdu

Henceforth, we let C(\) denote a constant depending on A, which may change from line
to line. The vector p above is the same as in Lemma 3.6, so we apply it and combine
with the above estimate on |p| to find for e := p/|p|,

[ (gc=Vg- ) < gl Ve ( / VUIQdu>_1/2,

holding for any Lipschitz g : R® — R.

Now, we implement Stein’s method following the proof of Theorem 1.1. In particular,
we begin by writing z = (y, z) where y is the orthogonal projection of « onto e, and z its
projection onto e. Consider 1-Lipschitz f : R® — R. For any z € R®™!, there exists a
function ¢g(-, z) : R — R satisfying

fly,z) — / f(s,2)dv0.c(s) = yg(y, 2) — Oyg(y, 2),

Span(e)

where g is the centered standard Gaussian measure on Span(e).
The function g is measurable and satisfies ||g||rip < 7/2, as already shown in (9).

Hence, we integrate with respect to p to conclude

/fduf/fd'yo,edﬂ:/(yg(y,Z) *ayg(y,Z))du

— [(gx(a-e) e Voydu < e ( / |Vu|2du)_l/2.

Since f was an arbitrary 1-Lipschitz function, the theorem follows from the Kantorovich
dual formulation of Wy, provided e < 1/(4C1(N)).

Now, by the triangle inequality for W; and simple variance bounds, it is easy to
see that Wi (u, e ® i) < 2 for any o € S* ! and b = fo - odp. Hence, the Wy
estimate (5) can not become active until € < 4 ([ [Vul?du) /C(A)? < 4X2/C(N)%. By
suitable modification of C()\), we may assume C(\)? > 16A2C;()), so that the claim
of the theorem is automatically satisfied whenever € > 1/(4C1(X)). This completes the
proof. O

3.2. Proof of Theorem 1.7

Proof of Theorem 1.7. By suitable modification, we can assume without loss of general-
ity that [ Fdu =0 and C(L) > 21/2, so that we may restrict attention to the case where
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€ < 1/2 (in the complementary case, the W; estimate will be automatically satisfied for
similar reasons as argued in the final steps of the proof of Theorem 1.6). The Herbst
argument establishes (4) by considering the function

H(\) = log (/ e*qu) ,

and using the LSI to establish the differential inequality

p (H(A)) _HO) HO) L;

a2\ A 22

This is then integrated with respect to A on (0,1) to establish the inequality (4). So, by

Markov’s inequality,
L? d (H(\) el? 2 [L? F 1
o (=2 > — V<= (=- <=
HSE(O’U 2 d>\< A >A=S_ 2}_€L2<2 log</e du>>_2’

where the last inequality follows by our hypothesis on F'. Therefore, there exists Ay €
[1/2,1] for which

[ eroF log(erF)du NP 5 L?
feAUFd/.L —IOg eno d/.t :/\QH/(/\())—H()\Q) > (1—€)>\07.
Multiplying through by f eMFdu, we have
L2 2
Ent, (e*f) > (1 - e))\g7 /eAOqu >2(1—c¢) / ‘VeAOFﬂ‘ dp. (23)

Mo F/2

Since \g < 1, we have that loge is L/2-Lipschitz. As a consequence, Theorem 1.6

applies to yield the estimate

—-1/2

Wilsne ) < C0) ([ |92 an) Ve (24)

for probability measures 74 ., it as defined in the statement of the theorem.
By the LSI for p together with (23), we have

roF/2|? el [ oaer L o
Ve dp > (1 —e)Ag /¢ dp > (1—e) 6 /¢ dp.

Using the fact that % )\%2 — @) > 0, we have %2 —H() > )\0%2 — #’;w Rear-

ranging yields, for e < 1,

A
/e’\Oqu > e—Ao(l—/\o)L2/2 </ €qu> 0 > 6_>\o(1—>\0)L2/2 (eL2/2(1—6/2)))‘0 > eL2/8~
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Therefore, f ‘Ve/\DF/2|2 dp > g—;eLz/S, so that this term can be absorbed into the con-
stant C(L) in (24), completing the proof. O

We conclude with a stability estimate for another formulation of Gaussian concen-
tration. The Markov inequality applied to (4) shows that any 1-Lipschitz F satisfies the
Gaussian concentration inequality

[ ({th—i—/qu}) <e 2 ¢>0.

Unlike (4), the inequality here is actually strict, and this form of concentration inequality
is actually strictly weaker. A simple corollary of Theorem 1.7 is the following stability
version of this result.

Corollary 3.7. Let p be as in Theorem 1.0, and consider 1-Lipschitz F. If

o({r2oe frm) s om(-arant)

for some t >0 and € > 0, then u satisfies (5) for L =1t.

However, the classical concentration bound p({F >t+ [ Fdu}) < e=¥/2 can be
sharpened into a bound of the form p ({F > ¢t + [ Fdu}) < C’e’t2/2/t, using for example
the Bakry-Ledoux isoperimetric inequality [4] or the Caffarelli contraction theorem and
refined concentration bounds for the Gaussian measure. Because the dependence of C
on t is not explicit, it may be that the above Corollary is vacuous, in that taking e
small enough relative to C(t) (to activate the W; estimate (5)) always makes the above
lower bound greater than the improved upper bound. As such, it is not clear if this
statement is of any interest, but we include it because the question of stability for this
way of encoding Gaussian concentration for uniformly log-concave measures seemed like
a natural question the reader may wonder about after reading this work.

Proof. We may assume that [ Fdu = 0. By the hypothesis and the Markov inequality,
we have

o (-1renf) sutFz e [an

Multiplying through by exp(t?) gives

/eth,u > exp (%(1 - 6/2)) .

Hence, Theorem 1.7 applies to the t-Lipschitz function tF. O
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