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Émery bound on logarithmic Sobolev and Poincaré constants 
of uniformly log-concave measures. More specifically, we 
show that if a 1-uniformly log-concave measure has almost 
the same logarithmic Sobolev or Poincaré constant as the 
standard Gaussian measure, then it almost splits off a 
Gaussian factor. Our results are dimension-free, leading to 
dimension-free stability estimates for Gaussian concentration 
of Lipschitz functions. The proofs are based on Stein’s 
method, optimal transport, and an approximate integration 
by parts identity relating measures and near-extremals in the 
associated functional inequality.
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1. Introduction and main results

The purpose of this work is to establish stability estimates for the Bakry-Émery 

theorem, which states that the sharp constant for various functional inequalities for 
uniformly log-concave measures must be better than the sharp constant for the standard 
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Gaussian measure. We shall primarily focus on two inequalities: the Poincaré inequality 

and the logarithmic Sobolev inequality. Our main results for these respective inequalities 
are presented in the following two subsections. General remarks and an overview of the 

proof strategy follow, and the section is closed with a discussion of related work.

1.1. Poincaré inequality

A probability measure on Rn is said to satisfy a Poincaré inequality with constant C
if for any smooth test function f , its variance satisfies the bound

Varμ(f) ≤ C

∫

|∇f |2dμ.

The smallest possible constant in this inequality is called the Poincaré constant of μ, 
which we shall denote by CP (μ). Such inequalities play an important role in several 
areas of analysis, probability and statistics, such as concentration of measure, rates of 
convergence for stochastic dynamics and analysis of PDEs. This constant is also the 

inverse of the spectral gap of the Fokker-Planck (or overdamped Langevin) dynamic 

associated with μ. A large class of probability measures satisfy such an inequality. In 

particular, if a probability measure is more log-concave than the standard Gaussian 

measure (that is, μ = e−V dx with Hess V ≥ In), then CP (μ) ≤ 1. This result can be 

viewed as a consequence of the Brascamp-Lieb inequality [8] or the Bakry-Émery theory 

[2].
The first main result of the present work establishes a strong form of quantitative 

stability for the Poincaré constant for uniformly log-concave measures.

Theorem 1.1. Let μ = e−V dx be a probability measure with Hess V ≥ In, and assume 

that there exists k functions ui ∈ H1(μ), k ≤ n, such that for any i ∈ {1, .., k} we have

∫

uidμ = 0;
∫

u2
i dμ = 1;

∫

∇ui · ∇ujdμ = 0, ∀j �= i

and
∫

|∇ui|2dμ ≤ 1 + ε

for some ε ≥ 0. Then there is a subspace V ⊂ R
n with dim(V) = k, and a vector p ∈ V

such that

W1(μ, γp,V ⊗ μ̄) ≤ Ck
√

ε

where γp,V is the standard Gaussian measure on V with barycenter p, and μ̄ is the 

marginal of μ on V⊥, which enjoys the same convexity property as μ. In fact, we may 

take C = 7π < 22.
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In the statement of the theorem, W1 stands for the classical L1 Kantorovitch-
Wasserstein distance [40], and H1(μ) := {f ; 

∫

(|f |2 + |∇f |2)dμ < ∞} is a weighted 

Sobolev space with respect to μ.
Theorem 1.1 improves similar quantitative bounds in a result of De Philippis and 

Figalli [25]. For comparison, let us precisely state their result:

Theorem 1.2 ([25]). Under the same assumptions and notations as in Theorem 1.1, for 

any θ > 0 there exists C(n, θ) such that

W1(μ, γp,V ⊗ μ̄) ≤ C(n, θ)| log ε|−1/4+θ.

Beyond the significantly improved dependence on ε in Theorem 1.1, the fact that our 
bound depends on k and not on n is useful for high-dimensional situations, as following 

applications demonstrate.
The proof of Theorem 1.2 in [25] is based on a stability version of Caffarelli’s contrac-

tion theorem [12], which is a regularity estimate on the nonlinear Monge-Ampère PDE. 
To obtain the improved bound, we shall rely instead on Stein’s method [38,39], which is a 

way of quantifying distances between probability measures using well-chosen integration 

by parts formulae. See [36] for an introduction to the topic. The main reason why this 
allows us to obtain better estimates is that this proof mostly remains at a linear level, 
instead of relying on nonlinear tools as in [25]. The other main tool in the proof is that 
the test functions in the assumptions of the theorem can be viewed as approximate min-
imizers in a variational problem, which then give rise to an approximate Euler-Lagrange 

equation (up to remainder terms of order 
√

ε), which takes the form of an integration by 

parts formula. See Section 1.4 for an overview of the strategy of proof and Section 1.5
for a brief summary of related works.

Remark 1.1. When k = n, it is possible to improve the topology, and get an estimate of 
order 

√
ε in the stronger W2 distance, using results from [33,23]. We do not know how 

to get a W2 estimate when k < n, due to regularity issues for the Poisson equation we 

shall make use of in the proof.

Our main result has the following immediate corollary, which can be viewed as a 

dimension-free improvement of the Bakry-Émery theorem.

Corollary 1.3. Let μ = e−V dx be a probability measure with Hess V ≥ In. There is a 

direction σ ∈ S
n−1 and a vector p ∈ Span(σ) such that

W1(μ, γp,σ ⊗ μ̄) ≤ C
√

CP (μ)−1 − 1,

where γp,σ is the standard Gaussian measure on Span(σ) with barycenter p, and μ̄ is the 

marginal of μ on Span(σ)⊥.
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This corollary follows from Theorem 1.1 since there must be a function u satisfying 

the assumptions of that theorem for any ε > CP (μ)−1 − 1, by definition of the Poincaré 

constant. We make use here of the fact that the bound in Theorem 1.1 depends on k and 

not n, unlike Theorem 1.2, to get a dimension-free estimate. A noteworthy consequence is 
the following refinement of the classical dimension-free concentration bound Varμ(F ) ≤ 1
for 1-Lipschitz F .

Corollary 1.4. Let the notation of Corollary 1.3 prevail. For any 1-Lipschitz F : R
n −→

R, there exists a direction σ(F ) ∈ S
n−1 and a vector p(F ) ∈ Span(σ) such that

W1(μ, γp,σ ⊗ μ̄) ≤ C
√

Varμ(F )−1 − 1.

At this point, one might wonder if the convexity assumption is necessary. It cannot 
simply be dropped: if one looks at a general measure, its Poincaré constant may be equal 
to one, for example by rescaling an arbitrary (but nice) measure to enforce this, in which 

case there exists a function u satisfying the assumptions, and in general there will not 
be a Gaussian factor. However, the convexity assumption will mainly be used to ensure 

the functions ui are close to coordinate functions, in a suitable basis of Rn, and hence 

can be dropped if we assume extra knowledge on second moments. This leads to the 

following result, with improved dependence on k:

Theorem 1.5. Assume CP (μ) ≤ 1, and that there exists an orthonormal family 

{e1, .., ek} ⊂ R
n such that Varμ(x · ei) ≥ (1 + ε)−1, for each i ≤ k. Then there ex-

ists p ∈ V = Span(e1, . . . , ek) such that

W1(μ, γp,V ⊗ μ̄) ≤ π

2

√
kε,

where the measures γp,V and μ̄ are as defined in Theorem 1.1.

1.2. Logarithmic Sobolev inequality

According to the Bakry-Émery theorem [2], probability measures that are more log-
concave than the standard Gaussian measure satisfy the logarithmic Sobolev inequality 

(LSI)

Entμ(f2) ≤ 2CLSI(μ)
∫

|∇f |2dμ; CLSI(μ) ≤ 1, (1)

where Entμ(f2) :=
∫

f2 log f2dμ −
(∫

f2dμ
)

log
∫

f2dμ, and CLSI(μ) stands for the 

sharpest possible constant for μ in this inequality. This functional inequality, originally 

introduced by Gross [31], is strictly stronger than the Poincaré inequality, and the con-
stant 1 is sharp for the standard Gaussian measure. Moreover, Carlen [13] showed that 
for the Gaussian measure equality holds in the LSI if and only if the function f is of 
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the form f(x) = Cep·x for some vector p ∈ R
n. The LSI is used to derive Gaussian 

concentration inequalities, as well as estimates on the rate of convergence to equilibrium 

for certain stochastic processes. We refer to [3] for background on this inequality and its 
applications.

We study stability for the bound on the logarithmic Sobolev constant. Our second 

main result is the following estimate, showing that if CLSI(μ) is close to one, then μ still 
approximately splits off a Gaussian factor, provided the approximate optimizer satisfies 
regularity assumptions.

Theorem 1.6. Consider a probability measure μ = e−V dx on Rn satisfying Hess V ≥ In. 

Let u : R
n −→ R be a nonnegative function such that log u is λ-Lipschitz and 

∫

u2dμ = 1. 

There exists a constant C(λ), depending only on λ, such that if

Entμ(u2) ≥ 2(1 − ε)
∫

|∇u|2dμ (2)

for some ε ≥ 0, then there is a direction σ ∈ S
n−1 for which

W1(μ, γb,σ ⊗ μ̄) ≤ C(λ)
(∫

|∇u|2dμ

)−1/2 √
ε, (3)

where γb,σ denotes the standard Gaussian measure on Span(σ) with barycenter b = σ
∫

x ·
σ dμ, and μ̄ is the marginal of μ on Span(σ)⊥, which enjoys the same convexity property 

as μ.

The constant C(λ) can, in principle, be made explicit. However, its expression would 

be quite complicated and our arguments make no attempt to optimize it, so we do not 
attempt to do so. Note that we should expect the bound to get worse if 

∫

|∇u|2dμ is 
small, since if u was constant it would be a trivial minimizer of the LSI, no matter what 
μ would be, so the bound must rule out that situation in some way. Up to the regularity 

assumption that log u is Lipschitz, existence of such a function is a weaker assumption 

than the assumption of Theorem 1.1, since CLSI(μ) ≥ CP (μ). This fact follows by an 

argument due to Rothaus [37], where the LSI for μ is linearized by considering a Taylor 
expansion around constant functions. It is natural to ask whether a similar argument can 

be used to deduce Theorem 1.1 from Theorem 1.6. This does not immediately appear 
to be possible since, as noted above, any stability result for the LSI must rule out the 

constant functions in some way, apparently precluding a linearization argument.
Like Theorem 1.1, it is possible to give a version of Theorem 1.6 with k orthogonal 

minimizers, in the sense that μ approximately splits off a k-dimensional factor, provided 
∫

∇ log ui · ∇ log ujdμ = 0 for approximate minimizers (ui)i≤k. The constant C would 

depend on k, but not on the ambient dimension.

Remark 1.2. The assumption that 
∫

u2dμ = 1 is for made convenience, and comes with-
out loss of generality. Indeed, the LSI is homogenous of degree 2, so rescaling u −→ αu
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for α ∈ R affects neither ε-optimality in the sense of (2), nor the λ-Lipschitz property 

assumed of log u. Further, the assumed nonnegativity of u is also for convenience, and 

comes without loss of generality since the log-Lipschitz assumption already enforces a 

constant sign.

Remark 1.3. Theorem 1.6 can be strengthened to say that, for any t ∈ R, the probability 

measure proportional to utμ satisfies (3). The only changes are (i) the barycenter b

becomes b = Z−1σ ·
∫

x · σutdμ, where Z :=
∫

utdμ is a normalizing constant; and (ii) 
the constant C will depend on both λ and t. See Remark 3.3 for details.

An important consequence of the LSI is the classical concentration inequality for 
Lipschitz functions, established via Herbst’s argument: If μ satisfies (1) and F is L-
Lipschitz, then

∫

eF dμ ≤ exp
(∫

Fdμ + L2/2
)

. (4)

Equality is attained if μ splits off a standard Gaussian factor in a direction σ ∈ S
n−1, 

in which case F (x) = Lσ · x achieves equality. The following provides a quantitative 

stability estimate for this result, provided μ is uniformly log-concave.

Theorem 1.7. Let μ = e−V dx be a probability measure on R
n satisfying Hess V ≥ In, 

and fix any L > 0. There exists a constant C(L) such that if F : R
n −→ R satisfies 

‖F‖Lip ≤ L and

∫

eF dμ ≥ exp
(∫

Fdμ +
L2

2
(1 − ε/2)

)

for some ε ≥ 0, then there is a direction σ ∈ S
n−1 for which

W1(μ, γb,σ ⊗ μ̄) ≤ C(L)
√

ε, (5)

where γb,σ and μ̄ are the same as in Theorem 1.6.

1.3. Remarks

The reader will notice that the rate 
√

ε appears in all of the stability results. In the 

case of the Poincaré inequality, this significantly improves the rate | log ε|−1/4+θ in Theo-
rem 1.2, obtained by de Philippis and Figalli. While all of our results are dimension-free 

(therefore having optimal dependence on dimension n), we do not know if the depen-
dence on 

√
ε is optimal. Testing on Gaussian measures with variance 1 − ε shows that 

the optimal rate cannot be better than ε, and [25, Remark 1.4] gives computations in 

dimension one for a related problem, suggesting the sharp rate could potentially be ε in 



T.A. Courtade, M. Fathi / Journal of Functional Analysis 279 (2020) 108523 7

the one-dimensional setting (i.e., n = 1). On the other hand, 
√

ε is the natural bound 

in the scheme of our proof, in view of its variational nature: when a quantity to be op-
timized fluctuates from its minimal value by a quantity ε, the natural fluctuation of the 

distance to the minimizer is of order 
√

ε. This heuristic, together with the fact that our 
results are dimension-free, leaves open for speculation the possibility that the optimal 
rate could indeed be no better than 

√
ε, uniformly in dimension. As it is difficult to 

come up with tractable examples in high dimension that are non-Gaussian, this question 

remains unsettled for now. That being said, we believe that the dimension-free aspect 
of our results is of greatest importance, since it permits application in arbitrary dimen-
sion (e.g., the dimension-free Gaussian concentration results for Lipschitz functions in 

Corollary 1.4 and Theorem 1.7).

1.4. Strategy of proof

The proofs of Theorems 1.1 and 1.6 are based on the same broad strategy, with three 

main steps. To our knowledge, this way of implementing Stein’s method to study stability 

in variational problems is new.
The first step can be stated in a broad abstract framework. Consider a general mini-

mization problem of the form

μ −→ inf
f

∫

H(f, ∇f)dμ

and assume the infimum over a class of probability measures P is known, say equal to 

zero, and that we can describe the subset of measures μ0 and associated functions f0

such that 
∫

H(f0, ∇f0)dμ0 = 0. Beyond the questions considered in this work, many rel-
evant inequalities from analysis, geometry and probability can be cast in this form, such 

as sharp constants for Sobolev inequalities, variational problems in statistical physics, 
eigenvalue problems, and so on.

The Euler-Lagrange equation for problems of this form is

∫

u∂1H(f0, ∇f0) + ∇u · ∂2H(f0, ∇f0)dμ = 0 ∀u.

So any minimization problem of this form gives rise to an integration by parts formula 

for measures that achieve the infimum. Now, if we consider a measure μ1 and a function 

f1 such that 
∫

H(f1, ∇f1)dμ1 ≤ ε, the problems we consider in this paper can be stated 

as trying to show that μ1 is close to the class of measures at which the infimum is 
reached. At a heuristic level, and maybe under extra assumptions on f1, we expect an 

approximate Euler-Lagrange equation of the form

∫

u∂1H(f1, ∇f1) + ∇u · ∂2H(f1, ∇f1)dμ1 = o(1) × F (||f ||, ||u||′)
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to hold for some class of test functions, and norms ‖ · ‖, ‖ · ‖′ adapted to the problem. It 
is in this way that we obtain an approximate integration by parts identity, which is the 

basic setup required for Stein’s method.
The second step is to show that f1 can be replaced up to small error by a function 

f0 such that 
∫

H(f0, ∇f0)dμ0 = 0 for some other probability measure. In the present 
paper, this is done by considering a transport map T sending μ0 onto μ1, and proving 

that f1 ◦ T approximately reaches the infimum when integrating with respect to μ0. If 
the minimization problem with fixed reference measure μ0 satisfies some quantitative 

stability property, this would mean f1 ◦ T is close to some function f0 for which the 

infimum is reached. We then deduce that f0 is close to f1 using specific regularity prop-
erties of the transport map, using the convexity assumptions in our problem. In this 
work, we specifically rely on the fact that the optimal transport map is a contraction, 
due to Caffarelli. This part of the proof seems to be of less general scope than the other 
two steps. As a tool, we use stability estimates for the sharp functional inequality with 

fixed reference measure. The conclusion is that μ1 satisfies an approximate integration 

by parts formula

∫

u∂1H(f0, ∇f0) + ∇u · ∂2H(f0, ∇f0)dμ1 = o(1) × F (||u||′).

The third part of the proof is to compare μ1 to μ0 using Stein’s method [38,39] and 

the fact that they both satisfy the same integration by parts formula, up to small error. 
In our situation, μ0 is Gaussian in some direction and Stein’s method for such measures 
has been well-explored. We expect this type of argument to also apply to non-Gaussian 

situations, where Stein’s method has found some successes for other types of problems 
[36].

1.5. Related work

Recently, Cheng and Zhou [22] proved a rigidity property for the Bakry-Émery theo-
rem: if such a probability measure has its Poincaré constant equal to one, then it must 
be a product measure, with one of the factors being a Gaussian measure of unit variance. 
This statement was extended to a more general class of metric spaces in [30]. See also 

[32] for a weaker form of this rigidity in Rn, and [21] for rigidity in a different class of 
measures (and [23] for a corresponding stability estimate). Rigidity for the logarithmic 

Sobolev inequality in the full geometric setting, also under the extra assumption that 
the minimizer is globally lipschitz, was recently obtained in [35].

The convexity condition assumed in our results is a particular case of the Bakry-Émery 

curvature-dimension condition, itself a generalization of Ricci curvature lower bounds. 
Splitting theorems for manifolds satisfying a curvature bound and a geometric condition 

have been the topic of some interest, going back to work of Cheeger and Gromoll [20,19]. 
More recently, rigidity and stability for a related (and stronger) isoperimetric inequality 

has been established [16] under the stronger curvature-dimension condition with finite 
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dimension, using completely different techniques. Stability for spectral estimates when 

the dimension is finite were obtained in [17], using a Riemannian needle decomposition (a 

technique for reducing the dimension in geometric problems), a rigidity result of Ketterer 
on diameter estimates for such spaces and a compactness argument. The results do not 
overlap, since our setting corresponds to a subset of the infinite-dimensional case in the 

Bakry-Emery theory, and the methods are completely different. It would be interesting 

to extend the method developed here to the geometric setting, since it would allow to 

get explicit quantitative bounds, without relying on a compactness argument. The main 

obstacle at this point is the lack of a geometric analogue of the Caffarelli contraction 

theorem.
In the context of the Poincaré inequality, we remark that CP (μ)−1 bounds the smallest 

positive eigenvalue of the diffusion operator −Δ +∇V ·∇. As such, Theorem 1.1 may be 

viewed as a stability estimate for a particular spectral problem. Stability for other spec-
tral problems have been considered, such as Poincaré inequalities on bounded domains 
[9,10] and a lower bound on the spectrum of Schrödinger operators [14], respectively 

with applications in shape optimization and quantum mechanics.
In the context of our concentration estimates for Lipschitz functions (Corollary 1.4 and 

Theorem 1.7), we note that there has been some recent work on dimension-free stability 

for Gaussian concentration inequalities in isoperimetric form [6,15], which improve the 

bounds with remainder terms that compare the shape of level sets to halfspaces, and can 

be transferred to uniformly log-concave measures via the Caffarelli contraction theorem. 
A direct comparison between these different results does not immediately appear to be 

possible.
Finally, one can ask whether our techniques can be applied to establish stability of 

Bobkov’s inequality [7], which is the functional form of the Bakry-Ledoux isoperimetric 

inequality [4]. Unfortunately, Bobkov’s inequality involves an L1-norm of the gradient 
instead of an L2-norm, which makes it more difficult to derive a good approximate 

integration by parts formula. Hence, adapting our general approach to that problem 

would seem to require some new ideas. However, we note that after a first version of 
the present work was made publicly available, Mai and Ohta [34, Theorem 6.2] used 

the needle decomposition to show that if the Bakry-Ledoux isoperimetric inequality is 
almost sharp, then the Poincaré constant is close to one, with quantitative estimates, 
and a worsening of the exponent. Combined with our present results, this would imply 

a quantitative approximate splitting theorem for measures for which the Bakry-Ledoux 

inequality is almost sharp, although with an exponent smaller than 1/2.

2. Stability of the Poincaré inequality

2.1. Proof of Theorem 1.1

First, let us note that the assumptions constrain the value of the Poincaré constant
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Lemma 2.1. Under the assumptions of Theorem 1.1, we have 1 − ε ≤ CP (μ) ≤ 1.

Proof. The bound CP (μ) ≤ 1 is true under the uniform convexity assumption of the 

potential. This is a classical result on Poincaré inequalities, which can be obtained for 
example via the Bakry-Émery theory [3], or the Caffarelli contraction theorem [12]. The 

second bound comes from

1 =
∫

u2
1dμ ≤ CP (μ)

∫

|∇u1|2dμ ≤ CP (μ)(1 + ε)

so that CP (μ) ≥ (1 + ε)−1 ≥ 1 − ε. �

We have the following bounds on proximity between the ∇ui and unit vectors, essen-
tially proved in [25]:

Lemma 2.2. Under the assumptions of Theorem 1.1, there exist unit vectors ŵ1, .., ŵk ⊂
R

n such that

∫

|∇ui − ŵi|2dμ ≤ 9ε, i = 1, . . . k.

Moreover, if ε < (9k)−1, then dim(Span(ŵ1, .., ŵk)) = k.

In particular, this lemma implies that the functions ui are close to orthogonal affine 

functions.

Proof. The proof follows the arguments of [25], we include it for the sake of completeness.
First, let T be the optimal transport (or Brenier map) [11] sending the standard 

Gaussian measure γ onto μ, and define vi := ui◦T . According to the Caffarelli contraction 

theorem [12], ∇T is a symmetric, positive matrix satisfying ‖∇T‖op ≤ 1. We then have

∫

|∇vi|2dγ ≤
∫

|∇ui|2 ◦ Tdγ =
∫

|∇ui|2dμ

and
∫

|∇ui|2dμ ≤ (1 + ε)
∫

u2
i dμ = (1 + ε)

∫

v2
i dγ ≤ (1 + ε)

∫

|∇vi|2dγ.

Hence

0 ≤
∫

(|∇ui|2 ◦ T − |∇vi|2)dγ ≤ ε(1 + ε). (6)

Additionally, since (I −∇T )2 ≤ I −(∇T )2, we have
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∫

|∇ui ◦ T − ∇vi|2dγ =
∫

|(I −∇T )(∇ui ◦ T )|2dγ

≤
∫

|∇ui ◦ T |2dγ −
∫

|∇T (∇ui ◦ T )|2dγ

=
∫

(|∇ui|2 ◦ T − |∇vi|2)dγ ≤ ε(1 + ε). (7)

Note that 
∫

vidγ =
∫

uidμ = 0. Since the multivariate Hermite polynomials form an 

orthogonal basis for L2(γ), we may write

vi(x) = wi · x + zi(x),

where wi ∈ R
n and zi : R

n −→ R, satisfying 
∫

zidγ = 0 and 
∫

zixjdγ = 0 for j =
1, . . . , n. Using basic properties of Hermite polynomials,

1 + ε ≥
∫

|∇vi|2dγ = |wi|2 +
∫

|∇zi|2dγ ≥ 1 +
1
2

∫

|∇zi|2dγ.

The second inequality is a refinement of the Gaussian Poincaré inequality for functions 
orthogonal to the subspace spanned by constant and linear functions, combined with 

|wi|2 +
∫

z2
i dγ =

∫

v2
i dγ =

∫

u2
i dμ = 1. Hence,

∫

z2
i dγ ≤ 1

2

∫

|∇zi|2dγ ≤ ε.

In particular, 
∫

|∇vi − wi|2dγ ≤ 2ε and 1 − ε ≤ |wi|2 ≤ 1. Together with the previous 
estimates, we have for ŵi := wi/|wi|,

∫

|∇ui − ŵi|2dμ ≤ 3
(

∫

|∇ui ◦ T − ∇vi|2dγ +
∫

|∇vi − wi|2dγ + |wi − ŵi|2
)

≤ 9ε.

To conclude, suppose dim(Span(ŵ1, .., ŵk)) < k. Then by linear dependence, there exist 
real numbers a1, . . . , ak such that 

∑k
j=1 ajŵj = 0 and 

∑k
j=1 a2

j = 1. In particular, using 

this together with orthogonality of the ∇uj ’s and Cauchy-Schwarz, we have

1 ≤
k

∑

j=1

a2
j

∫

|∇uj |2dμ =
∫

∣

∣

∣

k
∑

j=1

aj(∇uj − ŵj)
∣

∣

∣

2

dμ

≤
∫ k

∑

j=1

|∇uj − ŵj |2dμ ≤ 9kε.

Hence, the last claim of the lemma is proved. �

The starting point to implement Stein’s method is the following approximate integra-
tion by parts formula for the measure μ and the approximate minimizers ui:
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Lemma 2.3. Let μ be a probability measure satisfying a Poincaré inequality with constant 

CP ≤ 1. For any function h ∈ H1(μ) and function u satisfying 
∫

udμ = 0, 
∫

u2dμ = 1
and 

∫

|∇u|2dμ ≤ 1 + ε, for some ε ≥ 0. We have

∣

∣

∣

∣

∫

uhdμ −
∫

∇u · ∇hdμ

∣

∣

∣

∣

≤
√

ε

(
∫

|∇h|2dμ

)1/2

.

In particular, this applies for ui and μ satisfying the assumptions of Theorem 1.1.

Proof. The proof of the lemma is a variant of the argument used in [23,24] to estab-
lish integration by parts formula mimicking the Stein identity for measures satisfying a 

Poincaré inequality.
For any h : R −→ R in the weighted Sobolev space H1(μ), we have

(∫

uhdμ

)2

≤ Varμ(h)
∫

u2dμ ≤ CP

∫

|∇h|2dμ.

Hence the original term, viewed as a function of h, is a continuous linear form in H1(μ)
endowed with the bilinear form (u, v) −→

∫

∇u · ∇v, which makes it a Hilbert space if 
we work modulo constants. Applying the Riesz representation theorem, there exists a 

function g such that

∫

uhdμ =
∫

∇h · ∇gdμ ∀h ∈ H1(μ);
∫

|∇g|2dμ ≤ CP .

In particular, note that 
∫

∇g · ∇udμ =
∫

u2dμ = 1.
Hence for any h ∈ H1(μ),

∫

(uh − ∇u · ∇h)dμ =
∫

∇h · (∇g − ∇u)dμ

≤
(∫

|∇g − ∇u|2dμ

)1/2 (∫

|∇h|2dμ

)1/2

.

Finally, we can expand the square and get

∫

|∇g − ∇u|2dμ ≤ CP − 2 + 1 + ε ≤ ε,

from which the claim follows easily. �

Toward completing the proof of Theorem 1.1, we shall henceforth assume without loss 
of generality that p =

∫

xdμ = 0.
Assume first that ε < 1/(36k). Let (ŵ1, .., ŵk) be as in Lemma 2.2, and consider any 

orthonormal family (e1, .., ek) such that Span(e1, .., ek) = Span(ŵ1, .., ŵk). Let (αij)i,j≤k

be real numbers such that ei =
∑

j≤k αijŵj . We have
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∑

j≤k

α2
ij ≤

∑

j≤k

α2
ij

∫

|∇uj |2dμ =
∫

∣

∣

∣

∑

j≤k

αij∇uj

∣

∣

∣

2

dμ

=
∫

∣

∣

∣
ei +

∑

j≤k

αij(∇uj − ŵj)
∣

∣

∣

2

dμ

≤ 2|ei|2 + 2
∫

∣

∣

∣

∑

j≤k

αij(∇uj − ŵj)
∣

∣

∣

2

dμ

≤ 2 + 2
∑

j≤k

α2
ij

∑

j≤k

∫

|∇uj − ŵj |2dμ

≤ 2 + 2
∑

j≤k

α2
ij(k9ε) ≤ 2 +

1
2

∑

j≤k

α2
ij .

Hence, we always have 
∑

j≤k α2
ij ≤ 4 for each i ≤ k.

After suitable change of coordinates, we may assume without loss of generality that 
the vectors (ei)i≤k coincide with the first k natural basis vectors of Rn. From now on, we 

write x = (y, z) where y is the orthogonal projection of x onto the vector space spanned 

by the (ei)i≤k, with yi = x · ei, and z its projection onto Span(e1, .., ek)⊥. Let μ̄ be 

the distribution of z when x is distributed according to μ, that is μ̄(dz) = e−W (z)dz

with W (z) = − log
∫

Span(e1,..,ek)
e−V (y,z)dy. As a consequence of the Prékopà-Leindler 

theorem, W inherits uniform convexity from V , that is Hess W ≥ In−k (see for example 

[8]).
Consider 1-Lipschitz f : R

n −→ R; note this ensures f is integrable with respect to 

both μ and γk ⊗ μ̄, where γk is the centered standard Gaussian measure on Rk. For any 

z, there exists a function h(·, z) : R
k −→ R

k satisfying the Poisson equation

f(y, z) −
∫

Rk

f(s, z)dγk(s) = y · h(y, z) − Tr(∇yh)(y, z). (8)

In fact, as pointed out by Barbour [5], as a consequence of the representation of 
the Ornstein-Uhlenbeck semigroup via convolution with a Gaussian kernel, a solution 

h = (h1, . . . , hk) has coordinates given by

hi(y, z) = −∂ei

∞
∫

0

∫

Rk

(

f(e−ty +
√

1 − e−2tw, z) − f(w, z)
)

dγk(w)dt

= −
∞

∫

0

e−t

√
1 − e−2t

∫

Rk

wif(e−ty +
√

1 − e−2tw, z)dγk(w)dt,

for i = 1, . . . , k, where the second identity follows from the Gaussian integration by parts 
formula.
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Hölder-type regularity estimates for solutions of this Poisson equation have recently 

been derived in [28,26]. For our purposes, we follow arguments of [18,29] to obtain an up-
per bound on the quantity 

∑k
i=1 |∇hi|2. Starting by taking derivatives, we may evaluate 

the Jacobian Dh : R
n −→ R

k×n with respect to coordinate system (y, z) as

Dh(y, z) = −
∞

∫

0

e−t

√
1 − e−2t

∫

Rk

w
(

Λ(t)∇f(e−ty +
√

1 − e−2tw, z)
)T

dγk(w)dt,

where Λ(t) is a diagonal matrix with diagonal entries Λjj(t) = e−t for 1 ≤ j ≤ k and 

Λjj(t) = 1 for k < j ≤ n. In particular, for any matrix M ∈ R
k×n, an application of 

Cauchy-Schwarz gives

|〈M, Dh(y, z)〉HS|

≤
∞

∫

0

e−t

√
1 − e−2t

∫

Rk

∣

∣

(

Λ(t)∇f(e−ty +
√

1 − e−2tw, z)
)

· (MT w)
∣

∣dγk(w)dt

≤
∞

∫

0

e−t

√
1 − e−2t

∫

Rk

∣

∣Λ(t)∇f(e−ty +
√

1 − e−2tw, z)
∣

∣

∣

∣MT w
∣

∣dγk(w)dt

≤
∞

∫

0

e−t

√
1 − e−2t

∫

Rk

∣

∣MT w
∣

∣dγk(w)dt =
π

2

∫

Rk

∣

∣MT w
∣

∣dγk(w),

where the third inequality used 
∣

∣Λ(t)∇f(e−ty +
√

1 − e−2tw, z)
∣

∣ ≤ 1 by the definition of 
Λ(t) and the 1-Lipschitz assumption on f . By convexity,

∫

Rk

∣

∣MT w
∣

∣dγk(w) ≤

⎛

⎝

∫

Rk

∣

∣MT w
∣

∣

2
dγk(w)

⎞

⎠

1/2

= ‖M‖HS.

So, taking M = Dh(y, z), we find that for all (y, z) ∈ R
n,

(

k
∑

i=1

|∇hi(y, z)|2
)1/2

= ‖Dh(y, z)‖HS ≤ π

2
. (9)

It follows that hi ∈ H1(μ), justifying the following manipulations:

∫

fdμ −
∫

fdγkdμ̄ =
∫

(

y · h(y, z) − Tr(∇yh)(y, z)
)

dμ

=
∑

i≤k

∫

(yihi − ei · ∇hi) dμ.
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Now, focusing on the ith term in the sum, we expand

∫

(yihi − ei · ∇hi) dμ =
∑

j≤k

αij

∫

(∇uj − ŵj) · ∇hidμ

+
∑

j≤k

αij

∫

(ŵj · x − uj)hidμ +
∑

j≤k

αij

∫

(ujhi − ∇uj · ∇hi) dμ.

We bound each of the three terms separately. By Cauchy-Schwarz and Lemma 2.2, we 

have

⎛

⎝

∑

j≤k

αij

∫

(∇uj − ŵj) · ∇hidμ

⎞

⎠

2

≤

⎛

⎝

∑

j≤k

α2
ij

⎞

⎠

⎛

⎝

∑

j≤k

(∫

(∇uj − ŵj) · ∇hidμ

)2
⎞

⎠ ≤ 36kε

∫

|∇hi|2dμ.

Similarly, with additional help from the Poincaré inequality for μ and the assumption 

that 
∫

xdμ =
∫

uidμ = 0,

⎛

⎝

∑

j≤k

αij

∫

(ŵj · x − uj)hidμ

⎞

⎠

2

≤

⎛

⎝

∑

j≤k

α2
ij

⎞

⎠

⎛

⎝

∑

j≤k

(∫

(ŵj · x − uj)hidμ

)2
⎞

⎠ ≤ 36kε

∫

|∇hi|2dμ.

Finally, by Lemma 2.3,

⎛

⎝

∑

j≤k

αij

∫

(ujhi − ∇uj · ∇hi) dμ

⎞

⎠

2

≤

⎛

⎝

∑

j≤k

α2
ij

⎞

⎠

⎛

⎝

∑

j≤k

(∫

(ujhi − ∇uj · ∇hi) dμ

)2
⎞

⎠ ≤ 4kε

∫

|∇hi|2dμ.

Combining the above estimates with the 
1-
2 norm inequality ‖ · ‖�1
≤

√
k‖ · ‖�2

on Rk

and (9), we obtain

∑

i≤k

∫

(yihi − ei · ∇hi) dμ ≤ 14
√

kε
∑

i≤k

(∫

|∇hi|2dμ

)1/2
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≤ k 14
√

ε

⎛

⎝

∑

i≤k

∫

|∇hi|2dμ

⎞

⎠

1/2

≤ 7π k
√

ε.

Recalling the Kantorovitch dual formulation of W1 [40], we have

W1(μ, γk ⊗ μ̄) = sup
f :‖f‖Lip≤1

∫

fdμ −
∫

fdγkdμ̄ ≤ 7π k
√

ε.

To finish the proof, we only need to consider ε ≥ (36k)−1. In this case, we bypass 
Lemma 2.2 and take (e1, . . . , ek) to be any orthonormal family in Rn, and define μ̄ in 

terms of this family, same as above. By the Poincaré inequality, Varμ(x · ei) ≤ 1 for each 

i ≤ k, so it follows that

W1(μ, γk ⊗ μ̄) ≤ W2(μ, γk ⊗ μ̄) ≤
√

2k < 7π k
√

ε,

where the last inequality holds under the assumption that ε ≥ (36k)−1.

2.2. Proof of Theorem 1.5

The proof is essentially the same as for Theorem 1.1, except that our extra assump-
tions make Lemma 2.2 unnecessary, which allows us to drop the convexity assumption. 
Without loss of generality, we may assume μ has its barycenter at the origin. We then 

take ui = x·ei
√

Varµ(x·ei)
in Lemma 2.3 to get

∫

xih(x) − ∂ih(x)dμ ≤
√

ε

(∫

|∇h|2dμ

)1/2

for any real-valued smooth test function h. We can then introduce the same function 

h associated to a 1-Lipschitz function f via the Poisson equation (8), and the proof 
continues in the same way as the proof of Theorem 1.1, but is simpler since we directly 

conclude:

∫

fdμ −
∫

fdγkdμ̄ =
∫

(

y · h(y, z) − Tr(∇yh)(y, z)
)

dμ

=
∑

i≤k

∫

(yihi(y, z) − ∂ihi(y, z))dμ ≤ π

2

√
kε,

where the final inequality made use of (9) and the 
1-
2 norm inequality ‖ ·‖�1
≤

√
k‖ ·‖�2

on Rk. Note that bypassing Lemma 2.2 gives improved dependence on k.
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3. Stability for the logarithmic Sobolev inequality

3.1. Proof of Theorem 1.6

The proof of Theorem 1.6 follows the strategy for that of Theorem 1.1, relying on 

an approximate integration by parts identity for extremizers of the LSI, combined with 

Stein’s method. However, the details are sufficiently different that the same argument 
can not be applied mutatis mutandis. The following sequence of lemmas provides the 

necessary ingredients for the proof.
The following approximate Euler-Lagrange equation for the LSI is the starting point 

of the proof. It is used as the counterpart of Lemma 2.3.

Lemma 3.1. Assume μ satisfies the LSI (1), and let u : R
n −→ R satisfy (2) for some 

ε ≥ 0. For any smooth function h we have

∣

∣

∣

∣

∫

∇h · ∇udμ − 1
2

∫

hu log(u2/α)dμ

∣

∣

∣

∣

≤
√

ε

(∫

|∇u|2dμ

)1/2 (∫

|∇h|2dμ − 1
2

∫

h2 log(u2/α)dμ

)1/2

,

where α :=
∫

u2dμ.

Remark 3.1. The quantity 
∫

|∇h|2dμ− 1
2

∫

h2 log(u2/α)dμ is nonnegative. Indeed, by the 

LSI for μ, this quantity is at least

1
2

Entμ(h2) − 1
2

∫

h2 log(u2/α)dμ =
1
2

∫

h2 log
(

h2/
∫

h2dμ

u2/
∫

u2dμ

)

dμ,

which is proportional to a relative entropy, and therefore nonnegative.

Remark 3.2. We emphasize that Lemma 3.1 does not make any convexity assumptions 
on μ, so may be of independent interest for other applications.

Proof. By convexity of the map ϕ �−→ Entμ(ϕ) on nonnegative functions, it holds for 
t ≥ 0 that

Entμ(ϕ + tψ) ≥ Entμ(ϕ) + t

∫

ψ log
(

ϕ
∫

ϕdμ

)

dμ (10)

provided ϕ ≥ 0 and ϕ + tψ ≥ 0.
Now, we observe

2
∫

|∇u|2dμ + 4t

∫

∇u · ∇hdμ + 2t2

∫

|∇h|2dμ ≥ Entμ((u + th)2)
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≥ Entμ(u2) + t

∫

(2uh + th2) log
(

u2/α
)

dμ

≥ 2(1 − ε)
∫

|∇u|2dμ + t

∫

(2uh + th2) log
(

u2/α
)

dμ,

where the first inequality is the LSI for μ applied to the function u + th, the second 

inequality is (10), and the third inequality is (2). Rearranging and dividing by 2t gives

ε t−1

∫

|∇u|2dμ + t

(∫

|∇h|2dμ − 1
2

∫

h2 log
(

u2/α
)

dμ

)

≥
∫

uh log
(

u2/α
)

dμ − 2
∫

∇u · ∇hdμ.

Optimizing over t > 0 gives

1
2

∫

uh log
(

u2/α
)

dμ −
∫

∇u · ∇hdμ

≤
√

ε

(∫

|∇u|2dμ

)1/2 (∫

|∇h|2dμ − 1
2

∫

h2 log(u2/α)dμ

)1/2

.

We may now replace h with −h to obtain the desired inequality. �

We now state the Aida-Shigekawa perturbation theorem for the LSI, which will be 

needed in the sequel. It will allow us to estimate certain terms that involve an extra 

weight u2, using the fact that log u is Lipschitz. The following is a consequence of [1, 
Theorem 3.4]:

Theorem 3.2. Let μ satisfy (1), and take μF to be the probability measure proportional 

to eF μ, where F is λ-Lipschitz. There exists a λ̃ > 0, depending only on λ, for which

EntμF
(f2) ≤ 2λ̃

∫

|∇f |2dμF .

In particular, μF satisfies a Poincaré inequality with constant CP (λ) ≤ λ̃.

Together with [27, Theorem 1], this yields the following deficit estimate for the Gaus-
sian LSI:

Lemma 3.3. Let the notation of Theorem 3.2 prevail. If γ is the standard Gaussian mea-

sure on R
n, and dμF = v2dγ is a centered probability measure, there is a constant 

c(λ) < 1 for which

Entγ(v2) ≤ 2c(λ)
∫

|∇v|2dγ.
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The following specializes Lemma 3.1 under the hypothesis that log u is λ-Lipschitz.

Lemma 3.4. Let u, λ, ε, and μ satisfy the assumptions of Theorem 1.6. If g : R
n → R is 

Lipschitz, satisfying 
∫

gdμ = 0, then

∫

∇g · ∇ log(u)dμ −
∫

g|∇ log u|2dμ −
∫

g log u dμ ≤ ‖g‖LipC(λ)
√

ε,

where C(λ) is a constant depending only on λ.

Proof. We may assume without loss of generality that ‖g‖Lip ≤ 1.
Apply Lemma 3.1 to the test function h = g/u. Using the fact that

∫

|∇u|2dμ =
∫

|∇ log u|2u2dμ ≤ λ2,

this gives

∫

∇g · ∇ log(u)dμ −
∫

g|∇ log u|2dμ −
∫

g log u dμ

≤
√

ε

(∫

|∇u|2dμ

)1/2 (

2
∫

|∇g|2u−2dμ + 2
∫

g2|∇ log u|2dμ

− 1
2

∫

(g/u)2 log(u2)dμ

)1/2

≤
√

ελ

(

2
∫

u−2dμ + 2λ2

∫

g2dμ − 1
2

∫

(g/u)2 log(u2)dμ

)1/2

. (11)

Now, we claim that for any smooth enough h, we have

−1
2

∫

h2 log u2dμ ≤
∫

|∇h|2dμ + 2λ2

∫

h2dμ. (12)

From the classical entropy inequality, we have

−
∫

h2 log u2dμ ≤ Entμ(h2) +
∫

h2dμ × log
∫

e−2 log udμ

≤ 2
∫

|∇h|2dμ +
∫

h2dμ × log
∫

e−2 log udμ.

Now, we apply the concentration inequality (4). In particular, since log u is assumed to 

be λ-Lipschitz

1 =
∫

u2dμ ≤ exp
(

2
∫

log udμ + 2λ2

)

=⇒ −
∫

log u dμ ≤ λ2.
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On the other hand, using this together with (4) gives, for any t > 0,

∫

u−tdμ =
∫

e−t log udμ ≤ exp
(

−t

∫

log u dμ + (tλ)2/2
)

≤ etλ2(1+t/2), (13)

which leads to (12) by taking t = 2.
Applying these estimates to (11) gives

∫

∇g · ∇ log(u)dμ −
∫

g|∇ log u|2dμ −
∫

g log u dμ

≤
√

ελ

(

2e4λ2

+ 2λ2

∫

g2dμ +
∫

|∇(g/u)|2dμ + 2λ2

∫

g2u−2dμ

)1/2

≤
√

ελ

(

4e4λ2

+ 2λ2 + 4λ2

∫

g2u−2dμ

)1/2

,

where the last line made use of the Poincaré inequality 
∫

g2dμ ≤
∫

|∇g|2dμ ≤ 1. Now, 
since log u is λ-Lipschitz, the measure u−2μ satisfies a Poincaré inequality with constant 
CP (λ). Hence,

∫

g2u−2dμ ≤ CP (λ)
∫

|∇g|2u−2dμ +
(∫

gu−2dμ

)2 (∫

u−2dμ

)−1

≤ CP (λ)e4λ2

+
(

∫

gu−2dμ

)2

.

By Cauchy-Schwarz, the Poincaré inequality for μ and (13), we have

(∫

gu−2dμ

)2

≤
∫

g2dμ ×
∫

u−4dμ ≤ e12λ2

,

which completes the proof. �

The next lemma quantifies the proximity between log u and an affine function. It 
is used as the counterpart to Lemma 2.2. This step is more complicated than for the 

Poincaré inequality, since in this case stability for the Gaussian functional inequality is 
a much more difficult problem, as we cannot simply use a spectral decomposition of the 

function.

Lemma 3.5. Let u, λ, ε, and μ be as in Theorem 1.6. There exists p ∈ R
n and constants 

C1(λ) and C2(λ), depending only on λ, such that

∫

|∇ log u − p/2|2u2dμ ≤ C1(λ)ε
∫

|∇u|2dμ; (14)

Varu2μ(log u − p · x/2) ≤ C2(λ)ε
∫

|∇u|2dμ. (15)
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Proof. Let T be the optimal transport map sending the standard Gaussian measure onto 

μ and define

p :=
∫

ξu(T (ξ))2dγ(ξ) = 2
∫

u(T (ξ))∇T (ξ)∇u(T (ξ))dγ(ξ), (16)

where the second identity follows from Gaussian integration by parts. The Caffarelli 
contraction theorem states that T is 1-Lipschitz. Define v(x) = u(T (x +p))e−p·x/2−|p|2/4. 
We have

∫

v2dγ =
∫

u(T (x + p))2e−|x+p|2/2(2π)−n/2dx =
∫

u(T (ξ))2dγ(ξ) =
∫

u2dμ = 1;

∫

xv2dγ =
∫

xu(T (x + p))2e−|x+p|2/2(2π)−n/2dx =
∫

(ξ − p)u(T (ξ))2dγ(ξ) = 0.

Hence v2dγ is a centered probability measure. Moreover, since log u(T (x + p)) is λ-
Lipschitz, the measure v2dγ satisfies a Poincaré inequality with a constant CP (λ) by 

Theorem 3.2.
We have Entγ(v2) = Entμ(u2) − |p|2/2 and, using the fact that T is 1-Lipschitz and 

the identity (16),

∫

|∇v|2dγ =
∫

|∇T (x + p)(∇ log u)(T (x + p)) − p/2|2v2dγ ≤
∫

|∇u|2dμ − |p|2/4.

Hence the deficit in the Gaussian LSI for the probability measure v2dγ is smaller than 

2ε 
∫

|∇u|2dμ. By Lemma 3.3, this ensures that

∫

|∇(log u ◦ T ) − p/2|2(u2 ◦ T )dγ =
∫

|∇v|2dγ ≤ C0(λ)ε
∫

|∇u|2dμ. (17)

In a different direction, we use the Gaussian LSI to observe that

(1 − ε)
∫

|∇u|2dμ ≤ 1
2

Entμ(u2)

=
1
2

(

Entγ(v2) + |p|2/2
)

≤
(∫

|∇v|2dγ + |p|2/4
)

. (18)

Now, the proof continues along similar lines to that of Lemma 2.2. First, we bound

1
2

∫

|∇ log u − p/2|2u2dμ

≤
∫

|∇ log(u ◦ T ) − p/2|2(u2 ◦ T )dγ +
∫

|(∇ log u) ◦ T − ∇ log(u ◦ T )|2(u2 ◦ T )dγ.

The first term on the RHS is controlled by (17). The second term is bounded as
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∫

|(∇ log u) ◦ T − ∇ log(u ◦ T )|2(u2 ◦ T )dγ

=
∫

|(I − ∇T )(∇ log u) ◦ T |2(u2 ◦ T )dγ

≤
∫

|(∇ log u) ◦ T |2(u2 ◦ T )dγ −
∫

|∇T (∇ log u) ◦ T |2(u2 ◦ T )dγ (19)

=
∫

|∇u|2dμ −
(∫

|∇v|2dγ + |p|2/4
)

(20)

≤ ε

∫

|∇u|2dμ, (21)

where (19) follows since (I − ∇T )2 ≤ I − (∇T )2, (20) follows by definition of v, and 

(21) is due to (18). This establishes (14). Since log u is Lipschitz, the measure u2μ

satisfies a Poincaré inequality with constant depending only on λ by Theorem 3.2, so 

that Varu2μ(log u − p · x/2) ≤ C2(λ)ε as desired. �

Combining these estimates leads to the following approximate integration by parts 
formula, which is the crucial estimate we need:

Lemma 3.6. Let u, λ, ε, and μ satisfy the assumptions of Theorem 1.6, and let p ∈ R
n

be as in Lemma 3.5. For any Lipschitz function g, we have

∫

(g × (x − 〈x〉μ) · p − ∇g · p) dμ ≤ ‖g‖LipC(λ)
√

ε, (22)

where C(λ) is a constant depending only on λ, and 〈x〉μ :=
∫

xdμ.

Remark 3.3. To modify Theorem 1.6 for measures utμ along the lines of Remark 1.3, one 

should modify Lemma 3.4 by repeating the proof mutatis mutandis, except one should 

consider the test function h = gut−1, rather than h = g/u. The following proof can then 

be suitably modified to yield an approximate integration by parts formula (22) for the 

measure utμ. Lemma 3.5 does not need to be modified.

Proof. Since the statement to prove is invariant to adding a constant to g, we assume 

without loss of generality that 
∫

gdμ = 0, and that ‖g‖Lip ≤ 1. Throughout, we let C(λ)
denote a constant depending only on λ which may change line to line.

Letting β =
∫

(log u − x · p/2)dμ, we have by Cauchy-Schwarz

1
2

∫

gx · pdμ −
∫

g log u dμ =
∫

g(β − log u + x · p/2)dμ

≤
(

∫

g2u−2dμ

)1/2

Varu2μ

(

log u − x · p/2
)1/2

≤ C(λ)
√

ε,
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where the last line follows from (15), the fact that 
∫

|∇u|2dμ =
∫

|∇ log u|2u2dμ ≤
λ2, and the estimate 

∫

g2u−2dμ ≤ C(λ) established in the final steps of the proof of 
Lemma 3.4.

Next, we write

∫

∇g · ∇ log u du −
∫

g|∇ log u|2dμ − 1
2

∫

∇g · pdμ +
1
2

∫

g p · ∇ log udμ

=
∫

∇g · (∇ log u − p/2)dμ +
∫

g∇ log u · (p/2 − ∇ log u)dμ

≤
(

(∫

|∇g|2u−2dμ

)1/2

+
(∫

g2|∇u|2u−2dμ

)1/2
)

(∫

|∇ log u − p/2|2u2dμ

)1/2

≤
(

(∫

u−2dμ

)1/2

+ λ

(∫

g2u−2dμ

)1/2
)

(∫

|∇ log u − p/2|2u2dμ

)1/2

≤ C(λ)
√

ε,

where the final inequality follows similarly to before, except using (14).
Summing the estimates and applying Lemma 3.4, we have

∫

(

g × (x − 〈x〉μ) · p − ∇g · p
)

dμ +
∫

g p · ∇ log udμ ≤ C(λ)
√

ε,

where the 〈x〉μ was inserted using the assumption that 
∫

gdμ = 0. Thus, it only remains 
to show that the error term is small. To this end, we again use 

∫

gdμ = 0 to write

∣

∣

∣

∣

∫

g p · ∇ log udμ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

g p · (∇ log u − p/2)dμ

∣

∣

∣

∣

≤ |p|
(∫

g2u−2dμ

)1/2 (∫

|∇ log u − p/2|2u2dμ

)1/2

≤ C(λ)
√

ε,

which follows from similar estimates as above, plus the fact that |p|2 ≤ 4 
∫

|∇u|2dμ =
4 

∫

|∇ log u|u2dμ ≤ 4λ2, where the first inequality was observed in the proof of 
Lemma 3.5. �

Combining this last lemma and Stein’s method, we now prove Theorem 1.6.

Proof of Theorem 1.6. Since the statement to prove is translation invariant, we assume 
∫

xdμ = 0. We assume first that ε ≤ 1/(4C1(λ)), where C1(λ) is as defined in Lemma 3.5. 
The same lemma ensures existence of p ∈ R

n such that

∫

|∇ log u − p/2|2u2dμ ≤ C1(λ)ε
∫

|∇u|2dμ.
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Thus, using the assumption that ε ≤ 1/(4C1(λ)), we apply the elementary inequality 

|A − B|2 ≥ 1
2 |A|2 − |B|2 to the above to conclude

|p|2 ≥ (2 − ε 4C1(λ))
∫

|∇u|2dμ ≥
∫

|∇u|2dμ.

Henceforth, we let C(λ) denote a constant depending on λ, which may change from line 

to line. The vector p above is the same as in Lemma 3.6, so we apply it and combine 

with the above estimate on |p| to find for e := p/|p|,
∫

(g x · e − ∇g · e)dμ ≤ ‖g‖LipC(λ)
√

ε

(∫

|∇u|2dμ

)−1/2

,

holding for any Lipschitz g : R
n −→ R.

Now, we implement Stein’s method following the proof of Theorem 1.1. In particular, 
we begin by writing x = (y, z) where y is the orthogonal projection of x onto e, and z its 
projection onto e⊥. Consider 1-Lipschitz f : R

n −→ R. For any z ∈ R
n−1, there exists a 

function g(·, z) : R −→ R satisfying

f(y, z) −
∫

Span(e)

f(s, z)dγ0,e(s) = yg(y, z) − ∂yg(y, z),

where γ0,e is the centered standard Gaussian measure on Span(e).
The function g is measurable and satisfies ‖g‖Lip ≤ π/2, as already shown in (9). 

Hence, we integrate with respect to μ to conclude

∫

fdμ −
∫

fdγ0,edμ̄ =
∫

(

yg(y, z) − ∂yg(y, z)
)

dμ

=
∫

(g × (x · e) − e · ∇g) dμ ≤ C(λ)
√

ε

(∫

|∇u|2dμ

)−1/2

.

Since f was an arbitrary 1-Lipschitz function, the theorem follows from the Kantorovich 

dual formulation of W1, provided ε ≤ 1/(4C1(λ)).
Now, by the triangle inequality for W1 and simple variance bounds, it is easy to 

see that W1(μ, γb,σ ⊗ μ̄) ≤ 2 for any σ ∈ S
n−1 and b = σ

∫

x · σdμ. Hence, the W1

estimate (5) can not become active until ε ≤ 4 
(∫

|∇u|2dμ
)

/C(λ)2 ≤ 4λ2/C(λ)2. By 

suitable modification of C(λ), we may assume C(λ)2 ≥ 16λ2C1(λ), so that the claim 

of the theorem is automatically satisfied whenever ε > 1/(4C1(λ)). This completes the 

proof. �

3.2. Proof of Theorem 1.7

Proof of Theorem 1.7. By suitable modification, we can assume without loss of general-
ity that 

∫

Fdμ = 0 and C(L) ≥ 2
√

2, so that we may restrict attention to the case where 
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ε ≤ 1/2 (in the complementary case, the W1 estimate will be automatically satisfied for 
similar reasons as argued in the final steps of the proof of Theorem 1.6). The Herbst 
argument establishes (4) by considering the function

H(λ) = log
(∫

eλF dμ

)

,

and using the LSI to establish the differential inequality

d

dλ

(

H(λ)
λ

)

=
H ′(λ)

λ
− H(λ)

λ2
≤ L2

2
.

This is then integrated with respect to λ on (0, 1) to establish the inequality (4). So, by 

Markov’s inequality,

∣

∣

∣

∣

{

s ∈ (0, 1) :
L2

2
− d

dλ

(

H(λ)
λ

)∣

∣

∣

∣

λ=s

≥ εL2

2

}∣

∣

∣

∣

≤ 2
εL2

(

L2

2
− log

(∫

eF dμ

))

≤ 1
2

,

where the last inequality follows by our hypothesis on F . Therefore, there exists λ0 ∈
[1/2, 1] for which

∫

eλ0F log(eλ0F )dμ
∫

eλ0F dμ
− log

(∫

eλ0F dμ

)

= λ0H ′(λ0) − H(λ0) ≥ (1 − ε)λ2
0

L2

2
.

Multiplying through by 
∫

eλ0F dμ, we have

Entμ(eλ0F ) ≥ (1 − ε)λ2
0

L2

2

∫

eλ0F dμ ≥ 2(1 − ε)
∫

∣

∣

∣
∇eλ0F/2

∣

∣

∣

2

dμ. (23)

Since λ0 ≤ 1, we have that log eλ0F/2 is L/2-Lipschitz. As a consequence, Theorem 1.6
applies to yield the estimate

W1(μ, γb,σ ⊗ μ̄) ≤ C(L)
(∫

∣

∣

∣
∇eλ0F/2

∣

∣

∣

2

dμ

)−1/2 √
ε, (24)

for probability measures γb,σ, μ̄ as defined in the statement of the theorem.
By the LSI for μ together with (23), we have

∫

∣

∣

∣
∇eλ0F/2

∣

∣

∣

2

dμ ≥ (1 − ε)λ2
0

L2

4

∫

eλ0F dμ ≥ (1 − ε)
L2

16

∫

eλ0F dμ.

Using the fact that d
dλ

(

λL2

2 − H(λ)
λ

)

≥ 0, we have L2

2 − H(1) ≥ λ0
L2

2 − H(λ0)
λ0

. Rear-
ranging yields, for ε < 1,

∫

eλ0F dμ ≥ e−λ0(1−λ0)L2/2

(∫

eF dμ

)λ0

≥ e−λ0(1−λ0)L2/2
(

eL2/2(1−ε/2)
)λ0

≥ eL2/8.
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Therefore, 
∫ ∣

∣∇eλ0F/2
∣

∣

2
dμ ≥ L2

32 eL2/8, so that this term can be absorbed into the con-
stant C(L) in (24), completing the proof. �

We conclude with a stability estimate for another formulation of Gaussian concen-
tration. The Markov inequality applied to (4) shows that any 1-Lipschitz F satisfies the 

Gaussian concentration inequality

μ

({

F ≥ t +
∫

Fdμ

})

≤ e−t2/2, t ≥ 0.

Unlike (4), the inequality here is actually strict, and this form of concentration inequality 

is actually strictly weaker. A simple corollary of Theorem 1.7 is the following stability 

version of this result.

Corollary 3.7. Let μ be as in Theorem 1.6, and consider 1-Lipschitz F . If

μ

({

F ≥ t +
∫

Fdμ

})

≥ exp
(

−(1 + ε/2)
t2

2

)

for some t > 0 and ε ≥ 0, then μ satisfies (5) for L = t.

However, the classical concentration bound μ ({F ≥ t +
∫

Fdμ}) ≤ e−t2/2 can be 

sharpened into a bound of the form μ ({F ≥ t +
∫

Fdμ}) ≤ Ce−t2/2/t, using for example 

the Bakry-Ledoux isoperimetric inequality [4] or the Caffarelli contraction theorem and 

refined concentration bounds for the Gaussian measure. Because the dependence of C
on t is not explicit, it may be that the above Corollary is vacuous, in that taking ε

small enough relative to C(t) (to activate the W1 estimate (5)) always makes the above 

lower bound greater than the improved upper bound. As such, it is not clear if this 
statement is of any interest, but we include it because the question of stability for this 
way of encoding Gaussian concentration for uniformly log-concave measures seemed like 

a natural question the reader may wonder about after reading this work.

Proof. We may assume that 
∫

Fdμ = 0. By the hypothesis and the Markov inequality, 
we have

exp
(

−(1 + ε/2)
t2

2

)

≤ μ ({F ≥ t}) ≤ e−t2

∫

etF dμ.

Multiplying through by exp(t2) gives

∫

etF dμ ≥ exp
(

t2

2
(1 − ε/2)

)

.

Hence, Theorem 1.7 applies to the t-Lipschitz function tF . �
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