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Abstract. We further develop the relationship between A-numbers and
discrete curvatures to provide a new proof that under weak density as-
sumptions, finiteness of the pointwise discrete curvature curvy,(x,r) at
p-a.e. x € R™ implies that p is C* n-rectifiable.
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1. Introduction. In 1990, Peter Jones introduced the S-numbers as a quantita-
tive tool to provide control of the length of a rectifiable curve and to prove the
analyst’s traveling salesman theorem [11] in the plane. Kate Okikiolu extended
the result to one-dimensional objects in R™ [22]. In order to study the regular-
ity of Ahlfors regular sets and measures of higher dimensions [5,6], David and
Semmes generalized the notion of S-numbers, see (2.2). This was the begin-
ning of quantitative geometric measure theory and has led to lots of activity
around characterizing uniformly rectifiable measures and their connections to
the boundedness of a certain class of singular integral operators.

More recently, rectifiable sets and measures have been studied using the
quantitative techniques previously used for uniformly rectifiable measures. For
instance, G-numbers can characterize rectifiability of measures, amongst the
class of all measures with various density and mass bounds. See, for instance,
(2,3,7,23,26].

Several other geometric quantities have also proven to be useful in quan-
tifying the regularity of sets and measures. In this paper, we wish to explore
how Menger-type curvatures, see Definitions 2.6 and 2.8, yield information
about C1® n-rectifiability, see Definition 2.3, of measures. In 1995, Melnikov
discovered an identity for the (1-dimensional or classical) Menger curvature
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[19] which, in the complex plane, greatly simplified the existing proofs relating
rectifiability to the L2-boundedness of the Cauchy integral operator [18,20].
The dream was that a notion of curvature, and similar identity, could be found
in higher dimensions to produce simpler proofs demonstrating the equivalence
of uniform rectifiability to the L2-boundedness of singular integral operators.
Alas, in 1999, Farag showed that in higher-dimensions no such identity could
exist [8]. Nonetheless, geometric arguments made with non-trivial adaptations
from [13] have since been used to characterize uniform rectifiability in all di-
mensions and codimensions in terms of Menger-type curvatures [14,15]. A suf-
ficient condition for rectifiability of sets in terms of higher dimensional Menger-
type curvatures appears in [21] and was extended to several characterizations
of rectifiable measures under suitable density conditions [10].

Menger curvatures have also been used to quantify higher regularity (in a
topological sense) of surfaces, see, for instance, [4,25]. Of particular relevance
in our context, [12] showed that finiteness of curv(}, , see Definition 2.8, is a
sufficient condition for C® n-rectifiability of measures. A formulation of the
theorem is!

Theorem 1.1. Let pu be a Radon measure on R™, with 0 < O%(u, x) < O™*(u,x)
< oo for p-a.e. x € R™, and let 1 <p < oo, 0 < < 1. If for p-a.e. x € R™,

curvy, (7,1) < oo, (1.1)

then p is C% n-rectifiable.

The goal of this article is to prove that for a Radon measure p satisfying
relaxed density assumptions and for any a € [0,1) if the pointwise Menger
curvature with p = 2, see Definition 2.8, is finite at u-a.e. x, then p is C1®
n-rectifiable. More precisely,

Theorem I. Let 1 be a Radon measure on R™, with 0 < ©™*(u,z) < oo for
p-a.e. x € R™ and let a € [0,1). If for p-a.e. x € R™,

curvy, o (z, 1) < oo, (1.2)

then u is CH n-rectifiable.

The o = 0 case in Theorem I appears in [10]. The case a > 0 is an
improvement of a special case of [12] where the lower density assumption is
relaxed.

A rough sketch of the proof is as follows: the condition (1.2) is shown to
imply “flatness” of the support of u in terms of Jones’ square function, and
consequently (pieces of) the support of u can be parametrized by Lipschitz

IThe familiar reader may be aware that there are two additional parameters in the theorem
of [12]. One such parameter is the ability to choose from a small family of functions to replace
the hmin in the integrand that defines curvy;,,. Such choices have previously been shown to
be comparable to one another, see [14-16] or [12, 8.6-8.8]. The second such parameter was
originally denoted by I. The | = n + 2 case is written here. Since any other choice of [ is a
stronger assumption (changing the parameter [ is equivalent to replacing an LP bound on
some number of components of the integrand with an L° bound), we chose to remove this
for readability.
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graphs (see [21, Theorem 5.4]) when o = 0 or C1:® images (see [9, Theorem IT])
when a > 0.

On the other hand, the original proof provided by Kolasiiski had two major
parts. First, under the additional assumption that p is Lipschitz n-rectifiable,
Kolasiriski showed that the condition (1.1) forced additional flatness on the
Lipschitz functions that cover the support of p, which consequently implied
better regularity on each such function (see [24, Lemma A.1]). Second, it re-
mained to show that (1.1) implies Lipschitz n-rectifiability of p. This was done
by appealing to a characterization of rectifiability from [1, § 2.8 Theorem 5]
which roughly says that if the approximate tangent cone (in the sense of Fed-
erer) of y is contained in an n-plane at almost every point, then p is Lipschitz
n-rectifiable.

Remark 1.2. Note that Theorem I requires 0 < ©™*(u, x) for p-a.e. x, whereas
Theorem 1.1 requires the stronger assumption that 0 < % (u,x) for p-a.e. x.
The stronger density assumption in Theorem 1.1 allows one to apply Theo-
rem 3.2. Then Remark 3.3 and Proposition 3.4 provide a direct proof that

1
d
/ﬁg(x,r)Q—T <oo forzeR™
r
0

when working under the hypotheses of Theorem 1.1. This provides an alterna-
tive proof of what we previously called the second major part of the original
proof of Theorem 1.1.

The question of whether the proof of Theorem I when o = 0 can be com-
pleted by appealing to [2] after controlling Jones’ function as above is an
interesting one. Presently, the authors do not know how to do this without
additionally assuming 0 < O%(u, x) for p-almost every x.

Another difference between the two theorems is that Theorem I is stated
only when p = 2. Since increasing p only makes condition (1.1) harder to
satisfy, the results in Theorem 1.1 are not sharp in terms of the parameter p. We
expect that varying the parameter p would lead to results about rectifiability
in the sense of Besov spaces, which is beyond the scope of this article.

The proof of Theorem I is divided into two parts. First, we prove the claim
for a measure p which is n-Ahlfors upper regular on R and with positive
lower density. Then we use standard techniques to reduce the general case to
the previous one.

2. Notation and background. We begin by stating some definitions and nota-
tion.

Definition 2.1. Let 0 < s < co and let p be a measure on R™. The upper and
lower s-densities of p at  are defined by
B
@8’*(,&, ,CE) _ limsup ,LL( (I7 T)) ,
r—0 r

o5 (p,z) = limiglf M
r— 7
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If they agree, their common value is called the s-density of p at  and denoted
by

O (,2) = O (. x) = O% (1, 1), (2.1)

Definition 2.2 (8,-numbers). Given z € R™, r > 0, p € (1,00), an integer
0 <n <m, and a Borel measure p on R™, define

s = i [ () | (22)

=

rn
B(z,r)

where the infimum is taken over all n-planes L.

When we talk about rectifiability and higher-order rectifiability, we mean
what Federer would call “countably n-rectifiable”.

Definition 2.3. A measure p on R™ is said to be (Lipschitz) n-rectifiable if
there exist countably many Lipschitz maps f;: R™ — R" such that

1 <Rm \ Uﬁ-(R”)) =0. (2.3)

A measure p on R™ is C1'® n-rectifiable if there exist countably many C'1
maps f;: R” — R™ such that (2.3) holds.

In [9], a sufficient condition for C** n-rectifiability in terms of f-numbers
is provided.

Theorem 2.4 [9]. Let p be a Radon measure on R™ such that O7F (p,x) < oo
and O™*(u,z) > 0 for p-almost every x € R™, and a € (0,1). Moreover,
suppose that for p-almost every x € R™,

1
B (xz,1)? dr
J5 o (x) = /% <. (2.4)
0

Then p is CH% n-rectifiable.
When o = 1, if we replace r in the left hand side of (2.4) by rn(r), where
n(r)? satisfies the Dini condition, then we obtain that u is C? n-rectifiable.

Remark 2.5. We say that a function w satisfies the Dini condition if

fol @dr < o0. A possible choice for n in Theorem 2.4 is n(r) =

for v > %

1
log(1/r)™

Definition 2.6 (Classical Menger curvature). Given three points z,y,z € R™,
the (classical) Menger curvature is defined to be the reciprocal of the circum-
radius of x,y, z. That is,

o
R(z,y,z2)’

where R(z,y, z) is the radius of the unique circle passing through z,y, z.

c(x,y,2) =
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In order to work with higher dimensional Menger curvatures, we introduce
some notation for simplices in R™.

Definition 2.7 (Simplices). Given points {xq, ...,z } CR™, A(xq,...,2,) de-
notes the convex hull of {xq, ..., z,}. In particular, if {zq,...,2z,} is not con-
tained in any (n—1)-dimensional plane, then A(x, ..., x,) is an n-dimensional
simplex with corners {zo, ..., z,}. Moreover, we denote by aff{xo, ..., x,} the
smallest affine subspace containing {xo,...,x,}. That is aff{zg,...,z,} =
xo + span{z, — xq, ..., &, — To}. Then, we define

hmin(l'O, . ,.I‘n) = HlZHl diSt(J}i, aff{a:o, ey L1, J}H_l, ey .I‘n})

to be the minimum height of a vertex over the plane spanned by the opposing
face. If A = A(xyg,...,zy), we occasionally abuse notation and write hpyin(A)
in place of hpin(zo,...,2n). If A as before is an n-simplex, it is additionally
called an (n, p)-simplex if

hmin(ﬂl‘o, e ,xn) Z P

Definition 2.8 (Menger curvatures). For x € R™, r > 0, « € [0,1), an integer
0<n<m,and p € [1,00], we define the curvature of 1 at  of scale r to be

hmin(xax17~-~7xn+l)p n+1

a
})p(1+a)+n(n+1) d/,L ’

curvy, (z,7) =

diam ({x,z1,...,x
B(%T)HJA ({ y L1y s bn+1

(2.5)

where p"T1 is the product measure defined by taking (n + 1)-products of p
with itself.

3. Proof of Theorem I. We now proceed to prove the theorem in the case where
1 is n-Ahlfors upper regular on R™ and has positive lower density p-almost
everywhere.

We recall the following lemma from [10, Lemma 3.13], which says that,
under the appropriate density assumptions on a measure p, given a point x
and radius r, the ball B(z, r) contains a large number of effective n-dimensional
secant planes through z.

Lemma 3.1. Let u be an n-Ahlfors upper-reqular Radon measure on R™ with
upper-reqularity constant Cy. Suppose x € R™ and A\, R > 0 such that

u(Bla,r) = A" (3.1)
holds for all 0 < r < R.
Then, for
A
and
d A

10n  2k35700,
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and all 0 < r < R, there exist points {z; ,}7—y C B(x,r) such that
Ponin (2, 1,0y« oy Ty p) > 0T (3.4)

and

A m
M'B(I,T) (B(.’Ifiﬂ«, 57’]T>) > (277?4»1) r" = 02 (m, n, A, Co)’l“n_ (35)

For any 0 <r < R and i€ {1,...,n}, let B;, := B(x;,,5nr) N B(z,r) and
B, := By, XX DB, ,. Then

Bs NB, = @ (3.6)
and, whenever (y1,...,yn) € B,
or
hmin(z7y1a"'7yn) > ? (37)

Theorem 3.2. If p is an n-Ahlfors upper-reqular measure on R™ such that
O (u,x) >0 for all x, and

curvyo(z,1) < oo

or p-almost every x, then u is O n-rectifiable.
K Y K

We prove Theorem 3.2 by showing that for p as in the statement of the
theorem, we can in fact show that

n 2
B dr
ro r

o _

for almost every x € R™, and then appeal to Theorem 2.4. In the proof,
we use a slight modification of the usual g-numbers introduced above, the
so-called “centered ([-numbers”, that we denote by Bg . These numbers are
defined exactly as the S-numbers, except that the infimum in the definition of

Bg (z,7) is taken over n-planes passing through x. That is, for x € R™, r > 0,
define

~ ) dist(z, L)\ * du(z)
H 2. ’
Bz, r)” = iggc ( r ) T

B(z,r)

~

a larger class than the one in (3% (z,r), we have Bl (z,r) < BY(x,r) for all
zeR™ r>0.

In particular, because the infimum in the definition of 85 (z,r) is taken over
2

Proof of Theorem 3.2. Let p be as in the statement of the theorem, and z
a point so that ©7(u,x) > 0. Then there exists some A > 0 so that for all
0 <r <1, u(B(z,r)) > M™ Now, fix 0 < r < 1. By the definition of the
infimum, for any (y1,...,yn) € (R™)",
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Bro(x,r)? = inf L / (diSt(:’L))Qdu(z)

B(z,r)

1 / (dist(z,aff{z,y1,---7yn}))2du(z). (3.8)

A
|

rn r
B(z,r)

Choose x;,,B;,, and B, as in Lemma 3.1. Averaging (3.8) over all
(Y1,---,Yn) € B,, and then applying (3.5) yields

~n / / dist(z, aff{x Yise oy D\ du(2)du™ (s, - . yn)
,u 2 lun(B ),rn
r B(x,r)
dist(z, aff{z, y1, .. yn D)\ du(2)dp™ (Y1, - - yn)
S C 24 ’
T rnTn
B, B(z,r)
(3.9)
where C'= C(m,n, \,Cy). We now claim that
2 n
dist(z, aff{x,y1,...,yn}) < (6) hmin (%, 2,91, - -, Yn)- (3.10)
Indeed, let A = A(z,z,y1,...,yn) and Ay, = A({x, 2,91, .., yn} \ {w})
for each w € {x, z,y1,...,yn}. Basic Euclidean geometry ensures that

dist(z, aff { A, HH™(A,) = (n+ 1YH" T (A)
= Rmin (%, 2, Y1, « s Un ) H™ (A ), (3.11)
where w is any vertex such that
dist(wo, alf {{z, 2,91, - - -, Yn ) \{wo }}) = Amin (T, 2, Y1, - - -, Yn)-
On the other hand, since {z,z} U B;, C B(z,r) foralli=1,...,n, Eq. (3.7)

ensures that
H™(Aw,) 2r\"
— 0 = . 12
Hi(A.) = \or (3.12)

The claim (3.10) now follows from (3.11) and (3.12).
Evidently, diam{x, z,91,...,yn} < 2r. Using this diameter bound, (3.10),
and (3.9), we conclude

mmz Zy17~'-ay7L)2 n
(w,7) <C/ / T 7yn}n2+n+2du(2)du (Y155 Yn)-

m{x,z,y1,. ..
r B(z,r)

(3.13)

Setting r; = (%)j and using the fact that 0 < g < 1, it follows that

~

1
/ 5 252:”9 . (3.14)
0



426 S. GHINASSI AND M. GOERING Arch. Math.

It now follows from (3.14), (3.6), and (3.13) that

hmin(:r7 ZyYty - 7yn)2

<C dp™ Ny, .y, 2
diam{z, 2, y1, . .., yn yV Hn+2rse W Yn: %)
UJ-IBE,«J X B(x,r;)
hmin(‘r7 ZyYly .o yn)2
<C dpntt e z
> diam{x,z,yl,...,yn}712+"+2+2°‘ H (y17 y Yns )
U;Br; X B(x,r;)
hmin(xa L1y 7In+1)2
<C d/Ln+1(I1,...,LEn+1)
- di . 2(14+a)+n(n+1)
B(a,1)n+1 lam ({1’7581, azn-‘rl})
= Ccurvy,o(z, 1),
where in the penultimate step, we used that B, x B(z,r;) C B(z,1)"*! for
all j, and the non-negativity of the integrand. O

Remark 3.3. At this point, we briefly focus on the difference between condi-
tions (1.2) and (1.1). The proof of Theorem 3.2 could be followed identically,
using CUI"V# (7, 1) < 00 in place of curv{,(z,1) and by replacing appropriate
2’s with p’s, to obtain

R ,~
/(W) %<Ccurv MENES

0
Consequently, the following proposition is of interest, see Remark 1.2.

Proposition 3.4. Let p be a Radon measure on R™ which is Ahlfors upper-
regular with constant Cy, and such that 0 < ©™*(u,x) for p-almost every
x € R™. Let p € [1,00), and « € (0,1]. If for p-a.e. x € R™,

1
/(ﬁ”xr>p dr
— < 00,
r
0

Proof. We show that the hypotheses imply that for p-a.e. x € R™,

then p is n-rectifiable.

and then employ [7] to obtain rectifiability.
For p < 2, it is enough to observe, from the definition of 8 (z,)?, that

(dtw)) <ot (M2

r r
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as M < 2. This immediately implies that 84 (x,7)? < Bl (x, )P, and
hence we are done. Note that in this case, we did not use that a > 0.
For p > 2, we use the Holder inquality

1
H 2
[ = [P
r re
0

r
0
- . > /1 ez
2
<[ [ () i) f e
e r r
0 0
p—2
1 1 P
<

2
P
/(%@mwpw P21 gy
re r
0

0

1 o o\G
By (x,m)\" dr
< Cp,a,Cg ro 7 )
0
where in the last inequality we used the fact that, for p > 2, g5 (z,r) <
1 1
u(B(z,r))\2 7
(¥ gy !

Finally, we reduce Theorems I to 3.2.

Lemma 3.5. Let p be a Radon measure with compact support on R™ such that
0 < OF(p,x) < O™*(u,x) < oo for p-a.e. x € R™. Then there exists an
increasing sequence of sets {Ey} such that

k=1

ur = ulg, is n-Ahlfors wupper-regular, and O%(ug,x) > 0 for
pr-a.e. x € R™.

Proof of Lemma 3.5. For any positive integer k, let E} be given by
Ep = {z € R™ | u(B(z,r)) < kr" for every r < 27*}.

Evidently, Ej, C Ej41 and p (R™\ U2, Ei) = 0.

Notice that g (B(x,r)) < u(B(z,r)) < kr™ for r < 27%. Since spt(uy)
C spt(p) has finite diameter, it follows that puy is upper n-Ahlfors regular.
Moreover, by [17, Theorem 2.12(2)], ©% (g, x) > 0 for almost every x € Ej
since pg < p and O (u,x) > 0. O

Proof of Theorem I. Let i and « be as in Theorem I. Without loss of gener-
ality, by considering f|p(o,r,) for some sequence of Ry T oo, we can assume
that p has compact support.

To apply Lemma 3.5, we first need to show that ©7(u,z) > 0 for
p-a.e.x € R™. Indeed, when a = 0, p is n-rectifiable (see [10, Theorem 1.19]).
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Moreover, for a € (0,1), curv®,y(z,1) < oo implies curv’ ,(x,1) < co. There-

fore p is n-rectifiable and the n-rectifiability of p implies ©%(u,z) > 0 for
p-a.e. x € R™.
Now, define py, as in Lemma 3.5 and apply Theorem 3.2 to each . Then
each puy, is CM n-rectifiable which implies i is C™® n-rectifiable as desired.
O
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