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Abstract

A new proof is given for the fact that centered Gaussian functions saturate the
Euclidean forward-reverse Brascamp—Lieb inequalities, extending the Brascamp—
Lieb and Barthe theorems. A duality principle for best constants is also developed,
which generalizes the fact that the best constants in the Brascamp-Lieb and Barthe
inequalities are equal. Finally, as the title hints, the main results concerning finite-
ness, structure, and Gaussian-extremizability for the Brascamp-Lieb inequality due
to Bennett, Carbery, Christ, and Tao are generalized to the setting of the forward—
reverse Brascamp—Lieb inequality.
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1 Introduction and Main Results

We begin with notation that will prevail throughout. Let (E;)<;<x and (E J V<j<m
be Euclidean spaces, i.e., finite-dimensional Hilbert spaces endowed with Lebesgue
measure and the usual inner product (-, -) giving rise to Euclidean length | - |. We write
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Ey = @f-‘zl E;, and let g, : E9 — E; be the orthogonal projection of E( onto
subspace E;.

Let B := (B;j)1<i<k,1<j<m, Where each B;; : E; —> EJ is a bounded linear
transformation. Because it will be referred to frequently, we define B; : Eg —> E/
according to

k
Bjx = ZBU”E,'(X)’ x € Ey.
i=1

Note that the collection (B;) <<, may be regarded as an equivalent characterization
of B. Define B* := (B;kj)lfifk,lfjfm’ where A* denotes the adjoint of A.

We let ¢ := (¢;)1<i<k and d := (d;)1<<m be collections of positive real numbers
satisfying

k m
Zci dim(E;) = Zd,- dim(E7), (1)

i=1 j=1

and we refer to the triple (c, d, B) as a datum. Finally, R7 denotes the non-negative
real numbers.

1.1 The Forward-Reverse Brascamp-Lieb Inequalities

For a given datum (c, d, B), this paper is concerned with characterizing the best con-
stant D in the following statement: If measurable functions f; : E; — RV, 1 <i <k
andg; : E/ — RT,1 < j < m satisfy

k m k

, d; .
l_[fic' (xi) < l_[gj" (E CiBijxi) Vx; € Ei, 1 <i <k, (2)
i=1 i=1

j=1

then

1

k(/E‘ﬁyiSeDlﬂ[l(/Ejgj)dj, 3)
—1 \JEi i

where the integrals are with respect to Lebesgue measure on the respective spaces. To
facilitate later referencing, we make a formal definition.

1

Definition 1.1 Given a datum (¢, d, B), we define D(c, d, B) to be the smallest con-
stant D such that (3) holds for all non-negative measurable functions satisfying the
constraints (2).

Remark 1.2 1If (1) does not hold, then dilating all functions by a common factor shows
D(c, d, B) = 400, motivating the assumption. Itis easy to see that D(¢, d, B) > —oo.
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Euclidean Forward-Reverse Brascamp-Lieb Inequalities

The above class of inequalities was introduced by the authors together with Cuff and
Verdu, and termed Forward—Reverse Brascamp—Lieb inequalities [25]. This choice of
terminology reflects the observation that taking k = 1 and ¢; = 1 specializes to
the classical (forward, or direct) Brascamp-Lieb inequalities [11,12,23]; on the other
hand, taking m = 1 and d; = 1 specializes to the reverse form of the Brascamp-Lieb
inequalities introduced by Barthe [4].

The celebrated result of Lieb [23] is that in the case k = ¢; = 1, the best con-
stant D(1, d, B) can be computed by considering only centered Gaussian functions

f1, &1, ..., &m- Likewise, Barthe showed in [4] thatin the case of m = d; = 1, the best
constant D(c, 1, B) can be computed by considering only centered Gaussian functions
fi. ..., fx, g1 Barthe also established a remarkable duality between the forward and

reverse Brascamp—Lieb inequalities, in the sense that
D(c,1,B) = D(1, ¢, B"), “

where, by Definition 1.1 applied to the datum (d, ¢, B*), the quantity D(d, ¢, B¥)
denotes the smallest constant D in the inequality

m

([, o) < T1() )"

j=1

holding for all measurable functions f; : E; —> R*,1 <i <kandg it E/ — R,
1 < j < m satisfying

m k m

dj - ; .
[T/ op <1 ddiBy Vyj € El I<j=m. (5
j=1 i=1 j=1

Perhaps surprisingly, the forward-reverse Brascamp-Lieb inequality suggests that
there is no fundamental distinction between the traditional forward and reverse forms
of the Brascamp-Lieb inequality. Indeed, they are each a particular instance of the
inequality (3) under the hypothesis (2) for an appropriate choice of datum. Most
importantly, the Gaussian saturation property continues to hold for the forward—reverse
Brascamp-Lieb inequality, as well as a full-fledged form of the duality relation (4).
This both clarifies and unifies the general landscape of Euclidean Brascamp-Lieb-
Barthe-type inequalities and the duality they enjoy. This is our first main result:

Theorem 1.3 The quantities D(c, d, B) and D(d, ¢, B*) can be computed by consid-

ering only centered Gaussian functions (fi)1<i<k and (gj)1<j<m in their respective
definitions. Moreover, it holds that

D(c,d,B) = D(, ¢, B¥). (6)

Remark 1.4 The sufficiency of considering Gaussian functions for computing the con-
stant D(c, d, B) was already established in our previous work [25, Theorem 2]. As
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will be explained in Sect. 4, the Gaussian saturation property is closely connected
(in fact, formally equivalent) to a result announced by Barthe and Wolff in the note
[5], and proved in their recent followup work [6]. The identity (6) has not been
previously observed. A related family of inequalities has also been considered by
Cordero-Erausquin and Maurey [16]; their main result can be interpreted as the asser-
tion D(c,d, B) < 0, under the assumption that B is contractive in a certain sense
(interested readers are referred to [16, Section 5] for the relevant statements).

Remark 1.5 The identity (6) explains the scaling of each B;; by ¢; in (2) and, similarly,
the scaling of each B;‘“j by d; in (5). If we were not after (6), these scalar factors could
be absorbed into the maps themselves without affecting the first claim of Theorem
1.3.

There are now several independent proof’s of the original Brascamp—Lieb and Barthe
theorems. Early proofs relied on rearrangement arguments [11,12], and Lieb appealed
to rotational invariance of the extremizers [23]. Barthe came up with a clever optimal
transport argument, and simultaneously proved both the forward and reverse inequality
[4], further establishing equality of best constants. More recently, Lehec [22] gave a
probabilistic proof of both theorems using a variational representation for functionals
due to Boué and Dupuis [10]. Semigroup techniques provide yet another avenue of
proof; see Bennett et al. [8], or Carlen et al. [14]. Our previous work [25] gave an
information-theoretic proof of the Gaussian saturation part of Theorem 1.3 (therefore
extending to the classical settings as well), by way of a doubling argument similar
to that employed by Geng and Nair in [18] for a different problem. This doubling
argument is similar in spirit to that given by Lieb [23], but it exploited an equivalent
entropic representation of the problem.

As far as applications go, itis well known that the Brascamp-Lieb inequalities imply
many other classical inequalities in analysis and geometry, such as Holder’s inequality,
Young’s inequality, and the Loomis—Whitney inequality. Likewise, Barthe’s inequality
contains, for example, the Prékopa—Leindler and Brunn—Minkowski inequalities as
special cases. All of these implications and more are described in Gardner’s survey
of the Brunn—Minkowski inequality, which places the Brascamp-Lieb, Barthe, and
reverse Young inequalities atop a hierarchy of implications [17, Figure 1], with none
of the three evidently implying the others. In the accompanying discussion, Gardner
asks whether stronger unifying inequalities await discovery; the content of Theorem
1.3 may be regarded as an affirmative answer. We have already described how the
Brascamp-Lieb and Barthe inequalities may be immediately recognized as special
cases of the forward-reverse Brascamp-Lieb inequality. It turns out that the reverse
Young inequality constitutes another instance of the forward-reverse Brascamp—Lieb
inequality. Further examples will be given in Sect. 4.

Example 1.6 Let 0 < p,q,r < 1 satisty % + [ll =1+ % For ¢, Y non-negative
measurable functions on R”, the reverse Young inequality for convolutions asserts

¢ vl = C*l@llpllvig. )
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where [|A]l, := ([ga |h|pdx)l/p for h : R — R and p € R. The sharp constant is
given by C = C,C,;/C,, with
2 |s|1/s

for 1/s +1/s' =1 (i.e., s and s’ are Holder conjugates).

We may assume r < 1| henceforth, else if » = 1, then we must have p = g = 1,
and the claim is trivial. Under this assumption, it is easily verified using the reverse
Holder inequality and renaming functions, that (7) is equivalent to

f / AP @ =0 e) (dxdy

(L) (L) (L)

holding for fi, f2, g1 non-negative measurable functions on R".

To place this into the framework of the forward-reverse Brascamp-Lieb inequality,
let Ey = E» = E' = R" and E2 = R?", withc; = 1/p, c» = 1/q,dy = 1/r — 1,
and dp = 1. Further, let B be such that

2 2
ZCiBilxi = X1 + x2; ZCiBizxi = (x1,x2), Vxi,x € R".

i=1 i=1

Then, the hypothesis (2) boils down to

AP0 £ () < g1 1 + x2)ga(x1, x2)  Vxn, xp € RV )

For arbitrary functions f1, f2, g1, the best function g, can be computed as

20, y) =P —= 0 0e" (x), x,yeR,

where “best” is in the sense that the RHS of (3) is minimized subject to (9). On
substituting this choice of g; into (3) and rearranging, we we are left precisely with
(8), with best constant necessarily characterized as C" = ¢~ P©4B) computed by
considering only centered Gaussian functions.

The relation (6) allows us to easily deduce an interesting “dual” to the reverse
Young inequality, given in the following example. Here, we emphasize that the term
dual is meant in terms of (6), which is the same sense in which the Brascamp—Lieb
and Barthe inequalities are dual to one another. It bears a superficial resemblance to
Maurey’s property (t) [26] and functional Santalé inequalities (e.g., [2,20]).

Example 1.7 Let0 < p, g, r < 1 satisfy % + ql =1+ %, and let (¢, d, B) be the datum
of the previous example that yields the reverse Young inequality (8). By considering the
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dual datum (d, ¢, B*) and applying (6), we conclude after elementary simplification
that

/ w < K"[| flipligllgliall, (10)
RZn
for non-negative measurable functions f, g, i, w satisfying

w2 < inf (f@ =g —vho), maeR. (D
yeR?

The sharp constant K is given by K = K, K, K, where!
K?:= Is|51s" 115 0 <5 < +oo.
The choice of functions
Fx) = PP o) = PP/ p(x) = P/

saturate the inequality (10) when w is taken equal to the infimum in (11).

Remark 1.8 To be more precise, the instances in the above example where r < 1 follow
by (6), and the exceptional case r = 1 (r' = —o0) can be easily checked directly.

Remark 1.9 In analogy to Example 1.7, one can derive a “dual” Young inequality.
It formally reverses the inequality of the previous example: If p,q,r > 1 satisty
%—i—é:l—i—},then

/Rz w = K" fllplglglal, 12)
for non-negative measurable functions f, g, h, w satisfying

w2 = swp (f - g2 - VhW), 22 RN (13)
yeR?

Since the standard Young inequality is a special case of the Brascamp-Lieb inequal-
ity, its dual (12) is a special case of the Barthe inequality, and should therefore be
regarded as already known. In contrast, we do not know whether (10) (or equivalent)
has appeared previously in the literature.

To close this section, let us remark briefly on the chief difficulty encountered in
proving Theorem 1.3 compared to the special cases corresponding to the Brascamp—
Lieb and Barthe inequalities. In the case of the direct Brascamp-Lieb inequalities,
the function f; can be explicitly computed in terms of the (g;)1<;j<m (specifically,

Lifs e {1, 400}, Ky is defined by the limit Ky := lim;—  K; to avoid indeterminate forms in the
definition.
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fi= ]_[;flzl (gjoB j)d/' ). In the reverse case, the function g; can be computed explicitly
in terms of the (f;)1<i<«. Such a simplification is not typically possible in the more
general forward-reverse inequalities; this leads us to establish a rather subtle duality
principle, to be made precise in Theorem 2.11 (see Remark 2.13). Once this duality
principle is established, the structure of Gaussian extremizers can be distilled, and
techniques previously developed for proving the Brascamp-Lieb and Barthe inequal-
ities can be successfully adapted to forward—-reverse setting.

1.2 Finiteness and Gaussian-Extremizability

A motivation of the present paper is to better understand the structural properties of
the Gaussian extremizers in Theorem 1.3 (when they exist), and to establish neces-
sary and sufficient conditions for finiteness of D(c, d, B). To this end, we give a new
proof of Theorem 1.3, which combines ideas from Lehec’s probabilistic proof of the
Brascamp-Lieb and Barthe inequalities [22], the structural viewpoint on the forward
Brascamp-Lieb inequality developed by Bennett, Carbery, Christ and Tao [8], and the
entropic duality of the forward—-reverse Brascamp-Lieb inequality in [25]. The detailed
structural results, for example, allow us to easily identify “geometric” instances of the
forward-reverse Brascamp-Lieb inequality, which may be particularly useful in appli-
cations (see, e.g., Sect. 4.3). While the results below address the structure of Gaussian
extremizers, they do not characterize non-Gaussian extremizers. Valdimarsson has
done this for the direct Brascamp-Lieb inequalities [28], and it seems reasonable
to speculate that his approach could be extended to the forward—reverse inequalities
considered here. We leave this question to future work.

Let us now make precise the notions of Gaussian-extremizability and extremizers
that have been alluded to above. We will need some more notation, which will pre-
vail throughout. For a Euclidean space E, we let S(E) denote the set of self-adjoint
linear operators on E, and ST(E) denote the set of self-adjoint positive-definite lin-
ear operators on E. That is, A € ST(E) if A € S(E) and it further holds that
(Ax,x) > 0O for all non-zero x € E.If A € S(E) and (Ax,x) > Oforallx € E,
we say that A is positive-semidefinite. For A, B € S(E), we write A > Bif A — B
is positive-semidefinite. Finally, for positive-semidefinite A, we let A'/? denote the
unique positive-semidefinite M such that A = M?.

A centered Gaussian function (or kernel) g : E —> R is a function of the form

—exp (—Lat +
g(x) =exp 2(A x,x)), AeST(E),

where A is said to be the covariance of the Gaussian kernel g. We remark that a
centered Gaussian random vector on E with covariance A has density (with respect
to Lebesgue measure on E) proportional to g.
Restricting attention to centered Gaussian functions
fi:x € Ei > exp(—=(Vix, x)), VieST(E),1<i<k

gj1x € E/ > exp(—(Ujx,x)), UjeST(E)), 1<j<m,
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and defining

k
A = @Cl‘ idg,,
i=1

we see that the hypothesis (2) boils down to

m

k
Y dj(UjBjAcx, BiAex) <Y ci{Vimp, (x), g, (x)) Vx e Eo. (14
j=1 i=1

Additionally, using (1), we may compute

I (fE,- fi) i B [T/ det(U;)4i/?
172 (i g)" Tz, det(vi)ei/? '

Collecting the above and comparing to (3), this motivates definition of the quantity

1 m k
Dy(c,d, B) == sup > djlogdetU; — > " cilogdet V; |, (15)
j=1 i=1

where the supremum is over all V; € ST(E;),1 <i < kand U; € ST(E/), 1 <
J = m satisfying (14). In words, D,(c, d, B) is the smallest possible constant D
in (3), holding for all Gaussian kernels satisfying the constraints (2). By definition,
Dg¢(c,d,B) < D(c,d, B). The first part of Theorem 1.3 asserts that this is always met
with equality.

Remark 1.10 Even if (1) does not hold, it remains true that D¢(c,d, B) as defined
above will equal the smallest possible constant D in (3), holding for all Gaussian
kernels satisfying the constraints (2). Indeed, scaling the (V;)1<;j<x and (U;)1<j<m by
a common factor shows Dg(c, d, B) = +o00, while dilating functions by a common
factor will show that the best constant D in (3) will also be equal to +oco.

Definition 1.11 A datum (c, d, B) is Gaussian-extremizable if the supremum in (15) is
attained and is finite for some V; € ST(E;),1 <i <kandU; € ST(E/),1 <j<m
satisfying (14). Any such operators are said to be Gaussian extremizers.

The constraint (14) is a bit cumbersome to write out. So, henceforth, we adopt some
notation to make statements more compact; for given V; € ST(E;),1 < i < k and
U; € Sf(Ef),l < j < m, wedefine V. : Eo — Ep and Uy : @'}'zl El —
@'_, E/ according to

k m
Ve ::@Q‘Vi; Uq :=®dej.
i=1 j=1
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Note that this does not cause any ambiguity since V; € ST(E;), 1 <i < k defines V,
and vice versa. Similarly for Ug. The constraints (14) may now be concisely written
as the operator inequality

AcB*UgBA: < V¢, (16)
where B : Ey —> @];zl E/ is the linear operator defined according to
B:x+— Bix+---+Bux; x¢€kEy.

We introduce one last piece of notation before our characterization of Gaussian-
extremizability:

Definition 1.12 For A; € ST(E;),i =1,...,k, weletTI(A1, ..., Ay) denote the set
of positive-semidefinite A € S(Ep) satisfying

(Ax;, x;) = (Ajx;, x;) forallx; € E;, 1 <i <k.

Remark 1.13 The above definition has a natural interpretation in terms of couplings.
Consider a Gaussian random vector X; taking values in E;, with covariance A;, 1 <
i < k. If a jointly Gaussian coupling of (X;)i<;<x has covariance A, then A €
IT(Aq, ..., Ar). Conversely, each A € T1(Ay, ..., Ax) corresponds to the covariance
of a jointly Gaussian coupling of (X;)1<;<k.

Theorem 1.14 (Structure of Gaussian extremizers) A datum (¢, d, B) is Gaussian-
extremizable if and only if (1) holds and there are V; € ST(E;),1 < i < k and
Merv, ...,V satisfying

m

“1
> diAcB] (BjAAY)  BjAc < Ve, (17)
=1

Moreover, any such (Vi)1<i<k together with U; = (BjAcl'IAcB;)_l, 1 <j<m,
are Gaussian extremizers.

Remark 1.15 Implicitin (17) is the assertion that the stated inverses exist; it is therefore
necessary for each (B;)1<j<n to be surjective in order for the datum (¢, d, B) to be
Gaussian extremizable. Moreover, after left- and right-multiplying both sides of (17)
by IT'/2, the traces of the respective sides will be equal by (1). Hence, (17) is met with
equality on restriction to the subspace ITE(. See also Remark 2.14 and Proposition
2.15 for more along these lines.

Remark 1.16 In view of the previous remark, for the classical setting of k = ¢; = 1,
Gaussian-extremizability reduces to (1) and existence of V € S*(E) such that

m -1
> odiB; (BVT'B;) By =V,
j=1
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This has been repeatedly observed in previous proofs of the Brascamp-Lieb and Barthe
inequalities.

The geometric Brascamp—Lieb inequalities proposed by Ball [3] and later gener-
alized by Barthe [4] are a special case of the (forward) Brascamp—Lieb inequalities
for which the linear maps are isometric and D(c, d, B) = 0. The class of geomet-
ric Brascamp-Lieb inequalities are useful in applications (see, e.g., the volume ratio
inequalities due to K. Ball), and are formally equivalent to the class of Gaussian-
extremizable Brascamp-Lieb inequalities [8, Proposition 3.6]. The following is a
generalization to the forward-reverse setting:

Corollary 1.17 (Geometric forward-reverse Brascamp-Lieb inequality (I)) Assume
(1) holds, and let linear maps Q; : Ey —> E/ and ¥ € TI(idg,, ..., idg,) satisfy

m
QjEQ.’; =idg; foreach1 < j <m, and Zdeij < Ae.
j=1

Ifmeasurable functions f; : E; — RT,1 <i <kandg;: E/ — RT,1<j<m

satisfy

k m
[1/¢ e o) <]]s (Qx)  VxeEo (18)

i=1 j=I

then

ATURORE 0 R

i=1 !

Proof By defining the maps B; (and therefore B) via Bj A = Qj, the hypothesis
(18) coincides with (2). For the corresponding datum (¢, d, B), we see that V; = idg;,,
1 <i < k,and Il = X satisfy (17) by using the assumptions on the (Q;)1<j<m-
Now, it is a matter of plugging in the asserted extremizers in Theorem 1.14 into the
definition of Dg(c, d, B) to see that D (¢, d, B) = 0, and therefore D(¢,d,B) =0
by Theorem 1.3. This gives (19) by definition. O

Remark 1.18 In general, ¥ in Corollary 1.17 does not need to be of full rank. An
illustrative example is Barthe’s inequality, in which m = d; = 1, E I — R” and
E; = Rforeach 1 < i < k, with k > n. In this setting Q1, viewed as a matrix,
has columns c;q; € R", where |g;| = 1, 1 < i < k. The reader can check that
for the choice ¥ = A ! Q7 01A¢ I e §T(R¥), the assumptions of the corollary are
equivalent to Barthe’s frame condition

k
lgil =1, 1<i<k and ) ciqi ®q; = idun,

i=1
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Note that this ¥ has rank at most n < k, so can be rank-deficient.

Although it is a special case, a more symmetric formulation of the geometric
forward-reverse Brascamp-Lieb inequality may be stated as follows, and explains
the role of ¥ in the previous as a transformation of coordinates when it is assumed to
be of full rank. By specializing to k = ¢; = 1, the geometric case of the Brascamp—
Lieb inequality is easily recognized. It will also be useful for the applications in Sect.
4.3.

Corollary 1.19 (Geometric forward-reverse Brascamp-Lieb inequality (I)) Let linear
maps U; : Eg —> E;j and V; : Ey — E/ satisfy U;U} = idg; and VjVj?k =idgj,
foralll <i <kand1 < j < m. Assume further that the map

k
erO|—>ZU,~er0

i=1

is a bijection, and that the following frame condition holds

If measurable functions f; : E; — RT, 1 <i <kandg;: E/ — RT,1<j<m
satisfy

k m
[T W <[Tsf (vix)  VxeEo, (20)
i=1

j=1
then

k

ALY <AL e

i=1 j=1

Remark 1.20 The map ZLI U; : Eh — Ep being a bijection is equivalent to
S qURU; > 0.

Proof By taking traces, the frame condition ensures that (1) holds. Next, view U; as
a linear map from Ej into itself, so that ker(Ui*) = E,L foreach 1 < i < k. Since
Zf: 1 Ui is abijection, it is invertible, and therefore we are justified in defining Q ; :=

*

V,Ok uptand ¥ = <Zf=1 U,'> (Zle U,~) . Evidently, ¥ is positive-definite,
and for x; € E;, we have (Xx;, x;) = (x;, x;) using the assumption U; U} = idg, and
identification of ker(Ui*) = ElL Therefore, ¥ € T1(idg,, ..., idg,). Furthermore, it
follows from definitions that Q jEij = idg; foreach 1 < j < m. Using again the
fact that Zf: 1 Ui is a bijection, we find that (20) and (18) are equivalent by a change
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of variables. Thus, the hypotheses of Corollary 1.17 are fulfilled, and the conclusion
follows. O

The first formulation of the geometric forward—reverse Brascamp—Lieb inequality
motivates the following definitions:

Definition 1.21 A datum (c, d, B) is said to be geometric if (1) holds, and the maps
(Qj)1=j=m defined via Q; 1= BjAc satisfy 37 d; 070, < Acand Q;X0% =
idgj, 1 < j <m,forsome ¥ € II(idg,, ..., idg,).

Definition 1.22 Data (c¢,d, B) and (¢/,d’, B) are said to be equivalent if ¢ = ¢/,
d = d’, and there exist invertible linear transformations C : Ey —> Ey and C i
E/ —> EJ such that B} = C]._IBJ-C_l foreach 1 < j <k.

The following characterization of Gaussian-extremizability extends [8, Proposition
3.6] to the forward—reverse setting.

Theorem 1.23 A datum (¢, d, B) is Gaussian-extremizable if and only if it is equivalent
to a geometric datum (c,d, B’).

Proof Suppose (c, d, B) is Gaussian-extremizable. This is equivalent to the existence
of Vi € ST(Ei),1 <i < k,and TT € TI(V;" ', ..., V1) satisfying (17). Define
Vo= A;'We = @F_, Vi, and note that & = VI2IIV1/2 € M(idg,, ..., idg,),
and moreover, that V~1/2 commutes with A.. Define B, := C;lB jC_l via the
transformations C; := (BjACl'IAcB;F)l/2 and C := V!/2, Then, (17) is expressed in
terms of B’ := (B})lfjfm and T as

m

-1
Y djAcB (B}ACEACB/jT> B'jAc < A
=1

In particular, this easily implies (¢, d, B) is geometric since B}ACEACB’ ;‘ = idg,
by construction. Moreover, (¢, d, B) and (¢, d, B’) are equivalent by definition. If
(c,d, B) is equivalent to a geometric datum, then the argument can be reversed to
conclude Gaussian-extremizability via Theorem 1.14. O

To state our main result on conditions for finiteness of Dg (¢, d, B) and Gaussian-

extremizability, we define product-form subspaces, followed by two definitions
analogous to those in [8].

Definition 1.24 A subspace T is said to be of product form if

k
T =@ (1)
i=l1
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Definition 1.25 A critical subspace for (¢, d, B) is anon-zero proper subspace T C Eg
of product form satisfying

k m
> cidim(rg, T) =) d;dim(B;T).

i=1 j=1
Definition 1.26 The datum (c, d, B) is simple if it has no critical subspaces.

We remark that the definition of criticality in [8] does not include the restriction to
product-form subspaces. However, the two definitions are still consistent, because in
their setting Eg = E1, so that any subspace is trivially of product form.

Our final main result generalizes [8, Theorem 1.13] to the setting of the forward—
reverse Brascamp—Lieb inequality:

Theorem 1.27 (Conditions for finiteness and Gaussian-extremizability) For a datum
(¢, d, B), the quantity Dg(c, d, B) is finite if and only if we have the scaling condition

k m
> cidim(E;) =) d; dim(E/) (22)

i=1 j=1
and the dimension condition

k m
Z cidim(mwg, T) < Zdj dim(B;T) for all product-form subspaces T C Ey.
i=1 j=1

(23)

In particular, these conditions imply that each (B)1<j<m must be surjective. More-
over, if (¢, d, B) is simple, then it is Gaussian-extremizable.

Remark 1.28 The special case where k = ¢; = 1 reduces to [8, Theorem 1.13].

Remark 1.29 By Theorem 1.3, finiteness of Dg(c, d, B) is equivalent to finiteness
of Dg(d, ¢, B*). As expected, it can also be verified directly that the conditions of
Theorem 1.27 are invariant under considering the dual datum (¢, d, B) — (d, ¢, B*).
Indeed, let E0 = @Tzl E/, and define B! : EYO — E; via the map

m
B'y:=Y Bfimg(y). yekE"
j=1
For any W; C EJ,1 < j < m, define the product-form subspace W = @;'-1:1 W; C
E®, and consider T = @}_, T;, with T; := E;/B'W. By the inclusion *_, B'W 2
B*W D Bjo, we have

B;T C Bj(Eo/(B*W)) C Bj(Eo/(BIW)) € E//W;,
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where the final equality follows again by set inclusion and the observation B;f W; C
ker(Bj)J-. Hence, (23) implies

k k m m
Y cidim(E) = Y ¢ dim(B'W) <Y d;dim(E/) — ) " d; dim(W)).

i=1 i=1 j=1 j=1

Canceling terms using (22) (which is trivially invariant to considering dual datums),
we are left with the desired dual counterpart to (23).

1.3 Outline of the Paper

Section 2 of this paper proves Theorem 1.3 under the assumption that the datum is
Gaussian-extremizable. This relies on establishing the structure of Gaussian extrem-
izers given in Theorem 1.14, and then adapting Lehec’s stochastic proof of the
Brascamp-Lieb and Barthe inequalities to exploit this information.

It turns out that the analysis of the Gaussian-extremizable case more or less suffices
to prove Theorem 1.3 in its full generality. To do this, we develop a machinery for
iteratively decomposing a datum that is not Gaussian-extremizable. This is the general
focus of Sect. 3, which parallels the development of Bennett, Carbery, Christ and Tao
for the special case of the direct Brascamp-Lieb inequality [8]. The conditions for
finiteness and Gaussian-extremizability articulated in Theorem 1.27 are a product of
these arguments.

Connections between the forward-reverse Brascamp-Lieb inequality and other
results in the literature are detailed in Sect. 4.

2 The Gaussian-Extremizable Case
The goal of this section is to establish Theorem 1.3 under the assumption of Gaussian-
extremizability. Specifically, we aim to prove the following two results:

Theorem 2.1 If a datum (c,d,B) is Gaussian-extremizable, then D(c,d,B) =
Dyg(c,d, B).

Theorem 2.2 If a datum (c,d, B) is Gaussian-extremizable, then so is (d, ¢, B*).
Moreover,

Dg(c5 d5 B) = Dg(da C, B*)7

regardless of whether the data are Gaussian-extremizable.

Remark 2.3 If D4(c,d, B) = oo, then the datum (¢, d, B) does not satisty the
definition of Gaussian-extremizability. However, we will clearly have D(c,d, B) =
D¢ (c, d, B) in this case also due to the general relation D(c, d, B) > Dy(¢, d, B).

Remark 2.4 The combination of the above implies the assertion of Theorem 1.3 if (i)
(¢, d, B) is Gaussian-extremizable; or (ii) D, (c,d, B) = +oo.
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2.1 Proof of Theorems 1.14 and 2.1

Let us admit the following preliminary version of Theorem 1.14, the proof of which
is deferred to Sect. 2.3.

Proposition 2.5 [fadatum (¢, d, B) is Gaussian-extremizable, then (1) holds and there
are Vi € ST(E), 1 <i <k, and 1 € TNV, ..., V,7!) such that

m

~1
> diAcB] (BiANAEY)  BjAc < Ve, (24)
j=1

We now describe the variational representation for Gaussian integrals due to Boué
and Dupuis [10] (see also Borell [9], and historical remarks by Lehec [21]). For a given
time horizon 7" and a Euclidean space E, a Brownian motion (W;)o<;<r (starting from
0) taking values in E is said to have covariance K € ST(E) if Cov(W;) = K. Let
H(E, K) denote the Hilbert space of all absolutely continuous pathsu : [0, T] — E
starting from 0, equipped with norm

T
||”||1%1(E,K) ::/o (K Yig, di5)ds.

A drift U is any process adapted to the Brownian filtration which has sample paths
belonging to HI(E, K) almost surely.

Proposition 2.6 Let g : E — R be measurable and bounded from below, and let
(Wr)o<i<t be a Brownian motion with covariance K € ST(E). It holds that

1
log (Eeg(WT)) =supE |:8(WT +Ur) — EHU”]%I(E’K)} )

where the supremum is taken over all drifts U.

We now prove Theorems 1.14 and 2.1, on the basis of Proposition 2.5. The argu-
ment is an adaptation of Lehec’s stochastic proof of the Brascamp-Lieb and Barthe
inequalities [22], with the main difference being the incorporation of the optimality
conditions of Proposition 2.5. A stochastic approach is also employed by Cordero-
Erausquin and Maurey in [16]; however, their argument does not immediately yield
sharp constants, nor does it identify the structure of extremizers.

Proof of Theorems 1.14and 2.1 Assume (f;)1<i<k and (g;)1<j<m satisfy (2). For pur-
poses of proving the theorem, we may assume that each f; is supported on some
compact K; C E;, and is bounded from above, say by M. We may also assume that
each g; is bounded from below, say by M ~1 on the compact set Zf-‘zl cBijK; CE I,
The general result will follow by dominated convergence. As a result, it is easy to see
that we may now assume each g; is bounded from above by some M "=M'(M,c,d),
still preserving (2). Indeed, this modification can only reduce the product in the RHS
of (3), making our task more difficult.
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With the above assumptions, fix any § > 0 and introduce the auxiliary functions
uj = log(fi +9)
which are of course bounded from below. Using the assumption that the f;’s and g;’s

are uniformly bounded and the hypothesis (2), there are constants C, ¢ (depending on
M, M’', ¢, d, but not on §) such that taking

v; = log(g; + C8°)
we will have
k m
> ciui(rg, () <Y djvj(BjAcx)  Vx € Eo.
i=1 j=1
Moreover, the v;’s are also bounded from below.
Using the assumption of Gaussian-extremizability, we invoke Proposition 2.5 to

select V; € ST(E;), i = 1,....,kand TT € TI(V; ', ..., V") satisfying (24). In
particular, this implies

k
Zd IB; Acu”H(EJ BiAcTIABY) = Z Il ; (M)HH(E ) (25)
j=1 i=1

for any absolutely continuous path u : [0, T] — Ej.
Now, let (W;)o<:<r be a Brownian motion taking values in E¢ with covariance IT.

Foreachi =1, ..., k, define W,i = mg; (W;), which is a Brownian motion on E; with
covariance Vfl.
Fix € > 0, and for eachi = 1,...,k, let U’ be an E;-valued drift belonging to

H(E;, Vlfl) such that

logEe""(W%) - Ci_le <E ['M(W; + U}) _”U ||]12-I[(E 1/ )i|

the existence of which follows from Proposition 2.6. Define the Eo-valued process
U = Yj_, UX, and note that Bj AU is a drift belonging to HI(E7, B; AcTTABY) by
(25).

Hence, the above estimates and another application of Proposition 2.6 give

k
Z cilogEe" W) _ ¢
i=1

k k
. . 1 .
<E [} citti(Wp +Up) = 5 ) jc,-||U’||§H(Ei,V’_1)}
i=1

i=1
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m d
1
SE| Y djvi(BiAWr + BjAUT) = 5 3 djIBiAU Iy s noiacsr)
j=1 j=1 |

d;log EeviBifeWr),

NWE

=
1

~.
I

Since f; < e" and e”/ = g; + C§°, we conclude by arbitrary choice of €, § that
. Ci m d;
(B W) = T (BLe; (8 aewr) "

i=1 j=1

In particular, writing out the expectations as integrals and canceling common factors
using (1), the above may be rewritten as

k

I

i=1

Ci

ﬁ(x)e—<\/,-x,x)/2de>
E;

k ~1 d;

< Hi:l det(Vi )1/2 i <,/ <()C)e_<(BjAcHAcB;)_lx,x)/szx> J

= m . 172 8 :
I/ det(B;AcABD T 1L

Letting T —> +00, monotone convergence yields

k ¢
g (/;:, f,-(x)dx)

I—[T:] det((BjAcl_[AcB;f)—l)dj 1/2 ( )dj
- ( ]_[f-;ldet(vi)cf H /Ej gj(x)dx

Jj=1

The consequences of this are two-fold: defining U; = (B; AcJIABH ™1 < Jj <m,
we see that (24) implies (V;)1<i<k, (Uj)1<j<m satisfy (14). Therefore, the ratio of
determinants is at most exp(Dg(c, d, B)), proving Theorem 2.1. In fact, the ratio of
determinants must be precisely equal to exp(D, (¢, d, B)), since we have freedom in
choosing the functions (f;)1<i<«, (gj)1<j<m subjectto (2). Thus, we have also shown
thatif (1) holds and there exist V; € S*(E;),i = 1,...,kand T e TI(V,; ', ..., v, )
satisfying (24), then the datum (c, d, B) is Gaussian-extremizable with (V;)<;<x and
Uj = (BjAcl'IAcB;‘)_l, 1 < j < m being Gaussian extremizers. This proves the
converse of Proposition 2.5 (and therefore Theorem 1.14 on the basis of Proposition
2.5). O

Remark 2.7 Using the structure of Gaussian extremizers in the Gaussian-extremizable
case, other proof techniques such as optimal transport or heat flow should also work
to establish the above.

@ Springer



T. A. Courtade, J. Liu

2.2 Proof of Theorem 2.2

For V; € SY(E;),1 <i <kandU; € ST(E/),1 < j < m, we first note that the
Schur complement condition for positive-semidefiniteness implies

1/2 gy 1/2 1/2 5 0 1/2 k
¢ BTAg <®T:1U./>Ad BA. 5(@i:1‘/i>

if and only if

A(I]/ZBAl/Z (@i'(:]‘/i_l) (1:/2B>(<[X(]1/2 < (@t}l:l Uj—l) ]

Noting that the first inequality is precisely (16), it follows immediately that
Dgy(c,d,B) = Dg(d, ¢, B*) (regardless of Gaussian-extremizability). Now, sup-
pose the datum (c, d, B) is Gaussian-extremizable. If V; € STEN,1 <i <k
and U; € SHEN,1 < Jj < m are Gaussian extremizers for (¢, d, B), then it
is immediate from the above observation that Uj_1 € S+(Ej ), 1 < j < m and

Vi_1 e ST(E;), 1 <i < k and are Gaussian extremizers for the datum (d, ¢, B*).

2.3 Proof of Proposition 2.5

The goal of this section is to prove the optimality conditions asserted in Proposition
2.5, which was the core assumption needed to prove Theorems 1.14 and 2.1. The
basic argument boils down to a strong min-max theorem. This is given in the first
subsection. The second subsection leverages this min-max identity to complete the
proof of Proposition 2.5. The arguments of this section follow those appearing in our
previous work [25], however, it suffices to restrict attention to a particular duality
enjoyed by positive-definite operators.

2.3.1 A Strong Min-Max Theorem

Theorem 2.8 Forany K; € ST(E;), i = 1,...,k, it holds that

m m
* : j
oA JZ; djlogdet (BjAcK AB}) + Y d; dim(E7)

j=1

k m
= inf ZQ’(Vi’Ki)HS —Zd./ logdetU; |, (26)
””” i=1 j=1

where the infimum is over V; € ST(E;),1 <i <kandU; € ST(E/),1 <j <m
satisfying AeB*UgBAc < Ve.

The critical ingredient in the proof is the Fenchel-Rockafellar duality theorem [27],
stated here as it appears in [29, Theorem 1.9]:
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Theorem 2.9 Let X be a normed vector space, X* its topological dual space, and
®, E two proper convex functions Let ®*, E* be the Legendre—Fenchel transforms of
®, &, respectively. Assume that there is some xo € X such that

O(xg) < +o00, E(xg) < +o00,

and O is continuous at xo. Then,
inf [@(x) +E()] = max [— O* (—x*) — E*(x*)].
xeX x*eX*

Remark 2.10 1t is a part of both theorems above that the stated maximum is attained.

Proof of Theorem 2.8 In our application of the Fenchel-Rockafellar theorem, we will
take X = S(Ep), regarded as a Hilbert space with respect to the usual Hilbert—Schmidt
inner product. In this case, we also identify X* = S(Ey). So, for K; € ST(E;),
i=1,...,k, givenand F € S(Ey), define the functionals

(F) = ci(Vi, K;)
V1€S+(E1) ,,,,, VAES+(Ek) Z o
(Vex,x)>(Fx,x), VxeEy '~

and

m
O(F) := inf dilogdetU:",
UreS*(EY),...UneST(E)): X_; ! /
(UaBAex,BAex)<(Fx,x), VxeEg /=

with the convention that ® (F) = +ooif F ¢ S*(E) (since the infimum will be over
an empty set).

It is easy to see that both ® : S(Eg) —> R and E : S(E9) —> R are proper
convex functions, with ®(idg,) < 400 and E(idg,) < 4o00. It is straightforward to
check the continuity of ® at idg,, so the hypotheses of Theorem 2.9 are fulfilled.

Let M denote the infimum in the RHS of (26), and observe that definitions easily

imply

inf [G)(F) L E(F)] = M,.
FeS(E

So, we turn our attention toward computing

H?S%o)[ O"(—H) - E(H)]'

To this end, we claim that

- (H)z{o if H € (K, ... Ki) o7

+00 otherwise.
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Indeed
E*(H)= sup ((H,F)—E(F))> sup ((H,—F)—E8(-F))
FeS(Eo) FeSt(Ey)
0 if He ST(E
= sup —<H,F>: ! G. ( 0)
FeS+(Eo) 400 otherwise.

Next, define H; := g, H TL’E and note that

E'(H)= sup ((H.F)—E(F)>= sup ((H.mp Fing)— E(ng Fing,))
FeS(Ep) F;eS(E;)
0 if H; = K;
= sup (H;—K;, F;) = .
FieS(E;) 400 otherwise.
This proves (27). Hence, we may conclude
max [ ©*(—H) — E* (H)]
HeS(Eo)
< sup [—@*(—K)]
Kell(Ky,....Kp)
= sup inf [(K,F)+ O(F)]
Kel(Ky,...,Ky) FEST(Eo)
m m
= sup inf di{K,AcBTU;jBjA¢) — ) djlogdetU;
KeM(Ky,...K) U5 €8*(ED) 1= 2‘: ST e /2;: ! !

= sup K)Zdj( inf ((BjAcKAcB;‘,Uj)—ZdjlogdetUj))
k) =

(U;eST(EN)1<j<m j=1

= sup Zd 1ogdet(B iAcKAcB ) Zd dim(EY).
Kel(Ky....Ke) 12 =

It is straightforward to argue that that the supremum is attained using the facts that
(K, ..., Kx) is compact and that BjAcKAcB;‘f is uniformly bounded over all
K e II(Ky, ..., Ky).

Therefore, invoking Theorem 2.9, we have shown

Mo < djlo det(BAKAB) d; dim(E/
2l gy S
The reverse direction is considerably simpler; consider any K € I1(Ky, ..., Ki).

Then,

m m
> djlogdet (BjAcK AcB}) + Y d; dim(E7)
=1 =1
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m

m
< inf di(BiAcKABY, U;) — dilogdetU;. (28)
(Uj€S+(E-f))1<j<rrszI S “r j; ! !

Note that, forany U; € ST(E/), 1 < j <m,if V; € ST(E;), 1 <i < k satisfy
(UaBAcx, BAex) < (Vex,x) Vx € Eo, 29)

then it will hold that
m k
Y dj(BjAcKAcBT, Ujus < Y ci(Vi, Ki)us. (30)
j=1 i=1

To see that this is indeed the case, let x be a centered Gaussian random vector in
E( with covariance K, and take expectations of both sides in (29). So, combining
estimates yields

m m
> djlogdet (BjAcK AcB}) + Y d; dim(ET) < Mo,
j=1 Jj=1

completing the proof of the theorem. O

2.3.2 Completion of Proof of Proposition 2.5

The first step in completing the proof of Proposition 2.5 is to note an equivalent dual
formulation of the optimization problem defining D, (¢, d, B). This formulation relies
on the strong min-max identity of the previous subsection. Through an analysis of the
equality cases, we ultimately arrive at Proposition 2.5.

Theorem 2.11 Fix —oo < C < +o0. The following statements are equivalent:

(1) Forall V; € SY(E;),1 <i <kandU; € SY(E/), 1 < j < m satisfying

AeB*UaBAe < Ve 31
it holds that
m k
Zdj logdet U; < C+Zci logdet V;. (32)

j=1 i=1
() Forall K; € ST(E), 1 <i <k,

k m
Zci logdetK; < C 4+  max Zd, logdet(BjAcK AcB}).  (33)
Kk)j=1

i=1
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Remark 2.12 By definition of D, (c, d, B) and the asserted equivalence, the best con-
stant C in each of the above inequalities is equal to 2D (c, d, B).

Remark 2.13 To appreciate the difference between the forward-reverse Brascamp—
Lieb inequality and the classical forward and reverse inequalities, we invite the reader
to prove Theorem 2.11 in the special case of k = 1 (which is symmetric with m = 1).
This is a simple exercise, requiring only a few lines of elementary linear algebra. Since
the maximum in (33) becomes trivial, the major difficulty of the characterization (i.e.,
the strong min-max theorem of the previous section) is avoided.

Proof For purposes of the proof, we assume each (B;) << is surjective, ensuring
invertibility of (B; Ac¢K AcB;.‘) for K € ST(Ep). If any of the B ; fail to be surjective,
itis easy to see that the best constant C in both (1) and (2) will be equal to +o0, thereby
handling this exceptional case. Moreover, we may assume that (1) holds. Again, if this
is not the case, then by rescaling the various operators by a common factor, we see
that the best constant C in both (1) and (2) will be equal to +o0.

Proofof(1)=(2).Fixany € > 0.By Theorem2.8, thereare V; € ST(E;), 1 <i <k
and U; € ST(E/), 1 < j < m satisfying (31) such that

m m
max > djlogdet(BjAcK AcB}) + Y dj dim(ET)
i=1 j=1

k m
> ZC[(V,‘, Ki)us — Zdj logdetU; —e.
i—1 =1

Hence, we have

k m
z}: cilogdet K; — Keng}?’)s”m) 2 d;jlogdet(B; ACKACB;-‘)
1= J=

k m m k
<Y cilogdetK; + Y d;dim(E/) + ) "djlogdetU; — > " ¢;(V;, Ki)us + €

i=1 j=1 j=1 i=1

k m
<Y cilogdetK; + Y djdim(E/) + C
i=1 j=1

k k
+ Zci logdet V; — ZQ’(Vi’ Ki)us +¢€
i=1 i=1
< C +e¢,
where the penultimate inequality is (32), and the final inequality is due to the ele-
mentary inequality logdet M < tr(M) — dim(E;) for M € S*(E;) and the scaling
condition (1). Since € was arbitrary, it follows that (1)= (2).
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Proof of (2)=>(1). Fix any V; € ST(E;),i = 1, ..., k. By the method of Lagrange
multipliers and the weak max-min inequality, we have

m
sup Zdj logdet U;
UjeST(ENi<jm:  j=1
AeB*UgBAc<Ve
m
< inf sup Zdj logdet U;

MeST(E0)  (U;eS+(ED))1<jem j=1

+(M, Ve)us — (M, AeB*UaBAc)us

m
= inf sup djlogdetU; + (M, V¢)us
MeSt(Ep) (UjeST(EINi<j<m ;

m

— Zdj(BjAcMAcB;'kv Uj)us
=

Now, we note that the gradient of the objective above with respect to U is given by
d; Uj_1 — BjAcMAcBj. So, taking Uj = (BJ-ACMACB;‘)’1 achieves the maximum
in the inner optimization problem. Making this substitution, we may continue as

m
sup de logdet U;
UjeSTEMNi<j<m:  j=1
AeB*UgBAc<Ve

- -1 &z ‘
= inf Y djlogdet (BjAMACB]) = Y d;dim(E)) + (M, Velus
j=1

MeS*(Ep) X
J= j=1

(34)

m

<—  max Y dj logdet (BjAcMAch)
Menvy'..vih T
k k

SC—ZcilogdetVfl =C+Zc,- log det V; (3%5)

i=1 i=1

where the first inequality follows since we are optimizing over a smaller set, and for
M e TV, ..., V. 1) it holds that

k k m
(M, Veyus = itV Vidus = Y e; dim(E;) = Y d; dim(E7).
i=1 i=1 j=1
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The second inequality is an application of (33). O

Finally, we are in a position to complete the proof of Proposition 2.5.

Proof of Proposition 2.5 1f the datum (¢, d, B) is Gaussian-extremizable, then (1) must
hold, as remarked at the start of the proof of Theorem 2.11. Furthermore, for extrem-
izers V; € ST(E;), 1 <i < k, we getequality throughout the second part of the proof
of Theorem 2.11 for the optimal constant C = 2Dy(c, d, B); in particular, equality
will be attained in (35). Therefore, we remark that any

ITearg max Zd log det (B iAeM AcB )
Men(vi ' vih

is positive-semidefinite and achieves the minimum in (34), after replacing the infimum
over positive-definite operators with a minimum over positive-semidefinite operators.
Letting IT be as defined above, consider any positive-semidefinite A € S(Ey). For
& > 0, Taylor expansion and assumed optimality of IT gives

" d; log det (BjAc(l'l + sA)Ach) — " dj dim(E7) + (T + A), Ve)us
j=1 j=I

m 1 .
- Z Tog det (B AcTIA B’ ) — " dj dim(EY) + (1, Veus
= j=1

m

Z AAB (BjAcTIACE]) BjAc> + (A, Volus | + o)
— HS

m m
Zd log det ((B; AcTIACE] ) — " d;dim(EY) + (I, Veus
ot =1

By sending ¢ | 0 and letting A > 0 vary, we find that it must hold that

m

—1
> dineB] (BiATIAB])  Bjhe < Ve (36)
=1

as claimed.

Remark 2.14 1f we consider A such that ker(A) € ker(IT), then the same inequalities
above hold for all ¢ € R sufficiently small, since this ensures IT 4+ ¢ A will remain
positive-semidefinite. As a result, we have equality in (36) on the restriction of both
sides to ker(IT)L. This provides an alternate way to establish the conclusion of Remark
1.15. O

Although it will not be needed for our purposes, there are several equivalent charac-
terizations of Gaussian extremizers which can be stated in analogy to [8, Proposition
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3.6] for the direct Brascamp—Lieb inequality. The statement is provided below to give a
comprehensive description of the structure of Gaussian extremizers. It provides a con-
venient means of certifying the optimality of Gaussian extremizers, which is required
to compute Dg(c, d, B).

Proposition 2.15 Fix a datum (c,d,B), and (U; € ST(E?)i<jem, (Vi € ST
(Ei)1<i<k- The following statements are equivalent:

@) Ui<j<m» Vi)1<i<k is a global maximum in (15) subject to (14);
(1) (Upi<j<m> Vi)i<i<k is a local maximum in (15) subject to (14);

(iii) There exists 1 € H(Vfl, e kal) such that
U7' = BjAcTIAB], 1<j<m. (37)
Moreover, for
m
©:=Ve— Y djAcBU;BjAe, (38)
j=1

we have ® > 0 and ©®x = 0 for any x € I1E)y.

(iv) The dimension condition (1) is satisfied, and there exists 1 € l'I(Vfl, e kal)
such that (37) holds. Moreover, ® > 0, with ® defined as in (38).
(v) The dimension condition (1) is satisfied, and there exists I1 € H(Vl_l, ey Vk_l)
such that
U]f‘ > BjAJIAB;, 1< j<m. (39)

Moreover, ® > 0 and TIV/20T1Y/2 = 0, with © defined as in (38).

Proof (i)==(ii) is trivial.
(iii)==(iv): By the assumption of (iii) and the fact that I1'/2Ey = T1E,, we have
tr(I1'/2@11!/%) = 0. Using (37) and (38) and the cyclic property of the trace, we find

k m
Zci dim(E;) = Zdj dim(E7). (40)

i=1 j=1

(iv)==(iii): It suffices to show that IT'/2@TT1!/2 = 0. As argued above, the dimen-
sion condition is equivalent to tr(IMY/20T11'/%) = 0. Moreover, the assumption of (iv)
requires that IT'/2©TI!/2 > 0. Since a non-negative matrix has trace 0 only if it is the
zero matrix, we have IT1/20T1Y2 = 0 as desired.

(iii))==(i): This is the conclusion of Sect. 2.1.

(ili)==(v): The proof of the dimension condition is the same as the (iii)==(iv)
part.
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(v)==(iii): By the assumption of (v) we have

k m
0=w'/20n"?) = "¢ dim(E) — Y _d;tr(U;(BjAcTIA:B}))
i=1 j=1
k m (41)
> cidim(E;) — Y _d, tr(UjUj_l)
i=1 j=1
=0

where (41) follows from (39). If (39) is not equality for some j, then (41) cannot
achieve equality. Therefore (39) must achieve equality for all j.
(il))==(iii): By definition, we have

1 m k
Dy(e.d. B) := - sup ZdjlogdetUj—ZcilogdetVi , (42)
j=1 i=1

where the supremum is over V; € ST(E;) and U j € SH(E) satisfying the constraint
O =V, — AeB*UgBA¢ > 0. (43)

We need to show that if given (V;)1<j<x and (U;)1<j<m is a local maximum of (42),
then there exists IT with the claimed properties. To this end, let SO+ (Ep) denote the set
of positive-semidefinite operators on Eg, and define the convex cone:

C:={(ciMy, ..., ckTlg, —d1 BiAcTTA(BY, ..., —dn By AcTIABL) : TLe S (Eo)},
(44)

where I1; : E; — E; is defined as I1; = rrEl.l'InEi. Recall that the dual cone C*
of C is defined as the set of all vectors whose inner product with any element in C is
non-negative. Here, we have

C*=1{(Vi,...., Vi, U1, ..., Un): V; € S{(E)), Uj € S (E),
Ve — AeB*UgqBA¢ > 0}. (45)

Note that this is indeed the dual cone since the constraint Ve — A¢B*UgB A > 0 can
be rewritten as

(I, Ve — AcB*UaBAc)yg = 0, for all IT € Sy (Eo), (46)

or equivalently, Zle (i, Vidus + 227, <—ijjAcl'IAcB}k, Uj)Hs > 0, for
all TI € S(;’ (Ep). Note that the constraint defining C* is the same as the con-

straint (43) for the optimization (42). Now, from (42), we see that the gradient
of the objective function with respect to (Viq,..., Vk,Ul, ..., Uy) is equal to
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(-9 Vl_l, N Vk_l, %Ul_l, e ‘%’”U,;l). The assumed local optimality implies
that the inner product of the gradient at (V;)1<j<«, (U;)1<j<m With any element in C*
is non-positive, hence the negative gradient belongs to the dual of C*. Recall that the
double-dual of a closed convex cone is itself, hence the negative gradient belongs to
C, and therefore (upon absorbing a factor 2 in IT) we find I1 € Sar (Eo) such that

M=V i=1,..,k (47)
BjAJIA B} = Uj_l, j=1,...,m. (48)
Note that (47) together with IT € SJ(EO) is equivalent to IT € l'I(Vf], R kal), SO

it only remains to show that ®x = 0 for x € I1Ey, or equivalently IT'/20T1'/2 = 0.
The assumed local optimality implies that the dimension condition (40) must hold, else
scaling (V;)1<i<k, (Uj)1<j<m by an appropriate common factor will increase the value
of the functional being optimized. As noted in the proof of (iv)==(iii), the dimension
condition together with (43) (i.e., non-negativity of ®) implies IT!/2@TI1'/? = 0, as
desired. O

To conclude this section, we record the following observation which will be needed
later.

Lemma 2.16 Assume the (B)1<j<m are surjective. The map
k m
(K1, ..., Kp)— Xl: ci logdet K; e max ‘o ;dj logdet(BjAcKAcB;’f)
i= j=
is upper-semicontinuous on ]_[f: | ST(E;) with respect to the norm topology.
Proof The map (K1, ..., K;) —> Zle ¢; log det K; is continuous on ]_[fle ST(E)),

and we may write

m
max 0 Z djlog det(BjAcKAcB;’-‘)
j=l

Kell(Ki,...,
m
= sup Zdj logdet(BjAcKAcB;‘),
Kell(Ky,..., KNSt (Ep) j=1
which is lower-semicontinuous in (K, ..., K;) on Hf:] ST(E;), since it is the point-
wise supremum of continuous functions. O

3 Decomposability and Conditions for Finiteness

The aim of this section is to complete the proof of Theorem 1.3 by successively
decomposing data which are not Gaussian-extremizable into ones that are either
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Gaussian-extremizable or degenerate. A consequence of the arguments will be the
necessary and sufficient conditions for finiteness given by Theorem 1.27. The devel-
opment closely parallels the treatment of the forward Brascamp-Lieb inequality in [8],
however, the modifications are significant enough that it warrants explicitly giving the
details. Our starting point will be to state a characterization of Dy (¢, d, B) in terms of
Shannon entropies, denoted by /. This characterization will be exploited to facilitate
the various computations later on. Basic properties of the Shannon entropy (subad-
ditivity, scaling, etc.) will be taken for granted here; the unfamiliar reader can find
the needed properties collected in Appendix A, or any standard text on information
theory.

3.1 Entropic Characterization of Dy(c, d, B)

We first introduce some notation that will be needed below and again in Sect. 4.4. For
a collection of random vectors (X;)1<;<x taking values in (E;)1<; <k, respectively, we
denote the marginal law of each X; as P,, and denote their joint law by Px. The set
of couplings of (X;)1<;<x (i.e., joint laws of (X;)|<;<x with X;-marginal equal to Py,
foreach 1 <i < k)isdenoted by IT(Py,, ..., Px,). Since elements of ST(E;) arein
one-to-one correspondence with centered Gaussian probability measures on E; (see
Remark 1.13), this notation is consistent with the earlier definition of T1(K1, ..., K)
for K; € ST(E;), 1 <i <k.

If Z is a Gaussian random vector in E with covariance & € ST(E), we have the
identity

hZ) = %10g ((2ne)dim(5> det(E)) . (49)

So, a reinterpretation of Theorem 2.11 and Remark 2.12 is the following entropic
characterization of D, (c, d, B). A similar characterization also holds for D(¢, d, B);
see Theorem 4.12 and accompanying remarks in Sect. 4.4.

Proposition 3.1 If (Z;)1<; <k are Gaussian random vectors in (E;)1<; <k, respectively,
then

k

m
cih (c__lz.) — max dih B;iZi | < D,(c.d,B), 50
Z AU PzeH(PZ],..A,PZk)jX:; J (Z ij l) g( ), (50)

i=1 i=1

where the maximum is over all couplings of the (Z;)1<i<k. Moreover, the constant
D¢ (c, d, B) is best possible.

Remark 3.2 Although not explicitly stated, it suffices to consider jointly Gaussian
couplings in (50), giving equivalence to (33). This is a consequence of the fact that
Gaussians maximize entropy for a given covariance.

Remark 3.3 Since any choice of Gaussian (Z;)1<j<x in (50) have finite second
moments by definition, Proposition A.2 in Appendix A ensures that the entropies

h (Z{;l Bij Z,~> exist and satisfy
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k
h (Z BijZi> < 4oo foreachl < j <m.
i=1

Moreover, if Dg(c,d,B) < +o00, then there must exist a coupling of the (Z;)1<i <«
(in particular, the one achieving the maximum in (50)) such that

k
h (Z B,-jZi) > —oo foreachl < j <m. (29
i=1

In other words, under this optimal coupling, the entropy & (ZL] Bij Zi) exists and
is finite foreach 1 < j < m.

3.2 Decomposability of D(c, d, B) and Dy(c, d, B) for Non-simple Data

Let T be a subspace of Ey having product form, and define B; 7 to be the restriction
of Bj to T. Note thatif 7; := 7g, T, and B;; 7; is the restriction of B;; to T;, then the
product-form assumption implies

k
Bjrx = ZB,‘jj‘i?TEi(x), xeT.
i=1

Now, let B;; ;. denote the restriction of (77(g;7)1 Bij) to T:+, the orthogonal comple-
ment of 7; in E;, and define the collections of linear maps

BT = {Bij,Ti . Tt —> (BjT)} and

Bg, T = {B,.j,TI_L T — (B; 7))

I<izk,l<j=m’
where (BjT)J- denotes the orthogonal complement of B;T in E i1< j <m.
Lemma 3.4 For any product-form subspace T C Ey, it holds that
D(c,d,B) < D(c,d,Br) + D(c,d, Bgy7)

and

D¢(c,d,B) < Dg(c,d,Br) + Dg(c,d, Bgy7).
Remark 3.5 It may happen in the decomposition of (c¢,d,B) into (c¢,d, Br) and
(c,d, Bgy,7) that we encounter subspaces of dimension zero. Just as argued in [8],
these subspaces can be safely disregarded in the following and subsequent computa-

tions. In particular, the entropy of a random variable on a subspace of dimension zero
(a degenerate situation) is defined to be equal to zero in subsequent computations.
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Proof We assume both D, (c, d, By) and Dg(c, d, Bg,,7) are finite, else the claim is
trivial.

FixM > 0.Let f; : E; — RY, 1 <i<kandg; : E/ — R", 1 <j <mbe
non-negative measurable functions, bounded from above by M and satisfying

k m k

; d; .
[1A7 @ <]]s} <§ jc,»Bijz,) Vi€eE, 1<i<k  (52)
i=1 j=1

i=1

Define T; := g, T. For z; € Ej, define x; := 77, (z;) and y; := 7;1(z;). In this
notation, the hypothesis (52) implies

k m k
Hffi (xi +yi) = l_[ g;-ij (Z ¢i (Bij.1,xi + 78,7 Bijyi) + ZCiB,-j,T[_Lyi) .
i=1 j=1 i

i=1 i=1

(53)

By the Fubini—Tonelli theorem, the map x; € T; — f;(x; + y;) is measurable for

almost every y; € TiJ‘; define N; C TiJ- to be the (null) set of y; € TiJ- for which

x;i € T; —> fi(x; + y;) is not measurable. By defining
fiti +yi) = flx + yl‘)lTii\N,- i), xi € Ti,yi € T,

we have that x; € T; —> fi(xi + y;) is measurable for all y; € Tl.J-. Moreover, since
f was only modified on a null set, |’ E; fi = / E; fi. Similarly, themapu; € B;T >
gj(u; + v;) is measurable for almost every v; € (BjT)J-; define N/ C (BjT)J-
to be the (null) set of v; € (B;T)* for which u; € B;T > gj(u; + v;) is not
measurable. Almost as before, we define

and are guaranteed thatu; € B;T — §;(u;+v;) ismeasurable forallv; € (B;T)",
and [1; 8j = [p; 8j-

Since f; < f; and g ;i < &; by construction, we have that (53) holds with f;
(resp. g;) replaced by ﬁ (resp. g;). So, by definition of D,(c, d, B7) and translation
invariance of the Lebesgue integral, we consider the hypothesis (53) for fixed (y;)1<i<k
to conclude

k o
1_[(/ ﬁ<x+yi)dx)
i=1 VT
m k dj
< Ps(cd.Br) 1_[ (/ gj <u + ZBij T.Ly,-) du) Vy, €T, 1<i<k.
B;T i

j=1 i=1
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By Fubini—Tonelli, the map y; € Tl.L —> fT,- fi(u + y;)du is measurable. Similarly,
v; € (BjT)t —> fBjT gj(u + v;)du is measurable. Therefore, by definition of
Dg(c,d, Bg,,7), we find

k Ci
1_[ (/ f:-(x + y)dxdy)
o T+ JT;
i=1 i
m dj
< ¢Ds(€.d.Br)+Dg(c.d.Bry7) l_[ / gj w+v)ydudv ) .
im1 \Y@B D BT

By an application of Tonelli’s theorem combined with the previously noted identities
fE[ fi = fEi fiand [; &j = [ gj» we conclude

k

¢i n dj
l—[ (/ fi) < ¢De(e.d.Br)+Dy(e.d.Bryr) l_[ (/ .81')
i=1 WEi B/

j=1

for any non-negative, bounded measurable functions (f;)1<;<x and (g;)1<j<m satis-
fying (52). It was already noted in the proof of Theorems 1.14 and 2.1 that bounded
functions saturate the definition of D(c, d, B), so the first claim is proved.

The statement for D, follows by an identical argument, considering only centered
Gaussian functions. In fact, it is even easier since there are no measurability consid-
erations to deal with. O

Lemma 3.6 Let T C Eg be a critical subspace for the datum (c, d, B). It holds that
Dg(c,d,B) = Dg(c,d, Br) + Dg(c,d, Bgy7).

Remark 3.7 The same conclusion also holds for D(c, d, B), though we do not need to
prove it separately here. It will follow from subsequent results, and is stated later as
Corollary 3.11.

Proof We take advantage of the entropic characterization of Dy (¢, d, B) in Proposition
3.1 to give a simple proof, though it is also possible to appeal to the functional for-
mulation. We assume Dy (¢, d, B) < +o00, since otherwise the corresponding claims
follow from Lemma 3.4 and the fact that D, > —oo for any datum.

Recall that critical subspaces are of product form by definition. Define T; := ng, T,
and let X;, ¥; be independent, Gaussian random vectors in 7;, TiL, respectively (each
having finite entropies by definition). Define Z; = ¢~ X; + ¥;, which is a Gaussian
random vector in E;, and note that

he; ' Zi) = h(e e Xi ') = h(e e X)) + hie]'Yy)
= dim(Ty) log(e ™) + h(c; ' Xi) + h(e;'Y), 1<i<k.

Now, for any coupling of the (Z;)<;<k satisfying (51), it follows by subadditivity of
entropy (Proposition A.3) and the scaling property (Proposition A.1) that
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k
h (Z B,-,-zi) (54)
i=1
k k k
—h<6_IZBini+7TBjTZBini s TT(B,T)* ZBinl) (55)
i=1 i=1 i=1
k k k
<h <6] Z Bij X; + BT Z Bini> +h (N(BjT)J- Z Bl'jYi> (56)

i=1 i=1 i=1

k k
=dim(B;T) log(efl) +h <Z BijX; +e€ TB;T ZB,‘jY,‘)

i=1 i=1
k
+h (ﬂ(BjT)L Z Bl/ Y,) . (57)

i=1

Recalling Remark 3.3, we note that all terms are finite.
So, for any € > 0, we use the assumption that 7' was critical to cancel the log(e ")
terms to find

k m k k
D(c.d.B) > > cih(c;'Xi) =) djh <Z BijXi+e€mpT ZB,-le)

i=1 j=1 i=1 i=1
k m k

+ Zcih(ci_lY,‘) — Zdjh (JT(BJ,T)l Z B,’jY,‘)
i=1 j=1 i=1

for some coupling of the (Z;)i1<i<k = (Xi, Yi)1<i<k. Next, since Gaussians have
bounded second moments by definition, weak upper semicontinuity of entropy (Propo-
sition A.4) implies

k k k
lim sup & (ZB’JX +emp. TZBUY> <ZBiin>’ 1<i<k.
i=1

e—0 i=1 i=1
In combination with the previous estimate, we have

k
Dy(c,d,B) > ) " cih(c; ' Xi) —
i=1

k
—1
+ Y cih(c; Y,-)—Pyen(rgye}x - Zd h <ZBU TJ)

i=1 k

PXEH(PXI ,,,,, Px;)

Since we chose (X;)1<i<« and (¥;)1<;<x to be arbitrary Gaussians on their respective
subspaces, it follows that

@ Springer



Euclidean Forward-Reverse Brascamp-Lieb Inequalities

Dg(ca da B) 2 Dg(c7 dv BT) + Dg(c7 d1 BEO/T)'

Comparing to Lemma 3.4, the claim is proved. O

3.3 Necessary Conditions for Finiteness

Proposition 3.8 If D(c, d, B) < +o00 or Dg(c, d, B) < 400, then we must have (22)
and

k m
Z cidim(mg, T) < Z dj dim(B;T) for all product-form subspaces T C Ej.
i=1 j=1
(58)

In particular, each B must be surjective.

Proof Since D, (c,d, B) < D(c, d, B) by definition, it suffices to establish necessary
conditions for D¢ (¢, d, B) to be finite. The condition (22) can be easily seen using the
scaling property of entropy (Proposition A.1) by multiplying all random variables in
(50) by a common scalar factor.

The necessity of (58) follows immediately from the proof of Lemma 3.6, but with-
out canceling the ZLI ¢; dim(7T;) log(e ') and Z'}’zl d;jdim(B;T) log(e~!) terms.
These terms canceled previously under the assumption that 7" was critical, but this
will not be the case if we assume 7 is such that

k m
Z ci dim(g, T) > Z d; dim(B;T),

i=1 j=1

leading to an arbitrarily large lower bound on D, (¢, d, B) as € vanishes.
To see that each B; must be surjective, we take T = E( and compare (1) to (58). O

3.4 Sufficient Conditions for Finiteness and Gaussian-Extremizability

The goal of this section is to establish the sufficiency of the conditions in Theorem 1.27
for finiteness and Gaussian-extremizability. We start with a technical lemma, which
is the counterpart of [8, Lemma 5.1] for our setting.

Lemma 3.9 Define N := dim(Ey) and let (¢, d, B) be a datum such that (22) holds
and

m k
Zd./ dim(B;T) > Z ¢i dim(zg, T) for all product-form subspaces T C Ej.
j=1 i=1
(59)

In particular, this implies each Bj is surjective. Then, there is a real number ¢ > 0
such that, for every orthonormal basis (e,)1<n<n 0f Eo with the property that each
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ey € E; for some 1'5 i <k, there existsaset I; C{l,...,N}foreachl < j <m
with |1;| = dim(E/) such that

m k
dodilljn{n+1... . N} =D clSin{n+1,....N})| forall0<n <N,
j=1 i=1

(60)
where S; :={n:e, € E;}, 1 <i <k and
/\ Bjey, >c foralll <j <m. 61)
nEIj Ei

Moreover, if there are no critical subspaces, then there is a constant § > 0 depending
only on the datum (c, d, B) such that

m k
dodillin{n+1... . N} =D clSinin+1,....N}|+8 forall0 <n<N.
j=1 i=1

(62)

Proof Since the space of all orthonormal bases is compact, and the number of possible
1; is finite, it follows by continuity and compactness that (61) may be replaced by the

weaker assumption that (B i en)nE ;, arelinearly independentin Ej foreach 1 < j < m.
J

Now, we construct /; by a backwards greedy algorithm. Specifically, we set I fi
equal to those indices n for which Bje, is not in the linear span of {Bje,;n <
n’ < dim(Ep)}. Since Bj is surjective, we will have |I;| = dim(E/). To prove
(60), we first fix n satisfying 0 < n < N, and apply (59) with T equal to the span
of {e,+1, ..., edim(Ey)}, wWhich is of product form by the assumption that each e, €

Uf;l E;. Specifically, due to construction of /; we have
dim(B;T)=I;N{n+1,..., N}|.
On the other hand,
dim(zg, T) =1|S;iN{n+1,..., N},
establishing (60) when 0 < n < N.The case of n = N is trivial, and the case of n = 0
follows from equality in (59) for T = .Eo since |S; N {1,..., N} =|S;| = dim(E;),
and |[I; N{L, ..., N} =|I;| = dim(E/).

Now, if there are no critical subspaces, then there is § > 0 depending only on the
datum (c, d, B) such that (59) can be refined to

m k
> djdim(B;T) = Y ¢ dim(zg, T) + 8 (63)
j=l1 i=1
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for all non-zero proper subspaces T C Ey. Indeed, this easily follows since the left and
right sides of (59) only take finitely many values. Incorporating this into the previous
analysis gives (62). O

Proposition 3.10 (Sufficient conditions for finiteness and Gaussian-extremizability)
If the datum (¢, d, B) is such that (22) and (23) hold, then Dg(c, d, B) is finite. If it
further holds that (c, d, B) is simple, then (c, d, B) is Gaussian-extremizable.

Proof The argument follows the strategy of proof for [8, Proposition 5.2], but is recast
in terms of entropies which we find more convenient in the present setting”. Define
N = dim(Ep) and consider Gaussian random vectors Z; in E;, 1 < i < k. Itis
trivially true that

m k m k
» max Zdjh ZC,‘B,‘jZ[ EZdjh ZCiBijZ,{ s (64)
2ell(Pz, U i—1 =1

i=1

where Z; = Z; in distribution for each 1 < i < k, and Z], ..., Z; are independent.
Without loss of generality, we may write

Zj=) Wpes, 1=<i<k

nes;

where (e,),es; C E; C Eg is an orthonormal basis for E;, 1 < i < k, (Si)1<i<k
is a partition of {I,..., N}, and (W,)1<,<n is a collection of independent one-
dimensional Gaussian random variables. We may further assume that the indices are
chosen to satisfy 7(W1) < --- < h(Wy). Now, we invoke Lemma 3.9 and it follows
from the scaling property for entropy (Proposition A.1) that

k N
h (Z Bijz;> =h (Z WnBjen) >h| Y WaBjen | = h(Winer) + C,

i=1 n=1 nel;

(65)

for some constant C depending only on the datum (c, d, B) since (Bje,),eq; form a

basis of E/ with a lower bound on degeneracy.
Now, by telescoping and Lemma 3.9, we may write

> dih(Wner,)

j=1

N m
=Y h(W) Y djll; N {n}]
n=1 j=l1

2 Note that we work exclusively with Gaussian random vectors here, so all computations can be stated in
terms of determinants, using the identity (49).
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N-1
(Zd |1 |) hWD) + ) (h(Wag1) — h(W, ))Zd ;N {n+1,.... N}
n=1 j=1
N
( c,S,)h<wl>+Z(h(WnH)—h(Wn))Zdju Nin+1,.... N}

1
1 j=1
1

v

N k
c,|S |)h<wl)+2<h<wn+1)h(w ) (st Nin+1,. }|+a)

n=1 i=1

N—-1

h(wn>Zc,|s, N} 48 ) (h(War1) — h(Wy))

i=1 n=1

I
M» i Mz

(Z h(W,») +8 (h(Wy) — h(W1))

nes;

k
Zc,h<2>+a(h<wm h(W)) .

So, we conclude

k
=17y _ c— _
Z:c,h(cl. Z) Pzen(?}?x . Zdh(ZB,,Z) 8 (h(Wy) — h(W)))
(66)

for constants C’,8 > 0 depending only on the datum (c,d, B). In particular,
Dy (c, d, B) is finite.

Now, if (¢, d, B) is simple, then the last claim of Lemma 3.9 implies § > 0. Since
the LHS of (66) is invariant to scaling each Z; by a common factor (due to the scaling
condition (22)), it easily follows that there are constants c1, co > 0 depending only
on the datum (c, d, B) such that we may restrict our attention to Z; satisfying

c1 < Var(W1) < Amin(Cov(Z;)) < Amax(Cov(Z;)) < Var(Wy) <

foreach1 <i <k.

Thus, in supremizing the LHS of (50), it suffices to consider Gaussian Z; with
covariances in a compact set, with eigenvalues uniformly bounded away from zero.
Equivalently, in supremizing the functional

k

Ki,..., Kp)— i logdet K; — ma djlo detBAKAB
(K, ©) ;C gdet K; Kemm,’f..,mz g det( )

over ]_[f-;l ST(E;), it suffices to consider each K; in a compact set, with eigenvalues
bounded away from zero. It therefore follows by upper-semicontinuity (i.e., Lemma
2.16) that an extremizer exists. Thus, (c, d, B) is Gaussian-extremizable. O
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Proof of Theorem 1.27 The claim is an immediate corollary of Propositions 3.8 and
3.10. O

We may now also prove Theorem 1.3, which proceeds just as in [8, Proof of The-
orems 1.9 and 1.15]:

Proof of Theorem 1.3 In view of Theorem 2.2, we only need to prove that D(c, d, B) =
Dy (¢, d, B). To do this, we induct on the dimension dim(Ey). The case dim(Ep) = 0
is trivial, so assume the claim holds for smaller values of dim(E).

We may assume Dg(c,d, B) < +oo, else the claim is trivial since D(c,d,B) >
D¢ (c, d, B) by definition. Thus, we assume that (22) and (23) hold, since these are
necessary conditions for finiteness of D,(c, d, B) by Theorem 1.27. If (¢, d, B) is
simple, then it is also Gaussian-extremizable by Theorem 1.27, so the desired claim
follows by Theorem 2.1. On the other hand, if (c, d, B) is not simple, then by Lemma
3.6 and the definition of simple, there exists a critical subspace T C Eq for which

Dg(c,d,B) = Dy(e,d, Br) + Dg(e,d,Bgy 7).
By Lemma 3.4, we also have
D(c,d,B) < D(c,d,Br) + D(c,d, Bg, /7).
By the induction hypothesis,
D(c,d,Br) = Dg(c,d,Br)
and
D(c,d,Bgyr) = Dg(c,d,Bgy 7).

Combining the above estimates, we have

D(c,d,B) < D(c.d, Br) + D(c,d, Bgy/7)
= Dg(c’ d5 BT) + Dg(cy dv BE()/T) = Dg(c7 d? B)'

Taken together with the trivial inequality D¢(c,d,B) < D(c, d, B), we must have
equality. This closes the induction and completes the proof. O

In analogy to Lemma 3.6, the following corollary is now immediate. It is not needed
elsewhere, but we state it for completeness.

Corollary3.11 Let T C Eg be a critical subspace for the datum (c,d, B). It holds
that

D(c,d,B) = D(c,d,Br) + D(c.d, Bgy7).
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4 Connections to Other Brascamp-Lieb-Type Inequalities
4.1 The Brascamp-Lieb Inequality

It is clear by now that the Brascamp-Lieb inequality is a special case of the forward—
reverse inequality. On the other hand, if we assume (22) holds and that (23) holds
for all subspaces, not just those of product form, then finiteness of D(c, d, B) be
established as a consequence of the finiteness conditions for the forward Brascamp—
Lieb inequality. The argument is as follows, and is due to Michael Christ.

Assume (22) and further assume that (23) holds for all subspaces T (not just those
of product form). Define the index sets / := {1,...,k}and J = {1, ..., m}. Since
the statement and conclusion are invariant to rescaling ¢, d by the same constant,
we assume without loss of generality that max;e; ¢; < 1 and max;eyd; < 1. Now,
assuming /, J are disjoint index sets, we define the augmented index set J* = I U J.
For j € J*\J, defined; = (1 — ¢;), E/ = E;, and B; = mg, Ag'. Now, if (f)ies
and (g;) jes satisfy (2), then defining g; = f; for j € J*\J, it follows that

fire @) < [1 87 Biaer) [ £ ex) = [ 87 (BjAex).
J J

iel jelJ iel jeJ*
Integrating over both sides and using the fact that Eg = EBLI E;, we obtain
d.
[T/ #i=[ [Maceoner=[ ] @ama o
icr Y Ei Eo jeg Eo jeJ*
By the finiteness criteria for the forward Brascamp-Lieb inequality [8, Theorem 1.13],

d,
/ I1 g (BjAcx)dx
E

OjEJ*

(L) = n) )

jeJ* jeJ iel

where D < +o00 provided
Z d;dim(B;T) > dim(T) for all subspaces T C Ey, (69)
jel*

and further holding with equality when 7 = E(. Assuming this is true for the moment,
we combine (67) and (68) to conclude D(c,d, B) < D < +o00, as desired.

So, to verify (69) and therefore justify the application (68), observe that, since we
assumed (23) for all subspaces T C Ej,

> djdim(B;T) =) d;dim(B,;T)+ Y (1 —¢;)dim(wgT)  (70)
JEeJ* jeJ iel
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> > dim(rg,T) > dim(7), (71)

iel
with equality holding when T = E by (22).

Remark 4.1 The disadvantage of the above argument is that it will not, in general,
recover the sharp constant (and therefore the Gaussian saturation property) for the
forward-reverse Brascamp-Lieb inequality, even under the stronger condition that
(23) holds for all subspaces T C Ej.

Remark 4.2 Example 1.6 (reverse Young inequality) provides an important coun-
terpoint to the above discussion. The reader can check that (23) is verified for all
product-form subspaces, however, it fails to hold for some non-product-form sub-
spaces. Hence, bootstrapping the direct Brascamp—Lieb inequality as above would
fail to give a finite constant in the reverse Young inequality.

4.2 The Barthe-Wolff Inverse Brascamp-Lieb Inequality

The following “inverse” Brascamp-Lieb inequality was announced by Barthe and
Wolff in the note [5] and proved rigorously in [6]. We write it in a form to emphasize
the connection to Theorem 1.3.

Theorem 4.3 Let C € (—o0, +00] be any constant, and let previously introduced
notation prevail. For any measurable functions f; : E; — RY, 1 < i < k and
g El— R 1<j<m,

k

¢ m —d; k m .
L) Tl () = Tlromofls o oo
i j=1

i=1 j=1 ! 0=1

if and only if (72) holds for all centered Gaussian functions (f;)1<i<k and (g)1<j<m-

For sake of comparison, we restate the Gaussian saturation part of Theorem 1.3
here in equivalent form as follows:

Theorem 4.4 Let D € (—o0, +00] be any constant, and let previously introduced
notation prevail. For any measurable functions f; : E; — RY, 1 < i < k and
gj B/ — R, 1 < j < m satisfying

k m
[T/ 0 <[ef (Bx)  vxeEo (73)
i=l1 Jj=1

we have

m dj
(L) o

j=1

k p
() =
1 \JE

1
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if and only if (74) holds for all centered Gaussian functions (fi)1<i<k and (g)1<j<m
satisfying (73).

To see the connection between the two results, we first note that Theorem 4.4 implies
Theorem 4.3 by augmenting the datum (c, d, B) with Emtl = E,, dpt+1 = 1, and
By+1 = idg,. By choosing the function g+ : E™T! — R* according to

k m
. —d;
gm+1(x) = Hfl'Cl (nE,'x) l—[ 8 j(Bjx)’
i=1 =1

the hypothesis (73) is satisfied, and therefore (72) follows from (74). For given func-
tions (fi)1<i<k and (g;)1<;<m, the above choice of g;,41 is clearly best-possible, so
the best constant C in (72) must be equal to the best constant D in Theorem 4.4 for
the augmented datum, which can be computed by considering only centered Gaussian
functions.

In fact, the reverse is also true. That is, Theorem 4.4 may be derived from Theorem
4.3. The argument is a bit less straightforward in comparison, but nevertheless brief.
The idea is to apply Theorem 4.3 with exponents ¢; = 1 + r¢; and d} = tdj, where
t > 0 1is a parameter that will tend to 4-o0. For this choice of exponents, we apply the
pointwise inequality (73) to see that the RHS of (72) can be upper bounded as

k m
! —d’,
[ Tt o [Ts, " 8o
Eo j= j=1
k

k k
o) o)

i=1
Invoking (72) itself and dividing exponents by ¢, we find that (73) implies

k

H(/E fi)q < eCf/’]E[ </El gJ')dj,

i=1 1

where C; denotes the best constant in the inequality (72) for the exponents (c;)1§i5k
and (d})]s j<m- In particular, for D the best constant in (74), we have D < C,/t for
all + > 0. By the Gaussian saturation claim of Theorem 4.3 and direct computation
(see [6, Section 2.2]), one may calculate

det (Z{»‘Zl C,/-T[EicinE,- — ZT:I d}B;‘fAjBJ)

26 —
[T5_ ) (det € TT7 (det A )~

sup , (75)
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where the supremum is over all C; € ST(E;) and A; € ST(E/) satisfying

k m
Zc;ngicm@ > Zd}B;‘fA,-B,-. (76)
i=1 j=1

The set of (C)1<j<k and (A;)1<j<m satisfying (76) are monotone decreasing in ¢
(with respect to inclusion), so in calculating lim inf;_, o, C;/t, we need only consider
positive-definite (C;)1<j<x and (A;)1<j<u in the intersection of all such sets; i.e.,
those satisfying

k m
ZciﬂziciﬂEi > Zij;fAij. amn
i=1 j=1
Assuming (77) holds, we bound
k /% m ! p* 1t
det (Zi:l iy, Cimg; — 35y ijAij)

Hf:] (det Ci)l/t‘f'ci l_[’;l:] (det Aj)_dj

d k "% C i
et (i iy, i
K (det c)V/rte TT™ (det A ;)~4
i=1 j=1 J
B 1_[521(1 4 [Ci)dim(E,-)/t
k (et Ce ™ (det Aj)=4i
i=1 j=1 J

<

Hence,

o 1 m 1 k
I}EggCt/tfsup E_X;djlogdetAj_EX;cilOgdetCi ,
j= i=

where the supremum is overall C; € S*(E;) and Aj e SH(E satisfying (77). This is
precisely the best constant D obtained in (74) by considering only centered Gaussian
functions, so the proof is complete.

Remark 4.5 The above argument showing equivalence of Theorems 4.3 and 4.4 is due
to Pawet Wolff. Despite their formal equivalence, both results have their merits, and
the techniques used to derive each are complimentary. In particular, Barthe and Wolff
use an optimal transport argument, while our proof relies primarily on duality and
structural decomposition. Additionally, the different formulations of the results have
their respective advantages. For example, Theorem 1.3 highlights the unification of the
Brascamp-Lieb and Barthe inequalities, together with the duality of best constants (6).
On the other hand, Barthe and Wolff’s formulation emphasizes an inverse principle
to Lieb’s [23]. Our proof is perhaps simpler since it avoids the detailed case analysis
encountered in [6], but preference may depend on the reader’s taste.
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Remark 4.6 Theorem 4.3 is a particular case of the general inverse inequality by Barthe
and Wolff which allows for integration against a non-trivial Gaussian kernel in the RHS
of (72), and for which the Gaussian saturation property remains valid. As we will see
in the next section, their geometric inequality can be recovered in full generality
with non-trivial Gaussian kernel as a consequence of the geometric forward—-reverse
Brascamp-Lieb inequality. Hence, there is a formal equivalence between the geometric
Barthe-Wolff inequalities stated with (i) trivial Gaussian kernel; or (ii) non-trivial
Gaussian kernel. Although we do not pursue it here, it is an interesting question
whether this formal equivalence continues to hold for non-geometric instances of the
Barthe-Wolff inequality.

4.3 Inequalities with Gaussian Kernels

In this section, we establish inequalities for integrals against Gaussian kernels as
applications of our main results. They are easy corollaries of the geometric forward—
reverse Brascamp-Lieb inequality. Similar results could be stated for the general
forward-reverse inequality, but we restrict attention to the geometric case to simplify
the discussion.

Definition 4.7 For a Euclidean space E, we let yg denote the standard Gaussian mea-
sure on E. That is,

d _ 1 —1xp
)/E()C) = (27-[)di—m(E)/26 2 dx.

Theorem 4.8 Let H be a Euclidean space, and Q € S(H) with signature

(sT(Q), s7(Q)). Consider linear maps U; : H — E; and Vi:H — EJ satisfy-

ing U;UF =idg; and Vij =idgj, foralll <i <kand1 < j <m. Let (¢i)1<i<k

and (dj)1<j<m be positive numbers, and suppose that

k m k
Q+)Y cUiUi=Y d;ViV; >0, and dim(H)>s"(Q)+ Y  dim(E;).
i=1 j=1 i=1

(78)

Ifmeasurable functions f; : E; — RT,1 <i <kandg;: E/ — RT,1<j<m
satisfy

k m
1/ Wi <] &7 Vi) Vx € H, (79)

i=1 j=1
then
k

Ci m dj
dVE, < idyrei . 80
</E[f VE,) <l—[(ijg, VE> (80)

j=1

i=1
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Proof Decompose Q = QO — O, with 9%, O~ € ST(H). By spectral decomposi-
tion, write

sH(0) (O
OF = ) heuju 0™ = ) mevjvr,
=1 (=1

where Ay > 0 (resp. u¢ > 0) and uguj = idr (resp. vev; = idg). Thus, the first
assumption in (78) can be written as

k st(0) m s7(Q)
ZC,‘Ui*U,' + Z Mu}fug = ZdijVj + Z pLgUz(U( > 0. 81)
i=1 =1 =1 =1

In particular the LHS is a linear map with rank equal to dim(H) by the positive-
definiteness assumption, so by subadditivity of rank, it holds that dim(H) < sT(Q) +
Zle dim(E;). By (78), we must have equality. Thus, we can consider the map

x€H — (Uix, ..., Upx,uix, ..., usg+(0)Xx)

as a bijective linear map from H to H. Now, if (79) is satisfied, then (81) implies that
we also have

k : ()
[1 <ﬁ(Uix)—(2n)dim(Ei)/ze_2'U"xl > x [T o™ e
i=1 ¢=1

|m| ! v S_H(Q)
i ) — T 2lVjX e

= ' 1<81(Vpc)(zn)dim(m)/ze 21V ) X 11 M (vpx), Vx € H,
Jj= —

where ¢ denotes the standard Gaussian density
1
$(2) = —e_%mz, zeR.
2

Since fR ¢ = 1, the inequality (80) follows from an application of Corollary 1.19. O

An important consequence of Theorem 4.8 is the following geometric inverse
Brascamp-Lieb inequality proved by Barthe and Wolff [6, Theorem 4.7], recovered
here in full generality. We remark that the reverse Holder-type inequality for Gaussian
random vectors due to Chen, Dafnis, and Paouris [15, Theorem 1(ii)] follows as a
direct consequence [6, Section 4.3], so should be considered as yet another example.
The direct Chen—Dafnis—Paouris inequality [15, Theorem 1(i)] is a consequence of
the forward Brascamp-Lieb inequality.

Corollary 4.9 Let H be a Euclidean space, and consider linear maps U; : H —> E;
andV; : H — E/ satisfying U; U = idg; and Vij =1idgj, forall1 <i <kand
1 < j <m. Let (¢;)1<i<k and (d)1<j<m be positive numbers, and suppose that
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k m k
O+ UiUi=) d;ViVi+idy. and dim(H)>s"(Q)+ ) dim(E))
i=1 j=1

i=1

for Q : H — H a symmetric operator. For all non-negative measurable functions
fitEi— RY, 1 <i<kandg;: El — RY, 1 < j <m, it holds that

k ¢ m —d; k m ‘
(/) () = e Tharwm [Tevme
i=1 \Ei j=1 \E/ H i=1 j=1 !

Proof Define E™t! = H, V,,,1 =idy and d,,41 = 1. Put
fiwy = fi (@m T x) e <i <k
g0 =g (0 Px) B 1< j < m,
and define g,,41 : H —> H defined according to

k m
1) = [ [ 7 @m) " 2um ] & (@)~ v
i=1 j=1

k m
= [T @0 2o [T8; % @012y | e oai@n,

i=1 j=1

Now, by change of variables u <« (271)_1/ 2x,
/ Fi)dyg () = / fitwdu, 1<i <k
E; E;

/.g’j(X)dJ/Ej(X) =/.gj(u)du, l<j<m
EJ EJ

and

k m
/H Zmi1(0)dyp (x) = /H e [T £ Wi T &5 (Vjuydu,

i=1 j=1
So, the claim follows from Theorem 4.8. O

Remark 4.10 We have seen above that the geometric Barthe-Wolff inequality [6, The-
orem 4.7] follows as a consequence of Corollary 1.19, the latter being a special
case of the complete characterization of geometric instances of the Forward—Reverse
Brascamp-Lieb inequality given in Corollary 1.17. So, it appears prima facie that the
class of geometric Forward—Reverse Brascamp-Lieb inequalities is more extensive
than the geometric instances of the Barthe-Wolff inequality.
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4.4 The Anantharam-Jog-Nair Inequality

In a recent paper [1], Anantharam, Jog, and Nair established the following entropic
inequality:

Theorem 4.11 Consider independent random vectors (Zi)1<i<kx taking values in
(Ei)1<i<k, respectively, each having density with respect to Lebesgue measure, finite
entropies, and finite second moments. It holds that

k m k
> eih(Zi) = djh (Z Bijzi) < Mg(c.d.B), (82)
i=1 j=1 i=1

where the constant Mg (c, d, B) is defined as the supremum of the LHS, taken over
independent Gaussian (Z;)1<i<k. Moreover, the quantity M(c, d, B) is finite if and
only if we have the scaling condition

k m
> cidim(E;) =) d; dim(E)) (83)

i=1 j=1
and the dimension condition

k m
Z cidim(mwg, T) < Z dj dim(B;T) for all product-form subspaces T C E.
i=1 j=1
(84)

The inequality (82) is of interest because it simultaneously expresses both the entropy
power inequality and the (entropic formulation [13] of) the Brascamp-Lieb inequality.
The former is generally considered a consequence of the latter, obtained by considering
a limiting case of parameters. As such, an inequality encompassing both simultane-
ously was previously not known. Analogously, it turns out that Theorem 4.11 can be
derived as a corollary of Theorem 1.3 by considering a limiting case of parameters.

To give the argument, we first state an entropic characterization of D(c, d, B),
which directly parallels Proposition 3.1 (here, the reader is reminded of the nota-
tion introduced in Sect. 3.1). Specifically, the following entropic characterization of
D(c, d, B) is a special case of [25, Theorem 1]°, which generalizes to abstract settings
and extends the entropic formulation of the forward Brascamp—Lieb inequality due to
Carlen and Cordero-Erausquin [13], as well as the entropic formulation of the reverse
Brascamp-Lieb inequality independently put forth in [24] and [7] (the latter being
specific to discrete spaces).

Theorem 4.12 If (Z;)1<i<k are compactly supported random vectors in (E;i)1<i<k,
respectively, each having density with respect to Lebesgue measure and finite entropies,
then

3 nb. Eq. (12) in [25] should read as log g; (resp. log f;) instead of g; (resp. f;).
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k
;Cih (C;]Zl‘> PZeH(PZ ’’’’ Py, )Zd ih (Z BUZ) < D(c,d, B), (85)

i=1

where the (always attained) maximum is over all couplings of the (Z;)1<i<k. Moreover,
the constant D(c, d, B) is best possible.

Theorem 4.12 is proved similarly to Theorem 2.11, except that the Fenchel-
Rockafellar theorem is applied to the topological vector space X = C.(Ep), and
equivalence is shown to the functional formulation of D(c, d, B). Readers can fill in
the details as an exercise, or refer to the proof of the more general [25, Theorem 1].
Despite the similarity of statements and proof strategies, it is not immediate to derive
Proposition 3.1 as a special case due to several subtle technical issues that need to be
dealt with.

The following proof provides a nice example of where the entropic characterization
of D(e, d, B) can be useful.

Proof of Theorem 4.11 First, we note that (83) and (84) are necessary conditions for
finiteness, which can be checked by testing on Gaussian (Z;)<;<x which put different
variances in directions g, T and (7, T)L. So, we assume henceforth that (83) and
(84) hold.

Let M(c,d, B) denote the supremum of the LHS of (82) over all independent
(Zi)1<i<k with finite entropies and finite second moments. Note that in taking this
supremum, it suffices to consider compactly supported (Z;)1<;<k. Indeed, if (Z;)1<i <«
are not compactly supported and have finite second moments, then letting Z; g be the
restriction of Z; to the ball of radius R, we have limg_, o h(Z; g) = h(Z;) by
dominated convergence, and limsupgp__, A <Zf:1 Bij Zi,R) <h (Zle Bij Zi)
by weak upper semicontinuity of Shannon entropy under a second moment constraint.

We will consider an application of the forward-reverse Brascamp-Lieb inequality
with modified coefficients cl’- = (c;i+1),1 <i <k, d/ =d;,1 < j <mand
augmented datum having Emtl .= Eo, Bpt1 = idg, and dm+] := t,where f is a
parameter that will tend to +o00. Denote this augmented datum by (¢ + ¢, (d, ), BU
{Bm+l })

Considering independent Gaussian (Z;)1<; <k, let D(P| Q) := fdP log (g—g) >0
denote the relative entropy between probability measures P and Q satisfying P < Q,
and for any ¢ > 0 observe

k m k
Yei+0h(Z)—  sup (Zd h (Z ) +1h (zlzk))
) o

i=1 Pyell(Pz;..... Pz,

k
= Zcih (Zi)— sup

Pzell(Pz,....

5
S
|Ms
&

E‘
P
HM»
\/

(Pzl Pz, ><~~-><sz))
<Zc1h(Z)—Zdh<i )
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where the equality follows by definition of relative entropy, and the inequality follows
by considering the independent coupling as one element in the set the supremum is
taken over. By definitions and Proposition 3.1, we conclude

k
Dg(e+1,(d, 1), BU{Buy1}) + ) _(ci + 1) dim(E;) log(c; + 1)
i=1

< Mg(c,d,B) forallz > 0. (86)
As for finiteness of M (¢, d, B), this was already taken care of in the proof of Proposi-

tion 3.10. Indeed, using the the relaxation (64), we established finiteness of Dy (¢, d, B)
by showing

Pzel'I(le ,,,,, PZk P

k m k
< Zcih Zi) — Zd]h <Z BijZ,'> <C <+
i—=1 =1 i=1

k m k
> il (Zi) - sup > djh (Z B,-,-Zi)
i=1 ) j=1 i=1

for independent Gaussian (Z;)1<;<x when (83) and (84) hold.
Now, fix arbitrary (Z;) 1 <; <x with compact support and finite entropies, and for each

n > 0, consider a coupling (Zi"), o Z,E")) ~ Py € II(Pz,, ..., Pz,) satisfying

m k
> djh (Z B,,»Z}"’) —nD (PzwllPz, x -~ x Pz,)

j=1 i=1

m k

5 1

e sup Zdjh (ZBijZi>—”D(Pz|Ile X -+ x Pz,) -~
j=1 i=1

Pyell(Pzy,.... Pz;)

Since the RHS is bounded from below by selecting the independent coupling and the
entropies h (Zf;l Bi; Zl.(n)) can be uniformly bounded from above in terms of the

second moments of the marginals (Z;)<; <k, it is clear that we must have

lim _nD (g |Pzy x -+ x Pz) =0,

In particular, by weak upper semicontinuity of Shannon entropy under second moment
constraint, we conclude

m k

lim sup sup Zd/h (Z BijZ,) —nD (PZIIPZl X - X sz)
)\ = i
j=1 i=1

n—-0o0 PZEH(Pll ..... PZk
m k
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Combining definitions with the above, Theorem 4.12, and Theorem 1.3, we have

k
limin (Dg (€+n.(d.n),BU{Bus1}) + D (c; +n)dim(E;) log(c; + n))

n—>» 00 4
i=1

k

m k
> E cih (Z;) — limsup sup E d./'h(E BUZ,-)
)\ iZ
j=1

i=1 n—-ao0 PZEH(PZI ..... sz i=1

—nD (P;||Pz, x -+ x Pz,)

k m k
> Zcih (Z:) — Zdjh (Z B,,Z,) .
j=1

i=1 i=1

Since the (Z;)1<;<x were arbitrary, it follows from (86) and the subsequent remarks
that

M(ca da B) S Mg(ca da B) < +OO’

completing the proof. O
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inequality.

Appendix A: Definition and Basic Properties of Shannon Entropy

This appendix provides an overview of the basic definitions and properties of Shan-
non entropy, with the goal of allowing an unfamiliar reader to follow the entropy
computations in the body of this manuscript. In the interest of keeping things brief
and self-contained, we focus on the case of random vectors in a Euclidean space with
finite second moments, since this is sufficient for our purposes. The interested reader
can find a general treatment in [19, Chapter 5].

Let E be a Euclidean space, and assume X is a random vector taking values in E,
having density fx : E —> [0, +00) with respect to Lebesgue measure. The Shannon
entropy (referred to henceforth as simply entropy) associated to X is defined as

hX) = — /E fx() log i (x)dx.

The entropy is said to exist if the integral is well defined in the Lebesgue sense. Here,
we adopt the convention that 0 - log0 = 0. The reader should note that the entropy
h(X) is a functional of the density fx, and is not a function of the realization of the
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random vector X. If X does not have density with respect to Lebesgue measure, we
adopt the convention that #(X) = —oo.

By a simple change of variables, we have the following elementary property of
entropy:

Proposition A.1 (Scaling property for Shannon entropy) If the entropy of X exists and
A : E — Eisaninvertible linear transformation, then we have the scaling property

h(AX) = log | det A| + h(X).

In this paper, we work exclusively with random vectors having finite second
moments. In this context, we note that the inequality — log(z) > 1 —zonz € [0, +00)
yields

Sfx(x)

dx,
@ (x)

0= [ fucoto
E
where ¢ (x) := 2m)~ dim(E)/2,=1¥*/2 i the standard Gaussian density on E. We may
conclude:
Proposition A.2 (Entropy of random vectors with bounded second moments) Let X

have density on E. IfE|X|* < oo, then the entropy h(X) exists, and is bounded from
above as

1 .
h(X) < 5 log ((Zne)d‘m(E)IElX|2) .

If E, E; are Euclidean spaces and (X, Y) is a pair of random vectors taking values
in E; x E, with joint density fxy : E1 x Ea —> [0, +00), the joint entropy of
(X, 7Y) is defined as

hx, Y)=—//E _ fer(ry)log frr (x. y)dsdy.
1 XL

Of course, this is consistent with the original definition of entropy, applied to the
(E1 x Ej)-valued random vector (X, Y). A simple property is as follows:

Proposition A.3 (Subadditivity of entropy) Let (X, Y) be a pair of random vectors
taking values in E1 x Ep with joint density fxy : E1 x Eo —> [0, 400). If (X, Y)
have finite second moments, then the joint and marginal entropies exist and satisfy

(X, Y) < h(X)+h(Y).

This is met with equality if X, Y are independent.
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Proof Since all entropies exist and are bounded from above, we may assume /2(X, Y)
is finite, else the claim is trivial. Similar to before, we note the following inequality:

Sxy(x,y)
0 log ————dxdy.
fffElez Jrr (e y)log = e Gy 9

Using existence and finiteness of the joint entropy, we apply linearity of the integral
to conclude

—/fE . Jxy(x, y)log (fx(x) fy(y))dxdy = h(X,Y). (87)
I XE2

Now, let us decompose the density

fxr@,y) = fx) frix(vlx), xe€Eyye ks,

where, for x € E1, the function fy|x(:|x) denotes the density of a conditional regular
probability Py|x—x on E>, and coincides with the ratio fxy (x, y)/ fx (x) for almost
every x in the support of fyx. Similar to how we argued entropy was bounded from
above under a second moment constraint, we may show that the integral

—// Sxy(x, y)log (fx(x))dxdy
E1xEy

exists and is bounded from above. The same conclusion holds with fx (x) replaced by
fr(y). From this and (87), we conclude using the assumed finiteness of #(X, Y) that
the function (x, y) —> fxy(x,y)log (fx(x)) is integrable, and is equal to —h(X)
by the Fubini—Tonelli theorem. Similar for 4(Y), so linearity of the integral applied to
(87) proves the claim. O

Finally, we note the following consequence of lower semicontinuity of relative
entropy, which follows from the Donsker—Varadhan variational formula. See, e.g.,
[25, Lemma A2] for details.

Proposition A.4 (Upper semicontinuity of entropy under second moment constraint)
Let (Xp)n>1 be a sequence of random vectors on a Euclidean space E, such that
Xn —> X weakly. If sup, -4 E|X,|> < 400, then

lim sup 4 (X;) < h(X).

n—-oQ
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