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Abstract

A new proof is given for the fact that centered Gaussian functions saturate the

Euclidean forward–reverse Brascamp–Lieb inequalities, extending the Brascamp–

Lieb and Barthe theorems. A duality principle for best constants is also developed,

which generalizes the fact that the best constants in the Brascamp–Lieb and Barthe

inequalities are equal. Finally, as the title hints, the main results concerning finite-

ness, structure, and Gaussian-extremizability for the Brascamp–Lieb inequality due

to Bennett, Carbery, Christ, and Tao are generalized to the setting of the forward–

reverse Brascamp–Lieb inequality.
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1 Introduction andMain Results

We begin with notation that will prevail throughout. Let (Ei )1≤i≤k and (E j )1≤ j≤m

be Euclidean spaces, i.e., finite-dimensional Hilbert spaces endowed with Lebesgue

measure and the usual inner product 〈·, ·〉 giving rise to Euclidean length | · |. We write
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E0 =
⊕k

i=1 Ei , and let πEi
: E0 −→ Ei be the orthogonal projection of E0 onto

subspace Ei .

Let B := (Bi j )1≤i≤k,1≤ j≤m , where each Bi j : Ei −→ E j is a bounded linear

transformation. Because it will be referred to frequently, we define B j : E0 −→ E j

according to

B j x :=

k
∑

i=1

Bi jπEi
(x), x ∈ E0.

Note that the collection (B j )1≤ j≤m may be regarded as an equivalent characterization

of B. Define B
∗ := (B∗

i j )1≤i≤k,1≤ j≤m , where A∗ denotes the adjoint of A.

We let c := (ci )1≤i≤k and d := (d j )1≤ j≤m be collections of positive real numbers

satisfying

k
∑

i=1

ci dim(Ei ) =

m
∑

j=1

d j dim(E j ), (1)

and we refer to the triple (c, d, B) as a datum. Finally, R
+ denotes the non-negative

real numbers.

1.1 The Forward–Reverse Brascamp–Lieb Inequalities

For a given datum (c, d, B), this paper is concerned with characterizing the best con-

stant D in the following statement: If measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k

and g j : E j −→ R
+, 1 ≤ j ≤ m satisfy

k
∏

i=1

f
ci

i (xi ) ≤

m
∏

j=1

g
d j

j

(

k
∑

i=1

ci Bi j xi

)

∀xi ∈ Ei , 1 ≤ i ≤ k, (2)

then

k
∏

i=1

(∫

Ei

fi

)ci

≤ eD

m
∏

j=1

(∫

E j

g j

)d j

, (3)

where the integrals are with respect to Lebesgue measure on the respective spaces. To

facilitate later referencing, we make a formal definition.

Definition 1.1 Given a datum (c, d, B), we define D(c, d, B) to be the smallest con-

stant D such that (3) holds for all non-negative measurable functions satisfying the

constraints (2).

Remark 1.2 If (1) does not hold, then dilating all functions by a common factor shows

D(c, d, B) = +∞, motivating the assumption. It is easy to see that D(c, d, B) > −∞.
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The above class of inequalities was introduced by the authors together with Cuff and

Verdú, and termed Forward–Reverse Brascamp–Lieb inequalities [25]. This choice of

terminology reflects the observation that taking k = 1 and c1 = 1 specializes to

the classical (forward, or direct) Brascamp–Lieb inequalities [11,12,23]; on the other

hand, taking m = 1 and d1 = 1 specializes to the reverse form of the Brascamp–Lieb

inequalities introduced by Barthe [4].

The celebrated result of Lieb [23] is that in the case k = c1 = 1, the best con-

stant D(1, d, B) can be computed by considering only centered Gaussian functions

f1, g1, . . . , gm . Likewise, Barthe showed in [4] that in the case of m = d1 = 1, the best

constant D(c, 1, B) can be computed by considering only centered Gaussian functions

f1, . . . , fk, g1. Barthe also established a remarkable duality between the forward and

reverse Brascamp–Lieb inequalities, in the sense that

D(c, 1, B) = D(1, c, B
∗), (4)

where, by Definition 1.1 applied to the datum (d, c, B
∗), the quantity D(d, c, B

∗)

denotes the smallest constant D in the inequality

m
∏

j=1

(∫

E j

g j

)d j

≤ eD

k
∏

i=1

(∫

Ei

fi

)ci

,

holding for all measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+,

1 ≤ j ≤ m satisfying

m
∏

j=1

g
d j

j (y j ) ≤

k
∏

i=1

f
ci

i





m
∑

j=1

d j B∗
i j y j



 ∀y j ∈ E j , 1 ≤ j ≤ m. (5)

Perhaps surprisingly, the forward–reverse Brascamp–Lieb inequality suggests that

there is no fundamental distinction between the traditional forward and reverse forms

of the Brascamp–Lieb inequality. Indeed, they are each a particular instance of the

inequality (3) under the hypothesis (2) for an appropriate choice of datum. Most

importantly, the Gaussian saturation property continues to hold for the forward–reverse

Brascamp–Lieb inequality, as well as a full-fledged form of the duality relation (4).

This both clarifies and unifies the general landscape of Euclidean Brascamp–Lieb-

Barthe-type inequalities and the duality they enjoy. This is our first main result:

Theorem 1.3 The quantities D(c, d, B) and D(d, c, B
∗) can be computed by consid-

ering only centered Gaussian functions ( fi )1≤i≤k and (g j )1≤ j≤m in their respective

definitions. Moreover, it holds that

D(c, d, B) = D(d, c, B
∗). (6)

Remark 1.4 The sufficiency of considering Gaussian functions for computing the con-

stant D(c, d, B) was already established in our previous work [25, Theorem 2]. As
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will be explained in Sect. 4, the Gaussian saturation property is closely connected

(in fact, formally equivalent) to a result announced by Barthe and Wolff in the note

[5], and proved in their recent followup work [6]. The identity (6) has not been

previously observed. A related family of inequalities has also been considered by

Cordero-Erausquin and Maurey [16]; their main result can be interpreted as the asser-

tion D(c, d, B) ≤ 0, under the assumption that B is contractive in a certain sense

(interested readers are referred to [16, Section 5] for the relevant statements).

Remark 1.5 The identity (6) explains the scaling of each Bi j by ci in (2) and, similarly,

the scaling of each B∗
i j by d j in (5). If we were not after (6), these scalar factors could

be absorbed into the maps themselves without affecting the first claim of Theorem

1.3.

There are now several independent proofs of the original Brascamp–Lieb and Barthe

theorems. Early proofs relied on rearrangement arguments [11,12], and Lieb appealed

to rotational invariance of the extremizers [23]. Barthe came up with a clever optimal

transport argument, and simultaneously proved both the forward and reverse inequality

[4], further establishing equality of best constants. More recently, Lehec [22] gave a

probabilistic proof of both theorems using a variational representation for functionals

due to Boué and Dupuis [10]. Semigroup techniques provide yet another avenue of

proof; see Bennett et al. [8], or Carlen et al. [14]. Our previous work [25] gave an

information-theoretic proof of the Gaussian saturation part of Theorem 1.3 (therefore

extending to the classical settings as well), by way of a doubling argument similar

to that employed by Geng and Nair in [18] for a different problem. This doubling

argument is similar in spirit to that given by Lieb [23], but it exploited an equivalent

entropic representation of the problem.

As far as applications go, it is well known that the Brascamp–Lieb inequalities imply

many other classical inequalities in analysis and geometry, such as Hölder’s inequality,

Young’s inequality, and the Loomis–Whitney inequality. Likewise, Barthe’s inequality

contains, for example, the Prékopa–Leindler and Brunn–Minkowski inequalities as

special cases. All of these implications and more are described in Gardner’s survey

of the Brunn–Minkowski inequality, which places the Brascamp–Lieb, Barthe, and

reverse Young inequalities atop a hierarchy of implications [17, Figure 1], with none

of the three evidently implying the others. In the accompanying discussion, Gardner

asks whether stronger unifying inequalities await discovery; the content of Theorem

1.3 may be regarded as an affirmative answer. We have already described how the

Brascamp–Lieb and Barthe inequalities may be immediately recognized as special

cases of the forward–reverse Brascamp–Lieb inequality. It turns out that the reverse

Young inequality constitutes another instance of the forward–reverse Brascamp–Lieb

inequality. Further examples will be given in Sect. 4.

Example 1.6 Let 0 < p, q, r ≤ 1 satisfy 1
p

+ 1
q

= 1 + 1
r

. For φ,ψ non-negative

measurable functions on R
n , the reverse Young inequality for convolutions asserts

‖φ ∗ ψ‖r ≥ Cn‖φ‖p‖ψ‖q , (7)
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where ‖h‖p :=
(∫

Rn |h|pdx
)1/p

for h : R
n −→ R and p ∈ R. The sharp constant is

given by C = C pCq/Cr , with

C2
s :=

|s|1/s

|s′|1/s′

for 1/s + 1/s′ = 1 (i.e., s and s′ are Hölder conjugates).

We may assume r < 1 henceforth, else if r = 1, then we must have p = q = 1,

and the claim is trivial. Under this assumption, it is easily verified using the reverse

Hölder inequality and renaming functions, that (7) is equivalent to

∫∫

f
1/p
1 (x − y) f

1/q
2 (y)g

1/r ′

1 (x)dxdy

≥ Cn

(∫

Rn

f1

)1/p (∫

Rn

f2

)1/q (∫

Rn

g1

)1/r ′

, (8)

holding for f1, f2, g1 non-negative measurable functions on R
n .

To place this into the framework of the forward–reverse Brascamp–Lieb inequality,

let E1 = E2 = E1 = R
n and E2 = R

2n , with c1 = 1/p, c2 = 1/q, d1 = 1/r − 1,

and d2 = 1. Further, let B be such that

2
∑

i=1

ci Bi1xi = x1 + x2;

2
∑

i=1

ci Bi2xi = (x1, x2), ∀x1, x2 ∈ R
n .

Then, the hypothesis (2) boils down to

f
1/p
1 (x1) f

1/q
2 (x2) ≤ g

1/r−1
1 (x1 + x2)g2(x1, x2) ∀x1, x2 ∈ R

n . (9)

For arbitrary functions f1, f2, g1, the best function g2 can be computed as

g2(x, y) := f
1/p
1 (x − y) f

1/q
2 (y)g

1/r ′

1 (x), x, y ∈ R
n,

where “best” is in the sense that the RHS of (3) is minimized subject to (9). On

substituting this choice of g2 into (3) and rearranging, we we are left precisely with

(8), with best constant necessarily characterized as Cn = e−D(c,d,B), computed by

considering only centered Gaussian functions.

The relation (6) allows us to easily deduce an interesting “dual” to the reverse

Young inequality, given in the following example. Here, we emphasize that the term

dual is meant in terms of (6), which is the same sense in which the Brascamp–Lieb

and Barthe inequalities are dual to one another. It bears a superficial resemblance to

Maurey’s property (τ ) [26] and functional Santaló inequalities (e.g., [2,20]).

Example 1.7 Let 0 < p, q, r ≤ 1 satisfy 1
p
+ 1

q
= 1+ 1

r
, and let (c, d, B) be the datum

of the previous example that yields the reverse Young inequality (8). By considering the
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dual datum (d, c, B
∗) and applying (6), we conclude after elementary simplification

that

∫

R2n

w ≤ K n‖ f ‖p‖g‖q‖h‖r ′ , (10)

for non-negative measurable functions f , g, h, w satisfying

w(z1, z2) ≤ inf
y∈Rn

(

f (z1 − y)g(z2 − y)h(y)

)

, z1, z2 ∈ R
n . (11)

The sharp constant K is given by K = K p Kq Kr , where1

K 2
s := |s|1/s |s′|1/s′

, 0 < s ≤ +∞.

The choice of functions

f (x) = e|x |2/p′

, g(x) = e|x |2/q ′

, h(x) = e|x |2/r

saturate the inequality (10) when w is taken equal to the infimum in (11).

Remark 1.8 To be more precise, the instances in the above example where r < 1 follow

by (6), and the exceptional case r = 1 (r ′ = −∞) can be easily checked directly.

Remark 1.9 In analogy to Example 1.7, one can derive a “dual” Young inequality.

It formally reverses the inequality of the previous example: If p, q, r ≥ 1 satisfy
1
p

+ 1
q

= 1 + 1
r

, then

∫

R2n

w ≥ K n‖ f ‖p‖g‖q‖h‖r ′ (12)

for non-negative measurable functions f , g, h, w satisfying

w(z1, z2) ≥ sup
y∈Rn

(

f (z1 − y)g(z2 − y)h(y)

)

, z1, z2 ∈ R
n . (13)

Since the standard Young inequality is a special case of the Brascamp–Lieb inequal-

ity, its dual (12) is a special case of the Barthe inequality, and should therefore be

regarded as already known. In contrast, we do not know whether (10) (or equivalent)

has appeared previously in the literature.

To close this section, let us remark briefly on the chief difficulty encountered in

proving Theorem 1.3 compared to the special cases corresponding to the Brascamp–

Lieb and Barthe inequalities. In the case of the direct Brascamp–Lieb inequalities,

the function f1 can be explicitly computed in terms of the (g j )1≤ j≤m (specifically,

1 If s ∈ {1,+∞}, Ks is defined by the limit Ks := limt→s Kt to avoid indeterminate forms in the

definition.
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f1 =
∏m

j=1(g j ◦B j )
d j ). In the reverse case, the function g1 can be computed explicitly

in terms of the ( fi )1≤i≤k . Such a simplification is not typically possible in the more

general forward–reverse inequalities; this leads us to establish a rather subtle duality

principle, to be made precise in Theorem 2.11 (see Remark 2.13). Once this duality

principle is established, the structure of Gaussian extremizers can be distilled, and

techniques previously developed for proving the Brascamp–Lieb and Barthe inequal-

ities can be successfully adapted to forward–reverse setting.

1.2 Finiteness and Gaussian-Extremizability

A motivation of the present paper is to better understand the structural properties of

the Gaussian extremizers in Theorem 1.3 (when they exist), and to establish neces-

sary and sufficient conditions for finiteness of D(c, d, B). To this end, we give a new

proof of Theorem 1.3, which combines ideas from Lehec’s probabilistic proof of the

Brascamp–Lieb and Barthe inequalities [22], the structural viewpoint on the forward

Brascamp–Lieb inequality developed by Bennett, Carbery, Christ and Tao [8], and the

entropic duality of the forward–reverse Brascamp–Lieb inequality in [25]. The detailed

structural results, for example, allow us to easily identify “geometric” instances of the

forward–reverse Brascamp–Lieb inequality, which may be particularly useful in appli-

cations (see, e.g., Sect. 4.3). While the results below address the structure of Gaussian

extremizers, they do not characterize non-Gaussian extremizers. Valdimarsson has

done this for the direct Brascamp–Lieb inequalities [28], and it seems reasonable

to speculate that his approach could be extended to the forward–reverse inequalities

considered here. We leave this question to future work.

Let us now make precise the notions of Gaussian-extremizability and extremizers

that have been alluded to above. We will need some more notation, which will pre-

vail throughout. For a Euclidean space E , we let S(E) denote the set of self-adjoint

linear operators on E , and S+(E) denote the set of self-adjoint positive-definite lin-

ear operators on E . That is, A ∈ S+(E) if A ∈ S(E) and it further holds that

〈Ax, x〉 > 0 for all non-zero x ∈ E . If A ∈ S(E) and 〈Ax, x〉 ≥ 0 for all x ∈ E ,

we say that A is positive-semidefinite. For A, B ∈ S(E), we write A ≥ B if A − B

is positive-semidefinite. Finally, for positive-semidefinite A, we let A1/2 denote the

unique positive-semidefinite M such that A = M2.

A centered Gaussian function (or kernel) g : E −→ R
+ is a function of the form

g(x) = exp

(

−
1

2
〈A−1x, x〉

)

, A ∈ S+(E),

where A is said to be the covariance of the Gaussian kernel g. We remark that a

centered Gaussian random vector on E with covariance A has density (with respect

to Lebesgue measure on E) proportional to g.

Restricting attention to centered Gaussian functions

fi : x ∈ Ei .−→ exp(−〈Vi x, x〉), Vi ∈ S+(Ei ), 1 ≤ i ≤ k,

g j : x ∈ E j .−→ exp(−〈U j x, x〉), U j ∈ S+(E j ), 1 ≤ j ≤ m,
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and defining

%c :=

k
⊕

i=1

ci idEi
,

we see that the hypothesis (2) boils down to

m
∑

j=1

d j 〈U j B j%cx, B j%cx〉 ≤

k
∑

i=1

ci 〈ViπEi
(x),πEi

(x)〉 ∀x ∈ E0. (14)

Additionally, using (1), we may compute

∏k
i=1

(

∫

Ei
fi

)ci

∏m
j=1

(∫

E j g j

)d j
=

∏m
j=1 det(U j )

d j /2

∏k
i=1 det(Vi )ci /2

.

Collecting the above and comparing to (3), this motivates definition of the quantity

Dg(c, d, B) :=
1

2
sup





m
∑

j=1

d j log det U j −

k
∑

i=1

ci log det Vi



 , (15)

where the supremum is over all Vi ∈ S+(Ei ), 1 ≤ i ≤ k and U j ∈ S+(E j ), 1 ≤

j ≤ m satisfying (14). In words, Dg(c, d, B) is the smallest possible constant D

in (3), holding for all Gaussian kernels satisfying the constraints (2). By definition,

Dg(c, d, B) ≤ D(c, d, B). The first part of Theorem 1.3 asserts that this is always met

with equality.

Remark 1.10 Even if (1) does not hold, it remains true that Dg(c, d, B) as defined

above will equal the smallest possible constant D in (3), holding for all Gaussian

kernels satisfying the constraints (2). Indeed, scaling the (Vi )1≤i≤k and (U j )1≤ j≤m by

a common factor shows Dg(c, d, B) = +∞, while dilating functions by a common

factor will show that the best constant D in (3) will also be equal to +∞.

Definition 1.11 A datum (c, d, B) is Gaussian-extremizable if the supremum in (15) is

attained and is finite for some Vi ∈ S+(Ei ), 1 ≤ i ≤ k and U j ∈ S+(E j ), 1 ≤ j ≤ m

satisfying (14). Any such operators are said to be Gaussian extremizers.

The constraint (14) is a bit cumbersome to write out. So, henceforth, we adopt some

notation to make statements more compact; for given Vi ∈ S+(Ei ), 1 ≤ i ≤ k and

U j ∈ S+(E j ), 1 ≤ j ≤ m, we define Vc : E0 −→ E0 and Ud :
⊕m

j=1 E j −→
⊕m

j=1 E j according to

Vc :=

k
⊕

i=1

ci Vi ; Ud :=

m
⊕

j=1

d jU j .
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Note that this does not cause any ambiguity since Vi ∈ S+(Ei ), 1 ≤ i ≤ k defines Vc,

and vice versa. Similarly for Ud. The constraints (14) may now be concisely written

as the operator inequality

%c B∗Ud B%c ≤ Vc, (16)

where B : E0 −→
⊕k

j=1 E j is the linear operator defined according to

B : x .−→ B1x + · · · + Bm x; x ∈ E0.

We introduce one last piece of notation before our characterization of Gaussian-

extremizability:

Definition 1.12 For Ai ∈ S+(Ei ), i = 1, . . . , k, we let &(A1, . . . , Ak) denote the set

of positive-semidefinite A ∈ S(E0) satisfying

〈Axi , xi 〉 = 〈Ai xi , xi 〉 for all xi ∈ Ei , 1 ≤ i ≤ k.

Remark 1.13 The above definition has a natural interpretation in terms of couplings.

Consider a Gaussian random vector X i taking values in Ei , with covariance Ai , 1 ≤

i ≤ k. If a jointly Gaussian coupling of (X i )1≤i≤k has covariance A, then A ∈

&(A1, . . . , Ak). Conversely, each A ∈ &(A1, . . . , Ak) corresponds to the covariance

of a jointly Gaussian coupling of (X i )1≤i≤k .

Theorem 1.14 (Structure of Gaussian extremizers) A datum (c, d, B) is Gaussian-

extremizable if and only if (1) holds and there are Vi ∈ S+(Ei ), 1 ≤ i ≤ k and

& ∈ &(V −1
1 , . . . , V −1

k ) satisfying

m
∑

j=1

d j%c B∗
j

(

B j%c&%c B∗
j

)−1
B j%c ≤ Vc. (17)

Moreover, any such (Vi )1≤i≤k together with U j = (B j%c&%c B∗
j )

−1, 1 ≤ j ≤ m,

are Gaussian extremizers.

Remark 1.15 Implicit in (17) is the assertion that the stated inverses exist; it is therefore

necessary for each (B j )1≤ j≤m to be surjective in order for the datum (c, d, B) to be

Gaussian extremizable. Moreover, after left- and right-multiplying both sides of (17)

by &1/2, the traces of the respective sides will be equal by (1). Hence, (17) is met with

equality on restriction to the subspace &E0. See also Remark 2.14 and Proposition

2.15 for more along these lines.

Remark 1.16 In view of the previous remark, for the classical setting of k = c1 = 1,

Gaussian-extremizability reduces to (1) and existence of V ∈ S+(E1) such that

m
∑

j=1

d j B∗
j

(

B j V −1 B∗
j

)−1
B j = V .
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This has been repeatedly observed in previous proofs of the Brascamp–Lieb and Barthe

inequalities.

The geometric Brascamp–Lieb inequalities proposed by Ball [3] and later gener-

alized by Barthe [4] are a special case of the (forward) Brascamp–Lieb inequalities

for which the linear maps are isometric and D(c, d, B) = 0. The class of geomet-

ric Brascamp–Lieb inequalities are useful in applications (see, e.g., the volume ratio

inequalities due to K. Ball), and are formally equivalent to the class of Gaussian-

extremizable Brascamp–Lieb inequalities [8, Proposition 3.6]. The following is a

generalization to the forward–reverse setting:

Corollary 1.17 (Geometric forward–reverse Brascamp–Lieb inequality (I)) Assume

(1) holds, and let linear maps Q j : E0 −→ E j and ' ∈ &(idE1 , . . . , idEk
) satisfy

Q j'Q∗
j = idE j for each 1 ≤ j ≤ m, and

m
∑

j=1

d j Q∗
j Q j ≤ %c.

If measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+, 1 ≤ j ≤ m

satisfy

k
∏

i=1

f
ci

i (πEi
(x)) ≤

m
∏

j=1

g
d j

j

(

Q j x
)

∀x ∈ E0, (18)

then

k
∏

i=1

(∫

Ei

fi

)ci

≤

m
∏

j=1

(∫

E j

g j

)d j

. (19)

Proof By defining the maps B j (and therefore B) via B j%c = Q j , the hypothesis

(18) coincides with (2). For the corresponding datum (c, d, B), we see that Vi = idEi
,

1 ≤ i ≤ k, and & = ' satisfy (17) by using the assumptions on the (Q j )1≤ j≤m .

Now, it is a matter of plugging in the asserted extremizers in Theorem 1.14 into the

definition of Dg(c, d, B) to see that Dg(c, d, B) = 0, and therefore D(c, d, B) = 0

by Theorem 1.3. This gives (19) by definition. /0

Remark 1.18 In general, ' in Corollary 1.17 does not need to be of full rank. An

illustrative example is Barthe’s inequality, in which m = d1 = 1, E1 = R
n , and

Ei = R for each 1 ≤ i ≤ k, with k ≥ n. In this setting Q1, viewed as a matrix,

has columns ci qi ∈ R
n , where |qi | = 1, 1 ≤ i ≤ k. The reader can check that

for the choice ' = %−1
c

Q∗
1 Q1%

−1
c

∈ S+(Rk), the assumptions of the corollary are

equivalent to Barthe’s frame condition

|qi | = 1, 1 ≤ i ≤ k; and

k
∑

i=1

ci qi ⊗ qi = idRn .
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Note that this ' has rank at most n ≤ k, so can be rank-deficient.

Although it is a special case, a more symmetric formulation of the geometric

forward–reverse Brascamp–Lieb inequality may be stated as follows, and explains

the role of ' in the previous as a transformation of coordinates when it is assumed to

be of full rank. By specializing to k = c1 = 1, the geometric case of the Brascamp–

Lieb inequality is easily recognized. It will also be useful for the applications in Sect.

4.3.

Corollary 1.19 (Geometric forward–reverse Brascamp–Lieb inequality (II)) Let linear

maps Ui : E0 −→ Ei and V j : E0 −→ E j satisfy UiU
∗
i = idEi

and V j V ∗
j = idE j ,

for all 1 ≤ i ≤ k and 1 ≤ j ≤ m. Assume further that the map

x ∈ E0 .−→

k
∑

i=1

Ui x ∈ E0

is a bijection, and that the following frame condition holds

k
∑

i=1

ciU
∗
i Ui =

m
∑

j=1

d j V ∗
j V j .

If measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+, 1 ≤ j ≤ m

satisfy

k
∏

i=1

f
ci

i (Ui x) ≤

m
∏

j=1

g
d j

j

(

V j x
)

∀x ∈ E0, (20)

then

k
∏

i=1

(∫

Ei

fi

)ci

≤

m
∏

j=1

(∫

E j

g j

)d j

. (21)

Remark 1.20 The map
∑k

i=1 Ui : E0 −→ E0 being a bijection is equivalent to
∑k

i=1 ciU
∗
i Ui > 0.

Proof By taking traces, the frame condition ensures that (1) holds. Next, view Ui as

a linear map from E0 into itself, so that ker(U∗
i ) = E⊥

i for each 1 ≤ i ≤ k. Since
∑k

i=1 Ui is a bijection, it is invertible, and therefore we are justified in defining Q j :=

V j (
∑k

i=1 Ui )
−1 and ' :=

(

∑k
i=1 Ui

) (

∑k
i=1 Ui

)∗

. Evidently, ' is positive-definite,

and for xi ∈ Ei , we have 〈'xi , xi 〉 = 〈xi , xi 〉 using the assumption UiU
∗
i = idEi

and

identification of ker(U∗
i ) = E⊥

i . Therefore, ' ∈ &(idE1 , . . . , idEk
). Furthermore, it

follows from definitions that Q j'Q∗
j = idE j for each 1 ≤ j ≤ m. Using again the

fact that
∑k

i=1 Ui is a bijection, we find that (20) and (18) are equivalent by a change
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of variables. Thus, the hypotheses of Corollary 1.17 are fulfilled, and the conclusion

follows. /0

The first formulation of the geometric forward–reverse Brascamp–Lieb inequality

motivates the following definitions:

Definition 1.21 A datum (c, d, B) is said to be geometric if (1) holds, and the maps

(Q j )1≤ j≤m defined via Q j := B j%c satisfy
∑m

j=1 d j Q∗
j Q j ≤ %c and Q j'Q∗

j =

idE j , 1 ≤ j ≤ m, for some ' ∈ &(idE1 , . . . , idEk
).

Definition 1.22 Data (c, d, B) and (c′, d
′, B

′) are said to be equivalent if c = c
′,

d = d
′, and there exist invertible linear transformations C : E0 −→ E0 and C j :

E j −→ E j such that B ′
j = C−1

j B j C
−1 for each 1 ≤ j ≤ k.

The following characterization of Gaussian-extremizability extends [8, Proposition

3.6] to the forward–reverse setting.

Theorem 1.23 A datum (c, d, B) is Gaussian-extremizable if and only if it is equivalent

to a geometric datum (c, d, B
′).

Proof Suppose (c, d, B) is Gaussian-extremizable. This is equivalent to the existence

of Vi ∈ S+(Ei ), 1 ≤ i ≤ k, and & ∈ &(V −1
1 , . . . , V −1

k ) satisfying (17). Define

V := %−1
c

Vc =
⊕k

i=1 Vi , and note that ' := V 1/2&V 1/2 ∈ &(idE1 , . . . , idEk
),

and moreover, that V −1/2 commutes with %c. Define B ′
j := C−1

j B j C
−1 via the

transformations C j := (B j%c&%c B∗
j )

1/2 and C := V 1/2. Then, (17) is expressed in

terms of B
′ := (B ′

j )1≤ j≤m and ' as

m
∑

j=1

d j%c B ′∗
j

(

B ′
j%c'%c B ′∗

j

)−1
B ′

j%c ≤ %c.

In particular, this easily implies (c, d, B
′) is geometric since B ′

j%c'%c B ′∗
j = idE j

by construction. Moreover, (c, d, B) and (c, d, B
′) are equivalent by definition. If

(c, d, B) is equivalent to a geometric datum, then the argument can be reversed to

conclude Gaussian-extremizability via Theorem 1.14. /0

To state our main result on conditions for finiteness of Dg(c, d, B) and Gaussian-

extremizability, we define product-form subspaces, followed by two definitions

analogous to those in [8].

Definition 1.24 A subspace T is said to be of product form if

T =

k
⊕

i=1

πEi
(T )
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Definition 1.25 A critical subspace for (c, d, B) is a non-zero proper subspace T ⊂ E0

of product form satisfying

k
∑

i=1

ci dim(πEi
T ) =

m
∑

j=1

d j dim(B j T ).

Definition 1.26 The datum (c, d, B) is simple if it has no critical subspaces.

We remark that the definition of criticality in [8] does not include the restriction to

product-form subspaces. However, the two definitions are still consistent, because in

their setting E0 = E1, so that any subspace is trivially of product form.

Our final main result generalizes [8, Theorem 1.13] to the setting of the forward–

reverse Brascamp–Lieb inequality:

Theorem 1.27 (Conditions for finiteness and Gaussian-extremizability) For a datum

(c, d, B), the quantity Dg(c, d, B) is finite if and only if we have the scaling condition

k
∑

i=1

ci dim(Ei ) =

m
∑

j=1

d j dim(E j ) (22)

and the dimension condition

k
∑

i=1

ci dim(πEi
T ) ≤

m
∑

j=1

d j dim(B j T ) for all product-form subspaces T ⊆ E0.

(23)

In particular, these conditions imply that each (B j )1≤ j≤m must be surjective. More-

over, if (c, d, B) is simple, then it is Gaussian-extremizable.

Remark 1.28 The special case where k = c1 = 1 reduces to [8, Theorem 1.13].

Remark 1.29 By Theorem 1.3, finiteness of Dg(c, d, B) is equivalent to finiteness

of Dg(d, c, B
∗). As expected, it can also be verified directly that the conditions of

Theorem 1.27 are invariant under considering the dual datum (c, d, B) −→ (d, c, B
∗).

Indeed, let E0 :=
⊕m

j=1 E j , and define Bi : E0 −→ Ei via the map

Bi y :=

m
∑

j=1

B∗
i jπE j (y), y ∈ E0.

For any W j ⊆ E j , 1 ≤ j ≤ m, define the product-form subspace W =
⊕m

j=1 W j ⊆

E0, and consider T =
⊕k

i=1 Ti , with Ti := Ei/Bi W . By the inclusion
⊕k

i=1 Bi W ⊇

B∗W ⊇ B∗
j W j , we have

B j T ⊆ B j (E0/(B∗W )) ⊆ B j (E0/(B∗
j W j )) ⊆ E j/W j ,
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where the final equality follows again by set inclusion and the observation B∗
j W j ⊆

ker(B j )
⊥. Hence, (23) implies

k
∑

i=1

ci dim(Ei ) −

k
∑

i=1

ci dim(Bi W ) ≤

m
∑

j=1

d j dim(E j ) −

m
∑

j=1

d j dim(W j ).

Canceling terms using (22) (which is trivially invariant to considering dual datums),

we are left with the desired dual counterpart to (23).

1.3 Outline of the Paper

Section 2 of this paper proves Theorem 1.3 under the assumption that the datum is

Gaussian-extremizable. This relies on establishing the structure of Gaussian extrem-

izers given in Theorem 1.14, and then adapting Lehec’s stochastic proof of the

Brascamp–Lieb and Barthe inequalities to exploit this information.

It turns out that the analysis of the Gaussian-extremizable case more or less suffices

to prove Theorem 1.3 in its full generality. To do this, we develop a machinery for

iteratively decomposing a datum that is not Gaussian-extremizable. This is the general

focus of Sect. 3, which parallels the development of Bennett, Carbery, Christ and Tao

for the special case of the direct Brascamp–Lieb inequality [8]. The conditions for

finiteness and Gaussian-extremizability articulated in Theorem 1.27 are a product of

these arguments.

Connections between the forward–reverse Brascamp–Lieb inequality and other

results in the literature are detailed in Sect. 4.

2 The Gaussian-Extremizable Case

The goal of this section is to establish Theorem 1.3 under the assumption of Gaussian-

extremizability. Specifically, we aim to prove the following two results:

Theorem 2.1 If a datum (c, d, B) is Gaussian-extremizable, then D(c, d, B) =

Dg(c, d, B).

Theorem 2.2 If a datum (c, d, B) is Gaussian-extremizable, then so is (d, c, B
∗).

Moreover,

Dg(c, d, B) = Dg(d, c, B
∗),

regardless of whether the data are Gaussian-extremizable.

Remark 2.3 If Dg(c, d, B) = +∞, then the datum (c, d, B) does not satisfy the

definition of Gaussian-extremizability. However, we will clearly have D(c, d, B) =

Dg(c, d, B) in this case also due to the general relation D(c, d, B) ≥ Dg(c, d, B).

Remark 2.4 The combination of the above implies the assertion of Theorem 1.3 if (i)

(c, d, B) is Gaussian-extremizable; or (i i) Dg(c, d, B) = +∞.
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2.1 Proof of Theorems 1.14 and 2.1

Let us admit the following preliminary version of Theorem 1.14, the proof of which

is deferred to Sect. 2.3.

Proposition 2.5 If a datum (c, d, B) is Gaussian-extremizable, then (1) holds and there

are Vi ∈ S+(Ei ), 1 ≤ i ≤ k, and & ∈ &(V −1
1 , . . . , V −1

k ) such that

m
∑

j=1

d j%c B∗
j

(

B j%c&%c B∗
j

)−1
B j%c ≤ Vc. (24)

We now describe the variational representation for Gaussian integrals due to Boué

and Dupuis [10] (see also Borell [9], and historical remarks by Lehec [21]). For a given

time horizon T and a Euclidean space E , a Brownian motion (Wt )0≤t≤T (starting from

0) taking values in E is said to have covariance K ∈ S+(E) if Cov(W1) = K . Let

H(E, K ) denote the Hilbert space of all absolutely continuous paths u : [0, T ] −→ E

starting from 0, equipped with norm

‖u‖2
H(E,K ) :=

∫ T

0

〈K −1u̇s, u̇s〉ds.

A drift U is any process adapted to the Brownian filtration which has sample paths

belonging to H(E, K ) almost surely.

Proposition 2.6 Let g : E −→ R be measurable and bounded from below, and let

(Wt )0≤t≤T be a Brownian motion with covariance K ∈ S+(E). It holds that

log
(

Eeg(WT )
)

= sup E

[

g(WT + UT ) −
1

2
‖U‖2

H(E,K )

]

,

where the supremum is taken over all drifts U.

We now prove Theorems 1.14 and 2.1, on the basis of Proposition 2.5. The argu-

ment is an adaptation of Lehec’s stochastic proof of the Brascamp–Lieb and Barthe

inequalities [22], with the main difference being the incorporation of the optimality

conditions of Proposition 2.5. A stochastic approach is also employed by Cordero-

Erausquin and Maurey in [16]; however, their argument does not immediately yield

sharp constants, nor does it identify the structure of extremizers.

Proof of Theorems 1.14 and 2.1 Assume ( fi )1≤i≤k and (g j )1≤ j≤m satisfy (2). For pur-

poses of proving the theorem, we may assume that each fi is supported on some

compact Ki ⊂ Ei , and is bounded from above, say by M . We may also assume that

each g j is bounded from below, say by M−1 on the compact set
∑k

i=1 ck Bi j Ki ⊂ E j .

The general result will follow by dominated convergence. As a result, it is easy to see

that we may now assume each g j is bounded from above by some M ′ = M ′(M, c, d),

still preserving (2). Indeed, this modification can only reduce the product in the RHS

of (3), making our task more difficult.
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With the above assumptions, fix any δ > 0 and introduce the auxiliary functions

ui = log( fi + δ)

which are of course bounded from below. Using the assumption that the fi ’s and g j ’s

are uniformly bounded and the hypothesis (2), there are constants C, c (depending on

M, M ′, c, d, but not on δ) such that taking

v j = log(g j + Cδc)

we will have

k
∑

i=1

ci ui (πEi
(x)) ≤

m
∑

j=1

d jv j (B j%cx) ∀x ∈ E0.

Moreover, the v j ’s are also bounded from below.

Using the assumption of Gaussian-extremizability, we invoke Proposition 2.5 to

select Vi ∈ S+(Ei ), i = 1, . . . , k and & ∈ &(V −1
1 , . . . , V −1

k ) satisfying (24). In

particular, this implies

m
∑

j=1

d j‖B j%cu‖2
H(E j ,B j %c&%c B∗

j )
≤

k
∑

i=1

ci‖πEi
(u)‖2

H(Ei ,V
−1
i )

(25)

for any absolutely continuous path u : [0, T ] −→ E0.

Now, let (Wt )0≤t≤T be a Brownian motion taking values in E0 with covariance &.

For each i = 1, . . . , k, define W i
t = πEi

(Wt ), which is a Brownian motion on Ei with

covariance V −1
i .

Fix ε > 0, and for each i = 1, . . . , k, let U i be an Ei -valued drift belonging to

H(Ei , V −1
i ) such that

log Eeui (W i
T ) − c−1

i ε ≤ E

[

ui (W i
T + U i

T ) −
1

2
‖U i‖2

H(Ei ,V
−1
i )

]

,

the existence of which follows from Proposition 2.6. Define the E0-valued process

U =
∑k

i=1 U k , and note that B j%cU is a drift belonging to H(E j , B j%c&%c B∗
j ) by

(25).

Hence, the above estimates and another application of Proposition 2.6 give

k
∑

i=1

ci log Eeui (W i
T ) − ε

≤ E

[

k
∑

i=1

ci ui (W i
T + U i

T ) −
1

2

k
∑

i=1

ci‖U i‖2

H(Ei ,V
−1
i )

]
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≤ E





m
∑

j=1

d jv j (B j%cWT + B j%cUT ) −
1

2

d
∑

j=1

d j‖B j%cU‖2
H(E j ,B j %c&%c B∗

j )





≤

m
∑

j=1

d j log Eev j (B j %cWT ).

Since fi ≤ eui and ev j = g j + Cδc, we conclude by arbitrary choice of ε, δ that

k
∏

i=1

(

E[ fi (W i
T )]

)ci

≤

m
∏

j=1

(

E[g j (B j%cWT )]
)d j .

In particular, writing out the expectations as integrals and canceling common factors

using (1), the above may be rewritten as

k
∏

i=1

(∫

Ei

fi (x)e−〈Vi x,x〉/2T dx

)ci

≤

∏k
i=1 det(V −1

i )1/2

∏m
j=1 det(B j%c&%c B∗

j )
1/2

m
∏

j=1

(∫

E j

g j (x)e
−〈(B j %c&%c B∗

j )
−1x,x〉/2T

dx

)d j

.

Letting T −→ +∞, monotone convergence yields

k
∏

i=1

(∫

Ei

fi (x)dx

)ci

≤

(
∏m

j=1 det((B j%c&%c B∗
j )

−1)d j

∏k
i=1 det(Vi )ci

)1/2 m
∏

j=1

(∫

E j

g j (x)dx

)d j

.

The consequences of this are two-fold: defining U j = (B j%c&%c B∗
j )

−1, 1 ≤ j ≤ m,

we see that (24) implies (Vi )1≤i≤k, (U j )1≤ j≤m satisfy (14). Therefore, the ratio of

determinants is at most exp(Dg(c, d, B)), proving Theorem 2.1. In fact, the ratio of

determinants must be precisely equal to exp(Dg(c, d, B)), since we have freedom in

choosing the functions ( fi )1≤i≤k, (g j )1≤ j≤m subject to (2). Thus, we have also shown

that if (1) holds and there exist Vi ∈ S+(Ei ), i = 1, . . . , k and & ∈ &(V −1
1 , . . . , V −1

k )

satisfying (24), then the datum (c, d, B) is Gaussian-extremizable with (Vi )1≤i≤k and

U j = (B j%c&%c B∗
j )

−1, 1 ≤ j ≤ m being Gaussian extremizers. This proves the

converse of Proposition 2.5 (and therefore Theorem 1.14 on the basis of Proposition

2.5). /0

Remark 2.7 Using the structure of Gaussian extremizers in the Gaussian-extremizable

case, other proof techniques such as optimal transport or heat flow should also work

to establish the above.
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2.2 Proof of Theorem 2.2

For Vi ∈ S+(Ei ), 1 ≤ i ≤ k and U j ∈ S+(E j ), 1 ≤ j ≤ m, we first note that the

Schur complement condition for positive-semidefiniteness implies

%
1/2
c B∗%

1/2
d

(

⊕m
j=1U j

)

%
1/2
d

B%
1/2
c ≤

(

⊕k
i=1Vi

)

if and only if

%
1/2
d

B%
1/2
c

(

⊕k
i=1V −1

i

)

%
1/2
c B∗%

1/2
d

≤

(

⊕m
j=1U−1

j

)

.

Noting that the first inequality is precisely (16), it follows immediately that

Dg(c, d, B) = Dg(d, c, B
∗) (regardless of Gaussian-extremizability). Now, sup-

pose the datum (c, d, B) is Gaussian-extremizable. If Vi ∈ S+(Ei ), 1 ≤ i ≤ k

and U j ∈ S+(E j ), 1 ≤ j ≤ m are Gaussian extremizers for (c, d, B), then it

is immediate from the above observation that U−1
j ∈ S+(E j ), 1 ≤ j ≤ m and

V −1
i ∈ S+(Ei ), 1 ≤ i ≤ k and are Gaussian extremizers for the datum (d, c, B

∗).

2.3 Proof of Proposition 2.5

The goal of this section is to prove the optimality conditions asserted in Proposition

2.5, which was the core assumption needed to prove Theorems 1.14 and 2.1. The

basic argument boils down to a strong min-max theorem. This is given in the first

subsection. The second subsection leverages this min-max identity to complete the

proof of Proposition 2.5. The arguments of this section follow those appearing in our

previous work [25], however, it suffices to restrict attention to a particular duality

enjoyed by positive-definite operators.

2.3.1 A Strong Min-Max Theorem

Theorem 2.8 For any Ki ∈ S+(Ei ), i = 1, . . . , k, it holds that

max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det
(

B j%c K%c B∗
j

)

+

m
∑

j=1

d j dim(E j )

= inf
(Vi ,U j )1≤i≤k,1≤ j≤m





k
∑

i=1

ci 〈Vi , Ki 〉HS −

m
∑

j=1

d j log det U j



 , (26)

where the infimum is over Vi ∈ S+(Ei ), 1 ≤ i ≤ k and U j ∈ S+(E j ), 1 ≤ j ≤ m

satisfying %c B∗Ud B%c ≤ Vc.

The critical ingredient in the proof is the Fenchel–Rockafellar duality theorem [27],

stated here as it appears in [29, Theorem 1.9]:
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Theorem 2.9 Let X be a normed vector space, X∗ its topological dual space, and

*,+ two proper convex functions Let *∗,+∗ be the Legendre–Fenchel transforms of

*,+, respectively. Assume that there is some x0 ∈ X such that

*(x0) < +∞, +(x0) < +∞,

and * is continuous at x0. Then,

inf
x∈X

[

*(x) + +(x)] = max
x∗∈X∗

[

− *∗(−x∗) − +∗(x∗)

]

.

Remark 2.10 It is a part of both theorems above that the stated maximum is attained.

Proof of Theorem 2.8 In our application of the Fenchel–Rockafellar theorem, we will

take X = S(E0), regarded as a Hilbert space with respect to the usual Hilbert–Schmidt

inner product. In this case, we also identify X∗ = S(E0). So, for Ki ∈ S+(Ei ),

i = 1, . . . , k, given and F ∈ S(E0), define the functionals

+(F) := inf
V1∈S+(E1),...,Vk∈S+(Ek ):
〈Vcx,x〉≥〈Fx,x〉, ∀x∈E0

k
∑

i=1

ci 〈Vi , Ki 〉HS.

and

*(F) := inf
U1∈S+(E1),...,Um∈S+(E j ):

〈Ud B%cx,B%cx〉≤〈Fx,x〉, ∀x∈E0

m
∑

j=1

d j log det U−1
j ,

with the convention that *(F) = +∞ if F /∈ S+(E0) (since the infimum will be over

an empty set).

It is easy to see that both * : S(E0) −→ R and + : S(E0) −→ R are proper

convex functions, with *(idE0) < +∞ and +(idE0) < +∞. It is straightforward to

check the continuity of * at idE0 , so the hypotheses of Theorem 2.9 are fulfilled.

Let M0 denote the infimum in the RHS of (26), and observe that definitions easily

imply

inf
F∈S(E0)

[

*(F) + +(F)] = M0.

So, we turn our attention toward computing

max
H∈S(E0)

[

− *∗(−H) − +∗(H)

]

.

To this end, we claim that

+∗(H) ≥

{

0 if H ∈ &(K1, . . . , Kk)

+∞ otherwise.
(27)
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Indeed,

+∗(H) = sup
F∈S(E0)

(〈H , F〉 − +(F)) ≥ sup
F∈S+(E0)

(〈H ,−F〉 − +(−F))

= sup
F∈S+(E0)

−〈H , F〉 =

{

0 if H ∈ S+(E0)

+∞ otherwise.

Next, define Hi := πEi
Hπ∗

Ei
and note that

+∗(H) = sup
F∈S(E0)

(〈H , F〉 − +(F)) ≥ sup
Fi ∈S(Ei )

(

〈H ,π∗
Ei

FiπEi
〉 − +(π∗

Ei
FiπEi

)
)

= sup
Fi ∈S(Ei )

〈Hi − Ki , Fi 〉 =

{

0 if Hi = Ki

+∞ otherwise.

This proves (27). Hence, we may conclude

max
H∈S(E0)

[

− *∗(−H) − +∗(H)

]

≤ sup
K∈&(K1,...,Kk )

[

− *∗(−K )

]

= sup
K∈&(K1,...,Kk )

inf
F∈S+(E0)

[〈K , F〉 + *(F)]

= sup
K∈&(K1,...,Kk )

inf
(U j ∈S+(E j ))1≤ j≤m





m
∑

j=1

d j 〈K ,%c B∗
j U j B j %c〉 −

m
∑

j=1

d j log det U j





= sup
K∈&(K1,...,Kk )

m
∑

j=1

d j



 inf
(U j ∈S+(E j ))1≤ j≤m



〈B j%c K%c B∗
j , U j 〉 −

m
∑

j=1

d j log det U j









= sup
K∈&(K1,...,Kk )

m
∑

j=1

d j log det
(

B j %c K%c B∗
j

)

+

m
∑

j=1

d j dim(E j ).

It is straightforward to argue that that the supremum is attained using the facts that

&(K1, . . . , Kk) is compact and that B j%c K%c B∗
j is uniformly bounded over all

K ∈ &(K1, . . . , Kk).

Therefore, invoking Theorem 2.9, we have shown

M0 ≤ max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det
(

B j%c K%c B∗
j

)

+

m
∑

j=1

d j dim(E j ).

The reverse direction is considerably simpler; consider any K ∈ &(K1, . . . , Kk).

Then,

m
∑

j=1

d j log det
(

B j%c K%c B∗
j

)

+

m
∑

j=1

d j dim(E j )
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≤ inf
(U j ∈S+(E j ))1≤ j≤m

m
∑

j=1

d j 〈B j%c K%c B∗
j , U j 〉 −

m
∑

j=1

d j log det U j . (28)

Note that, for any U j ∈ S+(E j ), 1 ≤ j ≤ m, if Vi ∈ S+(Ei ), 1 ≤ i ≤ k satisfy

〈Ud B%cx, B%cx〉 ≤ 〈Vcx, x〉 ∀x ∈ E0, (29)

then it will hold that

m
∑

j=1

d j 〈B j%c K%c B∗
j , U j 〉HS ≤

k
∑

i=1

ci 〈Vi , Ki 〉HS. (30)

To see that this is indeed the case, let x be a centered Gaussian random vector in

E0 with covariance K , and take expectations of both sides in (29). So, combining

estimates yields

m
∑

j=1

d j log det
(

B j%c K%c B∗
j

)

+

m
∑

j=1

d j dim(E j ) ≤ M0,

completing the proof of the theorem. /0

2.3.2 Completion of Proof of Proposition 2.5

The first step in completing the proof of Proposition 2.5 is to note an equivalent dual

formulation of the optimization problem defining Dg(c, d, B). This formulation relies

on the strong min-max identity of the previous subsection. Through an analysis of the

equality cases, we ultimately arrive at Proposition 2.5.

Theorem 2.11 Fix −∞ < C ≤ +∞. The following statements are equivalent:

(1) For all Vi ∈ S+(Ei ), 1 ≤ i ≤ k and U j ∈ S+(E j ), 1 ≤ j ≤ m satisfying

%c B∗Ud B%c ≤ Vc (31)

it holds that

m
∑

j=1

d j log det U j ≤ C +

k
∑

i=1

ci log det Vi . (32)

(2) For all Ki ∈ S+(Ei ), 1 ≤ i ≤ k,

k
∑

i=1

ci log det Ki ≤ C + max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j ). (33)
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Remark 2.12 By definition of Dg(c, d, B) and the asserted equivalence, the best con-

stant C in each of the above inequalities is equal to 2Dg(c, d, B).

Remark 2.13 To appreciate the difference between the forward–reverse Brascamp–

Lieb inequality and the classical forward and reverse inequalities, we invite the reader

to prove Theorem 2.11 in the special case of k = 1 (which is symmetric with m = 1).

This is a simple exercise, requiring only a few lines of elementary linear algebra. Since

the maximum in (33) becomes trivial, the major difficulty of the characterization (i.e.,

the strong min-max theorem of the previous section) is avoided.

Proof For purposes of the proof, we assume each (B j )1≤ j≤m is surjective, ensuring

invertibility of (B j%c K%c B∗
j ) for K ∈ S+(E0). If any of the B j fail to be surjective,

it is easy to see that the best constant C in both (1) and (2) will be equal to +∞, thereby

handling this exceptional case. Moreover, we may assume that (1) holds. Again, if this

is not the case, then by rescaling the various operators by a common factor, we see

that the best constant C in both (1) and (2) will be equal to +∞.

Proof of (1)⇒(2). Fix any ε > 0. By Theorem 2.8, there are Vi ∈ S+(Ei ), 1 ≤ i ≤ k

and U j ∈ S+(E j ), 1 ≤ j ≤ m satisfying (31) such that

max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j ) +

m
∑

j=1

d j dim(E j )

≥

k
∑

i=1

ci 〈Vi , Ki 〉HS −

m
∑

j=1

d j log det U j − ε.

Hence, we have

k
∑

i=1

ci log det Ki − max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j )

≤

k
∑

i=1

ci log det Ki +

m
∑

j=1

d j dim(E j ) +

m
∑

j=1

d j log det U j −

k
∑

i=1

ci 〈Vi , Ki 〉HS + ε

≤

k
∑

i=1

ci log det Ki +

m
∑

j=1

d j dim(E j ) + C

+

k
∑

i=1

ci log det Vi −

k
∑

i=1

ci 〈Vi , Ki 〉HS + ε

≤ C + ε,

where the penultimate inequality is (32), and the final inequality is due to the ele-

mentary inequality log det M ≤ tr(M) − dim(Ei ) for M ∈ S+(Ei ) and the scaling

condition (1). Since ε was arbitrary, it follows that (1)⇒ (2).
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Proof of (2)⇒(1). Fix any Vi ∈ S+(Ei ), i = 1, . . . , k. By the method of Lagrange

multipliers and the weak max-min inequality, we have

sup
(U j ∈S+(E j ))1≤ j≤m :

%c B∗Ud B%c≤Vc

m
∑

j=1

d j log det U j

≤ inf
M∈S+(E0)

sup
(U j ∈S+(E j ))1≤ j≤m





m
∑

j=1

d j log det U j

+〈M, Vc〉HS − 〈M,%c B∗Ud B%c〉HS





= inf
M∈S+(E0)

sup
(U j ∈S+(E j ))1≤ j≤m





m
∑

j=1

d j log det U j + 〈M, Vc〉HS

−

m
∑

j=1

d j 〈B j%c M%c B∗
j , U j 〉HS



 .

Now, we note that the gradient of the objective above with respect to U j is given by

d jU
−1
j − B j%c M%c B∗

j . So, taking U j = (B j%c M%c B∗
j )

−1 achieves the maximum

in the inner optimization problem. Making this substitution, we may continue as

sup
(U j ∈S+(E j ))1≤ j≤m :

%c B∗Ud B%c≤Vc

m
∑

j=1

d j log det U j

= inf
M∈S+(E0)

m
∑

j=1

d j log det
(

B j%c M%c B∗
j

)−1
−

m
∑

j=1

d j dim(E j ) + 〈M, Vc〉HS

(34)

≤ − max
M∈&(V −1

1 ,...,V −1
k )

m
∑

j=1

d j log det
(

B j%c M%c B∗
j

)

≤ C −

k
∑

i=1

ci log det V −1
i = C +

k
∑

i=1

ci log det Vi (35)

where the first inequality follows since we are optimizing over a smaller set, and for

M ∈ &(V −1
1 , . . . , V −1

k ) it holds that

〈M, Vc〉HS =

k
∑

i=1

ci 〈V
−1
i , Vi 〉HS =

k
∑

i=1

ci dim(Ei ) =

m
∑

j=1

d j dim(E j ).
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The second inequality is an application of (33). /0

Finally, we are in a position to complete the proof of Proposition 2.5.

Proof of Proposition 2.5 If the datum (c, d, B) is Gaussian-extremizable, then (1) must

hold, as remarked at the start of the proof of Theorem 2.11. Furthermore, for extrem-

izers Vi ∈ S+(Ei ), 1 ≤ i ≤ k, we get equality throughout the second part of the proof

of Theorem 2.11 for the optimal constant C = 2Dg(c, d, B); in particular, equality

will be attained in (35). Therefore, we remark that any

& ∈ arg max
M∈&(V −1

1 ,...,V −1
k )

m
∑

j=1

d j log det
(

B j%c M%c B∗
j

)

is positive-semidefinite and achieves the minimum in (34), after replacing the infimum

over positive-definite operators with a minimum over positive-semidefinite operators.

Letting & be as defined above, consider any positive-semidefinite A ∈ S(E0). For

ε > 0, Taylor expansion and assumed optimality of & gives

m
∑

j=1

d j log det
(

B j%c(& + εA)%c B∗
j

)−1
−

m
∑

j=1

d j dim(E j ) + 〈(& + εA), Vc〉HS

=

m
∑

j=1

d j log det
(

B j%c&%c B∗
j

)−1
−

m
∑

j=1

d j dim(E j ) + 〈&, Vc〉HS

+ ε



−

m
∑

j=1

d j

〈

A,%c B∗
j

(

B j%c&%c B∗
j

)−1
B j%c

〉

HS

+ 〈A, Vc〉HS



 + o(ε)

≥

m
∑

j=1

d j log det
(

B j%c&%c B∗
j

)−1
−

m
∑

j=1

d j dim(E j ) + 〈&, Vc〉HS.

By sending ε ↓ 0 and letting A ≥ 0 vary, we find that it must hold that

m
∑

j=1

d j%c B∗
j

(

B j%c&%c B∗
j

)−1
B j%c ≤ Vc (36)

as claimed.

Remark 2.14 If we consider A such that ker(A) ⊆ ker(&), then the same inequalities

above hold for all ε ∈ R sufficiently small, since this ensures & + εA will remain

positive-semidefinite. As a result, we have equality in (36) on the restriction of both

sides to ker(&)⊥. This provides an alternate way to establish the conclusion of Remark

1.15. /0

Although it will not be needed for our purposes, there are several equivalent charac-

terizations of Gaussian extremizers which can be stated in analogy to [8, Proposition
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3.6] for the direct Brascamp–Lieb inequality. The statement is provided below to give a

comprehensive description of the structure of Gaussian extremizers. It provides a con-

venient means of certifying the optimality of Gaussian extremizers, which is required

to compute Dg(c, d, B).

Proposition 2.15 Fix a datum (c, d, B), and (U j ∈ S+(E j ))1≤ j≤m, (Vi ∈ S+

(Ei ))1≤i≤k . The following statements are equivalent:

(i) (U j )1≤ j≤m, (Vi )1≤i≤k is a global maximum in (15) subject to (14);

(ii) (U j )1≤ j≤m, (Vi )1≤i≤k is a local maximum in (15) subject to (14);

(iii) There exists & ∈ &(V −1
1 , . . . , V −1

k ) such that

U−1
j = B j%c&%c B∗

j , 1 ≤ j ≤ m. (37)

Moreover, for

* := Vc −

m
∑

j=1

d j%c B∗
j U j B j%c, (38)

we have * ≥ 0 and *x = 0 for any x ∈ &E0.

(iv) The dimension condition (1) is satisfied, and there exists & ∈ &(V −1
1 , . . . , V −1

k )

such that (37) holds. Moreover, * ≥ 0, with * defined as in (38).

(v) The dimension condition (1) is satisfied, and there exists & ∈ &(V −1
1 , . . . , V −1

k )

such that

U−1
j ≥ B j%c&%c B∗

j , 1 ≤ j ≤ m. (39)

Moreover, * ≥ 0 and &1/2*&1/2 = 0, with * defined as in (38).

Proof (i)9⇒(ii) is trivial.

(iii)9⇒(iv): By the assumption of (iii) and the fact that &1/2 E0 = &E0, we have

tr(&1/2*&1/2) = 0. Using (37) and (38) and the cyclic property of the trace, we find

k
∑

i=1

ci dim(Ei ) =

m
∑

j=1

d j dim(E j ). (40)

(iv)9⇒(iii): It suffices to show that &1/2*&1/2 = 0. As argued above, the dimen-

sion condition is equivalent to tr(&1/2*&1/2) = 0. Moreover, the assumption of (iv)

requires that &1/2*&1/2 ≥ 0. Since a non-negative matrix has trace 0 only if it is the

zero matrix, we have &1/2*&1/2 = 0 as desired.

(iii)9⇒(i): This is the conclusion of Sect. 2.1.

(iii)9⇒(v): The proof of the dimension condition is the same as the (iii)9⇒(iv)

part.
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(v)9⇒(iii): By the assumption of (v) we have

0 = tr(&1/2*&1/2) =

k
∑

i=1

ci dim(Ei ) −

m
∑

j=1

d j tr(U j (B j%c&%c B∗
j ))

≥

k
∑

i=1

ci dim(Ei ) −

m
∑

j=1

d j tr(U jU
−1
j )

= 0

(41)

where (41) follows from (39). If (39) is not equality for some j , then (41) cannot

achieve equality. Therefore (39) must achieve equality for all j .

(ii)9⇒(iii): By definition, we have

Dg(c, d, B) :=
1

2
sup





m
∑

j=1

d j log det U j −

k
∑

i=1

ci log det Vi



 , (42)

where the supremum is over Vi ∈ S+(Ei ) and U j ∈ S+(E j ) satisfying the constraint

* := Vc − %c B∗Ud B%c ≥ 0. (43)

We need to show that if given (Vi )1≤i≤k and (U j )1≤ j≤m is a local maximum of (42),

then there exists & with the claimed properties. To this end, let S+
0 (E0) denote the set

of positive-semidefinite operators on E0, and define the convex cone:

C :={(c1&1, . . . , ck&k,−d1 B1%c&%c B∗
1 , . . . ,−dm Bm%c&%c B∗

m) : &∈ S+
0 (E0)},

(44)

where &i : Ei −→ Ei is defined as &i = πEi
&π∗

Ei
. Recall that the dual cone C∗

of C is defined as the set of all vectors whose inner product with any element in C is

non-negative. Here, we have

C
∗ := {(V1, . . . , Vk, U1, . . . , Um) : Vi ∈ S+

0 (Ei ), U j ∈ S+
0 (E j ),

Vc − %c B∗Ud B%c ≥ 0}. (45)

Note that this is indeed the dual cone since the constraint Vc − %c B∗Ud B%c ≥ 0 can

be rewritten as

〈

&, Vc − %c B∗Ud B%c

〉

HS
≥ 0, for all & ∈ S+

0 (E0), (46)

or equivalently,
∑k

i=1 〈ci&i , Vi 〉HS +
∑m

j=1

〈

−d j B j%c&%c B∗
j , U j

〉

HS
≥ 0, for

all & ∈ S+
0 (E0). Note that the constraint defining C∗ is the same as the con-

straint (43) for the optimization (42). Now, from (42), we see that the gradient

of the objective function with respect to (V1, . . . , Vk, U1, . . . , Um) is equal to
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(− c1
2

V −1
1 , . . . ,−

ck

2
V −1

k , d1
2

U−1
1 , . . . ,

dm

2
U−1

m ). The assumed local optimality implies

that the inner product of the gradient at (Vi )1≤i≤k , (U j )1≤ j≤m with any element in C∗

is non-positive, hence the negative gradient belongs to the dual of C∗. Recall that the

double-dual of a closed convex cone is itself, hence the negative gradient belongs to

C, and therefore (upon absorbing a factor 2 in &) we find & ∈ S+
0 (E0) such that

&i = V −1
i , i = 1, . . . , k, (47)

B j%c&%c B∗
j = U−1

j , j = 1, . . . , m. (48)

Note that (47) together with & ∈ S+
0 (E0) is equivalent to & ∈ &(V −1

1 , . . . , V −1
k ), so

it only remains to show that *x = 0 for x ∈ &E0, or equivalently &1/2*&1/2 = 0.

The assumed local optimality implies that the dimension condition (40) must hold, else

scaling (Vi )1≤i≤k , (U j )1≤ j≤m by an appropriate common factor will increase the value

of the functional being optimized. As noted in the proof of (iv)9⇒(iii), the dimension

condition together with (43) (i.e., non-negativity of *) implies &1/2*&1/2 = 0, as

desired. /0

To conclude this section, we record the following observation which will be needed

later.

Lemma 2.16 Assume the (B j )1≤ j≤m are surjective. The map

(K1, . . . , Kk) .−→





k
∑

i=1

ci log det Ki − max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j )





is upper-semicontinuous on
∏k

i=1 S+(Ei ) with respect to the norm topology.

Proof The map (K1, . . . , Kk) .−→
∑k

i=1 ci log det Ki is continuous on
∏k

i=1 S+(Ei ),

and we may write

max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j )

= sup
K∈&(K1,...,Kk )∩S+(E0)

m
∑

j=1

d j log det(B j%c K%c B∗
j ),

which is lower-semicontinuous in (K1, . . . , Kk) on
∏k

i=1 S+(Ei ), since it is the point-

wise supremum of continuous functions. /0

3 Decomposability and Conditions for Finiteness

The aim of this section is to complete the proof of Theorem 1.3 by successively

decomposing data which are not Gaussian-extremizable into ones that are either
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Gaussian-extremizable or degenerate. A consequence of the arguments will be the

necessary and sufficient conditions for finiteness given by Theorem 1.27. The devel-

opment closely parallels the treatment of the forward Brascamp–Lieb inequality in [8],

however, the modifications are significant enough that it warrants explicitly giving the

details. Our starting point will be to state a characterization of Dg(c, d, B) in terms of

Shannon entropies, denoted by h. This characterization will be exploited to facilitate

the various computations later on. Basic properties of the Shannon entropy (subad-

ditivity, scaling, etc.) will be taken for granted here; the unfamiliar reader can find

the needed properties collected in Appendix A, or any standard text on information

theory.

3.1 Entropic Characterization of Dg(c, d,B)

We first introduce some notation that will be needed below and again in Sect. 4.4. For

a collection of random vectors (X i )1≤i≤k taking values in (Ei )1≤i≤k , respectively, we

denote the marginal law of each X i as PXi
, and denote their joint law by PX. The set

of couplings of (X i )1≤i≤k (i.e., joint laws of (X i )1≤i≤k with X i -marginal equal to PXi

for each 1 ≤ i ≤ k) is denoted by &(PX1 , . . . , PXk
). Since elements of S+(Ei ) are in

one-to-one correspondence with centered Gaussian probability measures on Ei (see

Remark 1.13), this notation is consistent with the earlier definition of &(K1, . . . , Kk)

for Ki ∈ S+(Ei ), 1 ≤ i ≤ k.

If Z is a Gaussian random vector in E with covariance ' ∈ S+(E), we have the

identity

h(Z) =
1

2
log

(

(2πe)dim(E) det(')

)

. (49)

So, a reinterpretation of Theorem 2.11 and Remark 2.12 is the following entropic

characterization of Dg(c, d, B). A similar characterization also holds for D(c, d, B);

see Theorem 4.12 and accompanying remarks in Sect. 4.4.

Proposition 3.1 If (Zi )1≤i≤k are Gaussian random vectors in (Ei )1≤i≤k , respectively,

then

k
∑

i=1

ci h
(

c−1
i Zi

)

− max
PZ∈&(PZ1

,...,PZk
)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

≤ Dg(c, d, B), (50)

where the maximum is over all couplings of the (Zi )1≤i≤k . Moreover, the constant

Dg(c, d, B) is best possible.

Remark 3.2 Although not explicitly stated, it suffices to consider jointly Gaussian

couplings in (50), giving equivalence to (33). This is a consequence of the fact that

Gaussians maximize entropy for a given covariance.

Remark 3.3 Since any choice of Gaussian (Zi )1≤i≤k in (50) have finite second

moments by definition, Proposition A.2 in Appendix A ensures that the entropies

h
(

∑k
i=1 Bi j Zi

)

exist and satisfy
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h

(

k
∑

i=1

Bi j Zi

)

< +∞ for each 1 ≤ j ≤ m.

Moreover, if Dg(c, d, B) < +∞, then there must exist a coupling of the (Zi )1≤i≤k

(in particular, the one achieving the maximum in (50)) such that

h

(

k
∑

i=1

Bi j Zi

)

> −∞ for each 1 ≤ j ≤ m. (51)

In other words, under this optimal coupling, the entropy h
(

∑k
i=1 Bi j Zi

)

exists and

is finite for each 1 ≤ j ≤ m.

3.2 Decomposability ofD(c, d,B) and Dg(c, d,B) for Non-simple Data

Let T be a subspace of E0 having product form, and define B j,T to be the restriction

of B j to T . Note that if Ti := πEi
T , and Bi j,Ti

is the restriction of Bi j to Ti , then the

product-form assumption implies

B j,T x =

k
∑

i=1

Bi j,Ti
πEi

(x), x ∈ T .

Now, let Bi j,T ⊥
i

denote the restriction of (π(B j T )⊥ Bi j ) to T ⊥
i , the orthogonal comple-

ment of Ti in Ei , and define the collections of linear maps

BT :=
{

Bi j,Ti
: Ti −→ (B j T )

}

1≤i≤k,1≤ j≤m
, and

BE0/T :=
{

Bi j,T ⊥
i

: T ⊥
i −→ (B j T )⊥

}

1≤i≤k,1≤ j≤m
,

where (B j T )⊥ denotes the orthogonal complement of B j T in E j , 1 ≤ j ≤ m.

Lemma 3.4 For any product-form subspace T ⊆ E0, it holds that

D(c, d, B) ≤ D(c, d, BT ) + D(c, d, BE0/T )

and

Dg(c, d, B) ≤ Dg(c, d, BT ) + Dg(c, d, BE0/T ).

Remark 3.5 It may happen in the decomposition of (c, d, B) into (c, d, BT ) and

(c, d, BE0/T ) that we encounter subspaces of dimension zero. Just as argued in [8],

these subspaces can be safely disregarded in the following and subsequent computa-

tions. In particular, the entropy of a random variable on a subspace of dimension zero

(a degenerate situation) is defined to be equal to zero in subsequent computations.
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Proof We assume both Dg(c, d, BT ) and Dg(c, d, BE0/T ) are finite, else the claim is

trivial.

Fix M > 0. Let fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+, 1 ≤ j ≤ m be

non-negative measurable functions, bounded from above by M and satisfying

k
∏

i=1

f
ci

i (zi ) ≤

m
∏

j=1

g
d j

j

(

k
∑

i=1

ci Bi j zi

)

∀zi ∈ Ei , 1 ≤ i ≤ k. (52)

Define Ti := πEi
T . For zi ∈ Ei , define xi := πTi

(zi ) and yi := πT ⊥
i

(zi ). In this

notation, the hypothesis (52) implies

k
∏

i=1

f
ci

i (xi + yi ) ≤

m
∏

j=1

g
d j

j

(

k
∑

i=1

ci

(

Bi j,Ti
xi + πB j T Bi j yi

)

+

k
∑

i=1

ci Bi j,T ⊥
i

yi

)

.

(53)

By the Fubini–Tonelli theorem, the map xi ∈ Ti .−→ fi (xi + yi ) is measurable for

almost every yi ∈ T ⊥
i ; define Ni ⊂ T ⊥

i to be the (null) set of yi ∈ T ⊥
i for which

xi ∈ Ti .−→ fi (xi + yi ) is not measurable. By defining

f̃i (xi + yi ) = f (xi + yi )1T ⊥
i \Ni

(yi ), xi ∈ Ti , yi ∈ T ⊥
i ,

we have that xi ∈ Ti .−→ f̃i (xi + yi ) is measurable for all yi ∈ T ⊥
i . Moreover, since

f was only modified on a null set,
∫

Ei
f̃i =

∫

Ei
fi . Similarly, the map u j ∈ B j T .−→

g j (u j + v j ) is measurable for almost every v j ∈ (B j T )⊥; define N j ⊂ (B j T )⊥

to be the (null) set of v j ∈ (B j T )⊥ for which u j ∈ B j T .−→ g j (u j + v j ) is not

measurable. Almost as before, we define

g̃ j (u j +v j )=g j (u j +v j )1(B j T )⊥\N j (v j )+M1N j (v j ), u j ∈ B j T , v j ∈ (B j T )⊥,

and are guaranteed that u j ∈ B j T .−→ g̃ j (u j +v j ) is measurable for all v j ∈ (B j T )⊥,

and
∫

E j g̃ j =
∫

E j g j .

Since f̃i ≤ fi and g j ≤ g̃ j by construction, we have that (53) holds with fi

(resp. g j ) replaced by f̃i (resp. g̃ j ). So, by definition of Dg(c, d, BT ) and translation

invariance of the Lebesgue integral, we consider the hypothesis (53) for fixed (yi )1≤i≤k

to conclude

k
∏

i=1

(∫

Ti

f̃i (x + yi )dx

)ci

≤ eDg(c,d,BT )

m
∏

j=1

(

∫

B j T

g̃ j

(

u +

k
∑

i=1

Bi j,T ⊥
i

yi

)

du

)d j

∀yi ∈ T ⊥
i , 1 ≤ i ≤ k.
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By Fubini–Tonelli, the map yi ∈ T ⊥
i .−→

∫

Ti
f̃i (u + yi )du is measurable. Similarly,

v j ∈ (B j T )⊥ .−→
∫

B j T
g̃ j (u + v j )du is measurable. Therefore, by definition of

Dg(c, d, BE0/T ), we find

k
∏

i=1

(

∫

T ⊥
i

∫

Ti

f̃i (x + y)dxdy

)ci

≤ eDg(c,d,BT )+Dg(c,d,BE0/T )

m
∏

j=1

(

∫

(B j T )⊥

∫

B j T

g̃ j (u + v) dudv

)d j

.

By an application of Tonelli’s theorem combined with the previously noted identities
∫

Ei
f̃i =

∫

Ei
fi and

∫

E j g̃ j =
∫

E j g j , we conclude

k
∏

i=1

(∫

Ei

fi

)ci

≤ eDg(c,d,BT )+Dg(c,d,BE0/T )

m
∏

j=1

(∫

E j

g j

)d j

for any non-negative, bounded measurable functions ( fi )1≤i≤k and (g j )1≤ j≤m satis-

fying (52). It was already noted in the proof of Theorems 1.14 and 2.1 that bounded

functions saturate the definition of D(c, d, B), so the first claim is proved.

The statement for Dg follows by an identical argument, considering only centered

Gaussian functions. In fact, it is even easier since there are no measurability consid-

erations to deal with. /0

Lemma 3.6 Let T ⊂ E0 be a critical subspace for the datum (c, d, B). It holds that

Dg(c, d, B) = Dg(c, d, BT ) + Dg(c, d, BE0/T ).

Remark 3.7 The same conclusion also holds for D(c, d, B), though we do not need to

prove it separately here. It will follow from subsequent results, and is stated later as

Corollary 3.11.

Proof We take advantage of the entropic characterization of Dg(c, d, B) in Proposition

3.1 to give a simple proof, though it is also possible to appeal to the functional for-

mulation. We assume Dg(c, d, B) < +∞, since otherwise the corresponding claims

follow from Lemma 3.4 and the fact that Dg > −∞ for any datum.

Recall that critical subspaces are of product form by definition. Define Ti := πEi
T ,

and let X i , Yi be independent, Gaussian random vectors in Ti , T ⊥
i , respectively (each

having finite entropies by definition). Define Zi = ε−1 X i + Yi , which is a Gaussian

random vector in Ei , and note that

h(c−1
i Zi ) = h(ε−1c−1

i X i , c−1
i Yi ) = h(ε−1c−1

i X i ) + h(c−1
i Yi )

= dim(Ti ) log(ε−1) + h(c−1
i X i ) + h(c−1

i Yi ), 1 ≤ i ≤ k.

Now, for any coupling of the (Zi )1≤i≤k satisfying (51), it follows by subadditivity of

entropy (Proposition A.3) and the scaling property (Proposition A.1) that
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h

(

k
∑

i=1

Bi j Zi

)

(54)

= h

(

ε−1
k

∑

i=1

Bi j X i + πB j T

k
∑

i=1

Bi j Yi , π(B j T )⊥

k
∑

i=1

Bi j Yi

)

(55)

≤ h

(

ε−1
k

∑

i=1

Bi j X i + πB j T

k
∑

i=1

Bi j Yi

)

+ h

(

π(B j T )⊥

k
∑

i=1

Bi j Yi

)

(56)

= dim(B j T ) log(ε−1) + h

(

k
∑

i=1

Bi j X i + ε πB j T

k
∑

i=1

Bi j Yi

)

+h

(

π(B j T )⊥

k
∑

i=1

Bi j Yi

)

. (57)

Recalling Remark 3.3, we note that all terms are finite.

So, for any ε > 0, we use the assumption that T was critical to cancel the log(ε−1)

terms to find

D(c, d, B) ≥

k
∑

i=1

ci h(c−1
i X i ) −

m
∑

j=1

d j h

(

k
∑

i=1

Bi j X i + ε πB j T

k
∑

i=1

Bi j Yi

)

+

k
∑

i=1

ci h(c−1
i Yi ) −

m
∑

j=1

d j h

(

π(B j T )⊥

k
∑

i=1

Bi j Yi

)

for some coupling of the (Zi )1≤i≤k ≡ (X i , Yi )1≤i≤k . Next, since Gaussians have

bounded second moments by definition, weak upper semicontinuity of entropy (Propo-

sition A.4) implies

lim sup
ε−→0

h

(

k
∑

i=1

Bi j X i + ε πB j T

k
∑

i=1

Bi j Yi

)

≤ h

(

k
∑

i=1

Bi j X i

)

, 1 ≤ i ≤ k.

In combination with the previous estimate, we have

Dg(c, d, B) ≥

k
∑

i=1

ci h(c−1
i X i ) − max

PX∈&(PX1
,...,PXk

)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j,Ti
X i

)

+

k
∑

i=1

ci h(c−1
i Yi ) − max

PY∈&(PY1
,...,PYk

)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j,T ⊥
i

Yi

)

.

Since we chose (X i )1≤i≤k and (Yi )1≤i≤k to be arbitrary Gaussians on their respective

subspaces, it follows that
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Dg(c, d, B) ≥ Dg(c, d, BT ) + Dg(c, d, BE0/T ).

Comparing to Lemma 3.4, the claim is proved. /0

3.3 Necessary Conditions for Finiteness

Proposition 3.8 If D(c, d, B) < +∞ or Dg(c, d, B) < +∞, then we must have (22)

and

k
∑

i=1

ci dim(πEi
T ) ≤

m
∑

j=1

d j dim(B j T ) for all product-form subspaces T ⊆ E0.

(58)

In particular, each B j must be surjective.

Proof Since Dg(c, d, B) ≤ D(c, d, B) by definition, it suffices to establish necessary

conditions for Dg(c, d, B) to be finite. The condition (22) can be easily seen using the

scaling property of entropy (Proposition A.1) by multiplying all random variables in

(50) by a common scalar factor.

The necessity of (58) follows immediately from the proof of Lemma 3.6, but with-

out canceling the
∑k

i=1 ci dim(Ti ) log(ε−1) and
∑m

j=1 d j dim(B j T ) log(ε−1) terms.

These terms canceled previously under the assumption that T was critical, but this

will not be the case if we assume T is such that

k
∑

i=1

ci dim(πEi
T ) >

m
∑

j=1

d j dim(B j T ),

leading to an arbitrarily large lower bound on Dg(c, d, B) as ε vanishes.

To see that each B j must be surjective, we take T = E0 and compare (1) to (58). /0

3.4 Sufficient Conditions for Finiteness and Gaussian-Extremizability

The goal of this section is to establish the sufficiency of the conditions in Theorem 1.27

for finiteness and Gaussian-extremizability. We start with a technical lemma, which

is the counterpart of [8, Lemma 5.1] for our setting.

Lemma 3.9 Define N := dim(E0) and let (c, d, B) be a datum such that (22) holds

and

m
∑

j=1

d j dim(B j T ) ≥

k
∑

i=1

ci dim(πEi
T ) for all product-form subspaces T ⊆ E0.

(59)

In particular, this implies each B j is surjective. Then, there is a real number c > 0

such that, for every orthonormal basis (en)1≤n≤N of E0 with the property that each
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en ∈ Ei for some 1 ≤ i ≤ k, there exists a set I j ⊆ {1, . . . , N } for each 1 ≤ j ≤ m

with |I j | = dim(E j ) such that

m
∑

j=1

d j |I j ∩ {n + 1, . . . , N }| ≥

k
∑

i=1

ci |Si ∩ {n + 1, . . . , N }| for all 0 ≤ n ≤ N ,

(60)

where Si := {n : en ∈ Ei }, 1 ≤ i ≤ k and

∥

∥

∥

∥

∥

∥

∧

n∈I j

B j en

∥

∥

∥

∥

∥

∥

E j

≥ c for all 1 ≤ j ≤ m. (61)

Moreover, if there are no critical subspaces, then there is a constant δ > 0 depending

only on the datum (c, d, B) such that

m
∑

j=1

d j |I j ∩ {n + 1, . . . , N }| ≥

k
∑

i=1

ci |Si ∩ {n + 1, . . . , N }| + δ for all 0 < n < N .

(62)

Proof Since the space of all orthonormal bases is compact, and the number of possible

I j is finite, it follows by continuity and compactness that (61) may be replaced by the

weaker assumption that
(

B j en

)

n∈I j
are linearly independent in E j for each 1 ≤ j ≤ m.

Now, we construct I j by a backwards greedy algorithm. Specifically, we set I j

equal to those indices n for which B j en is not in the linear span of {B j en′; n <

n′ ≤ dim(E0)}. Since B j is surjective, we will have |I j | = dim(E j ). To prove

(60), we first fix n satisfying 0 < n < N , and apply (59) with T equal to the span

of {en+1, . . . , edim(E0)}, which is of product form by the assumption that each en ∈
⋃k

i=1 Ei . Specifically, due to construction of I j we have

dim(B j T ) = |I j ∩ {n + 1, . . . , N }|.

On the other hand,

dim(πEi
T ) = |Si ∩ {n + 1, . . . , N }|,

establishing (60) when 0 < n < N . The case of n = N is trivial, and the case of n = 0

follows from equality in (59) for T = E0 since |Si ∩ {1, . . . , N } = |Si | = dim(Ei ),

and |I j ∩ {1, . . . , N } = |I j | = dim(E j ).

Now, if there are no critical subspaces, then there is δ > 0 depending only on the

datum (c, d, B) such that (59) can be refined to

m
∑

j=1

d j dim(B j T ) ≥

k
∑

i=1

ci dim(πEi
T ) + δ (63)
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for all non-zero proper subspaces T ⊂ E0. Indeed, this easily follows since the left and

right sides of (59) only take finitely many values. Incorporating this into the previous

analysis gives (62). /0

Proposition 3.10 (Sufficient conditions for finiteness and Gaussian-extremizability)

If the datum (c, d, B) is such that (22) and (23) hold, then Dg(c, d, B) is finite. If it

further holds that (c, d, B) is simple, then (c, d, B) is Gaussian-extremizable.

Proof The argument follows the strategy of proof for [8, Proposition 5.2], but is recast

in terms of entropies which we find more convenient in the present setting2. Define

N := dim(E0) and consider Gaussian random vectors Zi in Ei , 1 ≤ i ≤ k. It is

trivially true that

max
PZ∈&(PZ1

,...,PZk
)

m
∑

j=1

d j h

(

k
∑

i=1

ci Bi j Zi

)

≥

m
∑

j=1

d j h

(

k
∑

i=1

ci Bi j Z ′
i

)

, (64)

where Z ′
i = Zi in distribution for each 1 ≤ i ≤ k, and Z ′

1, . . . , Z ′
k are independent.

Without loss of generality, we may write

Z ′
i =

∑

n∈Si

Wnen, 1 ≤ i ≤ k

where (en)n∈Si
⊂ Ei ⊂ E0 is an orthonormal basis for Ei , 1 ≤ i ≤ k, (Si )1≤i≤k

is a partition of {1, . . . , N }, and (Wn)1≤n≤N is a collection of independent one-

dimensional Gaussian random variables. We may further assume that the indices are

chosen to satisfy h(W1) ≤ · · · ≤ h(WN ). Now, we invoke Lemma 3.9 and it follows

from the scaling property for entropy (Proposition A.1) that

h

(

k
∑

i=1

Bi j Z ′
i

)

= h

(

N
∑

n=1

Wn B j en

)

≥ h





∑

n∈I j

Wn B j en



 ≥ h((Wn)n∈I j
) + C,

(65)

for some constant C depending only on the datum (c, d, B) since (B j en)n∈I j
form a

basis of E j with a lower bound on degeneracy.

Now, by telescoping and Lemma 3.9, we may write

m
∑

j=1

d j h((Wn)n∈I j
)

=

N
∑

n=1

h(Wn)

m
∑

j=1

d j |I j ∩ {n}|

2 Note that we work exclusively with Gaussian random vectors here, so all computations can be stated in

terms of determinants, using the identity (49).
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=





m
∑

j=1

d j |I j |



 h(W1) +

N−1
∑

n=1

(h(Wn+1) − h(Wn))

m
∑

j=1

d j |I j ∩ {n + 1, . . . , N }|

=

(

k
∑

i=1

ci |Si |

)

h(W1) +

N−1
∑

n=1

(h(Wn+1) − h(Wn))

m
∑

j=1

d j |I j ∩ {n + 1, . . . , N }|

≥

(

k
∑

i=1

ci |Si |

)

h(W1) +

N−1
∑

n=1

(h(Wn+1) − h(Wn))

(

k
∑

i=1

ci |Si ∩ {n + 1, . . . , N }| + δ

)

=

N
∑

n=1

h(Wn)

k
∑

i=1

ci |Si ∩ {n}| + δ

N−1
∑

n=1

(h(Wn+1) − h(Wn))

=

k
∑

i=1

ci





∑

n∈Si

h(Wn)



 + δ (h(WN ) − h(W1))

=

k
∑

i=1

ci h(Zi ) + δ (h(WN ) − h(W1)) .

So, we conclude

k
∑

i=1

ci h(c−1
i Zi ) − max

PZ∈&(PZ1
,...,PZk

)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

≤C ′−δ (h(WN ) − h(W1))

(66)

for constants C ′, δ ≥ 0 depending only on the datum (c, d, B). In particular,

Dg(c, d, B) is finite.

Now, if (c, d, B) is simple, then the last claim of Lemma 3.9 implies δ > 0. Since

the LHS of (66) is invariant to scaling each Zi by a common factor (due to the scaling

condition (22)), it easily follows that there are constants c1, c2 > 0 depending only

on the datum (c, d, B) such that we may restrict our attention to Zi satisfying

c1 ≤ Var(W1) ≤ λmin(Cov(Zi )) ≤ λmax(Cov(Zi )) ≤ Var(WN ) ≤ c2

for each 1 ≤ i ≤ k.

Thus, in supremizing the LHS of (50), it suffices to consider Gaussian Zi with

covariances in a compact set, with eigenvalues uniformly bounded away from zero.

Equivalently, in supremizing the functional

(K1, . . . , Kk) .−→





k
∑

i=1

ci log det Ki − max
K∈&(K1,...,Kk )

m
∑

j=1

d j log det(B j%c K%c B∗
j )





over
∏k

i=1 S+(Ei ), it suffices to consider each Ki in a compact set, with eigenvalues

bounded away from zero. It therefore follows by upper-semicontinuity (i.e., Lemma

2.16) that an extremizer exists. Thus, (c, d, B) is Gaussian-extremizable. /0
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Proof of Theorem 1.27 The claim is an immediate corollary of Propositions 3.8 and

3.10. /0

We may now also prove Theorem 1.3, which proceeds just as in [8, Proof of The-

orems 1.9 and 1.15]:

Proof of Theorem 1.3 In view of Theorem 2.2, we only need to prove that D(c, d, B) =

Dg(c, d, B). To do this, we induct on the dimension dim(E0). The case dim(E0) = 0

is trivial, so assume the claim holds for smaller values of dim(E0).

We may assume Dg(c, d, B) < +∞, else the claim is trivial since D(c, d, B) ≥

Dg(c, d, B) by definition. Thus, we assume that (22) and (23) hold, since these are

necessary conditions for finiteness of Dg(c, d, B) by Theorem 1.27. If (c, d, B) is

simple, then it is also Gaussian-extremizable by Theorem 1.27, so the desired claim

follows by Theorem 2.1. On the other hand, if (c, d, B) is not simple, then by Lemma

3.6 and the definition of simple, there exists a critical subspace T ⊂ E0 for which

Dg(c, d, B) = Dg(c, d, BT ) + Dg(c, d, BE0/T ).

By Lemma 3.4, we also have

D(c, d, B) ≤ D(c, d, BT ) + D(c, d, BE0/T ).

By the induction hypothesis,

D(c, d, BT ) = Dg(c, d, BT )

and

D(c, d, BE0/T ) = Dg(c, d, BE0/T ).

Combining the above estimates, we have

D(c, d, B) ≤ D(c, d, BT ) + D(c, d, BE0/T )

= Dg(c, d, BT ) + Dg(c, d, BE0/T ) = Dg(c, d, B).

Taken together with the trivial inequality Dg(c, d, B) ≤ D(c, d, B), we must have

equality. This closes the induction and completes the proof. /0

In analogy to Lemma 3.6, the following corollary is now immediate. It is not needed

elsewhere, but we state it for completeness.

Corollary 3.11 Let T ⊂ E0 be a critical subspace for the datum (c, d, B). It holds

that

D(c, d, B) = D(c, d, BT ) + D(c, d, BE0/T ).
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4 Connections to Other Brascamp–Lieb-Type Inequalities

4.1 The Brascamp–Lieb Inequality

It is clear by now that the Brascamp–Lieb inequality is a special case of the forward–

reverse inequality. On the other hand, if we assume (22) holds and that (23) holds

for all subspaces, not just those of product form, then finiteness of D(c, d, B) be

established as a consequence of the finiteness conditions for the forward Brascamp–

Lieb inequality. The argument is as follows, and is due to Michael Christ.

Assume (22) and further assume that (23) holds for all subspaces T (not just those

of product form). Define the index sets I := {1, . . . , k} and J = {1, . . . , m}. Since

the statement and conclusion are invariant to rescaling c, d by the same constant,

we assume without loss of generality that maxi∈I ci < 1 and max j∈J d j < 1. Now,

assuming I , J are disjoint index sets, we define the augmented index set J . = I ∪ J .

For j ∈ J .\J , define d j = (1 − ci ), E j = Ei , and B j = πEi
%−1

c
. Now, if ( fi )i∈I

and (g j ) j∈J satisfy (2), then defining g j = fi for j ∈ J .\J , it follows that

∏

i∈I

fi (πEi
(x)) ≤

∏

j∈J

g
d j

j (B j%cx)
∏

i∈I

f
1−ci

i (πEi
x) =

∏

j∈J .

g
d j

j (B j%cx).

Integrating over both sides and using the fact that E0 =
⊕k

i=1 Ei , we obtain

∏

i∈I

∫

Ei

fi ≤

∫

E0

∏

i∈I

fi (πEi
(x))dx ≤

∫

E0

∏

j∈J .

g
d j

j (B j%cx)dx . (67)

By the finiteness criteria for the forward Brascamp–Lieb inequality [8, Theorem 1.13],

∫

E0

∏

j∈J .

g
d j

j (B j%cx)dx

≤ eD
∏

j∈J .

(∫

E j

g j

)d j

= eD
∏

j∈J

(∫

E j

g j

)d j
∏

i∈I

(∫

Ei

fi

)1−ci

, (68)

where D < +∞ provided

∑

j∈J .

d j dim(B j T ) ≥ dim(T ) for all subspaces T ⊆ E0, (69)

and further holding with equality when T = E0. Assuming this is true for the moment,

we combine (67) and (68) to conclude D(c, d, B) ≤ D < +∞, as desired.

So, to verify (69) and therefore justify the application (68), observe that, since we

assumed (23) for all subspaces T ⊆ E0,

∑

j∈J .

d j dim(B j T ) =
∑

j∈J

d j dim(B j T ) +
∑

i∈I

(1 − ci ) dim(πEi
T ) (70)
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≥
∑

i∈I

dim(πEi
T ) ≥ dim(T ), (71)

with equality holding when T = E0 by (22).

Remark 4.1 The disadvantage of the above argument is that it will not, in general,

recover the sharp constant (and therefore the Gaussian saturation property) for the

forward–reverse Brascamp–Lieb inequality, even under the stronger condition that

(23) holds for all subspaces T ⊆ E0.

Remark 4.2 Example 1.6 (reverse Young inequality) provides an important coun-

terpoint to the above discussion. The reader can check that (23) is verified for all

product-form subspaces, however, it fails to hold for some non-product-form sub-

spaces. Hence, bootstrapping the direct Brascamp–Lieb inequality as above would

fail to give a finite constant in the reverse Young inequality.

4.2 The Barthe–Wolff Inverse Brascamp–Lieb Inequality

The following “inverse” Brascamp–Lieb inequality was announced by Barthe and

Wolff in the note [5] and proved rigorously in [6]. We write it in a form to emphasize

the connection to Theorem 1.3.

Theorem 4.3 Let C ∈ (−∞,+∞] be any constant, and let previously introduced

notation prevail. For any measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and

g j : E j −→ R
+, 1 ≤ j ≤ m,

k
∏

i=1

(∫

Ei

fi

)ci m
∏

j=1

(∫

E j

g j

)−d j

≤ eC

∫

E0

k
∏

i=1

f
ci

i (πEi
x)

m
∏

j=1

g
−d j

j (B j x)dx (72)

if and only if (72) holds for all centered Gaussian functions ( fi )1≤i≤k and (g j )1≤ j≤m .

For sake of comparison, we restate the Gaussian saturation part of Theorem 1.3

here in equivalent form as follows:

Theorem 4.4 Let D ∈ (−∞,+∞] be any constant, and let previously introduced

notation prevail. For any measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and

g j : E j −→ R
+, 1 ≤ j ≤ m satisfying

k
∏

i=1

f
ci

i (πEi
x) ≤

m
∏

j=1

g
d j

j

(

B j x
)

∀x ∈ E0, (73)

we have

k
∏

i=1

(∫

Ei

fi

)ci

≤ eD

m
∏

j=1

(∫

E j

g j

)d j

, (74)
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if and only if (74) holds for all centered Gaussian functions ( fi )1≤i≤k and (g j )1≤ j≤m

satisfying (73).

To see the connection between the two results, we first note that Theorem 4.4 implies

Theorem 4.3 by augmenting the datum (c, d, B) with Em+1 = E0, dm+1 = 1, and

Bm+1 = idE0 . By choosing the function gm+1 : Em+1 −→ R
+ according to

gm+1(x) =

k
∏

i=1

f
ci

i (πEi
x)

m
∏

j=1

g
−d j

j (B j x),

the hypothesis (73) is satisfied, and therefore (72) follows from (74). For given func-

tions ( fi )1≤i≤k and (g j )1≤ j≤m , the above choice of gm+1 is clearly best-possible, so

the best constant C in (72) must be equal to the best constant D in Theorem 4.4 for

the augmented datum, which can be computed by considering only centered Gaussian

functions.

In fact, the reverse is also true. That is, Theorem 4.4 may be derived from Theorem

4.3. The argument is a bit less straightforward in comparison, but nevertheless brief.

The idea is to apply Theorem 4.3 with exponents c′
i = 1 + tci and d ′

j = td j , where

t > 0 is a parameter that will tend to +∞. For this choice of exponents, we apply the

pointwise inequality (73) to see that the RHS of (72) can be upper bounded as

∫

E0

k
∏

i=1

f
c′

i

i (πEi
x)

m
∏

j=1

g
−d ′

j

j (B j x)dx

≤

∫

E0

(

k
∏

i=1

f
c′

i

i (πEi
x)

) (

k
∏

i=1

f
−tci

i (πEi
x)

)

dx =

k
∏

i=1

(∫

Ei

fi

)

.

Invoking (72) itself and dividing exponents by t , we find that (73) implies

k
∏

i=1

(∫

Ei

fi

)ci

≤ eCt /t

m
∏

j=1

(∫

E j

g j

)d j

,

where Ct denotes the best constant in the inequality (72) for the exponents (c′
i )1≤i≤k

and (d ′
j )1≤ j≤m . In particular, for D the best constant in (74), we have D ≤ Ct/t for

all t > 0. By the Gaussian saturation claim of Theorem 4.3 and direct computation

(see [6, Section 2.2]), one may calculate

e2Ct = sup
det

(

∑k
i=1 c′

iπ
∗
Ei

CiπEi
−

∑m
j=1 d ′

j B∗
j A j B j

)

∏k
i=1(det Ci )

c′
i
∏m

j=1(det A j )
−d ′

j

, (75)
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where the supremum is over all Ci ∈ S+(Ei ) and A j ∈ S+(E j ) satisfying

k
∑

i=1

c′
iπ

∗
Ei

CiπEi
≥

m
∑

j=1

d ′
j B∗

j A j B j . (76)

The set of (Ci )1≤i≤k and (A j )1≤ j≤m satisfying (76) are monotone decreasing in t

(with respect to inclusion), so in calculating lim inf t−→∞ Ct/t , we need only consider

positive-definite (Ci )1≤i≤k and (A j )1≤ j≤m in the intersection of all such sets; i.e.,

those satisfying

k
∑

i=1

ciπ
∗
Ei

CiπEi
≥

m
∑

j=1

d j B∗
j A j B j . (77)

Assuming (77) holds, we bound

det
(

∑k
i=1 c′

iπ
∗
Ei

CiπEi
−

∑m
j=1 d ′

j B∗
j A j B j

)1/t

∏k
i=1(det Ci )1/t+ci

∏m
j=1(det A j )

−d j

≤
det

(

∑k
i=1 c′

iπ
∗
Ei

CiπEi

)1/t

∏k
i=1(det Ci )1/t+ci

∏m
j=1(det A j )

−d j

=

∏k
i=1(1 + tci )

dim(Ei )/t

∏k
i=1(det Ci )ci

∏m
j=1(det A j )

−d j
.

Hence,

lim inf
t−→∞

Ct/t ≤ sup





1

2

m
∑

j=1

d j log det A j −
1

2

k
∑

i=1

ci log det Ci



 ,

where the supremum is over all Ci ∈ S+(Ei ) and A j ∈ S+(E j ) satisfying (77). This is

precisely the best constant D obtained in (74) by considering only centered Gaussian

functions, so the proof is complete.

Remark 4.5 The above argument showing equivalence of Theorems 4.3 and 4.4 is due

to Paweł Wolff. Despite their formal equivalence, both results have their merits, and

the techniques used to derive each are complimentary. In particular, Barthe and Wolff

use an optimal transport argument, while our proof relies primarily on duality and

structural decomposition. Additionally, the different formulations of the results have

their respective advantages. For example, Theorem 1.3 highlights the unification of the

Brascamp–Lieb and Barthe inequalities, together with the duality of best constants (6).

On the other hand, Barthe and Wolff’s formulation emphasizes an inverse principle

to Lieb’s [23]. Our proof is perhaps simpler since it avoids the detailed case analysis

encountered in [6], but preference may depend on the reader’s taste.
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Remark 4.6 Theorem 4.3 is a particular case of the general inverse inequality by Barthe

and Wolff which allows for integration against a non-trivial Gaussian kernel in the RHS

of (72), and for which the Gaussian saturation property remains valid. As we will see

in the next section, their geometric inequality can be recovered in full generality

with non-trivial Gaussian kernel as a consequence of the geometric forward–reverse

Brascamp–Lieb inequality. Hence, there is a formal equivalence between the geometric

Barthe-Wolff inequalities stated with (i) trivial Gaussian kernel; or (ii) non-trivial

Gaussian kernel. Although we do not pursue it here, it is an interesting question

whether this formal equivalence continues to hold for non-geometric instances of the

Barthe-Wolff inequality.

4.3 Inequalities with Gaussian Kernels

In this section, we establish inequalities for integrals against Gaussian kernels as

applications of our main results. They are easy corollaries of the geometric forward–

reverse Brascamp–Lieb inequality. Similar results could be stated for the general

forward–reverse inequality, but we restrict attention to the geometric case to simplify

the discussion.

Definition 4.7 For a Euclidean space E , we let γE denote the standard Gaussian mea-

sure on E . That is,

dγE (x) =
1

(2π)dim(E)/2
e− 1

2 |x |2 dx .

Theorem 4.8 Let H be a Euclidean space, and Q ∈ S(H) with signature

(s+(Q), s−(Q)). Consider linear maps Ui : H −→ Ei and V j : H −→ E j satisfy-

ing UiU
∗
i = idEi

and V j V ∗
j = idE j , for all 1 ≤ i ≤ k and 1 ≤ j ≤ m. Let (ci )1≤i≤k

and (d j )1≤ j≤m be positive numbers, and suppose that

Q +

k
∑

i=1

ciU
∗
i Ui =

m
∑

j=1

d j V ∗
j V j > 0, and dim(H) ≥ s+(Q) +

k
∑

i=1

dim(Ei ).

(78)

If measurable functions fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+, 1 ≤ j ≤ m

satisfy

k
∏

i=1

f
ci

i (Ui x) ≤

m
∏

j=1

g
d j

j (V j x) ∀x ∈ H , (79)

then

k
∏

i=1

(∫

Ei

fi dγEi

)ci

≤

m
∏

j=1

(∫

E j

g j dγE j

)d j

. (80)
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Proof Decompose Q = Q+ − Q−, with Q+, Q− ∈ S+(H). By spectral decomposi-

tion, write

Q+ =

s+(Q)
∑

0=1

λ0u∗
0u0; Q− =

s−(Q)
∑

0=1

µ0v
∗
0v0,

where λ0 > 0 (resp. µ0 > 0) and u0u∗
0 = idR (resp. v0v

∗
0 = idR). Thus, the first

assumption in (78) can be written as

k
∑

i=1

ciU
∗
i Ui +

s+(Q)
∑

0=1

λ0u∗
0u0 =

m
∑

j=1

d j V ∗
j V j +

s−(Q)
∑

0=1

µ0v
∗
0v0 > 0. (81)

In particular the LHS is a linear map with rank equal to dim(H) by the positive-

definiteness assumption, so by subadditivity of rank, it holds that dim(H) ≤ s+(Q)+
∑k

i=1 dim(Ei ). By (78), we must have equality. Thus, we can consider the map

x ∈ H −→ (U1x, . . . , Uk x, u1x, . . . , us+(Q)x)

as a bijective linear map from H to H . Now, if (79) is satisfied, then (81) implies that

we also have

k
∏

i=1

(

fi (Ui x)
1

(2π)dim(Ei )/2
e− 1

2 |Ui x |2
)ci

×

s+(Q)
∏

0=1

φλ0(u0x)

≤

m
∏

j=1

(

g j (V j x)
1

(2π)dim(E j )/2
e− 1

2 |V j x |2
)d j

×

s−(Q)
∏

0=1

φµ0(v0x), ∀x ∈ H ,

where φ denotes the standard Gaussian density

φ(z) :=
1

2π
e− 1

2 |z|2 , z ∈ R.

Since
∫

R
φ = 1, the inequality (80) follows from an application of Corollary 1.19. /0

An important consequence of Theorem 4.8 is the following geometric inverse

Brascamp–Lieb inequality proved by Barthe and Wolff [6, Theorem 4.7], recovered

here in full generality. We remark that the reverse Hölder-type inequality for Gaussian

random vectors due to Chen, Dafnis, and Paouris [15, Theorem 1(ii)] follows as a

direct consequence [6, Section 4.3], so should be considered as yet another example.

The direct Chen–Dafnis–Paouris inequality [15, Theorem 1(i)] is a consequence of

the forward Brascamp–Lieb inequality.

Corollary 4.9 Let H be a Euclidean space, and consider linear maps Ui : H −→ Ei

and V j : H −→ E j satisfying UiU
∗
i = idEi

and V j V ∗
j = idE j , for all 1 ≤ i ≤ k and

1 ≤ j ≤ m. Let (ci )1≤i≤k and (d j )1≤ j≤m be positive numbers, and suppose that
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Q +

k
∑

i=1

ciU
∗
i Ui =

m
∑

j=1

d j V ∗
j V j + idH , and dim(H) ≥ s+(Q) +

k
∑

i=1

dim(Ei )

for Q : H −→ H a symmetric operator. For all non-negative measurable functions

fi : Ei −→ R
+, 1 ≤ i ≤ k and g j : E j −→ R

+, 1 ≤ j ≤ m, it holds that

k
∏

i=1

(∫

Ei

fi

)ci m
∏

j=1

(∫

E j

g j

)−d j

≤

∫

H

e−π〈Qx,x〉

k
∏

i=1

f
ci

i (Ui x)

m
∏

j=1

g
−d j

j (V j x)dx .

Proof Define Em+1 = H , Vm+1 = idH and dm+1 = 1. Put

f̃i (x) := fi

(

(2π)−1/2x
)

e
1
2 |x |2 , 1 ≤ i ≤ k;

g̃ j (x) := g j

(

(2π)−1/2x
)

e
1
2 |x |2 , 1 ≤ j ≤ m,

and define g̃m+1 : H −→ H defined according to

g̃m+1(x) :=

k
∏

i=1

f̃
ci

i ((2π)−1/2Ui x)

m
∏

j=1

g̃
−d j

j ((2π)−1/2V j x)

=





k
∏

i=1

f
ci

i ((2π)−1/2Ui x)

m
∏

j=1

g
−d j

j ((2π)−1/2V j x)



 e
1
2 |x |2− 1

2 〈Qx,x〉.

Now, by change of variables u ← (2π)−1/2x ,

∫

Ei

f̃i (x)dγEi
(x) =

∫

Ei

fi (u)du, 1 ≤ i ≤ k;

∫

E j

g̃ j (x)dγE j (x) =

∫

E j

g j (u)du, 1 ≤ j ≤ m

and

∫

H

g̃m+1(x)dγH (x) =

∫

H

e−π〈Qu,u〉

k
∏

i=1

f
ci

i (Ui u)

m
∏

j=1

g
−d j

j (V j u)du.

So, the claim follows from Theorem 4.8. /0

Remark 4.10 We have seen above that the geometric Barthe-Wolff inequality [6, The-

orem 4.7] follows as a consequence of Corollary 1.19, the latter being a special

case of the complete characterization of geometric instances of the Forward–Reverse

Brascamp–Lieb inequality given in Corollary 1.17. So, it appears prima facie that the

class of geometric Forward–Reverse Brascamp–Lieb inequalities is more extensive

than the geometric instances of the Barthe-Wolff inequality.
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4.4 The Anantharam–Jog–Nair Inequality

In a recent paper [1], Anantharam, Jog, and Nair established the following entropic

inequality:

Theorem 4.11 Consider independent random vectors (Zi )1≤i≤k taking values in

(Ei )1≤i≤k , respectively, each having density with respect to Lebesgue measure, finite

entropies, and finite second moments. It holds that

k
∑

i=1

ci h (Zi ) −

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

≤ Mg(c, d, B), (82)

where the constant Mg(c, d, B) is defined as the supremum of the LHS, taken over

independent Gaussian (Zi )1≤i≤k . Moreover, the quantity Mg(c, d, B) is finite if and

only if we have the scaling condition

k
∑

i=1

ci dim(Ei ) =

m
∑

j=1

d j dim(E j ) (83)

and the dimension condition

k
∑

i=1

ci dim(πEi
T ) ≤

m
∑

j=1

d j dim(B j T ) for all product-form subspaces T ⊆ E0.

(84)

The inequality (82) is of interest because it simultaneously expresses both the entropy

power inequality and the (entropic formulation [13] of) the Brascamp–Lieb inequality.

The former is generally considered a consequence of the latter, obtained by considering

a limiting case of parameters. As such, an inequality encompassing both simultane-

ously was previously not known. Analogously, it turns out that Theorem 4.11 can be

derived as a corollary of Theorem 1.3 by considering a limiting case of parameters.

To give the argument, we first state an entropic characterization of D(c, d, B),

which directly parallels Proposition 3.1 (here, the reader is reminded of the nota-

tion introduced in Sect. 3.1). Specifically, the following entropic characterization of

D(c, d, B) is a special case of [25, Theorem 1]3, which generalizes to abstract settings

and extends the entropic formulation of the forward Brascamp–Lieb inequality due to

Carlen and Cordero-Erausquin [13], as well as the entropic formulation of the reverse

Brascamp–Lieb inequality independently put forth in [24] and [7] (the latter being

specific to discrete spaces).

Theorem 4.12 If (Zi )1≤i≤k are compactly supported random vectors in (Ei )1≤i≤k ,

respectively, each having density with respect to Lebesgue measure and finite entropies,

then

3 n.b. Eq. (12) in [25] should read as log gi (resp. log f j ) instead of gi (resp. f j ).
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k
∑

i=1

ci h
(

c−1
i Zi

)

− max
PZ∈&(PZ1

,...,PZk
)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

≤ D(c, d, B), (85)

where the (always attained) maximum is over all couplings of the (Zi )1≤i≤k . Moreover,

the constant D(c, d, B) is best possible.

Theorem 4.12 is proved similarly to Theorem 2.11, except that the Fenchel–

Rockafellar theorem is applied to the topological vector space X = Cc(E0), and

equivalence is shown to the functional formulation of D(c, d, B). Readers can fill in

the details as an exercise, or refer to the proof of the more general [25, Theorem 1].

Despite the similarity of statements and proof strategies, it is not immediate to derive

Proposition 3.1 as a special case due to several subtle technical issues that need to be

dealt with.

The following proof provides a nice example of where the entropic characterization

of D(c, d, B) can be useful.

Proof of Theorem 4.11 First, we note that (83) and (84) are necessary conditions for

finiteness, which can be checked by testing on Gaussian (Zi )1≤i≤k which put different

variances in directions πEi
T and (πEi

T )⊥. So, we assume henceforth that (83) and

(84) hold.

Let M(c, d, B) denote the supremum of the LHS of (82) over all independent

(Zi )1≤i≤k with finite entropies and finite second moments. Note that in taking this

supremum, it suffices to consider compactly supported (Zi )1≤i≤k . Indeed, if (Zi )1≤i≤k

are not compactly supported and have finite second moments, then letting Zi,R be the

restriction of Zi to the ball of radius R, we have limR−→∞ h(Zi,R) = h(Zi ) by

dominated convergence, and lim supR−→∞ h
(

∑k
i=1 Bi j Zi,R

)

≤ h
(

∑k
i=1 Bi j Zi

)

by weak upper semicontinuity of Shannon entropy under a second moment constraint.

We will consider an application of the forward–reverse Brascamp–Lieb inequality

with modified coefficients c′
i = (ci + t), 1 ≤ i ≤ k, d ′

j = d j , 1 ≤ j ≤ m and

augmented datum having Em+1 := E0, Bm+1 := idE0 and d ′
m+1 := t , where t is a

parameter that will tend to +∞. Denote this augmented datum by (c + t, (d, t), B ∪

{Bm+1}).

Considering independent Gaussian (Zi )1≤i≤k , let D(P‖Q) :=
∫

dP log
(

dP
dQ

)

≥ 0

denote the relative entropy between probability measures P and Q satisfying P ? Q,

and for any t ≥ 0 observe

k
∑

i=1

(ci + t)h (Zi ) − sup
P

Z̃
∈&(PZ1

,...,PZk
)





m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

+ th
(

Z̃1, . . . , Z̃k

)





=

k
∑

i=1

ci h (Zi )− sup
P

Z̃
∈&(PZ1

,...,PZk
)





m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

−t D
(

P
Z̃
‖PZ1 × · · · × PZk

)





≤

k
∑

i=1

ci h (Zi ) −

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

,
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where the equality follows by definition of relative entropy, and the inequality follows

by considering the independent coupling as one element in the set the supremum is

taken over. By definitions and Proposition 3.1, we conclude

Dg(c + t, (d, t), B ∪ {Bm+1}) +

k
∑

i=1

(ci + t) dim(Ei ) log(ci + t)

≤ Mg(c, d, B) for all t ≥ 0. (86)

As for finiteness of Mg(c, d, B), this was already taken care of in the proof of Proposi-

tion 3.10. Indeed, using the the relaxation (64), we established finiteness of Dg(c, d, B)

by showing

k
∑

i=1

ci h (Zi ) − sup
P

Z̃
∈&(PZ1

,...,PZk
)

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

≤

k
∑

i=1

ci h (Zi ) −

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

≤ C < +∞

for independent Gaussian (Zi )1≤i≤k when (83) and (84) hold.

Now, fix arbitrary (Zi )1≤i≤k with compact support and finite entropies, and for each

n ≥ 0, consider a coupling (Z
(n)
1 , . . . , Z

(n)
k ) ∼ PZ(n) ∈ &(PZ1 , . . . , PZk

) satisfying

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z
(n)
i

)

− nD
(

PZ(n)‖PZ1 × · · · × PZk

)

≥ sup
P

Z̃
∈&(PZ1

,...,PZk
)





m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

− nD
(

P
Z̃
‖PZ1 × · · · × PZk

)



 −
1

n
.

Since the RHS is bounded from below by selecting the independent coupling and the

entropies h
(

∑k
i=1 Bi j Z

(n)
i

)

can be uniformly bounded from above in terms of the

second moments of the marginals (Zi )1≤i≤k , it is clear that we must have

lim
n−→∞

nD
(

PZ(n)‖PZ1 × · · · × PZk

)

= 0.

In particular, by weak upper semicontinuity of Shannon entropy under second moment

constraint, we conclude

lim sup
n−→∞

sup
P

Z̃
∈&(PZ1

,...,PZk
)





m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

− nD
(

P
Z̃
‖PZ1 × · · · × PZk

)





≤

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

.
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Combining definitions with the above, Theorem 4.12, and Theorem 1.3, we have

lim inf
n−→∞

(

Dg(c + n, (d, n), B ∪ {Bm+1}) +

k
∑

i=1

(ci + n) dim(Ei ) log(ci + n)

)

≥

k
∑

i=1

ci h (Zi ) − lim sup
n−→∞

sup
P

Z̃
∈&(PZ1

,...,PZk
)





m
∑

j=1

d j h

(

k
∑

i=1

Bi j Z̃i

)

−nD
(

P
Z̃
‖PZ1 × · · · × PZk

)





≥

k
∑

i=1

ci h (Zi ) −

m
∑

j=1

d j h

(

k
∑

i=1

Bi j Zi

)

.

Since the (Zi )1≤i≤k were arbitrary, it follows from (86) and the subsequent remarks

that

M(c, d, B) ≤ Mg(c, d, B) < +∞,

completing the proof. /0
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Appendix A: Definition and Basic Properties of Shannon Entropy

This appendix provides an overview of the basic definitions and properties of Shan-

non entropy, with the goal of allowing an unfamiliar reader to follow the entropy

computations in the body of this manuscript. In the interest of keeping things brief

and self-contained, we focus on the case of random vectors in a Euclidean space with

finite second moments, since this is sufficient for our purposes. The interested reader

can find a general treatment in [19, Chapter 5].

Let E be a Euclidean space, and assume X is a random vector taking values in E ,

having density fX : E −→ [0,+∞) with respect to Lebesgue measure. The Shannon

entropy (referred to henceforth as simply entropy) associated to X is defined as

h(X) := −

∫

E

fX (x) log fX (x)dx .

The entropy is said to exist if the integral is well defined in the Lebesgue sense. Here,

we adopt the convention that 0 · log 0 = 0. The reader should note that the entropy

h(X) is a functional of the density fX , and is not a function of the realization of the
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random vector X . If X does not have density with respect to Lebesgue measure, we

adopt the convention that h(X) = −∞.

By a simple change of variables, we have the following elementary property of

entropy:

Proposition A.1 (Scaling property for Shannon entropy) If the entropy of X exists and

A : E −→ E is an invertible linear transformation, then we have the scaling property

h(AX) = log | det A| + h(X).

In this paper, we work exclusively with random vectors having finite second

moments. In this context, we note that the inequality − log(z) ≥ 1−z on z ∈ [0,+∞)

yields

0 ≤

∫

E

fX (x) log
fX (x)

φ(x)
dx,

where φ(x) := (2π)− dim(E)/2e−|x |2/2 is the standard Gaussian density on E . We may

conclude:

Proposition A.2 (Entropy of random vectors with bounded second moments) Let X

have density on E. If E|X |2 < ∞, then the entropy h(X) exists, and is bounded from

above as

h(X) ≤
1

2
log

(

(2πe)dim(E)
E|X |2

)

.

If E1, E2 are Euclidean spaces and (X , Y ) is a pair of random vectors taking values

in E1 × E2 with joint density fXY : E1 × E2 −→ [0,+∞), the joint entropy of

(X , Y ) is defined as

h(X , Y ) = −

∫∫

E1×E2

fXY (x, y) log fXY (x, y)dxdy.

Of course, this is consistent with the original definition of entropy, applied to the

(E1 × E2)-valued random vector (X , Y ). A simple property is as follows:

Proposition A.3 (Subadditivity of entropy) Let (X , Y ) be a pair of random vectors

taking values in E1 × E2 with joint density fXY : E1 × E2 −→ [0,+∞). If (X , Y )

have finite second moments, then the joint and marginal entropies exist and satisfy

h(X , Y ) ≤ h(X) + h(Y ).

This is met with equality if X , Y are independent.
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Proof Since all entropies exist and are bounded from above, we may assume h(X , Y )

is finite, else the claim is trivial. Similar to before, we note the following inequality:

0 ≤

∫∫

E1×E2

fXY (x, y) log
fXY (x, y)

fX (x) fY (y)
dxdy.

Using existence and finiteness of the joint entropy, we apply linearity of the integral

to conclude

−

∫∫

E1×E2

fXY (x, y) log ( fX (x) fY (y)) dxdy ≥ h(X , Y ). (87)

Now, let us decompose the density

fXY (x, y) = fX (x) fY |X (y|x), x ∈ E1, y ∈ E2,

where, for x ∈ E1, the function fY |X (·|x) denotes the density of a conditional regular

probability PY |X=x on E2, and coincides with the ratio fXY (x, y)/ fX (x) for almost

every x in the support of fX . Similar to how we argued entropy was bounded from

above under a second moment constraint, we may show that the integral

−

∫∫

E1×E2

fXY (x, y) log ( fX (x)) dxdy

exists and is bounded from above. The same conclusion holds with fX (x) replaced by

fY (y). From this and (87), we conclude using the assumed finiteness of h(X , Y ) that

the function (x, y) .−→ fXY (x, y) log ( fX (x)) is integrable, and is equal to −h(X)

by the Fubini–Tonelli theorem. Similar for h(Y ), so linearity of the integral applied to

(87) proves the claim. /0

Finally, we note the following consequence of lower semicontinuity of relative

entropy, which follows from the Donsker–Varadhan variational formula. See, e.g.,

[25, Lemma A2] for details.

Proposition A.4 (Upper semicontinuity of entropy under second moment constraint)

Let (Xn)n≥1 be a sequence of random vectors on a Euclidean space E, such that

Xn −→ X weakly. If supn≥1 E|Xn|2 < +∞, then

lim sup
n−→∞

h(Xn) ≤ h(X).
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