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Abstract— The Brascamp-Lieb inequality in functional analysis
can be viewed as a measure of the ‘“uncorrelatedness” of a
joint probability distribution. We define the smooth Brascamp-
Lieb (BL) divergence as the infimum of the best constant in
the Brascamp-Lieb inequality under a perturbation of the joint
probability distribution. An information spectrum upper bound
on the smooth BL divergence is proved, using properties of the
subgradient of a certain convex functional. In particular, in the
i.i.d. setting, such an infimum converges to the best constant
in a certain mutual information inequality. We then derive new
single-shot converse bounds for the omniscient helper common
randomness generation problem and the Gray-Wyner source
coding problem in terms of the smooth BL divergence, where
the proof relies on the functional formulation of the Brascamp-
Lieb inequality. Exact second-order rates are thus obtained in
the stationary memoryless and nonvanishing error setting. These
offer rare instances of strong converses/second-order converses
for continuous sources when the rate region involves auxiliary
random variables.

Index Terms— Shannon theory, coding theorems, strong con-
verse, finite blocklength, Brascamp-Lieb inequality, hypercon-
tractivity, common randomness, Gray-Wyner network.

I. INTRODUCTION

N THE last few years, information theory has witnessed

vibrant developments in the study of the non-vanishing
error probability regime, and in particular, the successes
in applying normal approximations to gauge the back-off
from the asymptotic limits as a function of delay. Extend-
ing the achievements for point-to-point communication sys-
tems in [3]-[5] to network information theory problems
usually requires new ideas for proving tight non-asymptotic
bounds. For achievability, single-shot covering lemmas and
packing lemmas [6], [7] supply convenient tools for distilling
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single-shot achievability bounds from the classical asymptotic
achievability proofs. While these single-shot bounds hold
regardless of the finiteness of the alphabets or the memory,
their asymptotics are easy to evaluate in the stationary mem-
oryless case by choosing the auxiliary random variables to
be i.i.d. and applying the law of large numbers or the central
limit theorem. Other single-shot achievability proof techniques
for network information theory include stochastic likelihood
encoder/decoder [8] and approximation of output statistics [9].

In contrast, although the binary hypothesis testing approach
(and the related information spectrum approach) has been
successfully applied to the single-user settings [3], [4], [10],
progress on its extensions to network information problems
has been modest. There are relatively few examples of
single-shot converse bounds in the network setting. Moreover,
unlike their achievability counterparts, it usually requires
more effort to single-letterize a single-shot converse to a
strong converse or a second-order converse, partly because it
is not obvious that a product auxiliary distribution is optimal
in the evaluation of the single-shot converse bounds (consider
for example [4, Theorem 48] for point-to-point channel
coding, which relies on the reduction to fixed composition).
Several researchers have also noted the dearth of methods for
obtaining strong converses for network information theory
problems whose single-letter solutions involve auxiliaries; see
e.g. [11, Section 6.3] [12, Section 9.2]. Although the method
of types has proven to be applicable for the strong converses
of some problems of this type (including selected source
and channel networks [13], Gelfand-Pinsker coding [14], and
Gray-Wyner coding [15]-[17]), the method of types crucially
relies on the finite alphabet assumption. To our knowledge,
no previous methods exist for establishing a strong converse
for nonfinite distributions when the rate region involves an
auxiliary (with the exception of certain Gaussian cases where
the converse part can be reduced to a single-user problem,
such as dirty paper coding [18]).

In this paper, we demonstrate the power of a functional
inequality, the Brascamp-Lieb inequality [19]-[22], in prov-
ing single-shot converses for problems involving multiple
sources and an “omniscient helper”. For recent discussions
on the connection between the Brascamp-Lieb inequality and
information measures, see [23]-[26]. For recent studies of
the computational aspects of the Brascamp-Lieb inequali-
ties or applications in computer science, see [27]-[30].

To be concrete, consider ¢1,...,¢, € (0,0), d € R, a
nonnegative finite measure p on Y™ = ); X -+ X YV, and
o-finite measures v, .. on Vi,...,Vm. Then,
an inequality of the following form is sometimes referred to

* Vﬂ’l,
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as a Brascamp-Lieb type inequality (see e.g. [22])
[ TT5wae™ <eo@TTIH1 . Wi fn >0
j=1 j=1

(1)

where HfJH} = (S S jl/Cj de)CJ. Traditionally, a Brascamp-
Lieb (BL) injequality refers to the special case of (1) where
and (v;) are Gaussian or Lebesgue measures. In that case, it is
known that (1) holds if and only if it holds for all Gaussian
functions (f;) [19], [20]. In the present paper however, we do
not focus on the Gaussian case, and the measures considered
are not necessarily Gaussian or Lebesgue.

If we define the Brascamp-Lieb (BL) divergence
d(u, (v;),c™) as the best (i.e. smallest possible) constant
d for (1) to hold, then several well-known information
measures can be recovered as special cases, such as the Rényi
divergence (taking m = 1) or hypercontractivity (taking
m =2, p = Qyy,, and v; = Qy,, j = 1,2). A key fact
that we invoke is the entropic representation of the BL
divergence: for any joint distribution Qym,

Ad(Qym, (Qy,), ¢™)
{2 ¢;D(Py; |Qy;) — D(Pym
7j=1

= sup
Pym <Qym

QY”)} )

which can be derived from (1) using convex dual-
ity theory [22] or large deviation arguments [31]. Here
D(Pym|Qym) denotes the relative entropy (we review the
definitions of various information theoretic quantities in
Section II). While similar objects such as hypercontractivity
have recently seen applications in various converse results [1],
[32], [33], one obstacle preventing them from becoming a
canonical tool for network information theory is that in gen-
eral, (2) can be strictly larger than

d*(Qym, (Qy;),c™) = {Z e I(U;Y;) = I(U; Ym)}7
ulym (j=1

3)

where I(U;Y™) denotes mutual information, and the
supremum is understood as over standard probability
Quy= whose Y"™-marginal is the given Qy~. More
specifically, single-shot converse bounds derived from (1)
involve  d(Qym,(Qy;),c™), whereas single-letter rate
regions involving mutual information or conditional entropy
have supporting hyperplane characterizations in terms
of d*(Qym,(Qy;),c™). For example, [1], [33] derived
single-shot converse bounds for common randomness
generation problems using hypercontractivity. These bounds
are only first-order tight in the regime of vanishing
communication rate, which is essentially due to the
fact (observed by Anantharam et al. [34, Theorem 4])
that  d(Qym, (Qy;),c™) = 0 if and only if
d*(Qyn, (Qy;),c™) = 0.

In order to bridge the gap between d(Qyw,(Qy;),c™)
and d*(Qyn, (Qy;),c™), we draw insight from the notion
of smooth Rényi divergence in non-asymptotic information
theory, introduced by Renner and coauthors [35]-[37]. This

naturally leads us to introduce the smooth BL divergence: for
5 € (0,1),

ds(Qym, (Qy;),c™) =

inf
pe §]dp—dQym|4+<6

d(ua (QYJ )7 Cm)
(4)

where the infimum is over nonnegative finite measures p such
that the positive part of the measure p — Qym= is at most §.
Recall that when proving the strong converse using the smooth
Rényi divergence, we need to show that in the stationary
memoryless setting (i.e., Qy <« Q}@”), the smooth Rényi
divergence grows linearly at the rate of the relative entropy
(regardless of the Rényi order). This can be done by simply
taking p to be supported on the weakly typical set, hence
obviating the need for the finite alphabet assumption.

The asymptotic analysis of the smooth BL divergence,
in contrast, is more elusive. A classical strong converse
technique called image-size characterization [13] bounds the
cardinalities of subsets of the strongly typical set and their
images. In the setting of (1), the corresponding image-size
inequality is of the form

Al < DT IA% )
j=1

for any subset A of the strongly typical set (wW.r.t. Qym),
while A; denotes the projection of A to ;. Inspired by this,
it is natural to try g in (4) with the conditional measure
on the strongly typical set. The restriction to the strongly
typical set ensures that the empirical distribution is close to
Qym, which is reflected by the fact that Quy= and Qym
are consistent in (3) and the mutual information terms arise
from single-letterizing the relative entropy between multi-letter
distributions. In the case of finite )™, this successfully shows
that (see e.g. [38, Chapter 3])

ds(QFn (QF"). ™) = nd*(Qy =, (Qy),c™) + O(V/n).
(6)

However, the strong typicality approach has no hope of obtain-
ing the exact prefactor in the O(y/n) term, or even getting the
sign correct. Moreover, the strong typicality approach requires
an assumption of finite alphabets.

In the present paper, we adopt a different, typicality-
free approach. With a simple, yet non-obvious, argument
capitalizing on the property of the subgradient of a certain
convex functional, we show the following single-shot bound:
for any d € (0, 1),

§<P| Y iy, (wY;) —wym (Y™ >ds [ ()
j=1
Here ds := ds(Qym=, (Qy;),c™), the information density is

defined as 1.y m (u;y™) = %(u,ym), with Qfrym

being any maximizer in (3) (assuming it exists), Y™ ~ Qym,
and u is any element in U (we will show that the term to
the left of > in (7) is independent of u almost surely). This
indeed recovers the exact prefactor in O(+/n) in (3), and
does not require finite alphabets. For example, if Qym is
a Gaussian distribution, then there exists an optimal @7y m
which is a jointly Gaussian distribution [39].
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We apply the smooth BL divergence to the converses of
two network information theory problems: omniscient helper
common randomness generation [1], [40, Theorem 4.2], and
Gray-Wyner source coding (including the almost lossless case
with finite alphabets and squared distortion case with jointly
Gaussian sources). In both cases, we first prove new single-
shot converse bounds in terms of smooth BL divergence,
and then perform an asymptotic analysis to obtain the exact
second-order rate. The exact second-order rates for the Gray-
Wyner source coding in the discrete memoryless cases were
previously derived by Watanabe [16] and Zhou et al. [17] using
the method of types and Fano’s inequality, relying crucially on
i.i.d. and finite-alphabet assumptions.

The proposed smooth BL divergence approach to non-
asymptotic converses has several advantages compared with
existing approaches such as the method of types, as nicely
illustrated by its applications to common randomness genera-
tion and source coding:

1) In the discrete memoryless case, while the classical
image-size characterization (based on strong typicality)
shows that the second-order term scales as O(+/n), there
is no hope of obtaining the exact prefactor. In fact,
the sign of the prefactor is invariably wrong when the
error probability is less than 1/2. In contrast, the smooth
BL approach recovers the exact prefactor.

2) While the method of types is capable of obtaining the
exact second-order prefactor in the discrete memoryless
case, it is incapable of handling infinite alphabets. In
contrast, our approach leads to rare instances of second-
order converses for continuous sources.

3) In the omniscient helper CR generation problem, our
approach has the desirable feature of allowing possibly
stochastic encoders and decoders.! Stochastic encoders
and decoders are tricky to handle with the image-size
technique as it only concerns the cardinalities of the
encoding and decoding sets.

In addition, we discuss the converse? part of smooth BL
divergence, which generally follows from the achievability of
CR generation problems. In fact, smooth BL divergence and
CR generation may be considered as dual problems where the
achievability of one implies the converse of the other.> Such
converse proofs based on the achievability of another usually
have certain advantages, partly because the achievability is
constructive.

Let us remark that our application examples (common
randomness generation and source coding) concern the setting
in which one terminal observes the entire source realization
Y™. In other settings where such an omniscient terminal is

'The (asymptotic) rate region with stochastic encoders can be strictly
larger than with deterministic encoders, since in the former case the CR
rate is unbounded whereas in the latter case it is bounded by the entropy
of the sources. Regarding the decoders, we argue in Remark 9 that allowing
stochasticity can strictly decrease the (single-shot) error, but within a constant
factor.

2Since the smooth BL divergence is defined as an infimum over an auxiliary
distribution, we take the liberty of referring to lower/upper bounds on the
smooth BL divergence as converse/achievability results.

3 Another example of such “dual problems” in information theory is channel
resolvability and identification coding [41].

absent (e.g. the Wyner-Alhswede-Korner source problem [42],
[43]), although the definition of ds extends and a counterpart
of (7) follows by the same proof, it requires additional efforts
to connect ds with operational quantities (e.g. error proba-
bility). In [44] (see also [38] and [45]), this connection was
achieved through a novel reverse hypercontractivity approach.
Moreover, a very different approach for handling auxiliary
random variables with Markov constraints (as in the Wyner-
Alhswede-Korner problem) by introducing soft constraints was
recently proposed by Tyagi and Watanabe [46]. This work was
presented in part at ISIT 2015 [1] and ISIT 2016 [2]. The
proofs in this paper differ significantly from the conference
version [2].

II. PRELIMINARIES

We start by introducing the notation and the formal def-
initions of quantities of interest. Probability measures and
random transformations are denoted by capital Latin letters,
such as P and Py |x. Unnormalized nonnegative measures are
denoted by lowercase Greek letters, and the Lebesgue measure
is denoted by A. Random variables are written in capital
letters. For finite alphabets we sometimes use the notation
of inner product in Euclidean space (f,P) := {fdP to
denote an integral. A vector (@, @41, - - -, ay) IS SOmetimes
abbreviated as a;,,, or a” in the case of m = 1, or more simply,
the boldface letter a if the range of the indices is clear from
the context. The closure of a set A is denoted as cl(A).

The relative information between two nonnegative o-finite
measures (1 € v on the same measurable space (X,.%) is
defined as the logarithm of the Radon-Nikodym derivative:

d
v (@) = log d—llj(xL Ve X. (8)

The relative entropy and the conditional relative entropy are
defined as:

D(Px|px) = E[tpypux (X)]; ©)

D(Py\x |py |Px) := D(Py|x Px|/py x Px). (10)

where X ~ Px. Given Pxy, the mutual information is
defined as

I(X;Y) := D(Py|x||Py|Px). (11)

We use A to denote the Lebesgue measure on a Euclid-
ean space. Then the differential entropy and the conditional
differential entropy are defined as

h(Px) := =D(Px||A);
h(Pxu|Pv) := —=D(Pxu||A|Pv).-

(12)
13)

We now give formal definitions of the key quantities of
interest.

Definition 1. Given a finite measure x on )™, nonnegative o-
finite measures v1,...,Vy, on Vi,...,Vm, and ¢1,...,¢p €
(0, 00), define the Brascamp-Lieb (BL) divergence

d(p, (v;),¢™) = sup { ¥ ¢; D(Py, ;) — D(Pym )

Pym (2

(14)
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As a convention, the supremum in (14) is over Pym « p such
that each term in (14) is finite, and the supremum is set to
—o0 if there is no such Pym.

We remark that the choice of the collection of mea-
sures (v;) will depend on our applications: in converses
of common randomness generation problems, v; will be
the marginal distribution at one terminal; in source coding
problems, v; will be the counting measure or the Lebesgue
measure.

By convex duality [22] or large deviation arguments [31],
the following equivalent formulation of the smooth BL diver-
gence can be shown:

Proposition 1.

m

{bgj]_[f]du Zlogllfgll }

15)

d(u, (v;), ™) =

sup

i3 7n/

(5.7 av;) :

For nonnegative measures v and p on the same measurable
space (X, .#) where v(X) < o0, one can define the following
measure of their distance (see e.g. [47])

— (A},

where | ;] 1 =
“J

Ey(v||p) == sup {r(A) (16)
AeF

for any choice of v € [1,0). In the present paper, we will
always take v = 1 and use F; to measure the perturbation in
the definition of the smooth divergences. Note that E'; (P||p) =
{]dP —dp|™ in general and is not equal to the total variation
%|P—u| if  is not a probability measure. In fact, if we restrict
[ to be a probability measure and use the total variation in
the definition of the smooth divergence instead, we would not
be able to obtain the exact dispersion in the later applications
in converse proofs.

Definition 2. Given a probability measure )y, nonnegative
o-finite measures (v;)7L; on V1,...,Vm, d € [0,1], and ™ €
(0 w)m

dé(QY’"7 (l/j),C

m) -

d(p, (v),€™). (17)

inf
p: By(Qym|p)<é
Remark 1. The Brascamp-Lieb divergence is a generalization
of several information measures, including the strong data
processing constant, hypercontractivity, and Rényi divergence;
see a summary in [23]. For example, for « € (1, o), the Rényi
divergence between two probability measures P and () on the
same alphabet can be expressed in terms of the BL divergence:

d(P,Q,O‘ 1). (18)

This can be seen either from (15) and the variational formula
of Rényi divergence (see e.g. [48] [49, (7)]), or (14) and the
entropic representation of the Rényi divergence (see e.g. [39],
[50]). Consequently, the smooth Rényi divergence [36] can be
expressed in terms of a smooth BL divergence:

Do (P|Q) := Da(p@Q)

Da(PHQ) =

inf

19
ps By (Plu)<s (1

@45 (P, Q2! 1) (20)
a—1 o
for 6 € (0,1).

We now introduce a quantity which plays a central role in
the asymptotic characterizations of the smooth BL divergence.
We first give its definition in terms of auxiliary random
variables. It is well-known in information theory that auxiliary
random variables take the role of convexifying sets [51], [52].
An equivalent concave envelope formulation will be given later
in Remark 5.

Definition 3. Given Qym, (v;) and ¢ as in Definition 2,

d*(Qym, (v5),c™)
= sup > ¢;D(Py,lvi|Py) = I({U; Y ™)},
Pyym: Pym=Qym j=1

21

where (U,Y™) ~ Pyym.

Remark 2. In the supremum in (21), we do not need to
impose any cardinality constraint on U (we can assume that
(U x Y™, Pyym) is any standard probability space such that
Pym = Qym). On the other hand, the supremum does not
change if U is restricted to be finite. This follows from the
same reasoning in the proof of the proverbial fact that the
mutual information equals the supremum over finite parti-
tions: first by Gelfand-Yaglom-Perez (see [53, Theorem 2.1.2])
where the relative entropy is approximated by its conditional
over finite partitions consisting of subsets of I/ x Y™; second
by Dobrushin (see [53, Theorem 2.1.1]), further approximation
is made by finite partitions consisting of rectangle sets in
Uuxym,

Remark 3. In the special case of v;

') = sup {i ch(U;Yj)—I(U;Ym)}.

Py [ym

= Qyj, we have

d*(QYm ) (QYJ )7 c”

j=1
(22)
Remark 4. Since
d*(Qy=, (v;),c™)
= sup lz ¢;D(Py, v |vj|Po) =D (Pym iy |Qy|Py)
Pyl LI=1
(23)
m
SSW)lZﬁb (Py,wllvilPv) = D(PymullQym |Fu)
Uy m
(24)
< sup lSUP LZ ;D PYJ|U=uVj)—D(PYmU=uQYm)H
Pyym u
(25)
= sup lz ¢;D(Py, |v;) — D(Pym Qym)] (26)
ym _
= d(QY"”v (Vj)a cm)’ (27)
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we see that, in general,

d*(QY’"a (Vj)7 Cm) < d(QYm7 (Vj)a Cm)a

and the inequality can be strict (e.g. consider examples of
Gaussian distributions). However, if d(Qyn, (Qy;),c™) > 0,
then one can still show that d*(Qyn,(Qy;),c™) > 0, by
takmgu = {0 1} PU( ) —t PymlU 1= Py,”, PymlU 0=
T L (Qym—tPy:,.), and letting ¢ | 0. Here Py, is chosen such
* * APy m
that Zj:l ¢;D(PY,|Qy;) — D(Pym |Qym) > 0 and G52 i
bounded.
We list a few basic tensorization properties and include the
short proofs.

(28)

is

Proposition 2 (Tensorization). Given Qym, (v;) and ¢™ as
in Definition 3, and any n > 1, we have

)] d(QY"n( =), ™) = nd(Qym, (v5),c™).

2) d*(Q¥n, (8 Y2, cm) = nd*(Qym, (vj),c™).

3) If Pyym achleves the supremum in the definition of
d*(Qym, (vj),c™), then PUy,,L achieves the supremum
in the deﬁnmon of d*(QYm, (v ®"), am).

Proof. The > parts of 1) and 2) are immediate from the defin-
itions. For the < part, given any Pyymn, let I € {1,...,n} be
equiprobable and independent of (U, Y™") under P. Then*

D(Py,nu |2 Pur)

n
= Z D(PYN‘Uin—l Hl/j|PijL—1) (29)
Z D(Py,,joym.i—1||vj|Prym.i-1) (30)
= nD(PYjI\IUYmJ—l Hl/j|P[UYm,I—1)7 (31)
and
D(Pymnu | QS |Py)
= > D(Pym,jrymi-1 |Qy | Pyym.i-i) (32)
i=1
= nD(Pym,I‘[Uym,I—l HQYm |PIUY77L,I—1). (33)
Identifying (I,U,Y™I=Y) as U and Y™; as Y™,
the claim of 1) (resp. 2)) follows noting that

SUPpy,ym {20701 ¢ D (Py;w|vilPu) = D(Pympl|Qym|Pu)}

where the supremum is without (resp. with) the
constraint Pym = Qym equals d(Qym,(v;),c™) (resp.
d*(Qym, (vj),c™)). Claim 3) follows from Claim 2). O

III. A SINGLE-SHOT UPPER BOUND ON THE
SMOOTH BL DIVERGENCE

A principal goal of this paper is to upper-bound the smooth
BL divergence in terms of d*. Then by proving single-shot
converses in terms of the smooth BL divergence for common
randomness generation and the Gray-Wyner source coding, we
obtain sharp second-order converses.

“Note that Y :=
(Y'jv}/j#»lw . 7YZ)

(Yj1,...,Yj;) which is note to be confused with YjZ =

In this section we prove an estimate of the smooth BL
divergence mentioned in (7). This relies crucially on the
properties of a convex functional ¢, defined below in (34).

Proposition 3. Given a probability measure QQym, nonnega-
tive o-finite measures (v;)jLy on Yi,...,Ym, and (c;)jL; €
(0,00)™, define the function of joint probablllry measures
Pym « Qym,

¢(Pym)
= sup {chD(PyJw1/j|PU)—D(Pym|UQym|PU)},
Pyiym ;=1

(34)

where the supremum is understood as over standard probabil-
ity space Pyym with the given marginal Py m. Then

1) ¢ is concave.
2) Suppose that Py achieves the supremum in (34),

m
and ZFI lepayj |Pg xv; P, |Pg xQym IS absolutely

integrable with respect to Py m. Then’

Vaﬁlpym( ")

Phym|

= Z C]ZP*Y [Py xv; (u,yj) — LPE o | PG X Qym (u,y™),

(35)

where the right side is independent of u, Pprym-a.s.,
defines a subgradient® of ¢ at Pym.

3) If Y™ is finite, then Vp,., d*(Pym, (l/j),cm)|Qym =
Vo|Qym, where the left side denotes the conventional
gradient over a finite dimensional space (assuming that
it exists at Qym ).

Remark 5. The relation between d*(-) and ¢(-) may be a bit
confusing; let us clarify as follows: fix any Qym, (v;) and
¢™ € (0,00)™. In Remark 2 we commented that the supre-
mums in the definitions of d*(+) (and also ¢(+), for the same
reason) can be restricted to finite. Thus upon defining the

functional ©: Pym +— Z;nzl C]D(PyJ ”Vj) — D(Pym Qym),
we can write
d(QYm7 (QY7 )a Cm) = sSup SO(PY"”)7 (36)
Pym LQym
d*(Qym, (Qy;),c™) = (concp)(Qym), (37)
¢(Pym) = (concp)(Pym), VPym & Qym,
(38)

where conc denotes the concave envelope operator.

Proof of Proposition 3. 1) Consider arbitrary Px(f,)”, 1 =
0, 1. Suppose that P((JI)Y’”

when Pym = Pf,z) (if the supremum is not achieved,

achieves the supremum in (34)

SNote that the right side of (35) may be written as

m
2 1C]ZP;, — (yj) — UPY oy IQ@ym (y™). Though on the first
sight this only depends on Py, U it is actually dependent on Py m since
PleU is computed from Py m.

SWe do not say the “sup-gradient” of a concave function since it is
unconventional.
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2)

the claim still holds by an approximation argument).
Then for any « € (0,1), and Pf,a) = (1- a)Pi(/O,l +
aP}(,l,,l, let U@ be the disjoint union of U and
L{(l), and set P((g/)m as the convex combination of

P}, and P{Y.,.. This induces a Py, for which
St DB s | Po) = DR Qv | Po) = (1=

a)gb(P)(/O,,?L) + ad)(P}(,l,l). This shows that d)(P)(/a)) >
(1 —a)p(PO)) + ag(PL)).

Let f(u,y™) be the right side of (35). We first argue
that the right side of (35) equals a function only of y™,
Pjym-as. The intuition is easy to obtain in the case
of finite U x Y™: Suppose that (u,y™) # (u/,y™) are
both on the support of Pyym and f(u,y™) > f(u/,y™).
We can define Plyym := Plym + 1t 8yym —t - Oy ym,
where d,,,m denotes a point mass at (u,y™). Then as
t — 0 we have ¢(Plywm) = ¢(Puym) +t(f(u,y™) —
f@',y™)) + o(t), which contradicts the assumption
that Py achieves the supremum. Next we give a
measure theoretic proof for the general case; this is
usually done using the hyperplane separation theorems.
By assumption, f belongs to L'(Pyym). Let V be
the set of L'(Pyw) functions, viewed a subspace of
LY(Pyym). Define its dual

V* = {g € L"L‘(PUY'HL)Z JhgdPUYm = O, Vh e V} .

(39)
Now for any g € V*, define Pl .. by
0Py
CUym 4y 40
APryn @0

which is well-defined probability measure for |¢| small
enough, and has marginal Py in view of the definition
of V*. Using the dominated convergence theorem to
bring the differentiation inside the integrals in computing
the relative entropy terms in the definition of ¢, we find

O(Phyn) = H(Piym) + 1 f 0fd Py +o(t) (41)
as t — 0. Then
f f9dPlym =0 42)

since Ppry-m IS a maximizer. It remains to show that
f €V (.e., the “double dual” of V is itself). Suppose
that f ¢ V. Since V is closed in L'(Pyy=) and the
singleton {f} is compact, by the Hahn-Banach theorem
(see [54, P106]), there exists g € L*(Pyy=) such that

Jfg dPjym < inf Jhg dPyym. (43)
hey

Since V is a linear subspace, we see that the right side
of (43) can either be 0 or —oo. The latter case is ruled
out because of the strict inequality of (43), hence the
right side of (43) is 0 and A € V*. But then the left
side of (43) must also be 0 as we have shown in (42),
a contradiction. Hence we proved that the right side
of (35) must lie in L' (Pym).

Next we show that V¢|p,., as defined in (35) is a
subgradient, that is, for any probability measure Sym <«
Pym,

8(Sym) = 6(Pym) < [ Vol d(Sym = Prm).
(44)
It suffices to prove (44) when % is bounded, as the

general claim will then follow with an approximation
argument. In that case,

Sty—m = (1 + t)PY’m — tSY’m (45)

is a probability measure when ¢ € (0, %) for some ¢y >

0. Then Pym = 13254, + 55 Sy=. By the concavity

of ¢ we have ¢(Pym) = 56(Stm) + T 6(Sym),
and upon rearrangement,

G(S%m) — ¢(Pym) <t(H(Pym) —
Hence we establish (44) by

¢(Pym) — ¢(Sym)
P(Sym) — ¢(Pym)

¢(Sym)). (46)

> lim
tl0 t
V(SE o, Piym) — 0(Pym, Py
> tigy L8 Py ) = 0P, Py ) (47)
tl0 t
= JWIPW d(Pym — Sym) (48)
where

« In (47), we defined ¢: (Pym,Pyym)
Z;‘n:l CjD(PYj\U||Vj|PU) - D(PY’"|U”QY"” Py),
and defined PI} ym as the regular conditional prob-
ability induced by the maximizer Pjjy-... Note that
equality does not necessarily hold in (47) because

Py maximizes Y(Pym,-) but not necessarily
(S, ).

« (48) follows by using the dominated convergence
theorem to bring the derivative into the integrals in
the definition of the relative entropies.

3) From the definitions we have

d(Qym, (1)), ¢™) = G(Qym). (49)
On the other hand since D(Pymy|Qy=|Py) =
D(Pymy|Pym|Py) + D(Pym |Qym), we also have
¢(Pym) + D(Pym[Qym) (50)

= 9(Pyn) + o(|Prn — Qyn )
(51)

d*(PY’”a (Vj)v Cm)

when Pym and Qym are close. From (49) and (51)
we see that the gradients of d*(-, (v;),¢™) and ¢(-) are
equal.

O

Remark 6. Note that by the definition (44), the subgradient
V¢|p,n. can be thought of as a measurable function on Y™
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modulo an additive constant. However, it is convenient to
normalize it so that

f VoloymdQym = d*(Qym, (), ™)  (52)

which is consistent with (35) and will also be convenient later.

The main result of this section is the following upper bound
on the smooth BL divergence.

Theorem 4. Let Qym be a probability measure on Y and
v; be a nonnegative o-finite measure on Y;, j = 1,...,m.
Suppose that Pf; .. achieves the supremum in the definition

of d*(Qym, (v;),c™), and define V¢ by (35). Then for any
d€(0,1) and ™ € (0,00)™, we have
0 SP[VR|gym (Y™) > ds(Qym, (1), c™)].  (53)
Alternatively, for any \ € R,
e[V slaym (vm)>a S A (54)
Proof. Let v := ds(Qym, (v;),c™) — d*(Qym, (v;),c™).
Define
C:={y™: Volqym (¥™) <d"(Qym, (v;),c™) +7}, (55)
then our goal is to show that Qy~ (C) = 1—4, or equivalently,
di-Qym () (Qym, (V) ") < ds(Qym, (v;),c™).  (56)
In the definition of dy_q,..(c)(Qy=, (v5),c™), take p to

be the restriction of Qy= on C, i.e., dg“ (y™) = H{y™
C}. Then obviously E1(Qym|p) < 1 —Qym(C). Supposmg
that Pym « p achieves the supremum in the definition of
d(u, (v;),c™) (f the supremum is not achievable we apply
an approximation argument and the proof carries through),
we have

d(u, (v4), Z ¢;D(Py,|v;) — D(Pym |Qyn)  (57)
< ¢(Pym) (58)
< ¢(Qym) + f Vélo, . d(Pym—Qym)

(59)
< P(Qym) + (60)
= ds(Qym, (v5),c™). (61)
where
o (57) is because D(Pym|p) = D(Pym|Qym), by the

definition of .

o (59) follows from the definition of the subgradient.

o (60) follows since Pym <« p implies that Pym is
supported on C, which in turn implies that

f Volo., APy < o(Qyn) +7 ©2)

~ [ Vloy.. d@yn 41 63)
Thus we have established (56). The proof of (54) is similar. O

Of particular interest is the case of the Gaussian or Lebesgue
measures, where we are able to express V¢|g,., in more

explicit forms. Define the following function of any for any
positive semidefinite matrix 3:

{ ch ) + h( Ym)]}

B(E) = sup
Rym :N(O,ZR), Xr<X
+ Tr[MgX] (64)
= Cj m
= sup —Z = log(2me[XR]ii) + = log(2me|XR])
ZRSZ ]:1 2 2
+ Tr[MoX] (65)

where Mg is the symmetric matrix such that y™ TMgy™ =
Z;n 1G5 IOg dv; (y]) 1Og dem ( m)7 Vy™, Y™ ~ Rym,
and ¥ p < 3 means that 3 — 3 is a positive-semidefinite
matrix. Note that the computation of ¢(3) is simply a matrix
optimization problem. The next proposition shows how the
computation of ¢ and its subgradient is reduced to that of .

Proposition 5. Let Qym = N (0,Xq) be a centered Gaussian
distribution, and let vq,...,v,, each be either a centered
Gaussian or the Lebesgue measure. Let ¢™ € (0,00)™. Then

1) ¢(Pym) = (Xp), for any centered Gaussian distribu-
tion PYM = ./\[(07 EP)
2) Let V@|gym be defined by (35). Then

Vélaym (™) =y™ (Vilzg)y™, y™ eR™, (66)

where V|, is a subgradient of the concave function

"

Proof. 1) From the definition we can deduce that

¢(Pym)

= sup - Z c;h(Y;U) + h(Y™|U)]
Ryym : Rym=Pym =1

+ Tr[MgXp] (67)
< sup { Z U)+h(Y™ |U)]}

Ryym: ]ER[Y"”TY"”]SZP j=1

+ Tr[MoE ] (68)
= ¢(Zp). (69)

The last step used the fact that the Gaussian measure
achieved the supremum in (68), which is shown in the
exact form in [23, Theorem 14]; see also the refer-
ences therein. To show the reverse direction ¢(Pym) >
(X p), for any 3 in the definition of ¥ (Xp), con-
struct the Py = in the definition of ¢(Py) by letting
U~N(0,2p—Xg)and (Y™ —U) ~ N(0,XR) be
independent.

2) First we observe that 1) is indeed a concave function:
for any %, 1, and p € (0,1),

(1—p(=%) +pv(Sp)

< sup {—2 cjh<mU>+h<Ym|U>]}
RUymZ]ER[Ym’TYM']SZP j=1
+ Tr[MoXp] (70)
= (Zp) (71)
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where £p := (1 — p)X% + pXE} and (70) is shown by
choosing U to be binary. Next, consider any Pym =
N(0,Xp). From the proof of [23, Theorem 14] we
know that the supremum in (67) can be achieved
(importantly, this relies on the bounded second moment
constraint in the supremum in (67)) by some constant
U and centered Gaussian Ryw. Then by choosing
U~ N(0,Xp —Xg) and (Y™ —U) ~ N(0,XR)
to be independent, we see that there exists a centered
Gaussian distribution P}y achieving the supremum in
the definition of ¢( Py ). In particular, there exists some
A € R™ and ¢y € R such that Vo|g,n (y") =
y™TAy™ + ¢o for any y™ € R™, and hence

JV(MQYm d(Pym — Qym) = Tr[A(Zp — Zg)].
(72)

We remark that from the proof of [23, Theorem 14],
Pjym is unique up to a transformation of U,
s0 V¢|g, . defined in (35) is also unique. The sub-
gradient property gives

o(Pyn) < H(Qym) + j Volaym d(Pyon — Qyn).
(73)

These combined with the first part of the proposition
show that

Y(Ep) < YP(Eq) + Tr[A(Zp — Xg)]-

By the definition of the subgradient of i), we see that
A is a subgradient V1/)|EQ. The constant ¢y is not
important if we view the subgradient as the equivalent
class modulo an additive constant. Alternatively, under
the normalization

j VéloyndQ = 6(Qyn) = (Sq) = Tr[Vi |z, Zo]

(74)

we can argue that ¢y = 0.
O

IV. APPLICATION: OMNISCIENT-HELPER COMMON
RANDOMNESS GENERATION

In this section we prove a single-shot converse bound for
the omniscient helper common randomness (CR) generation
problem [40, Theorem 4.2] in terms of the smooth BL diver-
gence. This allows us to prove not only the exact second-
order converse for common randomness generation, but also
asymptotic lower bounds on the smooth BL divergence.

A. A Single-Shot Converse for Common Randomness
Generation

Figure 1 shows the setup of the common randomness
generation problem, in the single-shot version. Let Qy= be
the joint distribution of sources Yi, ..., Y,,, observed by
terminals T4, ..., T,,. Terminal Ty which observes Y"" is
called an omniscient helper. Terminal T computes the integers
Wi(y™), ..., Wp,(Y™) and sends them to T, ..., T,

Fig. 1.

Common randomness generation with an omniscient helper.

respectively. Then, terminals Ty, ..., T,, compute integers
K(Y™), K1(Y1,W1),..., K;n (Yo, Wiy ). The goal is to make
K = K, = --- = K, with high probability and K almost
equiprobable. In this paper we primarily focus on the case
where the computation at the terminals can be stochastic (i.e.,
there exists infinite private randomness at each terminal); we
will clarify when there is potential confusion.

Let us recall previous results on this problem. In the
stationary memoryless case where the sources have the per-
letter distribution )y, take Y; « Yj" in the above single-
shot formulation. Define

1
R = liminf — log |K]; (75)

1
R; =limsup —log [W;|, j=1,...,m.

n—x N

(76)

In [40], Ahlswede and Csiszdr used the entropy charac-
terization method [13] to obtain a single-letter expression
of the achievable rate region for CR generation under the
performance constraints

1
liminf —H(K)>R; (77
n—aL n

lim P[K = K; =Ko = -+ = K] = 1. (78)

n—w

However, it is known that the achievable region does
not change when some other performance metrics are
adopted [40]. Let us also remark that the corresponding key
generation problem, which places the additional constraint that
W; L1 K asymptotically for each j, in fact has the same
achievable region as the common randomness generation prob-
lem without a secrecy constraint [1, Theorem 9].7 However,
the present paper is not concerned with the secrecy constraint.
Let us recall the single-letter region characterized by
Ahlswede and Csiszar [40, Theorem 4.2]. If T has no private
randomness (i.e., (V[/j);-”’=1 cannot be computed stochastically),
then the achievable region is the closure of
(R,Ry,...,Ry) € [0,00)m*:
R<I(U; Y™),
Rj = I(U;Y™) = I(U; Y)),
j=1,...,m.

(79)

Ro = U

Py [ym

7In general, the secrecy constraint can strictly decrease the region when the
transmitter does not see all other terminals [1, Theorem 2].
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If Ty has private randomness, the achievable region is obtained
by replacing the inequalities in (79) with

R<I(U;VY™), (80)
R; 2 I(U;VY™) = I(U; Y)), (81)
and union over all V' independent of Y and PU‘VYm.S We

now present an equivalent, more compact representation of the
region in (80) and (81).

Proposition 6. If Ty has private randomness,

(R,Ry,...,Ry) € [0,00)™" is achievable if any only
if
d*(Qym, ( ™) + Z ¢;R (Z cj— 1> R (82)
j=1

Sor all ¢™ € (0,00)™ (eqmvalently, Sor all ¢™ € (0,00)™ such
that ch > 1, since (82) is trivially true otherwise, by the
faCt that d*(QY"”a (QYJ)v Cm) = 0)

Proof. We first show that when T, has private randomness,
the achievable region is the closure of
(R,R1,...,Rpn):
- RZI(U,Ym)—i-?“(),
Re= PU, Rj = I(U;Y™) = I(U;Yj) + 15,
v ro =0, 7r1,...,7m =170

(83)

Of course, r1,...,7,, can be interpreted as the additional
communication rates used for sending the private randomness
which can be added on top of the common randomness
generated by a deterministic protocol, thus (83) is obviously
an inner bounded of the region characterized (80) and (81).
On the other hand, if R and R; satisfies (80) and (81) then
applying the chain rule of conditional mutual information we
have

R<I(U;VY™) (84)
= I(U;Y™) + I(U; V|Y™) (85)
= I(U;VY™) — I(U:;Y;) (86)
= [(U;Y™) = I(U;Y;) + I(U; VIY™). (87

If R>I(U;Y™), set rg := R—I(U;Y™) and rj; := R; —
L(U;Y™) = I(U;Y;)], wesee 0 < rg < I(U; VIY™) < 7j
sothat (R, Ry,...,Ry)isin (83). If R < I(U;Y™), let p :=
W}% € [0,1] and let B ~ Bernoulli(p) be independent of
(U,Y™). Let U’ be the random variable which equals U when
B =1 and void when B = 0. Then

I(U'B;Y™) = I(U'; Y™|B)
=pl(U;Y™|B =1)

=pl(U;Y™|B =1)
=pl(U;Y™); (88)
similarly
I(U'B;Y;) = pI(U;Y;). (89)

Now we treat (U’,
R—I(U'B;Y™)andrj := R; —

B) as the auxiliary U in (83), and put ¢ :=
[[(U'B;Y™)—I(U'B;Y;)].

8In the statement of [40, Theorem 4.2] the region is presented in a less
transparent form, but from its proof it is clear that the region is given by (80),
where V' takes the role of the private randomness.

From (87), (88) and (89) we have 0 = ro <rj, 5 =1,...,m,
so again (R, Ry,...,R,,) is in R, and we have proved that
the closure of R is the achievable region.

Next, by applying a linear transform we see that
(R,Ry,...,Rp) € cl(R) if and only if (R,R—Ry,...,R—
R,,) € cl(S) where

(R,S1,...,Sm):
L R = I( Ym) + 7o,
S.—PU S, = I(U:Y;) — s, (90)
v 70,81y, 8m = 0.

Since cl(S) is a closed convex set, from convex analysis [55]
we know that it is the intersection of closed half spaces one
side of the supporting hyperplane. Moreover, since increasing
the first coordinate or decreasing any of the other coordinates
of a point in cl(S) will leave it in cl(S), the outward
normal of at any boundary point of cl(S) is of the form
(co,—c1,...,—cm) Where cg,c1,...,cm € [0,00)™. Hence

cl(S) =
(R, 51, ce ,Sm) e R+
ﬂ ity ¢iS) —coR <

(Sibf;{)'ér’fﬂ) SUD P,y m {Zj 161U Y;) — C()I(U;Ym)}
oD

By a limiting argument it suffices to take ¢; > 0,7 =0,...,m
in (91), and then by homogeneity it suffices to take ¢y = 1.
Substituting S; = R — R; and the claim follows. |

Note that the entropy characterization approach of
Ahlswede and Csiszdr [40] is only sufficient for proving a
weak converse (i.e. assuming a vanishing error probability
in (78)). Our goal here is to prove sharp second-order converse
results. Previously in our conference paper [1], a single-shot
bound was derived via hypercontractivity which shows the
strong converse property of common randomness per unit cost.
More precisely, [1] showed that for any nonvanishing error
probability the achievable rates must satisfy

m m
dicR; = (Z ¢ — 1) R (92)
j=1 j=1

for any ¢™ € (0,00)™ such that d*(Qyn, (Qy;),c™) = 0.

Note that (92) only characterizes the ratio of the CR to
communication rates, rather than the entire region. Extend-
ing the proof in [1] directly will show an outer bound
similar to (82) but with d*(Qyw,(Qy;),c™) replaced by
d(Qym, (Qy;),c™), hence it is strictly suboptimal even in
terms of the first-order region. A similar issue appeared in the
single-shot converse for another common randomness gener-
ation problem between two terminals [2], [33], and in fact,
more broadly in many other problems in network information
theory. Here we complete the picture by bridging d*(-) and
d(-) with the “smoothing” machinery.

Theorem 7 (Single-shot converse for omniscient helper CR
generation). Fix Qym, § € [0,1), and ¢™ € (0,00)™ such
that Z;”zl c;j > 1. Let Qg be the actual CR distribution in
a coding scheme for omniscient helper CR generation, using
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stochastic encoders and deterministic decoders (or stochastic

decoders, if c; <1, j =1,...,m). Then
1
§|QK —Tgm| =
_;L_Iﬁ”nwwiiwp(%@hwx@n»ww>_5
K] K| T PN ’
(93)
where

is the target CR distribution and K and (W;)7L, denote the
CR and message alphabets.

Remark 7. The performance metric (93) takes into account
both the uniformity and the agreement of the common ran-
domness generated. We remark that the use of the total
variation distance as a performance metric for common ran-
domness or key generation has previously appeared in other
places, such as [56], [57].

Proof. Suppose p achieves the infimum in the definition of
ds(Qym, (Qy;),c™). For any k € K,

%ﬁmﬁm)

J H P 1y, w,=w, (k) Pyym ym (w™)dp (95)
wm =1
J max 1_[ PKJ |Y; Wj=w; (k)du (96)
m W j=1
= J H max PKJ |Y; Wj=w;, (k)du o7
m j=1 wj
<exp(d) [ || maxPg (k)dPyj] (98)
j=1 yj w
< exp(d) H max Pr |y, w;=w, (k)dPYj] (99)
j=1 | y] w

< exp(d)

s

ZJ Pr; v, w;=w, (k)dPYj] (100)

<.
Il
—

where

o In (98) we defined d := d(u, (Qy;),c™).
o (99) uses maxy,; Pr,—k|y;w,=w, < 1 and the assump-
tion of 0 < ¢; < 1 or deterministic decoders
Raising both sides of (100) to the power of

w%(ﬂmrwo
j=1

d m
<exp| =— J Pr . APy
<Z:nl Ci) 31:[1 lz . Kj=k|Y;Wj=w; J

———, we obtain
Z

CJ

j=1 t]_” “ is a concave function on
G

Sici _
Jltj -

But the function t™ — [’

[0,00)™; one way to see the concavity is that [ ]~

CJ]

1
limy, |0 (Zj 0 ),, which is the 0-norm of the random vari-
able t; where P[J = j] =

ZC-JC" Therefore by Jensen’s

inequality,
|f<| m L
|IC| [ZJ Pre; v w, w,(k)dPY] (102)
k=1j5=1 Lw
m IK| e
< H ZJ |]C| Z PK.7|YJ'W7=“’J (k)dPYJ (103)
Jj=1 =1
m 1 e
=11 Z f molP (104)
Jj=1 Lw; J
™ W\ S
:HCWU (105)

Combining (101) and (105) we obtain

|m2ﬂb(ﬂU¥40<mqéfw)ﬁ0%Dﬂf

(106)

Now, let Tk and L= be the restrictions of Txm= and

prm on the event {K; = --- = K,,}. Then Tgm is the

equiprobable distribution on a set of cardinality ||, and

prm (k) = p (ﬂ;n:l{Kj = k‘}), k = 1,...,]K|. Invoking

Lemma 8 which we show after the current proof with @ =
167, we obtain

Zi
Ey(Trem || percm)
= By (Tgm |fircm) (107)
IK| m Py
/1—%—|K|ﬁ712u ﬂ{szk})”.
k=1 j=1
(108)

Combining (106) and (108), we have
Ey (TKm HMK"') =

c

1 TS e d(pym, (Qy;),c™)
11— — - T eXp .
|IC| |IC| Xl Zz 16
(109)
Then, Theorem 7 follows since
1
51Qicn = Tiem| = By (Ticm | Qicm) (110)
> B (Tkm |prm) — E1(Qrom | fixm)
(111)
= E1(Trom |prem) — B1(Qym | pym)
(112)
> By (Tkm ||prem) — 6. (113)
O
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Lemma 8. Suppose T is equiprobable on {1,... M} and
is a nonnegative finite measure on the same alphabet. For any
€ (0,1),

E(T|p) = Da(p|T)),

where E1(T | 1) was defined i m (16) and the Rényi divergence
is defined as Do(u||T) := = log X0 | p® ()T~ (x).

Proof. Consider the optimlzatlon problem over nonnegative
vector a™ = (a1,...,an):

1
1—M—exp( (1—-a) (114)

M 1 +

minimize f(a™):= )] 1~ (115)
m=1
1 M

subject to g(a™) := Y mZ::l ay, <A (116)

where A > 0 is some constant. If p has probability masses
ai,...,an, then Ey(T|p) = f(a™) and D, (u|T) is
a monotonically decreasing function of g(a™). We claim
that (115)-(116) have an optimal solution a* satisfying the

property:
. 1
m: Qm € O’M < 1.

Indeed, if otherwise, and there are ¢ and j for which 0 < a; <
a; < 7. then we can choose ¢ := min{a;, = — a;}, such
that either a; :== a; —t =0ora; :=a; +t = ﬁ For m €
{1,..., M}\{1, 7}, put @, = a,,. By convexity, we can check
that @ is still an optimal solution to (115)-(116). However,
the count on the left side of (117) decreases by 1 when we
modify a to a. We can continue this process until (117) is

(117)

satisfied. Next, notice that for any aM, if b, = am{ay, <
ﬁ} + %1{am > ﬁ}, then
FOM) = f(a™), (118)
g(0™) < (9(a™)). (119)

Thus an optimizer a* of (115)-(116) can further be assumed
to be of the following form:

1 1 1
dM:[

— — ., — 12
M’M’ ’M ( ())

777,0,0,...,0]
for some 0 < n < M Suppose that the number of zeros
on the right side of (120) is k. Then from f(a*) > - and
A= gaM) > L - Mkl we deduce that the optimal value

Me
for (115)-(116) satisfies

f=1—-AM* - (121)
Thus we have shown that
Ey(T|p) = 1—— M 12 p® (m) (122)
m=1
which is the desired inequality. m|
Remark 8. Let Qi xm and
Trrm(k, k™) = ﬁl{k =k = =kn} (123)

denote the actual and the target distributions of the CR
generated by Tg, T1,...,T,,, respectively. Since

= |QKm — TKm,|,

Theorem 7 also provides a lower bound on |Q x xm — Tk gcm|-
Actually, if the decoders are deterministic, Tg can always
produce K such that the two total variations are equal, because
To is aware of the CR produced by the other terminals.

Qrxxm — Tkgm (124)

Remark 9. Allowing stochastic decoders can strictly lower
%|Q km — Trm|: consider the special case where m = 2, Y3
and Y5 are constant, and there are no messages sent. Then
the minimum 2|Q xm — Tgm| achieved by deterministic
decoders is 1 — |K| On the other hand, T; and Ts can

- VIKT

- e
Nevertheless, we can argue that allowing stochastic decoders
can at most reduce the error by a factor of 4: Suppose
%|QKM — Tkm| < ¢ for some stochastic decoders, then
§|QK1 _TK1| < ¢ and Q(Kl = Ky EEERE Km) < 0.
We can then remove the stochasticity of decoders at
Ts...T,, but retain the last two inequalities. Indeed, let
f(Yon, W) denote the probability of producing k upon
observing (Y, W,,) at T,,. Since K,, — (Yin, W) —
(Ky,..., K1), we have Q(K; = -+ = Kp)
E S (Vo W P [KL = -+ = Koot = kYo, Winl |
this probability cannot decrease if T,, switches to the
deterministic protocol that selects a & that maximizes
P[K; = = Kpn-1 = k|Ym, Wy]. By iterating this
argument for T,,_1,..., T2, we see that —|QKm —Tgm| <

each independently output an integer in {1,.
equiprobably, achieving 3|Qgm — Tkm| =

is achievable with deterministic decoders at To,...,T,,; thls
pays a factor of 2 for %|Q xm — Trm|. Applying the similar
argument again, but starting with §|Qg,, — Tk,,| < 20 and

QKy = Ko = --- = K,;,) < 26, we can further remove
the stochasticity of the decoder at T, at the cost of another
factor of 2.

B. Second-Order Converse for Common Randomness
Generation

Corollary 9. Consider any stationary memoryless source
with per-letter distribution Qym, any ¢™ € (0,00)™, and
a sequence of omniscient helper CR generation schemes
allowing stochastic encoders (indexed by n). Define

A=

1 m m
lim sup — cjlog [Wj| + nd* —( 1)log K
n%p\/ﬁLle g Wjl g g K|
(125)
where d* = d*(Qym,(Qy;),c™). Also assume that

K| — oo and Pl is a maximizer in the definition of
d*(Qym, (Qy,),c™), and define ¢(-) as in Section IlI. Then’

A
> _— 126
Q( Var<v¢|Qym)) (20

9Q(-) denotes the standard Gaussian tail probability function.

1
lim inf 5 |QKm — TKm

n—ow
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where (Qim denotes the actual CR distribution and Tgm is
the target distribution as defined in (94).

Proof. Using the bound on the smooth BL divergence (54),
we obtain from (93) that

1
— m — Tgm
5|@x K |
1 ™ oW Te
>1— — —inf Hj_1| ]1| exp<7>+P
Kl ek | ke S
(127
where P := P[Y" | Vé|oym (Y™;) >~]. Here we used

Proposition 2-3) to show that

Voloyne (V™) = 3 Volayn (Y™, (128)
1=1

Taking v = nd*(Qym=, (Qy;), ™) —/nA" for any A" > A

shows that

1 A

liminf = m — Tm| > — | . (129
n—o0 2 |QK K | Q ( Var(Vq5|Qym )) ( )
Then take A’ | A. |

C. Second-Order Achievability for Common Randomness
Generation

In this section we show that the second-order converse (126)
is tight for the discrete memoryless sources. The proof uses
standard method of types analysis. First, consider the follow-
ing encoding and decoding rules designed for a specific type
Pymn.

Encoding at Ty: For any given ¢ € (0, 0)™, let Pp; Oy be
a maximizer in the definition of d*(Qym, (Qy;),c™). Let P

be the output distribution of Py mn» through PL*,lym. Construct
a codebook of size ||, where
log |K| 1= nI(Pymn, Pym) + 0 (130)

and the codewords are i.i.d. according to the equiprobable
distribution on the F7; type. Upon observing Y™", Ty sends
the empirical distribution Pymn using O(logn) bits to all
other terminals. Then Ty equiprobably selects among code-
words (if any) u such that (ux,Y™") has the joint type
(PL*,lym Py) Random binning is used to send this selected
index ¢ to other terminals. For Terminal T, each u; codeword
is mapped randomly to one of |W;| bins where

0.02

log |W]| = nI(ﬁY'mn,Pl}lym) — nI(ﬁ)}/Jﬂ,Pl;lyj) +n

(131)

Decoding at T;: Note that |K| and [W;| defined above
depend on Py mn, which is known by all terminals as a part
of the messages from To. Terminal T; decodes a codeword
ll)llaving P(;IY;' Py,» joint type with Y;" and also in the right

in.

Error and rate analysis: Conditioned on the type Py mn,
the error probability of incorrectly decoding the codeword w
is O(n=1%), by the standard covering and random binning

analysis (see e.g. Slepian-Wolf coding [58]). Moreover for any
fixed codebook, the probability that any given codeword index
K is selected is exp(nl (Py mn, Py )+0(log n)). Therefore
using the hash lemma [40, Lemma 3.1], there exists a mapping

f: K — K where
log |IC| = ’I’LI(ﬁYmn,P

*

U|Ym) -n
such that f(K) is close to the equiprobable distribution on
K with error O(n~'%9) in the total variation. Moreover, let
&y be the event that |Pymn — Qywm| > n=049, Using large
deviations,

0.01 (132)

P[Eo] = O(n~1).

Under the complement of &y, by the Taylor expansion we have

(133)

Z (log [W;| —log |K]) + log |K|

7j=1
0 Y ey, Phjy,n) = n (Pymn, Py m) + O(n*%?)
j=1

(134)
= nd* Qv (Qv,), ™) + 1 (Vloym, Pron = Qun )

+ 0(n%0%) (135)
= > Volgym (V™) + O(n02). (136)
i=1

We showed that (136) is the cost for the error to be O(n~100).

A
—= |, th
\/Var(vmy,,L)) ©
left side of (134) needs to exceed nd*(Qym=, (Qy;),c™) —

/nA.

A tweak: We have obtained the correct second-order upper
bound on the left side of (134), but the proof is not finished
yet since each term therein vary with Pymn even though the
sum is bounded. To finish, pick any PU‘Ym # P Uy m and set
P! tPU|ym (1-t)Py Under the complement of

If we want the error to converge to Q

Ulym *= Ulym
&, for each Pywmn find t = O(n~'/2) such that
log [W;| = nI(Pymn,Pg}‘Ym) - "I(ﬁYj",P(fj‘yj) 4 002
(137)

always equals nI(Qym,PL*,lYm) nl(Qy;, U‘Y) which is

independent of Pymn. The new codebook size
log |K| = nI(Pymn, Pym) — n®" (138)

will change according to this new encoding rule P, U\Y”“ but

one can verify using the first order optimality of P, UIY’" that
m
D7 ¢i(log|Wj| —log |K|) + log K|
7j=1
n
= D1 Velgyn (Y™) +o(n'?)  (139)
i=1

still holds. We thus obtain:

Theorem 10. Consider any discrete memoryless source with
per-letter distribution Qym, any ¢™ € (0,00)™, and A € R.
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There exists a sequence of omniscient helper CR generation
schemes allowing stochastic encoders (indexed by n) such that

m m

(DS ¢j = Dlog|K| = D] ¢;log [Wj]
j=1 j=1
< nd*(QY’"a (QYJ)7 Cm/) - A\/ﬁ (14’0)
and
1 A
1. - moT T m < R ——— . 141
m sup 2|QK K Q ( Var(V¢>|QYm)) (141)

Here ¢(+) is as in Section IIl, Qxm denotes the actual CR
distribution, and Ty is the target distribution as defined
in (94).

D. Second-Order Converse for Smooth BL Divergence

Theorem 7 essentially establishes a single-shot connection
between the smooth BL divergence and omniscient helper CR
generation: the achievability of one implies the converse of the
other. The second-order achievability of common randomness
generation implies the following second-order converse for
smooth BL divergence, which is tight in view of the upper
bound in Theorem 4.

Corollary 11. Fix any discrete memoryless source Qym, c™ €
(0,00)™, and ¢ € (0,1).

dis(Q(;??u (Q%n)a cm) Zn d*(QY"‘v (QYJ )a cm)

+4/n Var(Volg, . )Q™ (6) —o(v/n).

(142)

Proof. If the claim were not true, then by (93) one could prove
a second-order converse for common randomness generation
that contradicts the achievability (Theorem 10). m|

Remark 10. For non-discrete alphabets, it is possible to prove
the achievability of common randomness generation using the
likelihood encoder [1]. The total variation error vanishes for
rates in the interior of the same rate region. Thus by the same
reasoning as Corollary 11, we have strong converse of smooth
BL divergence for any stationary (not necessarily discrete)
memoryless source:

ds(QF, (QF"). ™) = nd*(Qyn, (Qy,),c™) = o(n).

(143)
for any 4 € (0, 1).

V. APPLICATION: ALMOST LOSSLESS
GRAY-WYNER NETWORK

In this section we prove a single-shot converse bound for
the lossless Gray-Wyner source coding problem [59] using the
smooth BL divergence. This will imply the exact second-order
converse, previously also obtained by [16] using the method
of types analysis.

Figure 2 shows the (single-shot) formulation of the problem.
The sources are discrete random variables Y7, ..., Y, with
the joint distribution QQy=. Terminal T, observes Y while

. " .
T D1 1
. W
& To
) W .
To (D, 5
Fig. 2. Gray-Wyner network.
Terminal T; observes Y;, j = 1,...,m. For each j =
0,...,m, Terminal T; computes integer W;(Y™). For j =
1,...,m, the decoder D; receives (Wy,W;) and computes

Y;(Wo, W;) € V;. The goal is that Y™ = Y™ with high
probability. In the literature, the Gray-Wyner network usually
refers to the m = 2 case of this model.

Gray and Wyner [59] computed the exact first order rate
region in the discrete memoryless case. Take Qym «— Q({?”
and Y; < Y;" in the above single-shot formulation. Define

R; =limsup — 1og|W| (144)
n—o
for j = 0, ..., m. The achievable rate region, defined as the set
of (Ry, ..., Ry) for which there exist a sequence of coding
schemes (indexed by n) such that
limsup P[Y™ # Y™] = 0, (145)
n—o
is the closure of the set of (Ro,...,Ry) € [0,00)™"! such
that
m
Ro+ ) ¢;R; > 1nf ¢ HY;|U)+I(U; Y™
v Son {z 0+ 1( >}
(146)
= —d*(Qym, (v;),c™) (147)

for all ¢™ € (0,00)™, where (U,Y™)
is the counting measure on ).

Theorem 12. Fix Qy=, 6 € (0,1), ¢™ € (0,0)™ and let v; be
the counting measure on Y; where |Y;| < oo, j =1,...,m.
Then any coding scheme for Gray-Wyner satisfies

~ PUlYmQym and Vj

m

> 1= exp(ds(Qy, (), ™) [T W17 = 6

Jj=0

P[Y™ # Y™]

(148)
where ¢y 1= 1.

Remark 11. Notice that the ds(Qym, (v),c™) in (148) can
be negative since v; is the counting measure rather than a
probability measure.

Proof. Note that Y™ can be viewed as a function of y™, since
all the messages Wy,...,W,,, are functions of y"*. Define the
correctly decodable set

= {y": Y (y™) =y} (149)
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Let ;1 be a minimizer in (17) (if the minimum is not achieved,
the proof can still proceed by approximation). Define y|,, as
the restriction of p on D, that is,

%(ym)

= 1{y™ e D).
in {y" e D}

(150)

Let € be the error probability. By the triangle inequality for
E,-distance,

E1(Qyn| plp) < E1(Qym| Qymlp) + E1(Qymlp | 1tlp)
(151)

< et B (Qyn) (152)

<e+d. (153)

For each u € W, set A, := WO*1 (u)nD, and denote by A,,;
its projection onto the j-th coordinate. Then by Proposition 1,
we have

M(Au) < eXp(dé(QY’" H V] u] “i (154)
Jj=1

< exp(ds(Qym, ( H W% (155)

for each u, where (155) used the estimate v;(Ay;) < W]

which follows from the fact that A,; < Y,(u, W;) by the
definition of correctly decodable sets. The desired result then
follows noting that

|W0|maxu Zu (156)
— M(D) (157)

> 1 By@Qyel i) (59)

>1—(e+6). (159)

O

The exact second-order asymptotics for the Gray-Wyner
coding [59] was derived in [16] using the method of types.
In [16], a weighted distribution on )™ is defined where the
probability of the set of correctly decodable ™ is amplified,
so that a nonvanishing error is turned into a polynomially
vanishing error. Then Fano’s inequality is applied to the
weighted distribution. Here we show that such a second-order
converse also follows from the smooth BL divergence bound
(Theorem 12), which was proved via a fundamentally different
approach.

Proposition 13 ( [16]). Consider a stationary mem-
oryless source with per-letter distribution Qym, where
[Vil, . |Ym| < 0. Let ¢1,...,¢m € (0,00), co := 1 and
A € R. For an arbitrary sequence of Gray-Wyner coding
schemes (indexed by n), define

n—ax0

1 m
A= hmsup\/ﬁ{d*(Qym,(l/j) cm Z ¢; log |Wj |}

] 0
(160)

where v; denotes the counting measure on Y;. Then

lim inf P[Y"" #

n—ow

mn A
e Q(\/VMV¢|QY (Y"”))>

(161)

where ¢(-) is as in Section II1.

Proof. Using the bound on the smooth BL divergence (Theo-
rem 4), we obtain from (148) that

]P)[Ymn __ﬁymn] >
1=t o [T 2| 33wl 0 > |}

(162)
where Y ~ Qym. Here we used Proposition 2-3) to show
that

Volgymn (Y™) (163)

Z Volgym (Y™).

Taking v =
shows that

nd*(Qym, (vj),c™) — /nA’ for any A’ > A

lim inf IP[Y"’” Y™ >

n—ox0

o )
VVar(Volgy. (Y™) )
(164)

Taking A’ | A establishes the claim. O

Remark 12. For the discrete memoryless case, [16] showed
that the bound (161) is tight.

VI. APPLICATION: GAUSSIAN LOSSY GRAY-WYNER
NETWORK WITH SQUARE DISTORTION

We now consider the lossy version of the Gray-Wyner
problem. The setup is still as in Figure 2. But in contrast to
the lossless version, we are given distortion functions A;: ) x
Y — R and the goal is to minimize P[35: A;(Y;,Y;) > D;]
where D; is a given distortion level, j = 1,...,m.

In the stationary memoryless case with per-letter source
distribution Qywm, take Y; «— Y;" and A;(y;,y;) <
% Z?:l Aj (yji; @j’i)' Denote by

R; = hmsup log [Wj| (165)
n—xK0
the rate of the j-th message as before, for j = 0,..., m. The

achievable rate region is defined as the closure of the set of
(Ro,...,Rm) € [0,00)™*! such that

lim P[3j: A;(Y;",Y]") > D;] =0.

n—x0

(166)

In [59], Gray and Wyner showed that the achievable region is
the closure of the set of (Ry, ..., R,,) such that

I(U;Yﬂq);
R; 2 Ry,u(D;), j=1,....,m,

(167)
(168)
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for an auxiliary random variable U [59]. Here Ry, y ()
denotes the conditional rate-distortion function. That is,

Ry, u( (169)

D) = int [ Ry, (d(w) 4 Qu(w)
where the infimum is over nonnegative measurable functions
d: U — R such that E[d(U)] < D, and Ry, |y, denotes
the conventional (single-letter) rate-distortion function for a
single source with per-letter distribution Qy, -, and per-
letter distortion function A; (see e.g. [58]). The second-order
converse for discrete lossy Gray-Wyner coding was proved
in [17], which relies heavily on the method of types and does
not appear to be applicable to continuous sources such as the
Gaussian sources.

We proceed to derive a single-shot converse for general
distortion measures, and then we particularize it to quadratic
distortions to derive a second-order converse for Gaussian
sources.

Theorem 14. Suppose § € (0,1), Y™ ~ Qym, Aj: Y; X
yj — [0,00), and v; is an arbitrary nonnegative o-finite
measure on )>j, j =1,...,m. Then any coding scheme for
the Gray-Wyner network satisfies

P[3j: A;(Y;,Y;) > D;]
>1 = exp(ds(Qym, (1), " NIWol [ T IWiI LT =6
j=1
(170)

where L; := sup, g, vi(A;(y)<Dj), j=1,....,m

Proof. The proof is similar to the proof of Theorem 12. Define
the correctly decodable set

D= {y™: Aly;, V;(Wo(y™), Wi(y™))) <

Steps (151)-(153) still follow. The bound (155) will be
replaced by

D, Yj}. (171)

H WileiLy

u(Ay) < exp(d (172)

because for each j, A,; € {y;: Jw;, Aly;, Yj(u,w;)) <
D;} (that is, Yj(u, W) is a Dj-covering of A,;), which
implies that v;(A,;) < |W;|L;. The rest of the proof follows
verbatim. O

Remark 13. Clearly Theorem 14 recovers Theorem 12 as a
special case when A(-,-) is the Hamming distortion. We pre-
sented Theorem 12 first since it is simpler and contains the
main ingredients of Theorem 14.

Next, we particularize Theorem 14 to the case of stationary
memoryless Gaussian source and square distortion, and prove
a second-order converse. Let us first simplify the first-order
region. Let Aj: (y,9) € R? — (y — §)® be the per-
letter distortion function, j = 1,...,m. By (167) and (168),
(Ro, ..., Rm) € [0,00)™"! is achievable if and only if for any

™ € (0, 00)™

m
Z Cj Rj > inf I
j=0 PUV"”\Y"”

and ¢g :=1,

(U;Y™) + )] CjI(Vj;leU)},
j=1
(173)

where the infimum is over Ppyym |y such that Vj is a real
valued random variable satisfying E[(V; — Y;)? ] < Dy,
Jj = 1...,m, and (U, V™ Y™) ~ PyymymQym. The
followmg pr0v1des a supporting hyperplane characterization
of this achievable region.

Proposition 15. Let Qym be an m-dimensional Gaussian
distribution with a non-degenerate covariance matrix. Fix

D™ € (0,400)™. Define
(R, Ry, ..., Ry) € R
- R=IU;Y™),
Ri= U\ g nio) - Liogoren,;, (- 179
Pyjym .
j=1,....,m.

1) R is convex. The (inward pointing) normal at every
boundary point R can be chosen as (1,c1,...,Cn)
with ™ € [0, 1]™. If such ¢™ € (0,1)™, then R’ is the
unique intersection of the supporting hyperplane and R,
and there exists a Gaussian Py ym such that

Ry =I(U;Y); (175)
1
R; = h(Y;|U) — 510g27reDj, ji=1,...,m. (176)
2)
cl(R) =
(R,Ry,...,R,,) e RMHL: }
N BB )
oy { R+, ¢R; =d
where
* : m - 1
d*:= inf {I(U;Y ”)+Z cj[h(Y}|U)——log27reDj] .
Pyjym o] 2
3) cl(R) n [0, +00)™*t is the achievable rate region.
Proof. 1) The convexity is standard using the chain rules

of the information quantities (similar to the proof of the
convexity of a rate region). To see that each supporting
hyperplane has a normal vector (pointing towards R)
of the form (1,¢1,...,¢m), ¢™ € [0,1]™: first choose
cg' orthogonal to a supporting hyperplane of R at a
boundary point Rj* and pointing into R. From the
form of (174) we can see that ¢; = 0, j = 0,...,m.
We also see from (174) that for any (no matter how
small) Rl, .. .,Rm there exists R large enough such
that (R, Ry, ..., R,,) € R, which implies that ¢y # 0.
Thus by re-normalization we can assume without loss
of generality that cg = 1. Then¢; <1, j =1,...,m,
by Proposition 16 which is given after the present proof.
The claim for the case of ¢™ € (0, 1)™ also follows from
Proposition 16.

2) From convex analysis [55] the closed convex set cl(R)
is the intersection of closed half spaces on one side

Authorized licensed use limited to: Thomas Courtade. Downloaded on July 09,2020 at 21:37:10 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: SMOOTHING BL INEQUALITIES AND STRONG CONVERSES OF CODING THEOREMS 719

of the supporting hyperplanes. As argued in the proof
of Part 1), the normal (pointing inward) vector of each
supporting hyperplane can be chosen as (1,¢1,...,¢np)
where ¢ € [0, 1]™. Moreover, since (0, 1)™ is dense in
[0,1]™, we can verify the geometric fact that such an
intersection can be restricted to supporting hyperplanes
whose normal vector has the form (1, ¢y, ..., ¢;,) where
e (0,1)™

3) To see the achievable region contains cl(R) n
[0, 400)™*1 it suffices to show the achievability of
an arbitrary (max{R;,0})JL, where R{" is on the
boundary of R € R™*1, Choose a Gaussian Ppyym
according to Part 1). Now for each j = 1,...,m,
if af,j v > Dj, then for each u, we can construct
Py,v,ju=. under which N; and V; are independent
Gaussian with means 0 and E[Y;|U = u] and variances
D; and af,j v —Dj = 0 respectively, such that their sum
has the distribution of Py, |y-,. Then we may as well
put V;, N;, Y; and U in the same probability space so
that Y; = N + V;. Otherwise, O'Y 1% < Dy, we let V;
be constant. As such in both cases we have

max{R;,0} = h(Y;|U) — h(Y;|UV;) = 0,
E[|Y; - V;|°] = D;,
for j =1,...,m. Then (max{R;,0})7,,
in view of (167) and (168).

For the converse, consider any RJ* € [0,00)™*! that
satisfies

(178)
(179)

is achievable

(180)
(181)

c, My

for some PU‘Ym and (Py,jpym )j 1 such that E[|V; —
Y;’l < Dj, j =1,...,m. In view of (167) and (168)
and the equivalent formulation of R in (177), it suffices
to show that

R+ i ¢;R; >
j:

inf (U;ym) YU——12D
gt o)

Jj=1

(182)

for any ¢™ € (0,1)™. This follows because
(Vs Y310) = h(%3[U) = h(¥;1V;0) (183)
= WY |U) — h(Y; = V;IV;U)  (184)
> h(Y;|U) = h(Y; = V) (185)
= h(Y;|U) — %log%reD (186)
O

Proposition 16. Fix Qy~ m-dimensional Gaussian with a
non-degenerate covariance matrix %. If ¢™ € [0, +00)™ and
cj > 1 for some j, then

inf
Pyjym

{—h(ymw) + Z cjh(Yj|U)} = —w. (187

=1

If ¢™ € [0,1)™, then the infimum is finite and achieved, and
there exist a ¥: 0 < ¥ < X such that for any minimizer
Pyym, Y™U = u is Gaussian with covariance matrix b
(for almost all w and under PyrjymQym ).

Proof. 1f Pyjym is Gaussian and the covariance matrix of Y™
given U is 3 under Py jymQym, then

—hmo)+ 3 eh(v10)

=1
ZCJ2 log 27e — —log|2| +Z Y 10g Sy

(188)
where f)jj is the j-th diagonal entry of the matrix 3. The
first claim for the case of ¢; > 1 follows by taking > to be
diagonal with ¥;; | 0.

Next, suppose that ¢ € [0,1)™. In [23] it is shown that the
value of the left side in (187) does not change if the infimum is
restricted to Gaussian Prry». Choose a sequence of Gaussian
P[zjlym, i=1 , for which —h(Y™|U) + Z;nzl c;h(Y;10)
converges to the left side of (187). Let 3* be the covariance
matrix of Y given U under U\Y”LQY"”' Since ¢ < ¥
for each 4, by passing to a convergent subsequence we can
assume that ' — £* for some £* < 3. Observe that (188)
is bounded below by

h(Y™U) + i cjh(Y;|U)

Jj=1

- 1—
> 2 g g -y

5 log 35, (189)
hence f);J must be bounded away from 0, for large enough
1. Thus X* has strictly positive diagonals. By the continuity
of the right side of (188) in 3, we see that $* is in fact a
minimizer of the right side of (188) under the constraint > <
3. Now let U* and N independent m-dimensional Gaussian
vectors whose means sum to E[Y"] and whose variances are
> — 3 and 5), respectively. Put Y™ = U* + N™, and the
corresponding Py is a minimizer for the left side of (187).

O
The constraint in (177) can be rewritten as
m
s
R+ Z cjRj = —d*(Qym, (N), ™) — Z 5] log 2meD;;,
j=1
(190)

for any ¢™ € (0,1). We now prove a second-order converse.

Theorem 17. Let Qyn be an m-dimensional Gaussian dis-
tribution with a non-degenerate covariance matrix, and \ be
the Lebesgue measure on R. Let ¢™ € (0,00)™, and define
co := 1. Consider a sequence of Gray-Wyner coding schemes
(indexed by n) for the stationary memoryless source with per-
letter distribution Qym, and define

m m
Z cjlog |W; |+d*+z ] log 2meD;
) =

A:=limsup~/n

n—ow

(191)
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where d* := d*(Qym, (X),c™). Then for any D; € (0, ),
j=1....,m,
A
VVar(Vel gy (Y™))
(192)

lim inf P[35:|Y;"—Y;"|* > nDpj] >Q
n—ox

where ¢(-) is as in Section II1.

Proof. First, observe that we will only need to consider the
case of }; ¢; < m, since otherwise d*(Qym, (A),c™) =
by Proposition 16, in which case the claim is vacuous. Using
the bound on the smooth BL divergence (Theorem 4), we take
v; = A in (170) and obtain that

P[3j: |Y;" = Y}'|* > nD;] >

1—inf exp(y) [ [ WYL +P| Y Voloym (V™) >
j=0 i=1

(193)

where Y™ ~ Qym. Here we used Proposition 2-3) to show
that

VOlQymn (V™) = Y Volgyn. (V™). (194)
1=1
Note that in Theorem 14,
Lj = |Bu(y/nD;)] (195)
_ 14007 (2meD;)? (196)

Jnm

is the volume of an n-dimensional ball of radius /nD;.
Taking v = nd*(Qym,(N),c™) — /nA’ for any A" > A
shows that

N Al
P[3j: [V, — V712 > nDj1>Q
L P\ WVar(Véla,. (V)
197)
Taking A’ | A establishes the claim. O
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