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Smoothing Brascamp-Lieb Inequalities and Strong

Converses of Coding Theorems
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Abstract— The Brascamp-Lieb inequality in functional analysis
can be viewed as a measure of the “uncorrelatedness” of a
joint probability distribution. We define the smooth Brascamp-
Lieb (BL) divergence as the infimum of the best constant in
the Brascamp-Lieb inequality under a perturbation of the joint
probability distribution. An information spectrum upper bound
on the smooth BL divergence is proved, using properties of the
subgradient of a certain convex functional. In particular, in the
i.i.d. setting, such an infimum converges to the best constant
in a certain mutual information inequality. We then derive new
single-shot converse bounds for the omniscient helper common
randomness generation problem and the Gray-Wyner source
coding problem in terms of the smooth BL divergence, where
the proof relies on the functional formulation of the Brascamp-
Lieb inequality. Exact second-order rates are thus obtained in
the stationary memoryless and nonvanishing error setting. These
offer rare instances of strong converses/second-order converses
for continuous sources when the rate region involves auxiliary
random variables.

Index Terms— Shannon theory, coding theorems, strong con-
verse, finite blocklength, Brascamp-Lieb inequality, hypercon-
tractivity, common randomness, Gray-Wyner network.

I. INTRODUCTION

IN THE last few years, information theory has witnessed

vibrant developments in the study of the non-vanishing

error probability regime, and in particular, the successes

in applying normal approximations to gauge the back-off

from the asymptotic limits as a function of delay. Extend-

ing the achievements for point-to-point communication sys-

tems in [3]–[5] to network information theory problems

usually requires new ideas for proving tight non-asymptotic

bounds. For achievability, single-shot covering lemmas and

packing lemmas [6], [7] supply convenient tools for distilling
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single-shot achievability bounds from the classical asymptotic

achievability proofs. While these single-shot bounds hold

regardless of the finiteness of the alphabets or the memory,

their asymptotics are easy to evaluate in the stationary mem-

oryless case by choosing the auxiliary random variables to

be i.i.d. and applying the law of large numbers or the central

limit theorem. Other single-shot achievability proof techniques

for network information theory include stochastic likelihood

encoder/decoder [8] and approximation of output statistics [9].

In contrast, although the binary hypothesis testing approach

(and the related information spectrum approach) has been

successfully applied to the single-user settings [3], [4], [10],

progress on its extensions to network information problems

has been modest. There are relatively few examples of

single-shot converse bounds in the network setting. Moreover,

unlike their achievability counterparts, it usually requires

more effort to single-letterize a single-shot converse to a

strong converse or a second-order converse, partly because it

is not obvious that a product auxiliary distribution is optimal

in the evaluation of the single-shot converse bounds (consider

for example [4, Theorem 48] for point-to-point channel

coding, which relies on the reduction to fixed composition).

Several researchers have also noted the dearth of methods for

obtaining strong converses for network information theory

problems whose single-letter solutions involve auxiliaries; see

e.g. [11, Section 6.3] [12, Section 9.2]. Although the method

of types has proven to be applicable for the strong converses

of some problems of this type (including selected source

and channel networks [13], Gelfand-Pinsker coding [14], and

Gray-Wyner coding [15]–[17]), the method of types crucially

relies on the finite alphabet assumption. To our knowledge,

no previous methods exist for establishing a strong converse

for nonfinite distributions when the rate region involves an

auxiliary (with the exception of certain Gaussian cases where

the converse part can be reduced to a single-user problem,

such as dirty paper coding [18]).

In this paper, we demonstrate the power of a functional

inequality, the Brascamp-Lieb inequality [19]–[22], in prov-

ing single-shot converses for problems involving multiple

sources and an “omniscient helper”. For recent discussions

on the connection between the Brascamp-Lieb inequality and

information measures, see [23]–[26]. For recent studies of

the computational aspects of the Brascamp-Lieb inequali-

ties or applications in computer science, see [27]–[30].

To be concrete, consider c1, . . . , cm � �0,��, d � R, a

nonnegative finite measure µ on Ym :� Y1 � � � � � Ym, and

σ-finite measures ν1, . . . , νm on Y1, . . . ,Ym. Then,

an inequality of the following form is sometimes referred to
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as a Brascamp-Lieb type inequality (see e.g. [22])� m�
j�1

fj�yj�dµ�ym� � exp�d�
m�

j�1

	fj	 1

cj

, 
f1, . . . , fm � 0,

(1)

where 	fj	 1

cj

:�
��

f
1�cj

j dνj

�cj

. Traditionally, a Brascamp-

Lieb (BL) inequality refers to the special case of (1) where µ

and �νj� are Gaussian or Lebesgue measures. In that case, it is

known that (1) holds if and only if it holds for all Gaussian

functions �fj� [19], [20]. In the present paper however, we do

not focus on the Gaussian case, and the measures considered

are not necessarily Gaussian or Lebesgue.

If we define the Brascamp-Lieb (BL) divergence

d�µ, �νj�, cm� as the best (i.e. smallest possible) constant

d for (1) to hold, then several well-known information

measures can be recovered as special cases, such as the Rényi

divergence (taking m � 1) or hypercontractivity (taking

m � 2, µ � QY1Y2
, and νj � QYj

, j � 1, 2). A key fact

that we invoke is the entropic representation of the BL

divergence: for any joint distribution QY m ,

d�QY m , �QYj
�, cm�

� sup
PY m�QY m

�
m�

j�1

cjD�PYj
	QYj

� �D�PY m	QY m�
�

. (2)

which can be derived from (1) using convex dual-

ity theory [22] or large deviation arguments [31]. Here

D�PY m	QY m� denotes the relative entropy (we review the

definitions of various information theoretic quantities in

Section II). While similar objects such as hypercontractivity

have recently seen applications in various converse results [1],

[32], [33], one obstacle preventing them from becoming a

canonical tool for network information theory is that in gen-

eral, (2) can be strictly larger than

dÆ�QY m , �QYj
�, cm�� sup

QU�Y m

�
m�

j�1

cjI�U ; Yj� � I�U ; Y m�
�

,

(3)

where I�U ; Y m� denotes mutual information, and the

supremum is understood as over standard probability

QUY m whose Y m-marginal is the given QY m . More

specifically, single-shot converse bounds derived from (1)

involve d�QY m , �QYj
�, cm�, whereas single-letter rate

regions involving mutual information or conditional entropy

have supporting hyperplane characterizations in terms

of dÆ�QY m , �QYj
�, cm�. For example, [1], [33] derived

single-shot converse bounds for common randomness

generation problems using hypercontractivity. These bounds

are only first-order tight in the regime of vanishing

communication rate, which is essentially due to the

fact (observed by Anantharam et al. [34, Theorem 4])

that d�QY m , �QYj
�, cm� � 0 if and only if

dÆ�QY m , �QYj
�, cm� � 0.

In order to bridge the gap between d�QY m , �QYj
�, cm�

and dÆ�QY m , �QYj
�, cm�, we draw insight from the notion

of smooth Rényi divergence in non-asymptotic information

theory, introduced by Renner and coauthors [35]–[37]. This

naturally leads us to introduce the smooth BL divergence: for

δ � �0, 1�,
dδ�QY m , �QYj

�, cm� :� inf
µ :

�
� d µ�d QY m ���δ

d�µ, �QYj
�, cm�

(4)

where the infimum is over nonnegative finite measures µ such

that the positive part of the measure µ � QY m is at most δ.

Recall that when proving the strong converse using the smooth

Rényi divergence, we need to show that in the stationary

memoryless setting (i.e., QY 
 Q�n
Y ), the smooth Rényi

divergence grows linearly at the rate of the relative entropy

(regardless of the Rényi order). This can be done by simply

taking µ to be supported on the weakly typical set, hence

obviating the need for the finite alphabet assumption.

The asymptotic analysis of the smooth BL divergence,

in contrast, is more elusive. A classical strong converse

technique called image-size characterization [13] bounds the

cardinalities of subsets of the strongly typical set and their

images. In the setting of (1), the corresponding image-size

inequality is of the form

�A� � D

m�
j�1

�Aj�cj (5)

for any subset A of the strongly typical set (w.r.t. QY m ),

while Aj denotes the projection of A to Yj . Inspired by this,

it is natural to try µ in (4) with the conditional measure

on the strongly typical set. The restriction to the strongly

typical set ensures that the empirical distribution is close to

QY m , which is reflected by the fact that QUY m and QY m

are consistent in (3) and the mutual information terms arise

from single-letterizing the relative entropy between multi-letter

distributions. In the case of finite Ym, this successfully shows

that (see e.g. [38, Chapter 3])

dδ�Q�n
Y m , �Q�n

Yj
�, cm� � n dÆ�QY m , �QYj

�, cm� �O��n�.
(6)

However, the strong typicality approach has no hope of obtain-

ing the exact prefactor in the O��n� term, or even getting the

sign correct. Moreover, the strong typicality approach requires

an assumption of finite alphabets.

In the present paper, we adopt a different, typicality-

free approach. With a simple, yet non-obvious, argument

capitalizing on the property of the subgradient of a certain

convex functional, we show the following single-shot bound:

for any δ � �0, 1�,

δ � P

	
m�

j�1

cjıU ;Yj
�u; Yj� � ıU ;Y m�u; Y m� � dδ



. (7)

Here dδ :� dδ�QY m , �QYj
�, cm�, the information density is

defined as ıU ;Y m�u; ym� :� dQÆ
Y mU

dQU�QY m
�u, ym�, with QÆ

UY m

being any maximizer in (3) (assuming it exists), Y m � QY m ,

and u is any element in U (we will show that the term to

the left of � in (7) is independent of u almost surely). This

indeed recovers the exact prefactor in O��n� in (3), and

does not require finite alphabets. For example, if QY m is

a Gaussian distribution, then there exists an optimal QÆ
UY m

which is a jointly Gaussian distribution [39].
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We apply the smooth BL divergence to the converses of

two network information theory problems: omniscient helper

common randomness generation [1], [40, Theorem 4.2], and

Gray-Wyner source coding (including the almost lossless case

with finite alphabets and squared distortion case with jointly

Gaussian sources). In both cases, we first prove new single-

shot converse bounds in terms of smooth BL divergence,

and then perform an asymptotic analysis to obtain the exact

second-order rate. The exact second-order rates for the Gray-

Wyner source coding in the discrete memoryless cases were

previously derived by Watanabe [16] and Zhou et al. [17] using

the method of types and Fano’s inequality, relying crucially on

i.i.d. and finite-alphabet assumptions.

The proposed smooth BL divergence approach to non-

asymptotic converses has several advantages compared with

existing approaches such as the method of types, as nicely

illustrated by its applications to common randomness genera-

tion and source coding:

1) In the discrete memoryless case, while the classical

image-size characterization (based on strong typicality)

shows that the second-order term scales as O��n�, there

is no hope of obtaining the exact prefactor. In fact,

the sign of the prefactor is invariably wrong when the

error probability is less than 1�2. In contrast, the smooth

BL approach recovers the exact prefactor.

2) While the method of types is capable of obtaining the

exact second-order prefactor in the discrete memoryless

case, it is incapable of handling infinite alphabets. In

contrast, our approach leads to rare instances of second-

order converses for continuous sources.

3) In the omniscient helper CR generation problem, our

approach has the desirable feature of allowing possibly

stochastic encoders and decoders.1 Stochastic encoders

and decoders are tricky to handle with the image-size

technique as it only concerns the cardinalities of the

encoding and decoding sets.

In addition, we discuss the converse2 part of smooth BL

divergence, which generally follows from the achievability of

CR generation problems. In fact, smooth BL divergence and

CR generation may be considered as dual problems where the

achievability of one implies the converse of the other.3 Such

converse proofs based on the achievability of another usually

have certain advantages, partly because the achievability is

constructive.

Let us remark that our application examples (common

randomness generation and source coding) concern the setting

in which one terminal observes the entire source realization

Y m. In other settings where such an omniscient terminal is

1The (asymptotic) rate region with stochastic encoders can be strictly
larger than with deterministic encoders, since in the former case the CR
rate is unbounded whereas in the latter case it is bounded by the entropy
of the sources. Regarding the decoders, we argue in Remark 9 that allowing
stochasticity can strictly decrease the (single-shot) error, but within a constant
factor.

2Since the smooth BL divergence is defined as an infimum over an auxiliary
distribution, we take the liberty of referring to lower/upper bounds on the
smooth BL divergence as converse/achievability results.

3Another example of such “dual problems” in information theory is channel
resolvability and identification coding [41].

absent (e.g. the Wyner-Alhswede-Körner source problem [42],

[43]), although the definition of dδ extends and a counterpart

of (7) follows by the same proof, it requires additional efforts

to connect dδ with operational quantities (e.g. error proba-

bility). In [44] (see also [38] and [45]), this connection was

achieved through a novel reverse hypercontractivity approach.

Moreover, a very different approach for handling auxiliary

random variables with Markov constraints (as in the Wyner-

Alhswede-Körner problem) by introducing soft constraints was

recently proposed by Tyagi and Watanabe [46]. This work was

presented in part at ISIT 2015 [1] and ISIT 2016 [2]. The

proofs in this paper differ significantly from the conference

version [2].

II. PRELIMINARIES

We start by introducing the notation and the formal def-

initions of quantities of interest. Probability measures and

random transformations are denoted by capital Latin letters,

such as P and PY �X . Unnormalized nonnegative measures are

denoted by lowercase Greek letters, and the Lebesgue measure

is denoted by λ. Random variables are written in capital

letters. For finite alphabets we sometimes use the notation

of inner product in Euclidean space hf, P i :� �
fdP to

denote an integral. A vector �am, am	1, . . . , an� is sometimes

abbreviated as an
m, or an in the case of m � 1, or more simply,

the boldface letter a if the range of the indices is clear from

the context. The closure of a set A is denoted as cl�A�.
The relative information between two nonnegative σ-finite

measures µ � ν on the same measurable space �X , F � is

defined as the logarithm of the Radon-Nikodym derivative:

ıµ
ν�x� :� log
d µ

d ν
�x�, 
x � X . (8)

The relative entropy and the conditional relative entropy are

defined as:

D�PX	µX� :� E�ıPX
µX
�X��; (9)

D�PY �X	µY �PX� :� D�PY �XPX	µY � PX�. (10)

where X � PX . Given PXY , the mutual information is

defined as

I�X ; Y � :� D�PY �X	PY �PX�. (11)

We use λ to denote the Lebesgue measure on a Euclid-

ean space. Then the differential entropy and the conditional

differential entropy are defined as

h�PX� :� �D�PX	λ�; (12)

h�PX�U �PU � :� �D�PX�U	λ�PU �. (13)

We now give formal definitions of the key quantities of

interest.

Definition 1. Given a finite measure µ on Ym, nonnegative σ-

finite measures ν1, . . . , νm on Y1, . . . ,Ym, and c1, . . . , cm �
�0,��, define the Brascamp-Lieb (BL) divergence

d�µ, �νj�, cm� :� sup
PY m

�
m�

j�1

cjD�PYj
	νj� �D�PY m	µ�

�
.

(14)
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As a convention, the supremum in (14) is over PY m � µ such

that each term in (14) is finite, and the supremum is set to

�� if there is no such PY m .

We remark that the choice of the collection of mea-

sures �νj� will depend on our applications: in converses

of common randomness generation problems, νj will be

the marginal distribution at one terminal; in source coding

problems, νj will be the counting measure or the Lebesgue

measure.

By convex duality [22] or large deviation arguments [31],

the following equivalent formulation of the smooth BL diver-

gence can be shown:

Proposition 1.

d�µ, �νj�, cm�� sup
f1,...,fm�0

�
log

� m�
j�1

fj d µ�
m�

j�1

log 	fj	 1

cj

�
,

(15)

where 	fj	 1

cj

:�
��

f
1�cj

j dνj

�cj

.

For nonnegative measures ν and µ on the same measurable

space �X , F � where ν�X � � �, one can define the following

measure of their distance (see e.g. [47])

Eγ�ν	µ� :� sup
A�F

�ν�A� � γµ�A��, (16)

for any choice of γ � �1,��. In the present paper, we will

always take γ � 1 and use E1 to measure the perturbation in

the definition of the smooth divergences. Note that E1�P 	µ� �� �dP �dµ�	 in general and is not equal to the total variation
1
2
�P�µ� if µ is not a probability measure. In fact, if we restrict

µ to be a probability measure and use the total variation in

the definition of the smooth divergence instead, we would not

be able to obtain the exact dispersion in the later applications

in converse proofs.

Definition 2. Given a probability measure QY m , nonnegative

σ-finite measures �νj�mj�1 on Y1, . . . ,Ym, δ � �0, 1�, and cm �
�0,��m,

dδ�QY m , �νj�, cm� :� inf
µ : E1
QY m
µ��δ

d�µ, �νj�, cm�. (17)

Remark 1. The Brascamp-Lieb divergence is a generalization

of several information measures, including the strong data

processing constant, hypercontractivity, and Rényi divergence;

see a summary in [23]. For example, for α � �1,��, the Rényi

divergence between two probability measures P and Q on the

same alphabet can be expressed in terms of the BL divergence:

Dα�P 	Q� � α

α� 1
d

�
P, Q,

α� 1

α

�
. (18)

This can be seen either from (15) and the variational formula

of Rényi divergence (see e.g. [48] [49, (7)]), or (14) and the

entropic representation of the Rényi divergence (see e.g. [39],

[50]). Consequently, the smooth Rényi divergence [36] can be

expressed in terms of a smooth BL divergence:

Dδ
α�P 	Q� :� inf

µ : E1
P 
µ��δ
Dα�µ	Q� (19)

� α

α� 1
dδ

�
P, Q,

α� 1

α

�
(20)

for δ � �0, 1�.
We now introduce a quantity which plays a central role in

the asymptotic characterizations of the smooth BL divergence.

We first give its definition in terms of auxiliary random

variables. It is well-known in information theory that auxiliary

random variables take the role of convexifying sets [51], [52].

An equivalent concave envelope formulation will be given later

in Remark 5.

Definition 3. Given QY m , �νj� and cm as in Definition 2,

dÆ�QY m , �νj�, cm�

:� sup
PUY m : PY m�QY m

�
m�

j�1

cjD�PYj �U	νj �PU � � I�U ; Y m�
�

,

(21)

where �U, Y m� � PUY m .

Remark 2. In the supremum in (21), we do not need to

impose any cardinality constraint on U (we can assume that

�U �Ym, PUY m� is any standard probability space such that

PY m � QY m). On the other hand, the supremum does not

change if U is restricted to be finite. This follows from the

same reasoning in the proof of the proverbial fact that the

mutual information equals the supremum over finite parti-

tions: first by Gelfand-Yaglom-Perez (see [53, Theorem 2.1.2])

where the relative entropy is approximated by its conditional

over finite partitions consisting of subsets of U �Ym; second

by Dobrushin (see [53, Theorem 2.1.1]), further approximation

is made by finite partitions consisting of rectangle sets in

U � Ym.

Remark 3. In the special case of νj � QYj
, we have

dÆ�QY m , �QYj
�, cm� � sup

PU�Y m

�
m�

j�1

cjI�U ; Yj� � I�U ; Y m�
�

.

(22)

Remark 4. Since

dÆ�QY m , �νj�, cm�

� sup
PUY m :

PY m�QY m

	
m�

j�1

cjD�PYj �U 	νj�PU ��D�PY m�U 	QY m �PU �



(23)

� sup
PUY m

	
m�

j�1

cjD�PYj �U 	νj�PU � �D�PY m�U	QY m �PU �


(24)

� sup
PUY m

	
sup

u

	
m�

j�1

cjD�PYj �U�u	νj��D�PY m�U�u	QY m�




(25)

� sup
PY m

	
m�

j�1

cjD�PYj
	νj� �D�PY m	QY m�



(26)

� d�QY m , �νj�, cm�, (27)

Authorized licensed use limited to: Thomas Courtade. Downloaded on July 09,2020 at 21:37:10 UTC from IEEE Xplore.  Restrictions apply. 



708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 2, FEBRUARY 2020

we see that, in general,

dÆ�QY m , �νj�, cm� � d�QY m , �νj�, cm�, (28)

and the inequality can be strict (e.g. consider examples of

Gaussian distributions). However, if d�QY m , �QYj
�, cm� � 0,

then one can still show that dÆ�QY m , �QYj
�, cm� � 0, by

taking U � �0, 1�, PU �1� � t, PY m�U�1 � P Æ
Y m , PY m�U�0 �

1
1�t

�QY m�tP Æ
Y m�, and letting t � 0. Here P Æ

Y m is chosen such

that

m

j�1 cjD�P Æ
Yj
	QYj

��D�P Æ
Y m	QY m� � 0 and

dP Æ
Y m

dQY m
is

bounded.

We list a few basic tensorization properties and include the

short proofs.

Proposition 2 (Tensorization). Given QY m , �νj� and cm as

in Definition 3, and any n � 1, we have

1) d�Q�n
Y m , �ν�n

j �, cm� � n d�QY m , �νj�, cm�.
2) dÆ�Q�n

Y m , �ν�n
j �, cm� � n dÆ�QY m , �νj�, cm�.

3) If PUY m achieves the supremum in the definition of

dÆ�QY m , �νj�, cm�, then P�n
UY m achieves the supremum

in the definition of dÆ�Q�n
Y m , �ν�n

j �, cm�.
Proof. The � parts of 1) and 2) are immediate from the defin-

itions. For the � part, given any PUY mn , let I � �1, . . . , n� be

equiprobable and independent of �U, Y mn� under P . Then4

D�PYj
n�U 	ν�n

j �PU �

�
n�

i�1

D�PYji �UYj
i�1	νj�PUYj

i�1� (29)

�
n�

i�1

D�PYji �UY m,i�1	νj �PUY m,i�1� (30)

� nD�PYjI �IUY m,I�1	νj�PIUY m,I�1�, (31)

and

D�PY mn�U	Q�n
Y m �PU �

�
n�

i�1

D�PY m
i�UY m,i�1	QY m �PUY m,i�1� (32)

� nD�PY m
I �IUY m,I�1	QY m �PIUY m,I�1�. (33)

Identifying �I, U, Y m,I�1� as U and Y m
I as Y m,

the claim of 1) (resp. 2)) follows noting that

supPUY m �

m

j�1 cjD�PYj �U 	νj�PU � � D�PY m�U	QY m �PU ��
where the supremum is without (resp. with) the

constraint PY m � QY m equals d�QY m , �νj�, cm� (resp.

dÆ�QY m , �νj�, cm�). Claim 3) follows from Claim 2).

III. A SINGLE-SHOT UPPER BOUND ON THE

SMOOTH BL DIVERGENCE

A principal goal of this paper is to upper-bound the smooth

BL divergence in terms of dÆ. Then by proving single-shot

converses in terms of the smooth BL divergence for common

randomness generation and the Gray-Wyner source coding, we

obtain sharp second-order converses.

4Note that Yj
i :� �Yj1, . . . , Yji� which is note to be confused with Y i

j :�
�Yj , Yj�1, . . . , Yi�.

In this section we prove an estimate of the smooth BL

divergence mentioned in (7). This relies crucially on the

properties of a convex functional φ, defined below in (34).

Proposition 3. Given a probability measure QY m , nonnega-

tive σ-finite measures �νj�mj�1 on Y1, . . . ,Ym, and �cj�mj�1 �
�0,��m, define the function of joint probability measures

PY m � QY m ,

φ�PY m�

:� sup
PU�Y m

�
m�

j�1

cjD�PYj �U 	νj�PU � �D�PY m�U 	QY m �PU �
�

,

(34)

where the supremum is understood as over standard probabil-

ity space PUY m with the given marginal PY m . Then

1) φ is concave.

2) Suppose that P Æ
UY m achieves the supremum in (34),

and

m

j�1 cjıP Æ
UYj


P Æ
U
�νj

�ıP Æ
UY m
P Æ

U
�QY m is absolutely

integrable with respect to P Æ
UY m . Then5

∇φ�PY m �ym�

:�
m�

j�1

cjıP Æ
UYj


P Æ
U
�νj

�u, yj� � ıP Æ
UY m 
P Æ

U
�QY m �u, ym�,

(35)

where the right side is independent of u, P Æ
UY m-a.s.,

defines a subgradient6 of φ at PY m .

3) If Ym is finite, then ∇PY m dÆ�PY m , �νj�, cm��
QY m

�
∇φ�QY m , where the left side denotes the conventional

gradient over a finite dimensional space (assuming that

it exists at QY m ).

Remark 5. The relation between dÆ��� and φ��� may be a bit

confusing; let us clarify as follows: fix any QY m , �νj� and

cm � �0,��m. In Remark 2 we commented that the supre-

mums in the definitions of dÆ��� (and also φ���, for the same

reason) can be restricted to finite. Thus upon defining the

functional ϕ : PY m �� 
m
j�1 cjD�PYj

	νj� � D�PY m	QY m�,
we can write

d�QY m , �QYj
�, cm� � sup

PY m�QY m

ϕ�PY m�, (36)

dÆ�QY m , �QYj
�, cm� � �conc ϕ��QY m�, (37)

φ�PY m� � �conc ϕ��PY m�, 
PY m � QY m ,

(38)

where conc denotes the concave envelope operator.

Proof of Proposition 3. 1) Consider arbitrary P

i�
Y m , i �

0, 1. Suppose that P

i�
U �Y m achieves the supremum in (34)

when PY m � P

i�
Y m (if the supremum is not achieved,

5Note that the right side of (35) may be written as�m
j�1

cjıPÆ
Yj �U�u

�νj
�yj� � ıPÆ

Y m�U�u
�QY m �ym�. Though on the first

sight this only depends on P Æ
Y m�U

, it is actually dependent on PY m since

P Æ
Y m�U

is computed from PY m .
6We do not say the “sup-gradient” of a concave function since it is

unconventional.

Authorized licensed use limited to: Thomas Courtade. Downloaded on July 09,2020 at 21:37:10 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: SMOOTHING BL INEQUALITIES AND STRONG CONVERSES OF CODING THEOREMS 709

the claim still holds by an approximation argument).

Then for any α � �0, 1�, and P

α�
Y m � �1 � α�P 
0�

Y m �
αP


1�
Y m , let U 
α� be the disjoint union of U 
0� and

U 
1�, and set P

α�
UY m as the convex combination of

P

0�
UY m and P


1�
UY m . This induces a P


α�
U �Y m for which
m

j�1 cjD�P 
α�
Yj �U

	νj�PU ��D�P 
α�
Y m�U 	QY m �PU � � �1�

α�φ�P 
0�
Y m� � αφ�P 
1�

Y m�. This shows that φ�P 
α�
Y m� �

�1� α�φ�P 
0�
Y m� � αφ�P 
1�

Y m�.
2) Let f�u, ym� be the right side of (35). We first argue

that the right side of (35) equals a function only of ym,

P Æ
UY m-a.s. The intuition is easy to obtain in the case

of finite U � Ym: Suppose that �u, ym� � �u�, ym� are

both on the support of PUY m and f�u, ym� � f�u�, ym�.
We can define P t

UY m :� P Æ
UY m � t � δu,ym � t � δu�,ym ,

where δu,ym denotes a point mass at �u, ym�. Then as

t � 0 we have φ�P t
UY m� � φ�PUY m� � t�f�u, ym� �

f�u�, ym�� � o�t�, which contradicts the assumption

that P Æ
UY m achieves the supremum. Next we give a

measure theoretic proof for the general case; this is

usually done using the hyperplane separation theorems.

By assumption, f belongs to L1�PUY m�. Let V be

the set of L1�PY m� functions, viewed a subspace of

L1�PUY m�. Define its dual

V� :�
�

g � L��PUY m� :
�

hg dPUY m � 0, 
h � V

�
.

(39)

Now for any g � V�, define P t
UY m by

dP t
UY m

dP Æ
UY m

� 1� tg (40)

which is well-defined probability measure for �t� small

enough, and has marginal PY m in view of the definition

of V�. Using the dominated convergence theorem to

bring the differentiation inside the integrals in computing

the relative entropy terms in the definition of φ, we find

φ�P t
UY m� � φ�P Æ

UY m� � t

�
gfd P Æ

UY m � o�t� (41)

as t � 0. Then �
fg dP Æ

UY m � 0 (42)

since P Æ
UY m is a maximizer. It remains to show that

f � V (i.e., the “double dual” of V is itself). Suppose

that f � V . Since V is closed in L1�PUY m� and the

singleton �f� is compact, by the Hahn-Banach theorem

(see [54, P106]), there exists g � L��PUY m� such that�
fg dP Æ

UY m � inf
h�V

�
hg dPUY m . (43)

Since V is a linear subspace, we see that the right side

of (43) can either be 0 or ��. The latter case is ruled

out because of the strict inequality of (43), hence the

right side of (43) is 0 and h � V�. But then the left

side of (43) must also be 0 as we have shown in (42),

a contradiction. Hence we proved that the right side

of (35) must lie in L1�PY m�.

Next we show that ∇φ�PY m as defined in (35) is a

subgradient, that is, for any probability measure SY m �
PY m ,

φ�SY m� � φ�PY m� �
�
∇φ�PY m d�SY m � PY m�.

(44)

It suffices to prove (44) when d SY m

d QY m
is bounded, as the

general claim will then follow with an approximation

argument. In that case,

St
Y m :� �1� t�PY m � tSY m (45)

is a probability measure when t � �0, t0� for some t0 �
0. Then PY m � 1

1	t
St

Y m � t
1	t

SY m . By the concavity

of φ we have φ�PY m� � 1
1	t

φ�St
Y m� � t

1	t
φ�SY m�,

and upon rearrangement,

φ�St
Y m� � φ�PY m� � t �φ�PY m� � φ�SY m�� . (46)

Hence we establish (44) by

φ�PY m� � φ�SY m�
� lim

t�0

φ�St
Y m� � φ�PY m�

t

� lim
t�0

ψ�St
Y m , P Æ

U �Y m� � ψ�PY m , P Æ
U �Y m�

t
(47)

�
�
∇φ�PY m d�PY m � SY m� (48)

where

� In (47), we defined ψ : �PY m , PU �Y m� ��
m
j�1 cjD�PYj �U 	νj�PU � � D�PY m�U	QY m �PU �,

and defined P Æ
U �Y m as the regular conditional prob-

ability induced by the maximizer P Æ
UY m . Note that

equality does not necessarily hold in (47) because

P Æ
U �Y m maximizes ψ�PY m , �� but not necessarily

ψ�St
Y m , ��.

� (48) follows by using the dominated convergence

theorem to bring the derivative into the integrals in

the definition of the relative entropies.

3) From the definitions we have

dÆ�QY m , �νj�, cm� � φ�QY m�. (49)

On the other hand since D�PY m�U 	QY m �PU� �
D�PY m�U	PY m �PU � �D�PY m	QY m�, we also have

dÆ�PY m , �νj�, cm� � φ�PY m� �D�PY m	QY m� (50)

� φ�PY m� � o��PY m �QY m ��
(51)

when PY m and QY m are close. From (49) and (51)

we see that the gradients of dÆ��, �νj�, cm� and φ��� are

equal.

Remark 6. Note that by the definition (44), the subgradient

∇φ�PY m can be thought of as a measurable function on Ym
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modulo an additive constant. However, it is convenient to

normalize it so that�
∇φ�QY m dQY m � dÆ�QY m , �νj�, cm� (52)

which is consistent with (35) and will also be convenient later.

The main result of this section is the following upper bound

on the smooth BL divergence.

Theorem 4. Let QY m be a probability measure on Ym and

νj be a nonnegative σ-finite measure on Yj , j � 1, . . . , m.

Suppose that P Æ
U �Y m achieves the supremum in the definition

of dÆ�QY m , �νj�, cm�, and define ∇φ by (35). Then for any

δ � �0, 1� and cm � �0,��m, we have

δ � P�∇φ�QY m �Y m� � dδ�QY m , �νj�, cm��. (53)

Alternatively, for any λ � R,

dP�∇φ�QY m 
Y m��λ� � λ. (54)

Proof. Let γ :� dδ�QY m , �νj�, cm� � dÆ�QY m , �νj�, cm�.
Define

C :� �ym : ∇φ�QY m �ym� � dÆ�QY m , �νj�, cm� � γ�, (55)

then our goal is to show that QY m�C� � 1�δ, or equivalently,

d1�QY m 
C��QY m , �νj�, cm� � dδ�QY m , �νj�, cm�. (56)

In the definition of d1�QY m 
C��QY m , �νj�, cm�, take µ to

be the restriction of QY m on C, i.e., d µ
d QY m

�ym� � 1�ym �
C�. Then obviously E1�QY m	µ� � 1 � QY m�C�. Supposing

that PY m � µ achieves the supremum in the definition of

d�µ, �νj�, cm� (if the supremum is not achievable we apply

an approximation argument and the proof carries through),

we have

d�µ, �νj�, cm� �
m�

j�1

cjD�PYj
	νj� �D�PY m	QY m� (57)

� φ�PY m� (58)

� φ�QY m� �
�

∇φ�QY m
d�PY m �QY m�

(59)

� φ�QY m� � γ (60)

� dδ�QY m , �νj�, cm�. (61)

where

� (57) is because D�PY m	µ� � D�PY m	QY m�, by the

definition of µ.

� (59) follows from the definition of the subgradient.

� (60) follows since PY m � µ implies that PY m is

supported on C, which in turn implies that�
∇φ�QY m

dPY m � φ�QY m� � γ (62)

�
�

∇φ�QY m
dQY m � γ. (63)

Thus we have established (56). The proof of (54) is similar.

Of particular interest is the case of the Gaussian or Lebesgue

measures, where we are able to express ∇φ�QY m in more

explicit forms. Define the following function of any for any

positive semidefinite matrix Σ:

ψ�Σ� :� sup
RY m�N 
0,ΣR�, ΣR�Σ

�
�

m�
j�1

cjh�Yj� � h�Y m��
�

� Tr�MQΣ� (64)

� sup
ΣR�Σ

�
�

m�
j�1

cj

2
log�2πe�ΣR�ii��m

2
log�2πe�ΣR��

�
� Tr�MQΣ� (65)

where MQ is the symmetric matrix such that ym�
MQym �
m

j�1 cj log dλ
dνj

�yj� � log dλm

dQY m
�ym�, 
ym, Y m � RY m ,

and ΣR � Σ means that Σ � ΣR is a positive-semidefinite

matrix. Note that the computation of ψ�Σ� is simply a matrix

optimization problem. The next proposition shows how the

computation of φ and its subgradient is reduced to that of ψ.

Proposition 5. Let QY m � N �0,ΣQ� be a centered Gaussian

distribution, and let ν1, . . . , νm each be either a centered

Gaussian or the Lebesgue measure. Let cm � �0,��m. Then

1) φ�PY m� � ψ�ΣP �, for any centered Gaussian distribu-

tion PY m � N �0,ΣP �.
2) Let ∇φ�QY m be defined by (35). Then

∇φ�QY m �ym� � ym��∇ψ�ΣQ
�ym, ym � R

m, (66)

where ∇ψ�ΣQ
is a subgradient of the concave function

ψ.

Proof. 1) From the definition we can deduce that

φ�PY m�

:� sup
RUY m : RY m�PY m

�
�

m�
j�1

cjh�Yj �U� � h�Y m�U��
�

� Tr�MQΣP � (67)

� sup
RUY m: ER�Y m�Y m��ΣP

�
�

m�
j�1

cjh�Yj �U��h�Y m�U��
�

� Tr�MQΣP � (68)

� ψ�ΣP �. (69)

The last step used the fact that the Gaussian measure

achieved the supremum in (68), which is shown in the

exact form in [23, Theorem 14]; see also the refer-

ences therein. To show the reverse direction φ�PY m� �
ψ�ΣP �, for any ΣR in the definition of ψ�ΣP �, con-

struct the PUY m in the definition of φ�PY m� by letting

U � N �0,ΣP �ΣR� and �Y m � U� � N �0,ΣR� be

independent.

2) First we observe that ψ is indeed a concave function:

for any Σ
0
P , Σ

1
P and p � �0, 1�,

�1 � p�ψ�Σ0
P � � pψ�Σ1

P �

� sup
RUY m: ER�Y m�Y m��ΣP

�
�

m�
j�1

cjh�Yj �U��h�Y m�U��
�

� Tr�MQΣP � (70)

� ψ�ΣP � (71)
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where ΣP :� �1� p�Σ0
P � pΣ1

P and (70) is shown by

choosing U to be binary. Next, consider any PY m �
N �0,ΣP �. From the proof of [23, Theorem 14] we

know that the supremum in (67) can be achieved

(importantly, this relies on the bounded second moment

constraint in the supremum in (67)) by some constant

U and centered Gaussian RY m . Then by choosing

U � N �0,ΣP � ΣR� and �Y m � U� � N �0,ΣR�
to be independent, we see that there exists a centered

Gaussian distribution P ÆUY m achieving the supremum in

the definition of φ�PY m�. In particular, there exists some

A � R
m�m and c0 � R such that ∇φ�QY m �ym� �

ym�
Aym � c0 for any ym � R

m, and hence�
∇φ�QY m d�PY m �QY m� � Tr�A�ΣP �ΣQ��.

(72)

We remark that from the proof of [23, Theorem 14],

P ÆUY m is unique up to a transformation of U ,

so ∇φ�QY m defined in (35) is also unique. The sub-

gradient property gives

φ�PY m� � φ�QY m� �
�
∇φ�QY m d�PY m �QY m�.

(73)

These combined with the first part of the proposition

show that

ψ�ΣP � � ψ�ΣQ� � Tr�A�ΣP �ΣQ��. (74)

By the definition of the subgradient of ψ, we see that

A is a subgradient ∇ψ�ΣQ
. The constant c0 is not

important if we view the subgradient as the equivalent

class modulo an additive constant. Alternatively, under

the normalization�
∇φ�QY m dQ � φ�QY m� � ψ�ΣQ� � Tr�∇ψ�ΣQ

ΣQ�

we can argue that c0 � 0.

IV. APPLICATION: OMNISCIENT-HELPER COMMON

RANDOMNESS GENERATION

In this section we prove a single-shot converse bound for

the omniscient helper common randomness (CR) generation

problem [40, Theorem 4.2] in terms of the smooth BL diver-

gence. This allows us to prove not only the exact second-

order converse for common randomness generation, but also

asymptotic lower bounds on the smooth BL divergence.

A. A Single-Shot Converse for Common Randomness

Generation

Figure 1 shows the setup of the common randomness

generation problem, in the single-shot version. Let QY m be

the joint distribution of sources Y1, …, Ym, observed by

terminals T1, …, Tm. Terminal T0 which observes Y m is

called an omniscient helper. Terminal T0 computes the integers

W1�Y m�, …, Wm�Y m� and sends them to T1, …, Tm,

Fig. 1. Common randomness generation with an omniscient helper.

respectively. Then, terminals T0, …, Tm compute integers

K�Y m�, K1�Y1, W1�,…, Km�Ym, Wm�. The goal is to make

K � K1 � � � � � Km with high probability and K almost

equiprobable. In this paper we primarily focus on the case

where the computation at the terminals can be stochastic (i.e.,

there exists infinite private randomness at each terminal); we

will clarify when there is potential confusion.

Let us recall previous results on this problem. In the

stationary memoryless case where the sources have the per-

letter distribution QY m , take Yj 
 Yj
n in the above single-

shot formulation. Define

R � lim inf
n��

1

n
log �K�; (75)

Rj � lim sup
n��

1

n
log �Wj�, j � 1, . . . , m. (76)

In [40], Ahlswede and Csiszár used the entropy charac-

terization method [13] to obtain a single-letter expression

of the achievable rate region for CR generation under the

performance constraints

lim inf
n��

1

n
H�K� � R; (77)

lim
n��

P�K � K1 � K2 � � � � � Km� � 1. (78)

However, it is known that the achievable region does

not change when some other performance metrics are

adopted [40]. Let us also remark that the corresponding key

generation problem, which places the additional constraint that

Wj � K asymptotically for each j, in fact has the same

achievable region as the common randomness generation prob-

lem without a secrecy constraint [1, Theorem 9].7 However,

the present paper is not concerned with the secrecy constraint.

Let us recall the single-letter region characterized by

Ahlswede and Csiszár [40, Theorem 4.2]. If T0 has no private

randomness (i.e., �Wj�mj�1 cannot be computed stochastically),

then the achievable region is the closure of

R0 :�
�

PU�Y m

�������
�R, R1, . . . , Rm� � �0,��m	1 :

R � I�U ; Y m�,
Rj � I�U ; Y m� � I�U ; Yj�,

j � 1, . . . , m.

������� . (79)

7In general, the secrecy constraint can strictly decrease the region when the
transmitter does not see all other terminals [1, Theorem 2].
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If T0 has private randomness, the achievable region is obtained

by replacing the inequalities in (79) with

R � I�U ; V Y m�, (80)

Rj � I�U ; V Y m� � I�U ; Yj�, (81)

and union over all V independent of Y m and PU �V Y m .8 We

now present an equivalent, more compact representation of the

region in (80) and (81).

Proposition 6. If T0 has private randomness,

�R, R1, . . . , Rm� � �0,��m	1 is achievable if any only

if

dÆ�QY m , �QYj
�, cm� �

m�
j�1

cjRj �
�

m�
j�1

cj � 1

�
R (82)

for all cm � �0,��m (equivalently, for all cm � �0,��m such

that



cj � 1, since (82) is trivially true otherwise, by the

fact that dÆ�QY m , �QYj
�, cm� � 0).

Proof. We first show that when T0 has private randomness,

the achievable region is the closure of

R :�
�

PU�Y m

�������
�R, R1, . . . , Rm� :

R � I�U ; Y m� � r0,

Rj � I�U ; Y m� � I�U ; Yj� � rj ,

r0 � 0, r1, . . . , rm � r0.

������� . (83)

Of course, r1, . . . , rm can be interpreted as the additional

communication rates used for sending the private randomness

which can be added on top of the common randomness

generated by a deterministic protocol, thus (83) is obviously

an inner bounded of the region characterized (80) and (81).

On the other hand, if R and Rj satisfies (80) and (81) then

applying the chain rule of conditional mutual information we

have

R � I�U ; V Y m� (84)

� I�U ; Y m� � I�U ; V �Y m� (85)

Rj � I�U ; V Y m� � I�U ; Yj� (86)

� I�U ; Y m� � I�U ; Yj� � I�U ; V �Y m�. (87)

If R � I�U ; Y m�, set r0 :� R � I�U ; Y m� and rj :� Rj �
�I�U ; Y m� � I�U ; Yj��, we see 0 � r0 � I�U ; V �Y m� � rj

so that �R, R1, . . . , Rm� is in (83). If R � I�U ; Y m�, let p :�
R

I
U ;Y m� � �0, 1� and let B � Bernoulli�p� be independent of

�U, Y m�. Let U � be the random variable which equals U when

B � 1 and void when B � 0. Then

I�U �B; Y m� � I�U �; Y m�B�
� pI�U �; Y m�B � 1�
� pI�U ; Y m�B � 1�
� pI�U ; Y m�; (88)

similarly

I�U �B; Yj� � pI�U ; Yj�. (89)

Now we treat �U �, B� as the auxiliary U in (83), and put r0 :�
R�I�U �B; Y m� and rj :� Rj��I�U �B; Y m��I�U �B; Yj��.

8In the statement of [40, Theorem 4.2] the region is presented in a less
transparent form, but from its proof it is clear that the region is given by (80),
where V takes the role of the private randomness.

From (87), (88) and (89) we have 0 � r0 � rj , j � 1, . . . , m,

so again �R, R1, . . . , Rm� is in R, and we have proved that

the closure of R is the achievable region.

Next, by applying a linear transform we see that

�R, R1, . . . , Rm� � cl�R� if and only if �R, R�R1, . . . , R�
Rm� � cl�S� where

S :�
�

PU�Y m

�������
�R, S1, . . . , Sm� :

R � I�U ; Y m� � r0,

Sj � I�U ; Yj� � sj,

r0, s1, . . . , sm � 0.

������� . (90)

Since cl�S� is a closed convex set, from convex analysis [55]

we know that it is the intersection of closed half spaces one

side of the supporting hyperplane. Moreover, since increasing

the first coordinate or decreasing any of the other coordinates

of a point in cl�S� will leave it in cl�S�, the outward

normal of at any boundary point of cl�S� is of the form

�c0,�c1, . . . ,�cm� where c0, c1, . . . , cm � �0,��m. Hence

cl�S� �
�

�c0,c1,...,cm�

��0,��m�1

�����
�R, S1, . . . , Sm� � R

m	1 :
m
j�1 cjSj � c0R �

supPU�Y m

�
m
j�1 cjI�U ; Yj� � c0I�U ; Y m�

�
�����.

(91)

By a limiting argument it suffices to take cj � 0, j � 0, . . . , m

in (91), and then by homogeneity it suffices to take c0 � 1.

Substituting Sj � R�Rj and the claim follows.

Note that the entropy characterization approach of

Ahlswede and Csiszár [40] is only sufficient for proving a

weak converse (i.e. assuming a vanishing error probability

in (78)). Our goal here is to prove sharp second-order converse

results. Previously in our conference paper [1], a single-shot

bound was derived via hypercontractivity which shows the

strong converse property of common randomness per unit cost.

More precisely, [1] showed that for any nonvanishing error

probability the achievable rates must satisfy

m�
j�1

cjRj �
�

m�
j�1

cj � 1

�
R (92)

for any cm � �0,��m such that dÆ�QY m , �QYj
�, cm� � 0.

Note that (92) only characterizes the ratio of the CR to

communication rates, rather than the entire region. Extend-

ing the proof in [1] directly will show an outer bound

similar to (82) but with dÆ�QY m , �QYj
�, cm� replaced by

d�QY m , �QYj
�, cm�, hence it is strictly suboptimal even in

terms of the first-order region. A similar issue appeared in the

single-shot converse for another common randomness gener-

ation problem between two terminals [2], [33], and in fact,

more broadly in many other problems in network information

theory. Here we complete the picture by bridging dÆ��� and

d��� with the “smoothing” machinery.

Theorem 7 (Single-shot converse for omniscient helper CR

generation). Fix QY m , δ � �0, 1�, and cm � �0,��m such

that

m

j�1 cj � 1. Let QKm be the actual CR distribution in

a coding scheme for omniscient helper CR generation, using
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stochastic encoders and deterministic decoders (or stochastic

decoders, if cj � 1, j � 1, . . . , m). Then

1

2
�QKm � TKm � �

1� 1

�K� �
�m

j�1 �Wj�
cj�
ci

�K�1� 1�
ci

exp

�
dδ�QY m , �QYj

�, cm�

ci

�
� δ,

(93)

where

TKm�km� :� 1

�K�1�k1 � � � � � km� (94)

is the target CR distribution and K and �Wj�mj�1 denote the

CR and message alphabets.

Remark 7. The performance metric (93) takes into account

both the uniformity and the agreement of the common ran-

domness generated. We remark that the use of the total

variation distance as a performance metric for common ran-

domness or key generation has previously appeared in other

places, such as [56], [57].

Proof. Suppose µ achieves the infimum in the definition of

dδ�QY m , �QYj
�, cm�. For any k � K,

µ

�
m�

j�1

�Kj � k�
�

�
�
Ym

�
wm

m�
j�1

PKj �YjWj�wj
�k�PW m �Y m�wm�dµ (95)

�
�
Ym

max
wm

m�
j�1

PKj �YjWj�wj
�k�dµ (96)

�
�
Ym

m�
j�1

max
wj

PKj �YjWj�wj
�k�dµ (97)

� exp�d�
m�

j�1

	�
Yj

max
wj

P
1

cj

Kj �YjWj�wj
�k�dPYj


cj

(98)

� exp�d�
m�

j�1

	�
Yj

max
wj

PKj �YjWj�wj
�k�dPYj


cj

(99)

� exp�d�
m�

j�1

	�
wj

�
Yj

PKj �YjWj�wj
�k�dPYj


cj

(100)

where

� In (98) we defined d :� d�µ, �QYj
�, cm�.

� (99) uses maxwj
PKj�k�YjWj�wj

� 1 and the assump-

tion of 0 � cj � 1 or deterministic decoders.

Raising both sides of (100) to the power of 1�
m
i�1

ci
, we obtain

µ
1�
i ci

�
m�

j�1

�Kj � k�
�

� exp

�
d
m

i�1 ci

� m�
j�1

	�
wj

�
Yj

PKj�k�YjWj�wj
dPYj


 cj�
i ci

(101)

But the function tm �� �m
j�1 t

cj�
i ci

j is a concave function on

�0,��m; one way to see the concavity is that
�m

j�1 t

cj�
i ci

j �
limp�0

�

j

cjt
p
j�

i
ci

� 1

p

which is the 0-norm of the random vari-

able tJ where P�J � j� � cj�
i
ci

. Therefore by Jensen’s

inequality,

1

�K�
�K��
k�1

m�
j�1

	�
wj

�
Yj

PKj �YjWj�wj
�k�dPYj


 cj�
i ci

(102)

�
m�

j�1

� �
wj

�
Yj

1

�K�
�K��
k�1

PKj �YjWj�wj
�k�dPYj

!"
cj�
i ci

(103)

�
m�

j�1

	�
wj

�
Yj

1

�K�dPYj


 cj�
i ci

(104)

�
m�

j�1

� �Wj�
�K�

� cj�
i ci

(105)

Combining (101) and (105) we obtain

1

�K�
�K��
k�1

µ
1�
i ci

�
m�

j�1

�Kj�k�
�
�exp

�
d
m

i�1 ci

� m�
j�1

��Wj�
�K�

� cj�
i ci

.

(106)

Now, let T̄Km and µ̄Km be the restrictions of TKm and

µKm on the event �K1 � � � � � Km�. Then T̄Km is the

equiprobable distribution on a set of cardinality �K�, and

µ̄Km�k� � µ
�#m

j�1�Kj � k�
�

, k � 1, . . . , �K�. Invoking

Lemma 8 which we show after the current proof with α �
1�
i
ci

, we obtain

E1�TKm	µKm�
� E1�T̄Km	µ̄Km� (107)

� 1� 1

�K� � �K�
1�

j cj
�1

�K��
k�1

µ

�
m�

j�1

�Kj � k�
� 1�

j cj

.

(108)

Combining (106) and (108), we have

E1�TKm	µKm� �

1� 1

�K� �
�m

j�1 �Wj�
cj�m

i�1
ci

�K�1�
1�m

i�1
ci

exp

�
d�µY m , �QYj

�, cm�
m
i�1 ci

�
.

(109)

Then, Theorem 7 follows since

1

2
�QKm � TKm� � E1�TKm	QKm� (110)

� E1�TKm	µKm� �E1�QKm	µKm�
(111)

� E1�TKm	µKm� �E1�QY m	µY m�
(112)

� E1�TKm	µKm� � δ. (113)
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Lemma 8. Suppose T is equiprobable on �1, . . . , M� and µ

is a nonnegative finite measure on the same alphabet. For any

α � �0, 1�,

E1�T 	µ� � 1 � 1

M
� exp���1 � α�Dα�µ	T ��, (114)

where E1�T 	µ� was defined in (16) and the Rényi divergence

is defined as Dα�µ	T � :� 1
α�1

log

M

x�1 µα�x�T 1�α�x�.
Proof. Consider the optimization problem over nonnegative

vector aM � �a1, . . . , aM �:

minimize f�aM � :�
M�

m�1

$$$$ 1

M
� am

$$$$	 (115)

subject to g�aM � :� 1

M

M�
m�1

aα
m � λ (116)

where λ � 0 is some constant. If µ has probability masses

a1, . . . , aM , then E1�T 	µ� � f�aM � and Dα�µ	T � is

a monotonically decreasing function of g�aM �. We claim

that (115)-(116) have an optimal solution âM satisfying the

property: $$$$�m : âm �
�

0,
1

M

��$$$$ � 1. (117)

Indeed, if otherwise, and there are i and j for which 0 � âi �
âj � 1

M
, then we can choose t :� min�âi,

1
M

� âj�, such

that either ãi :� âi � t � 0 or ãj :� âj � t � 1
M

. For m �
�1, . . . , M� �i, j�, put ãm � am. By convexity, we can check

that ãM is still an optimal solution to (115)-(116). However,

the count on the left side of (117) decreases by 1 when we

modify â to ã. We can continue this process until (117) is

satisfied. Next, notice that for any aM , if bm :� am1�am �
1
M

� � 1
M

1�am � 1
M

�, then

f�bM � � f�aM �, (118)

g�bM � � �g�aM ��. (119)

Thus an optimizer âM of (115)-(116) can further be assumed

to be of the following form:

âM �
%

1

M
,

1

M
, . . . ,

1

M
, η, 0, 0, . . . , 0

&
(120)

for some 0 � η � 1
M

. Suppose that the number of zeros

on the right side of (120) is k. Then from f�âM � � k
M

and

λ � g�âM � � 1
M

� M�k�1
Mα , we deduce that the optimal value

for (115)-(116) satisfies

f � 1 � λMα � 1

M
. (121)

Thus we have shown that

E1�T 	µ� � 1 � 1

M
� Mα�1

M�
m�1

µα�m� (122)

which is the desired inequality.

Remark 8. Let QKKm and

TKKm�k, km� :� 1

�K�1�k � k1 � � � � � km� (123)

denote the actual and the target distributions of the CR

generated by T0, T1,…,Tm, respectively. Since

�QKKm � TKKm � � �QKm � TKm�, (124)

Theorem 7 also provides a lower bound on �QKKm �TKKm�.
Actually, if the decoders are deterministic, T0 can always

produce K such that the two total variations are equal, because

T0 is aware of the CR produced by the other terminals.

Remark 9. Allowing stochastic decoders can strictly lower
1
2
�QKm � TKm�: consider the special case where m � 2, Y1

and Y2 are constant, and there are no messages sent. Then

the minimum 1
2
�QKm � TKm � achieved by deterministic

decoders is 1 � 1
�K� . On the other hand, T1 and T2 can

each independently output an integer in �1, . . . ,
'�K��

equiprobably, achieving 1
2
�QKm � TKm� � 1 � 1�

�K�
.

Nevertheless, we can argue that allowing stochastic decoders

can at most reduce the error by a factor of 4: Suppose
1
2
�QKm � TKm � � δ for some stochastic decoders, then

1
2
�QK1

� TK1
� � δ and Q�K1 � K2 �, . . . ,� Km� � δ.

We can then remove the stochasticity of decoders at

T2…Tm but retain the last two inequalities. Indeed, let

fk�Ym, Wm� denote the probability of producing k upon

observing �Ym, Wm� at Tm. Since Km � �Ym, Wm� �
�K1, . . . , Km�1�, we have Q�K1 � � � � � Km� �
E

(
�K�
k�1 fk�Ym, Wm�P �K1 � � � � � Km�1 � k�Ym, Wm�

)
;

this probability cannot decrease if Tm switches to the

deterministic protocol that selects a k that maximizes

P�K1 � � � � � Km�1 � k�Ym, Wm�. By iterating this

argument for Tm�1,…,T2, we see that 1
2
�QKm � TKm � � 2δ

is achievable with deterministic decoders at T2,…,Tm; this

pays a factor of 2 for 1
2
�QKm � TKm �. Applying the similar

argument again, but starting with 1
2
�QKm

� TKm
� � 2δ and

Q�K1 � K2 � � � � � Km� � 2δ, we can further remove

the stochasticity of the decoder at T1, at the cost of another

factor of 2.

B. Second-Order Converse for Common Randomness

Generation

Corollary 9. Consider any stationary memoryless source

with per-letter distribution QY m , any cm � �0,��m, and

a sequence of omniscient helper CR generation schemes

allowing stochastic encoders (indexed by n). Define

A :�

lim sup
n��

1�
n

	
m�

j�1

cj log �Wj� � n dÆ��
m�

j�1

cj � 1� log �K�



(125)

where dÆ :� dÆ�QY m , �QYj
�, cm�. Also assume that

�K� � � and P ÆUY m is a maximizer in the definition of

dÆ�QY m , �QYj
�, cm�, and define φ��� as in Section III. Then9

lim inf
n��

1

2
�QKm � TKm� � Q

�
A'

Var�∇φ�QY m �

�
(126)

9Q��� denotes the standard Gaussian tail probability function.
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where QKm denotes the actual CR distribution and TKm is

the target distribution as defined in (94).

Proof. Using the bound on the smooth BL divergence (54),

we obtain from (93) that

1

2
�QKm � TKm �

� 1� 1

�K� � inf
γ�R

���
�m

j�1 �Wj�
cj�
ci

�K�1� 1�
ci

exp

�
γ

ci

�
� P

���
(127)

where P :� P �
n
i�1 ∇φ�QY m �Y m

i� � γ�. Here we used

Proposition 2-3) to show that

∇φ�QY mn �Y mn� �
n�

i�1

∇φ�QY m �Y m
i�. (128)

Taking γ � n dÆ�QY m , �QYj
�, cm� � �

nA� for any A� � A

shows that

lim inf
n��

1

2
�QKm � TKm � � Q

�
A�'

Var�∇φ�QY m �

�
. (129)

Then take A� � A.

C. Second-Order Achievability for Common Randomness

Generation

In this section we show that the second-order converse (126)

is tight for the discrete memoryless sources. The proof uses

standard method of types analysis. First, consider the follow-

ing encoding and decoding rules designed for a specific type*PY mn .

Encoding at T0: For any given cm � �0,��m, let P Æ
U �Y m be

a maximizer in the definition of dÆ�QY m , �QYj
�, cm�. Let P Æ

U

be the output distribution of *PY mn through P Æ
U �Y m . Construct

a codebook of size �K̃�, where

log �K̃� :� nI� *PY mn , P Æ
U �Y m� � n0.01 (130)

and the codewords are i.i.d. according to the equiprobable

distribution on the P Æ
U type. Upon observing Y mn, T0 sends

the empirical distribution *PY mn using O�log n� bits to all

other terminals. Then T0 equiprobably selects among code-

words (if any) uK such that �uK , Y mn� has the joint type

�P Æ
U �Y m

*PY mn�. Random binning is used to send this selected

index i to other terminals. For Terminal Tj , each ui codeword

is mapped randomly to one of �Wj� bins where

log �Wj� � nI� *PY mn , P Æ
U �Y m� � nI� *PYj

n , P Æ
U �Yj

� � n0.02.

(131)

Decoding at Tj: Note that �K̃� and �Wj� defined above

depend on *PY mn , which is known by all terminals as a part

of the messages from T0. Terminal Tj decodes a codeword

having P Æ
U �Yj

*PYj
n joint type with Yj

n and also in the right

bin.

Error and rate analysis: Conditioned on the type *PY mn ,

the error probability of incorrectly decoding the codeword uK

is O�n�100�, by the standard covering and random binning

analysis (see e.g. Slepian-Wolf coding [58]). Moreover for any

fixed codebook, the probability that any given codeword index

K is selected is exp�nI� *PY mn , P Æ
U �Y m��O�log n��. Therefore

using the hash lemma [40, Lemma 3.1], there exists a mapping

f : K̃ � K where

log �K� � nI� *PY mn , P Æ
U �Y m� � n0.01 (132)

such that f�K� is close to the equiprobable distribution on

K with error O�n�100� in the total variation. Moreover, let

E0 be the event that � *PY mn � QY m � � n�0.49. Using large

deviations,

P�E0� � O�n�100�. (133)

Under the complement of E0, by the Taylor expansion we have

m�
j�1

cj�log �Wj� � log �K�� � log �K�

� n

m�
j�1

cjI� *PYj
, P Æ

U �Yj
n� � nI� *PY mn , *P Æ

U �Y m� �O�n0.02�

(134)

� n dÆ�QY m , �QYj
�, cm� � n

〈

∇φ�QY m , *PY mn �QY m

〉

�O�n0.02� (135)

�
n�

i�1

∇φ�QY m �Y m
i� �O�n0.02�. (136)

We showed that (136) is the cost for the error to be O�n�100�.
If we want the error to converge to Q

�
A�

Var
∇φ�QY m �

�
, the

left side of (134) needs to exceed n dÆ�QY m , �QYj
�, cm� ��

nA.

A tweak: We have obtained the correct second-order upper

bound on the left side of (134), but the proof is not finished

yet since each term therein vary with *PY mn even though the

sum is bounded. To finish, pick any PU �Y m � P Æ
U �Y m and set

P t
U �Y m :� tPU �Y m ��1� t�P Æ

U �Y m . Under the complement of

E0, for each *PY mn find t � O�n�1�2� such that

log �Wj� � nI� *PY mn , P t
U �Y m� � nI� *PYj

n , P t
U �Yj

� � n0.02

(137)

always equals nI�QY m , P Æ
U �Y m� � nI�QYj

, P Æ
U �Yj

� which is

independent of *PY mn . The new codebook size

log �K� � nI� *PY mn , P t
U �Y m� � n0.01 (138)

will change according to this new encoding rule P t
U �Y m , but

one can verify using the first order optimality of P Æ
U �Y m that

m�
j�1

cj�log �Wj� � log �K�� � log �K�

�
n�

i�1

∇φ�QY m �Y m
i� � o�n1�2� (139)

still holds. We thus obtain:

Theorem 10. Consider any discrete memoryless source with

per-letter distribution QY m , any cm � �0,��m, and A � R.
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There exists a sequence of omniscient helper CR generation

schemes allowing stochastic encoders (indexed by n) such that

�
m�

j�1

cj � 1� log �K� �
m�

j�1

cj log �Wj�

� n dÆ�QY m , �QYj
�, cm� �A

�
n (140)

and

lim sup
n��

1

2
�QKm � TKm � � Q

�
A'

Var�∇φ�QY m �

�
. (141)

Here φ��� is as in Section III, QKm denotes the actual CR

distribution, and TKm is the target distribution as defined

in (94).

D. Second-Order Converse for Smooth BL Divergence

Theorem 7 essentially establishes a single-shot connection

between the smooth BL divergence and omniscient helper CR

generation: the achievability of one implies the converse of the

other. The second-order achievability of common randomness

generation implies the following second-order converse for

smooth BL divergence, which is tight in view of the upper

bound in Theorem 4.

Corollary 11. Fix any discrete memoryless source QY m , cm �
�0,��m, and δ � �0, 1�.
dδ�Q�n

Y m , �Q�n
Yj
�, cm� � n dÆ�QY m , �QYj

�, cm�
�
+

n Var�∇φ�QY m �Q�1�δ��o��n�.
(142)

Proof. If the claim were not true, then by (93) one could prove

a second-order converse for common randomness generation

that contradicts the achievability (Theorem 10).

Remark 10. For non-discrete alphabets, it is possible to prove

the achievability of common randomness generation using the

likelihood encoder [1]. The total variation error vanishes for

rates in the interior of the same rate region. Thus by the same

reasoning as Corollary 11, we have strong converse of smooth

BL divergence for any stationary (not necessarily discrete)

memoryless source:

dδ�Q�n
Y m , �Q�n

Yj
�, cm� � n dÆ�QY m , �QYj

�, cm� � o�n�.
(143)

for any δ � �0, 1�.

V. APPLICATION: ALMOST LOSSLESS

GRAY-WYNER NETWORK

In this section we prove a single-shot converse bound for

the lossless Gray-Wyner source coding problem [59] using the

smooth BL divergence. This will imply the exact second-order

converse, previously also obtained by [16] using the method

of types analysis.

Figure 2 shows the (single-shot) formulation of the problem.

The sources are discrete random variables Y1, …, Ym with

the joint distribution QY m . Terminal T0 observes Y m while

Fig. 2. Gray-Wyner network.

Terminal Tj observes Yj , j � 1, . . . , m. For each j �
0, . . . , m, Terminal Tj computes integer Wj�Y m�. For j �
1, . . . , m, the decoder Dj receives �W0, Wj� and computes

Ŷj�W0, Wj� � Yj . The goal is that Ŷ m � Y m with high

probability. In the literature, the Gray-Wyner network usually

refers to the m � 2 case of this model.

Gray and Wyner [59] computed the exact first order rate

region in the discrete memoryless case. Take QY m 
 Q�n
Y m

and Yj 
 Yj
n in the above single-shot formulation. Define

Rj � lim sup
n��

1

n
log �Wj� (144)

for j � 0, . . . , m. The achievable rate region, defined as the set

of �R0, . . . , Rm� for which there exist a sequence of coding

schemes (indexed by n) such that

lim sup
n��

P�Ŷ m � Y m� � 0, (145)

is the closure of the set of �R0, . . . , Rm� � �0,��m	1 such

that

R0 �
m�

j�1

cjRj � inf
PU�Y m

�
m�

j�1

cjH�Yj �U� � I�U ; Y m�
�

(146)

�: � dÆ�QY m , �νj�, cm� (147)

for all cm � �0,��m, where �U, Y m� � PU �Y mQY m and νj

is the counting measure on Yj .

Theorem 12. Fix QY m , δ � �0, 1�, cm � �0,��m and let νj be

the counting measure on Yj where �Yj � � �, j � 1, . . . , m.

Then any coding scheme for Gray-Wyner satisfies

P�Ŷ m � Y m� � 1� exp�dδ�QY m , �νj�, cm��
m�

j�0

�Wj�cj � δ

(148)

where c0 :� 1.

Remark 11. Notice that the dδ�QY m , �νj�, cm� in (148) can

be negative since νj is the counting measure rather than a

probability measure.

Proof. Note that Ŷ m can be viewed as a function of ym, since

all the messages W0,…,Wm are functions of ym. Define the

correctly decodable set

D :� �ym : Ŷ m�ym� � ym�. (149)

Authorized licensed use limited to: Thomas Courtade. Downloaded on July 09,2020 at 21:37:10 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: SMOOTHING BL INEQUALITIES AND STRONG CONVERSES OF CODING THEOREMS 717

Let µ be a minimizer in (17) (if the minimum is not achieved,

the proof can still proceed by approximation). Define µ�D as

the restriction of µ on D, that is,

d µ�D
d µ

�ym� � 1�ym � D�. (150)

Let � be the error probability. By the triangle inequality for

Eγ-distance,

E1�QY m	 µ�D� � E1�QY m	 QY m �D� �E1�QY m �D 	 µ�D�
(151)

� ��E1�QY m	µ� (152)

� �� δ. (153)

For each u �W0, set Au :� W�1
0 �u�!D , and denote by Auj

its projection onto the j-th coordinate. Then by Proposition 1,

we have

µ�Au� � exp�dδ�QY m , �νj�, cm��
m�

j�1

νj�Auj�cj (154)

� exp�dδ�QY m , �νj�, cm��
m�

j�1

�Wj�cj (155)

for each u, where (155) used the estimate νj�Auj� � �Wj�
which follows from the fact that Auj " Ŷj�u,Wj� by the

definition of correctly decodable sets. The desired result then

follows noting that

�W0�max
u

µ�Au� �
�
u

µ�Au� (156)

� µ�D� (157)

� 1�E1�QY m	 µ�D� (158)

� 1� ��� δ�. (159)

The exact second-order asymptotics for the Gray-Wyner

coding [59] was derived in [16] using the method of types.

In [16], a weighted distribution on Ym is defined where the

probability of the set of correctly decodable ym is amplified,

so that a nonvanishing error is turned into a polynomially

vanishing error. Then Fano’s inequality is applied to the

weighted distribution. Here we show that such a second-order

converse also follows from the smooth BL divergence bound

(Theorem 12), which was proved via a fundamentally different

approach.

Proposition 13 ( [16]). Consider a stationary mem-

oryless source with per-letter distribution QY m , where

�Y1�, . . . , �Ym� � �. Let c1, . . . , cm � �0,��, c0 :� 1 and

A � R. For an arbitrary sequence of Gray-Wyner coding

schemes (indexed by n), define

A :� lim sup
n��

�
n

�
dÆ�QY m , �νj�, cm� � 1

n

m�
j�0

cj log �Wj �
�

(160)

where νj denotes the counting measure on Yj . Then

lim inf
n��

P�Ŷ mn � Y mn� � Q

�
A'

Var�∇φ�QY m �Y m��

�
(161)

where φ��� is as in Section III.

Proof. Using the bound on the smooth BL divergence (Theo-

rem 4), we obtain from (148) that

P�Ŷ mn � Y mn� �

1� inf
γ�R

�
exp�γ�

m�
j�0

�Wj�cj � P

	
n�

i�1

∇φ�QY m �Y m
i� � γ


�
(162)

where Y m � QY m . Here we used Proposition 2-3) to show

that

∇φ�QY mn �Y mn� �
n�

i�1

∇φ�QY m �Y m
i�. (163)

Taking γ � n dÆ�QY m , �νj�, cm� � �
nA� for any A� � A

shows that

lim inf
n��

P�Ŷ mn � Y mn� � Q

�
A�'

Var�∇φ�QY m �Y m��

�
.

(164)

Taking A� � A establishes the claim.

Remark 12. For the discrete memoryless case, [16] showed

that the bound (161) is tight.

VI. APPLICATION: GAUSSIAN LOSSY GRAY-WYNER

NETWORK WITH SQUARE DISTORTION

We now consider the lossy version of the Gray-Wyner

problem. The setup is still as in Figure 2. But in contrast to

the lossless version, we are given distortion functions ∆j : Y�
Ŷ � R and the goal is to minimize P�#j : ∆j�Yj , Ŷj� � Dj�
where Dj is a given distortion level, j � 1, . . . , m.

In the stationary memoryless case with per-letter source

distribution QY m , take Yj 
 Yj
n and ∆j�yj , ŷj� 


1
n


n
i�1 ∆j�yji, ŷji�. Denote by

Rj :� lim sup
n��

1

n
log �Wj� (165)

the rate of the j-th message as before, for j � 0, . . . , m. The

achievable rate region is defined as the closure of the set of

�R0, . . . , Rm� � �0,��m	1 such that

lim
n��

P�#j : ∆j�Yj
n, Ŷ n

j � � Dj� � 0. (166)

In [59], Gray and Wyner showed that the achievable region is

the closure of the set of �R0, . . . , Rm� such that

R0 � I�U ; Y m�; (167)

Rj � RYj �U �Dj�, j � 1, . . . , m, (168)
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for an auxiliary random variable U [59]. Here RYj �U ���
denotes the conditional rate-distortion function. That is,

RYj �U �D� :� inf
d
��

�
RYj �U�u�d�u�� d QU �u� (169)

where the infimum is over nonnegative measurable functions

d : U � R such that E�d�U�� � D, and RYj �U�u denotes

the conventional (single-letter) rate-distortion function for a

single source with per-letter distribution QYj �U�u and per-

letter distortion function ∆j (see e.g. [58]). The second-order

converse for discrete lossy Gray-Wyner coding was proved

in [17], which relies heavily on the method of types and does

not appear to be applicable to continuous sources such as the

Gaussian sources.

We proceed to derive a single-shot converse for general

distortion measures, and then we particularize it to quadratic

distortions to derive a second-order converse for Gaussian

sources.

Theorem 14. Suppose δ � �0, 1�, Y m � QY m , ∆j : Yj �
Ŷj � �0,��, and νj is an arbitrary nonnegative σ-finite

measure on Ŷj , j � 1, . . . , m. Then any coding scheme for

the Gray-Wyner network satisfies

P�#j : ∆j�Yj , Ŷj� � Dj�

�1� exp�dδ�QY m , �νj�, cm���W0�
m�

j�1

�Wj�cjL
cj

j � δ

(170)

where Lj :� sup
y�Ŷj

νj�∆j��, y� � Dj�, j � 1, . . . , m.

Proof. The proof is similar to the proof of Theorem 12. Define

the correctly decodable set

D :� �ym : ∆�yj , Ŷj�W0�ym�, Wj�ym��� � Dj ,
j�. (171)

Steps (151)-(153) still follow. The bound (155) will be

replaced by

µ�Au� � exp�d�
m�

j�1

�Wj �cjL
cj

j (172)

because for each j, Auj " �yj : #wj , ∆�yj , Ŷj�u, wj�� �
Dj� (that is, Ŷj�u,Wj� is a Dj-covering of Auj), which

implies that νj�Auj� � �Wj�Lj . The rest of the proof follows

verbatim.

Remark 13. Clearly Theorem 14 recovers Theorem 12 as a

special case when ∆��, �� is the Hamming distortion. We pre-

sented Theorem 12 first since it is simpler and contains the

main ingredients of Theorem 14.

Next, we particularize Theorem 14 to the case of stationary

memoryless Gaussian source and square distortion, and prove

a second-order converse. Let us first simplify the first-order

region. Let ∆j : �y, ŷ� � R
2 �� �y � ŷ�2 be the per-

letter distortion function, j � 1, . . . , m. By (167) and (168),

�R0, . . . , Rm� � �0,��m	1 is achievable if and only if for any

cm � �0,��m and c0 :� 1,

m�
j�0

cjRj � inf
PUV m�Y m

�
I�U ; Y m� �

m�
j�1

cjI�Vj ; Yj �U�
�

,

(173)

where the infimum is over PUV m�Y m such that Vj is a real

valued random variable satisfying E��Vj � Yj�2� � Dj ,

j � 1, . . . , m, and �U, V m, Y m� � PUV m�Y mQY m . The

following provides a supporting hyperplane characterization

of this achievable region.

Proposition 15. Let QY m be an m-dimensional Gaussian

distribution with a non-degenerate covariance matrix. Fix

Dm � �0,���m. Define

R :�
�

PU�Y m

�������
�R, R1, . . . , Rm� � R

m	1 :

R � I�U ; Y m�,
Rj � h�Yj �U� � 1

2
log 2πeDj,

j � 1, . . . , m.

������� . (174)

1) R is convex. The (inward pointing) normal at every

boundary point Rm
0 can be chosen as �1, c1, . . . , cm�

with cm � �0, 1�m. If such cm � �0, 1�m, then Rm
0 is the

unique intersection of the supporting hyperplane and R,

and there exists a Gaussian PU �Y m such that

R0 � I�U ; Y �; (175)

Rj � h�Yj �U� � 1

2
log 2πeDj, j � 1, . . . , m. (176)

2)

cl�R� ��
cm�
0,1�m

� �R, R1, . . . , Rm� � R
m	1 :

R�
m
j�1 cjRj � dÆ

�
(177)

where

dÆ :� inf
PU�Y m

�
I�U ; Y m� �

m�
j�1

cj

%
h�Yj �U�� 1

2
log 2πeDj

&�
.

3) cl�R� ! �0,���m	1 is the achievable rate region.

Proof. 1) The convexity is standard using the chain rules

of the information quantities (similar to the proof of the

convexity of a rate region). To see that each supporting

hyperplane has a normal vector (pointing towards R)

of the form �1, c1, . . . , cm�, cm � �0, 1�m: first choose

cm
0 orthogonal to a supporting hyperplane of R at a

boundary point Rm
0 and pointing into R. From the

form of (174) we can see that cj � 0, j � 0, . . . , m.

We also see from (174) that for any (no matter how

small) R̂1, . . . , R̂m there exists R̂ large enough such

that �R̂, R̂1, . . . , R̂m� � R, which implies that c0 � 0.

Thus by re-normalization we can assume without loss

of generality that c0 � 1. Then cj � 1, j � 1, . . . , m,

by Proposition 16 which is given after the present proof.

The claim for the case of cm � �0, 1�m also follows from

Proposition 16.

2) From convex analysis [55] the closed convex set cl�R�
is the intersection of closed half spaces on one side
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of the supporting hyperplanes. As argued in the proof

of Part 1), the normal (pointing inward) vector of each

supporting hyperplane can be chosen as �1, c1, . . . , cm�
where cm � �0, 1�m. Moreover, since �0, 1�m is dense in

�0, 1�m, we can verify the geometric fact that such an

intersection can be restricted to supporting hyperplanes

whose normal vector has the form �1, c1, . . . , cm� where

cm � �0, 1�m.

3) To see the achievable region contains cl�R� !
�0,���m	1, it suffices to show the achievability of

an arbitrary �max�Rj , 0��mj�0 where Rm
0 is on the

boundary of R " R
m	1. Choose a Gaussian PU �Y m

according to Part 1). Now for each j � 1, . . . , m,

if σ2
Yj �U

� Dj , then for each u, we can construct

PNjVj �U�u under which Nj and Vj are independent

Gaussian with means 0 and E�Yj �U � u� and variances

Dj and σ2
Yj �U

�Dj � 0 respectively, such that their sum

has the distribution of PYj �U�u. Then we may as well

put Vj , Nj , Yj and U in the same probability space so

that Yj � Nj � Vj . Otherwise, σ2
Yj �U

� Dj , we let Vj

be constant. As such, in both cases we have

max�Rj , 0� � h�Yj �U� � h�Yj �UVj� � 0, (178)

E��Yj � Vj �2� � Dj, (179)

for j � 1, . . . , m. Then �max�Rj , 0��mj�0 is achievable

in view of (167) and (168).

For the converse, consider any Rm
0 � �0,��m	1 that

satisfies

R0 � I�U ; Y m�; (180)

Rj � I�Vj ; Yj �U�, j � 1, . . . , m; (181)

for some PU �Y m and �PVj �UY m�mj�1 such that E��Vj �
Yj �2� � Dj , j � 1, . . . , m. In view of (167) and (168)

and the equivalent formulation of R in (177), it suffices

to show that

R�
m�

j�1

cjRj �

inf
PU�Y m

�
I�U ; Y m� �

m�
j�1

cj

%
h�Yj �U� � 1

2
log 2πeDj

&�
(182)

for any cm � �0, 1�m. This follows because

I�Vj ; Yj �U� � h�Yj �U� � h�Yj �VjU� (183)

� h�Yj �U� � h�Yj � Vj �VjU� (184)

� h�Yj �U� � h�Yj � Vj� (185)

� h�Yj �U� � 1

2
log 2πeDj. (186)

Proposition 16. Fix QY m m-dimensional Gaussian with a

non-degenerate covariance matrix Σ. If cm � �0,���m and

cj � 1 for some j, then

inf
PU�Y m

�
�h�Y m�U� �

m�
j�1

cjh�Yj �U�
�
� ��. (187)

If cm � �0, 1�m, then the infimum is finite and achieved, and

there exist a Σ̃ : 0 � Σ̃ � Σ such that for any minimizer

PU �Y m , Y m�U � u is Gaussian with covariance matrix Σ̃

(for almost all u and under PU �Y mQY m).

Proof. If PU �Y m is Gaussian and the covariance matrix of Y m

given U is Σ̃ under PU �Y mQY m , then

� h�Y m�U� �
m�

j�1

cjh�Yj �U�

�



cj �m

2
log 2πe� 1

2
log �Σ̃� �

� cj

2
log Σ̃jj (188)

where Σ̃jj is the j-th diagonal entry of the matrix Σ̃. The

first claim for the case of cj � 1 follows by taking Σ̃ to be

diagonal with Σ̃jj � 0.

Next, suppose that cm � �0, 1�m. In [23] it is shown that the

value of the left side in (187) does not change if the infimum is

restricted to Gaussian PU �Y m . Choose a sequence of Gaussian

P i
U �Y m , i � 1, . . . , for which �h�Y m�U� �
m

j�1 cjh�Yj �U�
converges to the left side of (187). Let Σ

i be the covariance

matrix of Y m given U under P i
U �Y mQY m . Since Σ

i
� Σ

for each i, by passing to a convergent subsequence we can

assume that Σ
i � Σ

Æ for some Σ
Æ
� Σ. Observe that (188)

is bounded below by

� h�Y m�U� �
m�

j�1

cjh�Yj �U�

�



cj �m

2
log 2πe�

� 1� cj

2
log Σ̃jj , (189)

hence Σ̃i
jj must be bounded away from 0, for large enough

i. Thus Σ
Æ has strictly positive diagonals. By the continuity

of the right side of (188) in Σ̃, we see that Σ
Æ is in fact a

minimizer of the right side of (188) under the constraint Σ̃ �

Σ. Now let UÆ and Nm independent m-dimensional Gaussian

vectors whose means sum to E�Y m� and whose variances are

Σ � Σ̃ and Σ̃, respectively. Put Y m � UÆ � Nm, and the

corresponding PU �Y m is a minimizer for the left side of (187).

The constraint in (177) can be rewritten as

R�
m�

j�1

cjRj � �dÆ�QY m , �λ�, cm� �
m�

j�1

cj

2
log 2πeDj,

(190)

for any cm � �0, 1�. We now prove a second-order converse.

Theorem 17. Let QY m be an m-dimensional Gaussian dis-

tribution with a non-degenerate covariance matrix, and λ be

the Lebesgue measure on R. Let cm � �0,��m, and define

c0 :� 1. Consider a sequence of Gray-Wyner coding schemes

(indexed by n) for the stationary memoryless source with per-

letter distribution QY m , and define

A :� lim sup
n��

�
n

	
1

n

m�
j�0

cj log �Wj��dÆ�
m�

j�0

cj

2
log 2πeDj



(191)
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where dÆ :� dÆ�QY m , �λ�, cm�. Then for any Dj � �0,��,
j � 1, . . . , m,

lim inf
n��

P�#j :	Yj
n�Ŷ n

j 	2�nDPj��Q

�
A'

Var�∇φ�QY m�Y m��

�
(192)

where φ��� is as in Section III.

Proof. First, observe that we will only need to consider the

case of



j cj � m, since otherwise dÆ�QY m , �λ�, cm� � �
by Proposition 16, in which case the claim is vacuous. Using

the bound on the smooth BL divergence (Theorem 4), we take

νj � λ in (170) and obtain that

P�#j : 	Yj
n � Ŷ n

j 	2 � nDj� �

1� inf
γ�R

�
exp�γ�

m�
j�0

�Wj�cjL
cj

j �P

	
n�

i�1

∇φ�QY m �Y m
i��γ


�
(193)

where Y m � QY m . Here we used Proposition 2-3) to show

that

∇φ�QY mn �Y mn� �
n�

i�1

∇φ�QY m �Y m
i�. (194)

Note that in Theorem 14,

Lj � �Bn�
'

nDj�� (195)

� 1�O�n�1��
nπ

�2πeDj�
n
2 (196)

is the volume of an n-dimensional ball of radius
'

nDj .

Taking γ � n dÆ�QY m , �λ�, cm� � �
nA� for any A� � A

shows that

P�#j : 	Yj
n � Ŷ n

j 	2 � nDj��Q

�
A�'

Var�∇φ�QY m �Y m��

�
.

(197)

Taking A� � A establishes the claim.
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